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§ 1. Introduction

Let G be a semisimple algebraic group over C, and B a Borel subgroup of
G. Let P be a parabolic subgroup of G that contains B. Denote by W the
Weyl group of G with respect to a fixed maximal torus T c B, and let WP a W
be the Weyl group of P. We denote the set of minimal representatives of
W/Wp by Wp. For coeWp, X(co) denotes the Schubert variety in G/P
corresponding to co. X(co) is the Zariski closure of the B-orbit of a unique
T-fixed point ew of G/P. We call ew 'the centre' of X(a)). Our conventions
for labelling the simple roots in W are the same as in [1].

Recall [3] that a resolution p : X -> X of an irreducible complex variety
X is said to be small if, for each i > 0, one has

codim^ (x e X \ dim p ~ l (x) > i} > 2 i.

If p is a small resolution, then for any i > 0, for the intersection
cohomology sheaf Jti? (X) (with respect to the middle perversity), the stalk
^l(X}x is isomorphic to the singular cohomology group Hl(p~1(x); C). (See
[3]).

If p: X(A)-> X(%) is a small resolution of a Schubert variety X(k) in G/P,
then for T < A, the Poincare polynomial Pt(p~l(er)), q = t2, equals the
Kazhdan-Lusztig polynomial PAw,TW where w = w0(P). A.V. Zelevinskii [7]
has constructed small resolutions for all Schubert varieties in the Grassmannian
Gr „ = SL(n, C)/Pr, 1 < r < n, where Pr is the maximal parabolic obtained by
omitting the simple root ar. In §2 of our paper we generalise Zelevinskii's
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construction to obtain resolutions of Schubert varieties in any G/P and address
the question as to which of them are small.

Existence of Schubert varieties for which the known procedures of
desingularisations do not yield small resolutions have been observed earlier
(see [7]). However, to the best of our knowledge, examples of Schubert
varieties not admitting any small resolutions at all are not to be found in the
literature. In Theorem 1.2 below we give examples of such varieties in
Sp(2n)/Q for every parabolic Q c Pn. Here Pn denotes the maximal parabolic
obtained by omitting the root an. Our proof of Theorem 1.2 is based on the
following observation. If p : X -> X is a resolution of a normal irreducible
variety then by Zariski's Main Theorem, the fibre p ~ 1 ( x ) over any singular
point x of X , has positive dimension. Therefore, any normal irreducible variety
X with codimension 2 singular locus cannot have any small resolution. Using
[6] we exhibit Schubert varieties with codimension two singular loci.

Let G = Sp(2n, C) or S0(2n, C), and let P = Pn. Recall, from [5], that
the Schubert varieties in Sp(2n, C)/P are indexed by U o < r < n ^ n , r where
Inr = {(A l 9 . . . , Ar) 1 1 < A! < ••• < Ar < n}. There is a unique sequence of length
0, namely the empty sequence ( ). The Bruhat order on W/WP agrees with
the ordering on U / n j r where A = (A1? • • - , / l r ) > \JL = (A^,--,/^) if r < s, Af > \JL{ for
1 < i < r. The dimension dim X(K) is given as

dimX(l)= £ A£ + (n + l)(n - r) - -n(n + 1), (1.1)
i=i 2

where A e / n r .
Similarly, the Schubert varieties in S0(2n)/Pn are labelled by the set

U?!r
r-" Ai,r> with tne Bruhat ordering on W/WP exactly as in the symplectic

case. Here, for /le/M ) r

dim X(X) = X ^i + n(n - r) -- n(n + 1). (1.2)
i<r 2

The main results of this paper are

Theorem 1.1. Let
(i) The Schubert variety X(X) c Sp(2n)/Pn has a small resolution if

Ar <n — r.
(ii) Assume n — r is even so that A gives rise to a Schubert variety X(l)

in S0(2n)/Pn. X(fy has a small resolution if
(a) hr<n — r or
(b) For r > 2, Ar = n, Ar_ 1 < n - r.

