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Yangians and Gelfand-Zetlin Bases
To Professor 1. M. Gelfand on his 80th birthday
By

Maxim Nazarov* and Vitaly TArRasov**

Abstract

We establish a connection between the modern theory of Yangians and the classical construc-
tion of the Gelfand-Zetlin bases for the Lie algebra gl,. Our approach allows us to produce the
g-analogues of the Gelfand-Zetlin formulae in a straightforward way.

Let V be an irreducible finite-dimensional module over the complex Lie
algebra gl,. There is a canonical basis in the space of V associated with the
chain of subalgebras gl, = gl, =--- = gl,. It is called the Gelfand-Zetlin basis,
and the action of gl, on its vectors was explicitly described in [GZ] for the
first time. Since then several authors provided alternative proofs of the original
Gelfand-Zetlin formulae; see [Z2] and references therein.

Denote by Z(gl,) the centre of the universal enveloping algebra
U(gl,). The subalgebra in U(gl,) generated by Z(gl,), Z(gl,),...,Z(gl,) is
evidently commutative. The Gelfand-Zetlin basis in V consists of the eigen-
vectors of this subalgebra, and the corresponding eigenvalues are pairwise
distinct. These properties suggest that for the given module V, an explicit
description of Z(gl,), Z(gl,),...,Z(gl,) should be used to construct the Gelfand-
Zetlin basis. It shall be done in the present paper. Namely, for any vector
v of the Gelfand-Zetlin basis we point out an element beU(gl,) such that
v=>b-¢ where £eV is the highest weight vector (Section 2). Moreover, our
construction implies the Gelfand-Zetlin formulae (Section 3).

We will employ the following description of Z(gl,). Let e;; be the standard
generators of the algebra Uf(gl,). Consider the sum over all permutations ¢
of 1,2,...,n
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Z(— 1Y@ n (Ogn.ilu — 1+ 1) + €y4.)

where /(g) denotes the length of the permutation g. The factors in the above
product do not commute in general. Put them in the natural order: the factor
indexed by i stands on the left of that indexed by j if i <j. The sum is a
polynomial in u and the coefficients of this polynomial generate Z(gl,) [Z1],
cf. [N].

Our construction is based on the chain of subalgebras

Y(gly) = Y(gly) = -+ = Y(gl,)

where Y(gl,) denotes the Yangian [D1] of the Lie algebra gl,, cf. [C2]. In
our construction we use the same generators of the algebra Y(gl,) as were
introduced in [D2], see also [T]. There exists an algebra homomorphism
Y(gl,) — U(gl,). The generators of Z(gl,) mentioned above arise as the images
of canonical central elements of Y(gl,) with respect to that homomorhism
(Section 1), cf. [O].

Our construction for Uf(gl,) also admits a natural generalization to the
quantum universal enveloping algebra U,(gl,), cf. [C1]. This generalization
produces the same g-analogues of the Gelfand-Zetlin formulae as were given
in [J2]. To make our presentation clearer, we only formulate (Section 4) the
main statements for U,(gl,) and provide detailed proofs for U(gl,).

§1. In this section we state several known facts about the Yangian Y(gl,)
of the complex Lie algebra gl,. This is an associative algebra generated by
the elements T where i, j=1,...,n and s = 1, 2,... subjected to the following
relations. Introduce the formal Laurent series in u™?

Tj(w) = oyu + TV + TPu™ + TPu™? + -
and form the matrix

T(w) = [T;W)1;

ij=1"

Let P be the permutation map in (C"®2. Consider the Yang R-matrix, it is
the End ((C")®?)-valued function

P
R(u, v) =id + .
u—v

Put R(u, v) = P-R(u,v). Then the relations for T, can be written as
(1.1 R(u, v)- T() ® T(v) = T(v) ® T()- R(u, v).

Observe that the generators T;}” with i, j = 1,...,m obey exactly the same
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relations as the corresponding generators of Y(gl,). Thus we have the chain
of subalgebras

Y(gly) = Y(gly) = --- = Y(gl,).
The relations (1.1) also imply that for any heC the map
T,

ij

() —> Ty(u + h)

defines an automorhism of the algebra Y(gl,); here the series in (u + h)™*
should be re-expanded in u~!.

We will use the following definition. Let X(u) = [X,;(w)]];=, be an
arbitrary matrix whose entries are formal Laurent series in u~! with coefficients
in Y(gl,). Define the quantum determinant of this matrix to be the sum over

all permutations g of 1, 2,...,m

qdet X(u) = Z(_ 1)”9) ’ Xlg(l)(u)X2g(2J(u - 1)"'Xm.g(m)(u —m+ 1);
g
here /(g) denotes the length of the permutation g. We will also denote by
pdet X (u) the sum

Z(_ 1@ Xiyyu—m+ DX50)W—m+2) X, jom ().

)

Consider the formal series

Ap(u) = qdet [T;(w) 7=+ m=1,..,n

Proposition 1.1. a) The coefficients of A,(u) belong to the centre of the
algebra Y(gl,). b) All the coefficients of A (u),...,A,(u) pairwise commute.