Theorem 1.2. Let A = (n), n > 3 and let Q be any parabolic subgroup
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contained in Pn c Sp(2n). Let X(A) be the inverse image of X(X) c Sp(2n)/Pn

under the projection Sp(2n)/Q -> Sp(2n)/Pn. Then X(A) does not admit any
small resolution.

The above theorems are proved in §4.

Actually, we construct small resolutions for a larger class of Schubert
varieties than that considered in Theorem 1.1. See Theorem 4.2 for the precise
statement. Incidentally Theorem 1.2 shows that the condition "A, < n — r" in
Theorem 1.1 (i) cannot be dispensed with in general.

This paper-and in particular our proof of Theorem 1.1 -was inspired by
the work of Zelevinskii [7].

In our future work we plan to investigate the existence of small resolutions
for Schubert varieties in the case of exceptional groups.

Acknowledgements: We would like to thank Prof. C.S. Seshadri for suggesting
this problem and for encouragement. We wish to thank Prof. V. Lakshmibai
and Prof. Seshadri for helpful discussions.

§2. Bott-Samelson Resolution

Let G be any semisimple group, Q a parabolic subgroup containing a fixed
Borel subgroup B and a maximal torus T c= B.

Let X (A) ci G/Q be any Schubert variety, and let PA be the largest
subgroup of G which leaves X(X) invariant for the left action of G on
G/Q. Clearly PA is a parabolic subgroup containing B. We refer to PA as
the 'stabilizer' of X(X). Note that it is possible to find a parabolic subgroup
P c PA and a Schubert sub variety X(A'), A' < /i, such that P^X(/J) = PX(X) =
X(X). Let #0 = P A nP A ' . Then the map n0: PA x RoX(X) -+X(X) given by
[#, x] i->#x is surjective and PA-equivariant, but not birational in general.
However it is possible to choose P and X < /i such that dimP/R1 equals the
codimension of X(A') in X(X) and so nl : P x Ri X(X) -> X(fy where Rl = Pf lP A ,
is P-equi variant and birational. For example one can choose A' = saA for a
suitable simple root a and P = Pa the minimal parabolic corresponding to the
simple root a.

Since any 1 -dimensional Schubert variety is smooth, iterating this
construction leads to a P-equivariant resolution

where I1 =1, I2 = A',-,P(I) c P,,, \<i<r, P(r) = PiP, /?, = P ( l )nPw + 1 ) and
is smooth.
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The above resolution is usually referred to as a Bott-Samelson resolution.
When X(X) c G/B such resolutions were obtained by H. Hansen [4] and
M. Demazure [2]. When X(X) c Grn is a Grassmannian Schubert variety
the small resolutions constructed by Zelevinskii [7] are of the above type.
Indeed one can check that his resolutions correspond to choosing P(i) to be
equal to the stabilizer of X(X) at each step. In all our applications below it
turns out that, as in Zelevinskii's work [7], at each step one can choose P(i)

to be the stabilizer of A', so we can iterate the construction n0: PA x RQX(X) ->
X(X) to obtain a desingularization of X(X) which is PA-equivariant.

We need a formula for the^ dimension of the fibre p^Xx) for a given
Bott-Samelson resolution p:X(Z)-*X(j^ Suppose that X(X) = P x RX(X)
where P = Px c PA, R = Rl9 and p': X(X)-+X(X)Js a P'-eq invariant Bott-
Samelson resolution of X(X), P' c Pr. Since p: X(X) = P x RX(X) -> X(X) is
P-equivariant, p~1(x)^p'1(y) if x and j; are in the same P-orbit. In fact if
U is a P-orbit in X(A), then p \ p ~ l ( U ) \ p~l(U}^ U is a locally trivial bundle,
and therefore dimp"1^) = dimp'^U) - dim U for all xeU. If U denotes
the Zariski closure of U a X(X)9 then U is a P-stable Schubert subvariety of

Conversely, if X(r) is a P-stable Schubert subvariety of A" (A), then it is
the closure of the P-orbit of el9 the centre of X(i). We shall denote the
dimension of p~1(er) by/p T and the codimension of X ( i ) in X(A) by codim^i.

Lemma 2.1. LerJ/fr) c A(A) 6e- r/2^ P-orbit of eI9 and let n: P x R

and p: P x RX(!')-+ X(A) be the birational morphisms constructed
above. Then

(a) 7r~ 1( t7(T)) = P x RZ where

/) = {o < /: PX(o) = X(i), RX(a] =

(b) p ~ l ( V ( i } } = P x up'-^Z), where p : X(X) -> A (/') w a P' -equivariant
Bott-Samelson resolution, P' c PA-.
//? particular

(c) /p>T = codimA/' - codim^ +/P '.M /or

Proof, (a) Let jueS(t, A). Suppose ge^ = er for some geP. Then, as
17 (T) is the orbit of er9 it follows that Pe^ = U(i). Hence n(P x ^K^) = U (T).
On the other hand if n[_g, x] = gxG U(T), then clearly ;r(P x RRx) c [/(T).

Now the Zariski closure #x is a Schubert variety X(cr) c= X(/J) which is

K-stable, and Rx = Reff. Hence there exists an heR such that hea = x, and
an element h'eP such that h'x = er. Thus h'heff = er and so PA(cr) = X ( i ) .
This proves (a).
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Part (b) follows from (a).

To prove (c), note that dim U (i) = dim X (i) . Since p p'^U^)): p'^U^))
-> U(i) is a locally trivial bundle, denoting by V(a) the orbit of ea under R
we see that P x R p ' ~ l ( V ( a ) ) is the total space of a fibre bundle with base
space P/R and fibre p ' ~ l ( V ( a ) ) and so

= dim p'1 (I/XT))- dim E/(T)

- max (dimP/K + dimp'-1^))} -dim^(i)
<TeS(T, A)

= max (coding A' + dim V(a) + fp, a] — dim X(i)
<7eS(T,A) '

= max {codim A/T + / , j f f — (dim X ( t ) — dim ^(cr))
o"GS(t,A)

= max {codimU' — codim.cr + fn> „}
<reS(T,A) C P ' J

' — codimTJu + fp>^

for ^6>me jueS(t9 A), completing the proof.

Corollary 2.2. //" ^(^') w smooth, and p = n then

Proof. Since fp-a in 2.1. (c) above is zero, the max {codim^/T — codimTcr}

is attained when dim X(d) — dim X(t)r\X(/J).

Remark 2.3. Since {xGJ^(A)|dim p ~ l ( x ) > i} is P-stable, and since there
are only finitely many P-orbits, codim { x G X ( ^ ) \ d i m p ~ 1 ( x ) > /} = codim U(i)
= codim^i for some P-stable X(i) where dimp"1^) =/p<t = /. Therefore, to
check smallness of p, it suffices to verify that for each P-stable ^(T), and for
each <TES(T, A), codim A/' — codimTcr + fp-tff < i codimAi, for i > 0.

Theorem 2.4. Let f: Y-» Z be a locally trivial bundle with smooth fibres
between irreducible projective varieties. If p: Z -+ Z is a small resolution, then
q: Y x ZZ -> Y, q\_y, z] = y is a small resolution.

Proof. Let

Z£ = (zeZ dimp"1^) > i} c Z.

Then Yj = {j;e y|dim q~1(y)> /} = f ~ 1 ( Z i ) , and codimyY£ = codimzZ{ since
/: Y-^Z is a locally trivial bundle. This completes the proof.
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§3. Schubert Varieties in G/Pn

It is a well-known fact that, the Schubert subvarieties of SL(n)/Pr are indexed
by the set Inr = { ( A l 9 - - - , A r ) | 1 < Ax < ••• < Ar < n}. When G = Sp(2n) or
SO(2ri), and P = Pn, the end parabolic, one identifies W/WP with U o < r < n ^ , r
in the case G = Sp(2n), and with U 0 < f - < n ^n,r in the case G = S0(2n), as

(n —r) —even

described in the introduction (cf. [5]).
Thus any Ae/ n r defines a Schubert variety in Sp(2n)/Pn, a Schubert variety

in SO(2n)/Pn if n — r is even, and a Schubert variety in SL(n)/Pr if
1 < r < n — 1. We denote any one of these varieties by the same symbol X(h)
and it will be made explicit which one is meant whenever there is possibility
of confusion.