Proof. The part a) is well known and its proof can be found for instance
in [KS]. Since the generators T,% with i, j =1,...,m obey the same relations
as the corresponding generators of Y(gl,), we obtain from a) that

(1.2) [Anw), T;)] = 0; Lj=1,...,m

The part b) follows directly from the above commutation relations []

It is convenient to assume Ay(u) = 1. Now we introduce the formal series
with coefficients in Y(gl,) which together with A4,(u),...,4,(u) play the main
role in this paper. For any m=1,...,n— 1 denote by B,(u), C,(u), D,,(u)
respectively the quantum determinants of the submatrices in T(u) specified by
the rows 1,...,m and the columns 1,...,m — 1, m + 1; by the rows 1,...,m — 1,
m+ 1 and the columns 1,...,m; by rows 1,...,m—1, m+ 1 and the same
columns. These quantum determinants have been used in [D2].
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Proposition 1.2. The following commutation relations hold in Y(gl,):

(1.3) [A,@), B®)]=0 if 1£m,

(1.4) [Cnw), B(v)]=0  if 1#m,

(1.5) [Bn(u), B)1=0 if [l—m|#1,

(1.6) (—v) - [AnW), B,(v)] = B,(u)Ay(v) — Bp(v) Ap(u),
(1.7) (w— ) [Cnw), B,(v)] = Dpp(u) Ay (v) — D, (0) A (1)

Proof. 1Tt follows from (1.1) that the entries of any m X m submatrix in
T(u) obey the same relations as the corresponding entries of the matrix
[T;w)]";=,. Therefore if we have two square submatrices X (u), Y(u) in T(u)
and one of them contains the other, then due to (1.2)

[qdet X (u), qdet Y(v)] = 0.

This observation provides the relations (1.3), (1.4), (1.5).
It suffices to prove the relations (1.6), (1.7) only for m = n — 1. Introduce
the matrix

T(w) = [T, =,

where ﬁj(u) is equal to (— 1)'"/ times the quantum determinant of the matrix
obtained from T(u) by removing the row j and the column i. Then

(1.8) Tw)T(u— 1) = qdet T(u),
(1.9) T'(u) T — n + 1) = qdet T(u)

where the superscript ¢ denotes the matrix transposition; see [KS] for the
proof of these equalities. The matrix T(u) is invertible as a formal Laurent
series in u~!; denote by T(u) the inverse matrix. Then from (1.1) we get the
equality

Tw) ® Tw)- R(u, v) = R(u, v)- T(v) @ T(u).

The series qdet T(u) is also invertible and commutes with each entry of the
matrix T(u). Therefore from the last equality, from (1.8) and from

R+ 1,0+ 1) =R, v),
we obtain the matrix relation
Tw)® T(v)- R, v) = Ru, v)- T() ® T(w).
By the definition of the matrix f"(u) we have the equalities

(1.10) A1) = T,,), Dy ) =T,y e s (W),
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A -

B, W)= —T-1,), Couy()= =T, ,_ ().

The commutation relations (1.6), (1.7) with m =n — 1 are contained in the
above matrix relation [J

We will keep using the matrices T(u) and T(x) introduced in the proof of
Proposition 1.2.

Lemma 1.3. For any m=1,...,n — 1 we have the equality
qdet [T;j(u — n + m)]7";—; = pdet [:ﬁj(u)]?,j=m+1 -qdet T(u).

Proof. Let wy, w,,...,w, be the standard basis in C". Let I be the n x n
matrix unit and JeEnd ((C")®") be the antisymmetrization map. Then

Ty @Tu—1)® @ Tu—n+1)-J=J-qdet T(u);
see [KS] for the proof of this equality. It implies that
P mMQTu—n+m@ - @Tu—n+2)@T(u—n+1)-J
=Tu—n+m+1)® - @Tu—1)Q® Tw) ®I*™-J - qdet T(u).

Thus we have a matrix equality over the space (C")®". Taking its diagonal
entry corresponding to the vector

Wyt 1 @ @W,_; W, QW; @@ W,y ® Wy,
we get the equality claimed by Lemma 1.3 [
Proposition 1.4. The following relation holds in Y(gl,):
C,wB,u—1)=D, WA, u—1)—A4,.,wA,_,u—1).

Proof. 1t suffices to prove Proposition 1.4 only for m =n — 1. Applying
Lemma 1.3 to m=n—2 and using the equalities (1.8),(1.10) along with
Proposition 1.1 (a), we get

Ay(u)A, 5 — 1) = qdet T(u) - qdet [T;;(u — 1)1} ;2,
= qdet T(u)- pdet [T;(u + )17, - qdet T(u + 1)
=qdet Tw) - (T,—y 1 @) T, (u + 1)
— T T, (u+1))-qdet T(u + 1)
= Thrwa = D) — Tom = DT, o ()
D, y(u—1A4, () — B,_1(u—1)C,_1(w).