Let 1 < r < n, and let A = (A l 5 - - - ,A , . )e / n r. A maximal subsequence of A
of consecutive integers will be referred to as a 'block' of A. The element
^elnr is simply the concatenation of the blocks of A. In fact if a( is the
length and kt is the last term of the fth block, then A is determined by the

(
k ••• k

] where m is the number of blocks in A.

fOn the other hand, starting with a 2 x p matrix P with
\ c i • • • c p j

0 < ^! < /2 < ••• < fp < n, 0 < ct - *?i - ^_ 1 5 (/0 = 0), £c* = r, we obtain a
unique element /^ of Inr with at most p blocks. We often write

Theorem 3.1. With the above notations, one has the following description
of PA, the largest parabolic which leaves X(A) stable:

(i) Let G = SL(n) or Sp(2n). Then PA is the parabolic subgroup obtained by
omitting the simple roots {a f c l , - - - ,a f c m}.

(ii) Let G = SO (In). Let am>2 when km = n. Then PA is the parabolic
subgroup obtained by omitting the simple roots {afei 1 1 < / < m}. If km = n
and am = 1, then Px is obtained by omitting {aki \ i < m — 1}.

Proof. We will only prove part (ii), part (i) being similar. Let
P^X(A) = X(fi). (Here Pai is the minimal parabolic subgroup of G and should
not be confused with Pi9 the latter being a maximal parabolic obtained by
omitting the simple root o^.) Write /. = (/„!,•••, / , ,) . Let 1 < i < n - 1. Then
Ii = max {A, /'} where

A, if either both i, i + 1 occur in A or neither of them occur in L

(A!,.--^.-!, i, A f + 1 , - - - , A r ) if Ar = z -h 1, A f _ j ^ i.
(Ai , - - - ,^ . ! , i + 1, Af + 1, ••- , / , ) if Af = i, A t + 1 / i + 1.



SMALL RESOLUTIONS 449

It follows that A' < A (equivalently ju = A), if and only if / is not the last
term of a block in A. Thus, in this case Pai^(A) = X(l). In case i = n, one
has ILL = max {A, A'} where

, if A r _ ! ^ n - l

( A l 5 . . . , A r _ 2 ) if A^^-l.

Therefore A' < A except when A r _ x = n — 1 (and hence Ar = «). It follows that
= X(X) unless A r _ x = n — 1, Ar = n. This proves part (ii).

Example 3.2.
(i) Let A = (1, 2, 3, 6)e/6<4 . In case G = 5L(6), or Sp(12), PA corresponds

to omitting (a3, a6}. When G = S0(12), PA is obtained by omitting {a3}.
(ii) Let ^ = (2, 3, 5, 6)e/6i2. Then for G = SL(6), Sp(12), or 50(12), PM =

{a3, a6}.

Corollary 3.3. Suppose X(i) is a (Schubert] subvariety of X(A), Ae/ n i r .
(i) Let G = SL(n), or Sp(2n). Then X ( t ) is P ̂ -stable if and only if there

exists a sequence c(i, A) = ( c l 5 - - - , c m ) of non-negative integers such that
0 < a{ 4- ct — ci_1 < kt — ki_1, with cm = 0 when G = SL(n), and

a1+c1

(ii) Let G = SO (In). X(i) c X(A) w Prstable if and only if there exists a
sequence c(i, A) = (c l5 •••,cn^ such that 0 < af + c£ — c I-_1 < kt — / c ; _ l 5 cm = 0
mo^ 2 w/ze/7 /cm = n, a«^/, moreover, 0 < am + cm — cm _ x < 1 z/ (/cm , am) =
(n, 1) ^o that

(a) J^Tzefl /cm < n — 2,

(b) P7/z^ km = n — 1, owe /zfls

fc fc ••• n — 1
T = t

with s = |(1 — (— l)Cm) and am + cm — c m _ x = 0 when e = 1.

(c) wwew km = n, owe has

T =
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In particular t has at most m blocks.

Proof. Suppose X(i) c X(h) is PA-stable. Then the existence of the
sequence C(T, /I) such as in the corollary follows from Theorem 3.1 and the
fact that

W(Sp(2n))/WPn* U /„.,
0 < r < n

W(SO(2n))/WPnS U !„.,.
0<r<n

(n — r) — even

Conversely, suppose (c1,"-,cm) is a sequence of non-negative integers
satisfying the conditions of the Corollary. Then ieW/WPr in case G = SL(n),
and i£W/WPn in case G = Sp(2n) or S0(2n). From Theorem 3.1 it follows
that X(i) is PA-stable, and so we need only show that X(i) c X(X). This
follows from the observation that

ct being non-negative.

Definition 3.4. For T, A as in the above theorem, we call c(r, /) = ( c l 9 - - 9 c m )
the 'depth' of i in L [cf. [7]]

Corollary 3.5. Let / = (1, 2 , - - - , r )6 / I I < r , uv'/A (« — r) even when G = S0(2n).
Then X(X) c G/Pn is smooth for G = Sp(2n) or S0(2n). If p = (1, 2 , - - - , r - 1,
n)e/,J<f. vvzY/z n — r ^i;^, //z^« X(p) is smooth in SO(2n)/Pn.

Proof. From Corollary 3.3, it follows that PA acts transitively on
X(X). Hence X(X) is isomorphic to the homogeneous variety PJI^ where /A is
the isotropy at ex. In fact for an obvious inclusion of Sp(2(n — r)) (respectively
S0(2(n - r))) in Sp(2n) (respectively S0(2n)) one has X(X) ^ Sp(2(n - r))/Pn_r

(respectively SO(2(n-r))/Pn_r).

Similarly one proves X(fj) is smooth.

The next lemma gives a formula for the codimension codimAi for a
PA-stable subvariety X ( i ) c X(X) c= G/Pn where G = Sp(2n) or S0(2n). If /,
re / n > d we write XGr(X) for the Schubert variety X(/.) c SL(n)/Pd and we write
codimf i for the codimension of ^Gr(t) in JfGr(A).

Lemma 3.6. Let G = Sp(2n) or S0(2n). Suppose X(T) is a P ̂ -stable
subvariety of X(fy c G/Pn with depth C(T, A) = (c^ - ' - jC j .

coding T = T(T, /) + q(i, /)
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where

,
where l ~ 1

» - f c m + l / 2 z/ i = m,G = Sp(2n)

n-km~l/2 if i = m, G = SO(2n),

c0 = 0 = k0-

f. Let N = n + 1 or n according as G = Sp(2n) or G = S0(2n).
From equations 1.1 and 1.2,

dim X(X\ = Y L + N(n — r) n(n + 1}
Z_J I V / _ \ /5

1 < i < r £

and

dim X(T) = Z Tj + ^(w — r — cm — e) n(n + 1).
l < j < r + e + c m 2

Let s = r + cm + e, so that T6/n i S . Note that e = 1 implies N = n = i r i.Cm+1.

Thus,

. P^ Y T
~T" W Z^ Tj

where A = (l^---^r, N + 1 , - - - , N + Oe^N+cm .s-£ 5
 T' = ( T I > - " > T S _ E ) .

Writing
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we see that (cf [7])

codimjY= £ ci(ai + bi)+ £ (cf - c^.,) + cm(am + N + cn-(km + cj)
1 <i<m 1 < i < m

= X c,(a, + 6,) + X (c,?-c ic i_1) + -cm.
1 < i < m 1 < i < m ^-

Therefore, substituting in Equation 3.1,

codimAt= X Ci(«i + &i) + X (Ci-cici.1) + -cm--cm(cm + l)
1 < i < m 1 < i < m -^ -^

= X Ci.(fl,. + fc.) + 1 j; fo-C,^)2

1 < z < w ^ 1 < i < m

as required.