Due to the relation (1.7) the right hand side of the above equalities coincides
with
Dn—l(u)An—l(u - 1) - Cn—l(u)Bn—l(u - 1)
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Thus Proposition 1.4 for m =n — 1 is proved [J

§2. Let ¢; be the standard generators of the universal enveloping algebra
U(gl,). The algebra Y(gl,) contains U(gl,) as a subalgebra: the maps e;—t{;’
define the imbedding. One can also define a homomorphism Y(gl,) » U(gl,) by

T;j(w)— 0;;u + ej;.

Denote the images of the series A,(u), B,(u), C,(u) and D, (u) under this
homomorphism by a,,(u), b,,(u), c,,(u) and d,,(u) respectively. These images are
polynomial in u and

(2.1) () = U™ + (€11 + -+ + €y — m(m — 1)/2u™ "1 + ...,
bm(u) = em~+—1.mum_1 + cm(u) = em.m+1um_l + -

The above equalities show that the coefficients of the polynomials a,,(u), b,,(1)
and c,(u) generate the algebra U(gl,). We will explicitly describe the action
of these polynomials in each irreducible finite-dimensional module of the Lie
algebra gl,. We will use Proposition 1.2 and Proposition 1.4 along with the
following observation: if n is the subalgebra in gl, spanned by the elements
e;, 1 <i<j<m then by the definition of the quantum determinant

(2.2) a,(u)e .

m
i=

uw+e; —i+ 1)+ U(gl)n,
1
(2.3) cn(w)eU(gl)n.

Let V be an irreducible finite dimensional gl,-module. Denote by ¢ its
highest weight vector:
e“‘£=xi6; eij'§=0, l<].

Then each difference 4; — 4;,, is a non-negative integer. For any heC the
mappings
eg—re;+h; e;——ey, 1#]

define an automorphism of the algebra U(gl,). So we will assume that each
4; is also an integer. Denote by 7 the set of all arrays 4 with integral entries
of the form
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where A, =4; and A, >4, for all i and m. The array 4 is called a
Gelfand-Zetlin scheme if

2

mi = lm—l.i = A‘m.i-‘-l

for all possible m and i. Denote by & the subset in J consisting of the
Gelfand-Zetlin schemes.

There is a canonical decomposition of the space V into the direct sum of
one-dimensional subspaces associated with the chain of subalgebras

gl; cgl, =+ =gl,.

These subspaces are parametrized by the elements 4€&. The subspace V, = V
corresponding to A€% is contained in an irreducible gl,-submodule of the
highest weight (2,1, 4n2s...s4mm) fOr each m=n—1,n—2, ..., 1. These
conditions define ¥, uniquely, cf. [GZ]. Denote by A° the array where 4,,; = 4;
for any m; then A°e % and &€V, ..

For any AeJ put

Appt) = [] (4 Ay — i+ 1).
=1

Proposition 2.1. The subspace V, < V is an eigenspace of a,(u) with the
eigenvalue o, ,(u).

Proof. The coeflicients of the polynomial a,(u) belong to the center of
the algebra U(gl,) and act in any irreducible gl,-submodule of V via
scalars. Applying a,(u) to the highest weight vector in this submodule and
using (2.2) we get Proposition 2.1 by the definition of the subspace V, [J

Endow the set of the pairs (m, i) with the following relation of precedence:
(m i)<(,jyifi<jori=jand m>1I This relation corresponds to reading
A€ by diagonals from the left to the right, downwards in each diagonal. Let
Vi =1 — Ay — 1, it is a root of the polynomial «,,(u). Note that if 4%
then v, <V, < <Vpn. Put v,=i—1,—1, then v,; >v,. Consider the
vector in V

- vi;— 1
(2.4) Cr= H( [1 bz(5)> &5

(1.J) \ s=v,
here for each fixed | the elements b,(s)e U(gl,) commute because of the relation
(1.5). The products in brackets do not commute with each other in
general. We arrange them from the left to the right according to the above
relation of precedence for the pairs (m, i).

Theorem 2.2. For any A€J we have the equality



466 MaxiM NAZAROV AND VITALY TARASOV

() - &g = ()4

Proof. We will employ the induction on the number of the factors b,(s)
in (2.4). If there is no factors then 4 = A° and ¢, = ¢€V,,. In particular,
the required equality then holds by Proposition 2.1.

Assume that 4 # A°. Let (I, j) be the minimal pair such that 4,; # 4;. Let
Q be the array obtained from A by increasing the (I, j)-entry by 1. Then
QeJ and

(2.5) Sa=by(v; — 1) Lo

If I#m then a,qo(u)=a,,(u). By the relation (1.3) and by the inductive
assumption we get

an(u)- &4 = am(u)bl(vlj —1)-¢o= bz(sz - Da, )¢,
=by(v;; — 1) tma)q = tua(W)¢,4.
Now suppose that [ = m; then by the definition of 2 we have

U—Vy;+ 1

Umo(u) = Oy (1)

U — Vyj
In particular, by the inductive assumption we then have
A (Vmj — 1)+ Eo = Ua(Vmj — 1)a = 0.

Therefore by the relation (1.6) and again by the inductive assumption we get

am(u) ' iA = am(u)bm(vmj - 1) : é!)

u— ij
u— vmj+ 1 m(vmj )am(u) ég
U~ Vpj
=—7>"b —1)- _ .
w4 1 onlm = D omali)So = (s

Thus Theorem 2.2 is proved for any m []

The subspaces V, < V' are separated by the corresponding eigenvalues of
a,(),...,a,_,(). Therefore by comparing Proposition 2.1 and Theorem 2.2
we get

Corollary 2.3. For any Ae% we have £,€V,.

In the next section we will describe the action of the polynomials b,(u) and
¢,(u) on the vectors &, with 41€%. Then we will prove that all these vectors
do not vanish.

Proposition 24. If AeT \& then &, =0.
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Proof. As well as in the proof of Theorem 2.2 we will employ the
induction on the number of the factors b,(s) in (2.4). If there is no factors
then 4 = A°€ % and we have nothing to prove.

Assume that 4 # A°. Let (I, j) be the minimal pair such that A # 4;.
Denote by Q2 the array obtained from increasing the (I, j)-entry of A4 by 1,
then Q€7 and we have the equality (2.5). If Q¢ then ¢, =0 by the
inductive assumption, so that £, = 0 due to (2.5).

Now suppose that Q€. We will prove that either A€ % or £, =0. By
Theorem 2.2 the vector £, is an eigenvector for the polynomials a,(u),...,a,_(u).
Their eigenvalues separate the subspaces V, = V with Ye%. Therefore £,€V,
for some Ye%. Suppose that &, # 0, then

“mA(u)=:1mKu% m = L.u,n‘— 1.

Consider the roots v,; =i — 4,,; — 1 of the polynomial x,,,(#). Since Qe .,
we have the inequalities

Vit < V2 < < Vi if m#1;
Vi <<V SV ey <<
Therefore the array A can be uniquely restored from the collection of the

polynomials o, 4(u),...,%,- o). Thus 4 = Ye% and the Proposition 2.4 is
proved [

Remark 2.5. Let us form the matrix E =[—e;]};—;. The coefficients of
the polynomial a,(u) = qdet (v — E) belong to the center of the algebra U(gl,)
and from (1.8), (1.9) we obtain the matrix identities

(2.6) a,(E)=0, ayE'+n—1)=0.

Now consider the matrix S =[S;;]7;,-, where S;; denotes the image of the
element — e in the module V. Replacing the coefficients of the polynomial
a,(u) by their eigenvalues in the module V and taking into account Proposition
2.1, we get the characteristic identities [G] for the Lie algebra gl,:

[TSE+4—-i+1)=0, [TS +4—i+n=0.
i=1 i=1

§3. Let 4e¥ be fixed. The functions b,(u)-¢, and c,(u)-&, are
polynomial in u of the degree m — 1. Since v,,; < Vjp < -+ < V., to describe
these functions it suffices to determine their values at u=v,; for each
i=1,...,m. This will be done in the present section. Put

i i—1
Yma = H (vmi - vj) H (vmi S e 1) X
j=1 j=1
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m+1 m—1
X 1_[ (vm+1,j_vmi) l—[ (vm—l,j—vmi+ 1)
j=i

j=i+1

Let the indices m <n and i<m be fixed Denote by A% the array
obtained from A by increasing the (m, i)-entry by 1.

Theorem 3.1. We have

Yminlar AT
CnVimi) =
Omi) - € {0 otherwise.

Proof. If A= A° then A*¢%. On the other hand then &, = ¢ while
due to (2.3)

Cm(vmi) ) é =0.

Assume that A # A°. Consider the minimal pair ([, j) such that
Aij # ;. As well as in the proof of Theorem 2.2 let Q be the array obtained
from A by increasing the (I, j)-entry by 1. Then Q€% and we have the
equality (2.5). We will prove first that

(3.1 cm(vmi)bl(vlj —1)-dp= bl(sz — 1) cpn(vm) - Eq

for (I, j)# (m,i). If l# m then we obtain (3.1) directly from the relation
(1.4). If I=m but j #i then v,; — 1 # v,,; since Q€. Due to Theorem 2.2
we then also have the equalities

U (Vmj = 1) - $o = Up(Vm; — 1)Ea = 0,
(Vi) * €@ = Uma(Vmi)€a = 0.
Therefore by the relation (1.7) we again obtain that
(V) D1V — 1) - S = bp(Vinj — (Vi) - Eo-

If A,;,=4; then A7 ¢. On the other hand, applying the equality (3.1)
repeatedly we then get

cm(vmi) : éA = cm(vmi) l:I (vzﬁ bl(s)> ) 5

(L.j) \ s=v,

-1 (H b,<s)>cm(vm,-) e=0,

(€.)) s=v,

as we have claimed. Now we assume that A,; < 4;.