Remark 3.7. Note that in Lemma 3.6, coding t > /"(T, A) where equality
holds if and only if q(i, /I) = 0, equivalently, T = L

§4 Proof of the Main Theorems

Throughout this section we use the notations of §2 and §3. In particular,
Ae / n < r with m blocks,

P:= PA is the stabilizer of X(X) c G/Pn, G = Sp(2n) or G = S0(2n). The proof
of Theorem 1.1 is based on induction on m. Unlike in the case of Schubert
varieties in SL(n)/Pr where m = 1 corresponds to a smooth variety namely a
Grassmannian Gai fel, a Schubert variety in Sp(2n)/Pn or S0(2n)/Pn with m = 1
is not smooth in general. So we first try to construct a small resolution for
X(A) c G/Pn when m = 1, in the theorem below.

We write /(A) = r (the -'level" of A) if Ae/^ for X(l) c G/P. We caution
the reader that /(/I) is not the length ^P(A) in W/WP. In particular,
/( / t)^dim^(A).

Theorem 4.1. Lef F(i, A) 6e as in Lemma 3.6.
(i) Suppose X ( X ) c : G / P n , A = (k + l , - - - , f c + r)e/B > r . L^r k < N - 2r, where

N = n+l if G = Sp(2n), N = n Jf^G = S0(2n). Then there exists a
P x-equivariant small resolution p: X(A) -> X(A) for X(A) such that 2 f p x <
F(i, /), M'/f/i equality only when r = L

(ii) Let X(A)aSO(2n)/Pn where A = (fc + l , - - - , k + r, n), awrf 0 < r < n - 1,
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k<n — 2r. Then there exists a P \-equivariant small resolution for p :
X(X) where for any P-stable X(i) c X(X), 2/p<T < />, A) with equality only
if A = T.

0/ (i). Let A' = (1, 2 , - - - , r ) . By Corollary 3.5 X(X) is smooth, and
using 3.3, we see that PX(X) = X(X). Thus P x R X ( l f ) is smooth where
P = PA , P' = ?x . R - P A n P; . Consider the morphism p : P x R X (A') -> X (A) ,
p[0> *] = 0*- Note that from Equations (1.1) and (1.2), codim^A' = fer. Also
a simple computation shows dim P/R = dim G/R — dim G/P = fer. Hence
p: P x £^(A')-»^(>1') is a Bott-Samelson resolution.

Let X(t) be P-stable with depth C(T, A) = (cx). Then

_ f ( f e - cx + l , - - - , f e + r, w) i f Cj is odd, G = S0(2n)

|(fc — G! + I j - ' - j f c + r) otherwise.

From 3.6,

T(T, A) = c1(r + N - ( f c + r)- 1/2)

Now, by Corollary 2.2

fp >T = codimAA' — i

Note that X ( i ) n X ( X ) = X(i /\ A') where

fmin (T{, A/}, i<f(A,'}
(T A A) = <

Hence T A A' = (1, 2 , - - - , r , T r + 1 , - - - , T s ) , where s = /(T). In particular /(T) =
/(T A A') and so by Corollary 2.2,

' — codimT(t A A')

T - codimfrT A A'

= fer - r(fe - cx) = rc1.

Therefore T(T, A) - 2/pft = c^N - fe - 2r - (1/2)). The RHS is non-negative
since fe + 2r < AT, and N — k — 2r is an integer. Also 2/p T = T(T, A) implies
G! = 0, in which case /p T = 0 = /"(T, A) and T = A.

o/ (ii): In this case let A' = (1, 2 , - - - , r , n). By Corollary 3.5
) ^ S0(2n)/Pn_r is smooth and as in case (i) above p: P x ^X(A') ->X(A)

is a resolution. Proceeding as in (i), for the P-stable X(i) c X(A) with depth
1 -(- 1)C1

C(T, A) = (c1? c2) one has c2 = c1 — 6, 6 = - . Also
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and, as before

Hence F(t, /) — 2fp jT > 0 with equality if and only if cl = 0 = c2, equivalently
i = L

We now turn to the proof of Theorem 1.1. In fact we prove the following
stronger result.