Consider the array 1 obtained from A by changing each entry
corresponding to (I, j)<(m, i) for 1; and by increasing the (m, i)-entry by
1. Then YeZ and due to Theorem 2.2 we have
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A (Vi — 1)+ &, = 0, (v, — 1)E, = 0.
We then also have
Ea = DbV — 1)+ ¢,
where

p= Tl <Wﬁ1b,(s>>.

LH=<mi \ s=v,
Therefore applying the equality (3.1) repeatedly and using Proposition 1.4 we get
CnOVmi) * €4 = PCu (Vi) b (Vi — 1) - &,
= = Plys 1 (Vi) = 1 O — 1) - &,
= = Ops 1, (Vi) % —1,, (Vs — P~ &,
= = O 1 V)%= 1, Vi — DEa+ = Vmina+-
The last equality proves Theorem 3.1 when At e%. If A* ¢ then
CnVmi) €4 =0
by the same equality and by Proposition 2.4 ]

Remark 3.2. If A* €% then y,;, > 0. Indeed, if 1€ then we have the
inequalities
Vi < Vm+1,i41 < Vm+1,i+2 <" < Vs 1m+15
Vini S V=10 <Vm—1,i+1 < <Vm—1m-1-

If A" €% then we also have
Vi — 12V, > v > >,

Thus all the factors in the product v,,, are positive.

Proposition 3.3. If Ae¥ then ¢, #0.

Proof. As well as in the proofs of Theorem 2.2 and Proposition 2.4 we
will employ the induction on the number of the factors b(s) in (2.4). If there
is no factors then 4 = A° and &, =& #0.

Assume that 4 # 4°. Let (I, j) be the minimal pair such that 4;; # 4;. Let
Q be the array obtained from A by increasing the (I, j)-entry by 1. Since
Ae, we also have Qe%. Then &, #0 by the inductive assumption. On
the other hand, by Theorem 3.1 we then have

Cz(sz)' Ca = szAfn
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where 7,;4 # 0 due to Remark 3.2. Therefore &, # 0 [J

Now consider the array A~ obtained from A by decreasing the (m, i)-entry of
A by 1; then A" €Z. Since

(3.2) Vi Z Vi > Vo > > vy,

one can define

i i—1
_ Vi = Vme1,j T 1 Vi = Vm—1.j
.BmiA - 1_1 n
j=1 V= Vit 1l =1 Vi — v

Theorem 3.4. We have

Brminla- ifA e,
0 otherwise.

bm(vmi) ' éA = {

Proof. We will use again some of the arguments which appeared in the
proofs of Theorem 2.2 and Proposition 2.4. Consider the vector b,,(v,,) - &, € V.
It is an eigenvector of the element g;(u) with the eigenvalue o, -(u) for any
. Indeed, if | # m then o;, - (u) = 4(u). On the other hand, by the relation
(1.3) and by Theorem 2.2 we then get

(W) Dy (Vi) - E4 = b (Vi) @ (1) - &5 = 4 ()b (V) - E 4

Now suppose that | = m; then by the definition of A~ we have

U— Vi

Since a,(v,;) - &4 =0 due to Theorem 2.2, by the relation (1.6) and again by
Theorem 2.2 we get

) 1

A (U) b (V) - Ep = ”—;—_ B (V) n(01) - €4

Vi
= Opp - (u)bm(vmi) ) 6/\'

The subspaces b, c V with Q€% are separated by the eigenvalues of
a,),...,a,_(). Therefore b, (v,;) - E,€V, for some Qe&. Since A€, the
array A~ can be uniquely restored from the collection of the polynomials
Oyp-(W),..., 0,1 4-w). Thus if 47 ¢ then

bm(vmi) ’ é/\ =0

as we have claimed.
Assume that 4~ €%. Then the above consideration implies that

bm(vmi) : éA € I/;l T
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Therefore by Corollary 2.3 and Proposition 3.3 we obtain that
(3.3) bn(Vmi) - €4 = BEa-

for some feC. We will prove that f = f,4-
Let us compare the action of the element c,(v,; + 1) on both sides of the
equality (3.3). By Theorem 3.1 we have

CnVmi + 1) BEA- = BYmia-8a

where 7,4 - # 0 due to Remark 3.2. On the other hand, applying Proposition
1.4 and using the equality

A (Vi) * €4 = Oma(Vmi)€a = 0,
we get
Cn(Vmi + DbV - €4 = — Gt 1 Vi + D1 (V) - 4
= — Oy 1, AV + D1, a0V -
Since £, # 0 by Proposition 3.3, we finally obtain that
B=—tms1,a0mi + D1, AOmdVmin - = Bumia-
Thus we have proved Theorem 3.4 ]
Remark 3.5. If Ae% then 8,4 > 0 for any indices m and i. Indeed, then
Vi Z Vm+1,i > Ym+1,i-1 > """ > Vms1,15
Vi > Ve 1.im1 > Ve 1,im2 > > Vo1

These inequalities along with (3.2) show that all the factors in the product f,,;,
are positive.

Theorems 2.2, 3.1, 3.4 and Proposition 3.3 along with Corollary 2.3 completely
describe the action of the Lie algebra gl, in the module V. In particular, they
provide explicit formulae for the action of generators e, €n ms+1 and €, .
on the vectors &, with 4€%. The first equality in (2.1) and Theorem 2.2
imply that

(3.4) Com " G = < i Ami — "'i /lm—1,i>é/1-
i=1 i=1

Put
m
Tmia = 1—[ (vmi - vmj)_l'
T

Then using the Lagrange interpolation formula we obtain that
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(35) Chnm+1" 5/\ = z YmiA Tmin éA R

A+
Cntim Ca = Z BmiaTmiaCa -
e

where 4% and A~ are Gelfand-Zetlin schemes obtained from A by increasing
and decreasing the (m, i)-entry by 1 respectively.

Remark 3.6. The equalities (3.5) are not the Gelfand-Zetlin formulae in
their canonical form [GZ]. To obtain the latter, one should employ vectors
which differ from &, by certain scalar factors. Namely, one should replace
the factor b,(s) in the definition (2.4) of £, by

j j—1 1+1 1-1 -1/2
bz(s)'<n(5+1‘“"k)n(5—vk) n (Vz+1.j—5—1)“("1—1.1'_5)) .
k=1 k=1 k=j+1 k=j

Since 4€ ¥ and v; < s < vy, all factors in the four above products are positive.

§4. The construction given above admits a natural generalization to the
case of the quantum universal enveloping algebra U,(gl,). We will point out
here only the main statements. The proofs are quite similar to those in the
case of U(gl,) and will be omitted. Some of them are contained in [T].

Let us introduce the quantum Yangian Y,(gl,), cf. [C1]. This is an
associative algebra over the field F = Q(g), generated by the elements T, where
i,j=1,..,n and s=0,1,... such that T{* are invertible and T,}*’ =0 for
i>j. These elements are subjected to the following relations. Introduce the
formal Laurent series in x~*

T,:J-(X) — TE}O)X + le;_l) + E}Z)x~1 + '1'1:5.3)x~2 4o
and form the matrix

T(x) = [T;(x) ] =1

J
Let wy,...,w, be the standard basis in F". Consider the Cherednik R-matrix,
it is the End ((F")®?)-valued function R,(x, y) such that
(xq — yg~Hw; @ w;, i=j;
R(x, ) w,@w;=( (x=y)wi®w; +x(g —q Iw;®w;,  i>];
=W ®w;+y(@—q Yw;®w;, i<
Let P be the permutation map in (F")®2; put R(x,y) = P-R(x, y). Then the

relations for T are of the same form as (1.1) above:

4.1) R(x, y)- T(x)® T(y) = T(») ® T(x)- R(x, y).
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The generators T, with i, j = 1,...,m obey exactly the same relations as
the corresponding generators of Y,(gl,). Thus we have the chain of subalgebras

Y,(gl) = Ya(gly) = - = Y, (gly).
The relations (4.1) also imply that for any heF\ {0} the map
T(0) —> Ty(xh)

defines an automorhism of the algebra Y ,(gl,).

Let X(x) =[X;;(x)]7;=; be an arbitrary matrix whose entries are formal
Laurent series in x~' with coefficients from Y,(gl,). Define the quantum
determinant of this matrix to be the sum over all permutations g of 1, 2,...,m

qdet X (u) = Z(— Q)_t(g) : X1g<1;(x)X29<2)(xq_2)“'Xm.g(m)(xqz_zm)-
g
We will also denote by pdet X(u) the sum
Z(_ qy® - X1g(1)(xq2_zm)ng(z)(Xq4_2m)'"Xm.g(m)(x)-
g

Define the formal series A,,(x), B, (x), C,,(x) and D,,(x) by the matrix T(x)
in the same way as the formal series A4,,(u), B, (), C,,(u) and D, (u) were defined
by the matrix T(u) in Section 1.

Proposition 4.1. a) The coefficients of A,(x) belong to the centre of the
algebra Y ,(gl,). b) All the coefficients of Ai(x),..., A,(X) pairwise commute.

Define the g-commutator [X, Y], = XY— qYX as usual. Then we have
Proposition 4.2. The following commutation relations hold in Y ,(gl,):
[(An(x), B()]1=0  if I#m,
[Ca(x), BW]1=0 i I#m,
[Bn(x), B()1=0  if [I—m|#1,

qx_—-qijl [Am(x)’ Bm(y)]q = me(X)Am(,V) - XBm(y)A’"(x)’

2 LG, Ba)] = 3Pa 40 0) — D) A,

The matrix T(x) is invertible as a formal Laurent series in x~'; denote by
T(x) the inverse matrix.

Lemma 4.3. For any m=1,...,n — 1 we have the equality

qdet [Tij(qu(m_n)) Klj=1 = pdet [Tl](x) Li=mit qdet T'(x).
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Proposition 4.4. The following relation holds in Y ,(gl,):
GCn(X) Bu(xq™?) = Dpy(x) Ap(xq %) — Ay s 1 (X) A, 1 (xq ™).