Theorem 4.2. Suppose X(X) a G/P^G = Sp(2n) or S0(2n). Then there
is a P \-equivariant small resolution p: X(l) -+X(A) of the Bott-Samelson type
such that for any PA-stable subvariety X(i) c: X(ty one has /r>t < %F(i, A), in
the following cases :

m
(i) If k = ( £/„ r, has exactly m blocks, then for all i > 1,

\«i '•• amJ

km<N-am and km < N - (am + ••• + a,) + (&„_! + ••• + ^-), (4.1)

where N = n + 1 if G = Sp(2n), N = n if G = S0(2n).

fk1 ••• km n\
(ii) For 1 = \ )elnr + 1 with exactly (m + 1) blocks and G =

\ a 1 • • • a m I J
SO(2h), one has for all i > 1

km<n-am and km < n - (am + ••• + a,-) + (bm.l + ••• + bt). (4.2)

Proof. When m = 1, this is just Theorem 4.1. By induction assume that
the theorem holds for any Schubert variety X(/J) with fewer blocks than
X(X). One can assume, without loss of generality, that a1 < k±. For, if
a1 = fel5 then ^(^) is isomorphic to a Schubert variety ^T(^) in SO(n — a1)/Pn_ai

where ^ = Aai + i — al9 with (m — 1) blocks in case (i) and m blocks in case (ii).

Writing s = r — a1

Hs = Ar-al<N-(am + ••• + at) + ( fc m _ x + ••• + bt) - al

and hence by induction hypothesis, there exists a small P^-equivariant resolution
of X(fj) as stated in the theorem.

Therefore we assume that al<kl.

Proof of (i) : As usual, we define

bt = fcf + i - fcf - flf+i, 0 < i < m, (/c0 - 0) bm = N - km - 1/2, a0 = oo.
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Choose an i, 0 < f < m such that bt < ah ai+1 < bi+1. Such an i exists because
aQ = oo, and bm = N - km - 1/2 > am.

We let

i^ ••• u j — i ui ' u j + l ui + 2 "

Then A' has (m - 1) blocks, f(X) = /(A) = r, and A; = J,r = fcm iff < m - 1.

It is easy to verify that Equation 4.1 is satisfied for A'. Therefore by
induction hypothesis, there exists a PA<-equivariant Bott-Samelson resolution
p': X(A')->X(A') such that for any P' = PA'-stable subvariety Z(0) c

with equality only when 0 = A' .
Note that with P - PA, one has PX(A') = X(A). Let K = PnP'. One

shows that codim^/T = ai+lbi = dim P/R and hence

is a P-equivariant Bott-Samelson resolution. We claim that for the resolution
p, and for any P-stable subvariety X(i) c X(X], and for every aeS(i, A),

codimAi — codimto" < — /"(T, A) — fp^ff.

By Remark 2.3, this would then imply that,

P,r ^

Since, by induction hypothesis, writing X(0) = P'X(a),

we need only show that, for every creS(i, A)

codimAT — codimt(j < — (jT(i, A) — r(0, A')).

Let C(T, A) - (c l5 c 2 , - - - ,c j , so that writing a] = aj + Cj - cj_l (c0 - 0),

T =
am s
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where e - 0 if G = Sp(2n), and 8 = i(l -(- l)c-) if G - SO(2n).

Using arguments similar to the proof of 3.3 it is easy to show that any
<jeS(i, /I) must be of the form

fei fc2 ••• ^ ki + ai + l ki4.l ki + 2 ••• km n
,

a1 a2 ••• at t ai + 1 -t ai + 2 ••• am s

Since X(a) c X(A'), one has a[ + — h a- + t > a: H ----- h (fl£ + a^J and hence
t > fl^x — ct. Write d = t — ai + 1 + ct, so that d > 0, and t = ai + 1 + d — ct <
ai+l implies Q < d < ct. Also <z/+ 1 — t > 0 implies d < ci+1. Note that

Since X(0) = PX(o), one must have

'•• fe- fci + ^+ fei-

Therefore the depth c($, /I') is

From equations 1.1 and 1.2, since £(i) = £(a), we get

codimt<7 = (ai + 1 — d + c f)(k i + 1 — a-+ 1 + t — (fef + cii+l))

Also since codim^/l' = ai + 1biy we get

codimAA' — codimTcr = ai+l(ci+1 — d) + fr£(cf — d) — (ct — d ) ( c i + l — d)

Now, from 3.6,

and

Hence

T(T, A) - r(0, /I') = c f(fl f + fe£) + c^^fl^! + fei+1)

= (q - d)(fl£ + bi) + (c£+1 - d)(ai

Since b£ < at and a£ + 1 < bi+1, we see that
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coding/I' — coding < —(r(i, A) — F(9, /I')),

which completes the proof of (i). Proof of (ii) is similar.

Corollary 4.3. Let A be the maximal representative in W/WQ for Ae W/WPn,
for B c: Q c Pn, with A as in the above theorem. Then X(A) c= G/Q admits a
small resolution which is P ̂ -equivariant.

Proof. Let f : X ( A ) ^ > X ( X ) be the map obtained from n:G/Q^G/Pn.
Since X(A) = n ~ l ( X ( t y ) , and since n is a locally trivial bundle with fibre Pn/Q,
it follows from 2.4 that X(A) x X W X ( X ) - ^ X(A) is a small resolution, which is
clearly PA-equivariant.

We single out an observation made in the introduction for the purpose
of possible future reference as a

Remark 4.4. If p: X -» X is a resolution of a normal irreducible variety
then by Zariski's Main Theorem, the fibre p~1(x) over any singular point x
of X, has positive dimension. Therefore, any normal irreducible variety X
with codimension 2 singular locus cannot have any small resolution.

We now prove Theorem 1.2 showing the existence of Schubert varieties
which do not have any small resolution.

Proof of Theorem 1.2. Let X(0) be the inverse image of X(i)<=.X(h\ where
i = (n — 1, n), under the projection Sp(2n)/P -> Sp(2n)/Pn. Then codimA0 = 2.
Therefore by the above remark it suffices to show that X(0] is contained in
the singular locus of X(A). Since the singular locus is J3-stable, it suffices to
show that the centre e@ is a singular point of X(A). Equivalent^, we show
that eg, is a singular point for X(A) c Sp(2n)/B where A and 0 are the maximal
lifts in W for A and 0 in W/WP.

Using the results of [6] we now show that e@ is indeed a singular point
of X(A). We follow the notations of [6]. From [6] one knows that
dim TeSX(A) = #N(A, 0}. Now, if a = e,. - efc, 1 <j < k < n, or if a - 2 e.,
1 <j < n, it is trivial to see that oceJV(Jl 0). An easy calculation shows that
2 eneN(A, 0). Again, for l<j<k<n, and j < n — 1 one can show that
€j + ekEN(A, 0). When7 = n — 1, k = n, one has r = n, s = n — 1, a'k = n 4- 2.

It follows that condition (b) of Prop. C.I of [6] is satisfied and hence en_1 +
eneN(A, 0}. Thus #N(A, 0) = number of positive roots = dim Sp(2n)/B >

dimX(A). Hence the proof.



458 PARAMESWARAN SANKARAN AND P. VANCHINATHAN

References

[ 1 ] Bourbaki, N., Groupes et algebres de Lie, Ch. 4-6, Hermann, Paris 1968.
[2] Demazure, M., Desingularisation des varietes de Schubert generalises, Ann. Sci. E.N.S., 1

(1974), 53-88.
[3] Goresky, M. and MacPherson, R., Intersection Homology-II, Invent. Math., 71 (1983),

77-129.
[4] Hansen, H., On cycles in flag manifolds, Math Scand., 33 (1973), 269-274.
[ 5 ] Lakshmibai, V. and Seshadri, C. S., Geometry of G/P-ll, Proc. Ind. Acad. Sci., 87 A (1978),

1-54.
[6] Lakshmibai, V., Singular loci of Schubert varieties for classical groups, Bull. A.M.S., 16

(1987), 83-90.
[ 7 ] Zelevinskii, A. V., Small resolutions of singularities of Schubert varieties, FunktsionaFnye

Analiii Ego Prilozheniya, 17 (1983), 75-77.