By definition, the quantum universal enveloping algebra U (gl,) is an associative
algebra over F generated by the elements t;, t; ! with i =1,...,n and e, f; with
i=1,...,n—1. These elements are subjected to the following relations [J1]:

titi—l = ti_lti = 1’ [ti’ tj] = 09

— 01y = 0. — G1.5+1—0
tiej_ejtiq J 11+1’ tif;'_fjtiqu+l v,

1

titih =t
[e, f] = WL st g

q9—4q
le el = [/, 1=0 if [i—jI>1,
Leis [eis1s ei]q]q =[fi [fis1 fi]q]q =0.
Introduce the g-analogues of the root vectors in gl, by induction:
Civs =€ Curi=i
e;; = [ew, exjl, i<k<j,
e;; = [ew, ejlg- i>k>j.

One can define a homomorphism Y,(gl,) = U,(gl,) as follows [J1]:

t;—t 1!
(42 Tal) —
q—dq
T:j(X)F—>Xtieﬁ, i<j;
ﬂ-(x)»——»eﬁtj_l, i>j].

Denote the images of the series A,(x), B,(x), C,,(x) and D, (x) under this
homomorhism by a,(x), b,,(x), ¢,,(x) and d,,(x) respectively. These images are
polynomial in x and

Ap(X) = (X"g" Tty e (= DTt ) (g — g7 )T
bm(u) = (xmqm(l—m)tl tmfm + -+ Xb) : (q - q—l)l—m’
) = (X" Tt (= Dlets bty ) (g —g )

for some b, ce Uy(gl,). The above equalities show that the coefficients of the
polynomials a,(x), b,(x) and c,(x) generate the algebra U,(gl,).

Let us recall several known facts about finite-dimensional U,(gl,)-modules
[J1, L, R]. It is known that any such module is completely reducible and all
the irreducible modules are uniquely characterized by their highest weights. Let
V be an irreducible finite-dimensional U,(gl,)-module of the highest weight
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(ky, K3,...,K,). Denote by & the highest weight vector:
ti-&=x¢; e;-£=0, i<j.
Then x; = ¢;q* where ¢, = £ 1, 4,eZ and 4; > 4;,,. The maps
L&l e e, fir— &1 f;
define an automorphism of U,(gl,). So we will assume that each ¢ = 1.

There is a canonical decomposition of the space V into the direct sum of
one-dimensional subspaces associated with the chain of subalgebras

U,(gly) = Uy(gly) = - = U(gly).

These subspaces are parametrized by the Gelfand-Zetlin schemes 4. The
subspace ¥, = V corresponding to A€% is contained in an irreducible
U, (gl,,)-submodule of the highest weight (¢*, g*2,...,¢*) for each m =n — 1,
n—2,...,1. These conditions define ¥V, uniquely.

Let again v,;=i— 4,, — 1. For any 4€J put

xq 7V — g™
-1

amA(x) = H q q
i=1 -

Proposition 4.5. The subspace V, = V is an eigenspace of a,(x) with the
eigenvalue g™*~™"2a_ ,(x).

For any A€J define the vector £, in a way similar to (2.4):
- vi;—1

43) &= H< I1 q“‘ﬂ)'z-S’“b,(qh))-é,
(LJ) 5=V,

here for each fixed | the elements b,(¢*)eU,(gl,) commute because of
Proposition 4.2.

Theorem 4.6. a) For any A€J we have the equality

An(x) - Ep = gm0 T 20,4 (%) E 4.
b) For any A€ we have £, €V,.
¢) If AeT\Y then £, =0.

¢—q"
For any keZ put [k] = ——"— and define

-1

>

B o ﬁ [vmi — Vm+1.j + 1] il:[l [vmi - Vm_l-j]
miA =1 D — v; + 11 =1 D — vj]

i i—1
Vmia = H [vmi - vj] n [vV"i - vj - 1] X
j=1 i=1



476 MaxiM NazZarRov AND VITALY TARASOV

m+1

m—1
X n Vit 1,j = Vimil H Dm-1,j = Vi + 11,
j=i

j=it+1

Tmia = H [Vmi — ij]_l-
j=1
Jj#i

Let the indices m <n and i <m be fixed. Denote by 4™ and A~ the arrays

obtained from A by increasing and decreasing the (m, i)-entry by 1 respectively.

Theorem 4.7. a) We have

S Y ifA ed;
0 otherwise.

cm(qzvml) ) é/\ = {

by If AeS then &, #0.
c¢) We have

gt Tmizrmm g g ifA" e,

0 otherwise.

bu(@*™) - &5 = {

Theorems 4.6, 4.7 completely describe the action of the algebra U (gl,) in the
module V. In particular, they provide explicit formulae for the action of
generators t,, ¢,, and f,, on the vectors ¢, with A€ 7, parallel to the formulae
(3.4), (3.5):

m m—1

tn:a = [1a" [T a1y,
(S é/\ = Z ymiATmiAéA‘*’
A+

fn s = Z BmiaTmiala -
e

where A" and A~ are Gelfand-Zetlin schemes obtained from A by increasing
and decreasing the (m, i)-entry by 1 respectively. The last two formulae look
exactly as (3.5).

To obtain the g-analogues of the canonical Gelfand-Zetlin formulae given
in [J2] for the first time and rederived in [UTS], one should extend the basic
field F and to rescale the vectors ¢, in a way similar to that at the end of
Section 3. Namely, one should replace the factor b,(¢g%) in the definition (4.3)
of &, by

j j-1 1+1 -1 -1/2
bz(qzs)'<n[5+1—vk]H[S_"k] H [Vz+1.j—5—1]n[vz—1,j—5]> .
k=1 k=1 k=j+1 k=j

Remark 4.8. Introduce the matrices
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0= [q_Ziéij]?.j=1a 7‘"(X) = [i,(x) ,il.j=1

where f}j(u) is equal to (— g) "’ times the quantum determinant of the matrix
obtained from T(x) by removing the row j and the column i. Then

(4.4) T(x)T(xq~2) = QT*(x)Q ™' T*(xq>~ ") = qdet T (u)

where the superscript t denotes the usual matrix transposition; see [C1], [T]
for the proof of these equalities. Let E. be the matrices taking part in the
homomorphism (4.2):

T(x)—xE, — E_,

cf the matrices L*) from [RTF]. The coefficients of the polynomial
a,(u) = qdet (xE, — E_) belong to the center of the algebra U (gl,) and from
(4.4) we obtain the matrix identities

a,(E_E;N) =0, a,((EY) 'EZg* %) =0
which are the g-analogues of (2.6).

Remark 4.9. We can also treat g as a complex number rather than an
indeterminate and consider U,(gl,), Y,(gl,) as algebras over C. 1If g is generic
then the results of this section remain valid. In the peculiar case of g being
a root of unit it is easy to generalize these results to the irreducible highest
weight modules. Moreover the technique works for the periodic and
semiperiodic modules [T] as well. This allows us to determine the branching
rules corresponding to the restriction from U,(gl,) to U,(gl,—;) and to define
the Gelfand-Zetlin bases for U,(gl,)-modules without classical analogues. It
will be done in details in the forthcoming paper.

Acknowledgements

This work was done during our stay at RIMS, Kyoto University. We
should like to thank Masaki Kashiwara and Tetsuji Miwa for the kind
invitations and hospitality at RIMS. One of us (M.N.) was supported by the
Japan Society for the Promotion of Science Postdoctoral Fellowship.

References

[C1] Cherednik, I. V., A new interpretation of Gelfand-Zetlin bases, Duke Math. J., 54 (1987).
563-577.

[C2] Quantum groups as hidden symmetries of classic representation theory,
in Differential geometric methods in theoretical physics, World Scientific, Singapore, (1989).
47-54.

[D1] Drinfeld, V. G., Hopf algebras and the quantum Yang-Baxter equation, Sovier Math.

Dokl., 32 (1985), 254-258.



478

[b2]
[G]
[GZ]
011
0zl

[KS]

(L]
[N]

ol

[R]

[RTF]
[T]
[UTS]
[z1]

[22]

MaxXiM NAZAROV AND VITALY TARASOV

Drinfeld, V. G.,, A new realization of Yangians and quantized affine algebras. Soviet
Math. Dokl., 36 (1988), 212-216.
Gould, M. D., On the matrix elements of the U(n) generators, J. Marth. Phys., 22 (1981),
15-22.
Gelfand, I. M. and Zetlin, M. L., Finite-dimensional representations of the unimodular
group, Dokl. Akad. Nauk SSSR, 71 (1950), 825-828.
Jimbo, M., A g-analogue of U(g/(N + 1)), Hecke algebra and the Yang-Baxter equation,
Lett. Math. Phys., 11 (1986), 247-252.

, Quantum R-matrix for the generalized Toda system, Commun. Math. Phys.,
102 (1986), 537-547.
Kulish, P. P. and Sklyanin, E. K., Quantum spectral transform method: recent develop-
ments, in Integrable quantum field theories, Lecture Notes in Phys., Springer, Berlin-
Heidelberg, 151 (1982), 61-119.
Lusztig, G., On deformations of certain simple modules over enveloping algebras, Adr.
Math., 70 (1988), 237-249.
Nazarov, M. L., Quantum Berezinian and the classical Capelli identity, Lett. Math.
Phys., 21 (1991), 123-131.
Olshanskil, G.I., Representations of infinite-dimensional classical groups, limits of
enveloping algebras, and Yangians, in Topics in Representation Theory, Adv. Soviet
Math., AMS, Providence RI, 2 (1991), 1-66.
Rosso, M., Finite-dimensional representations of the g-analogues of the universal
enveloping algebras of complex simple Lie algebras, Commun. Math. Phys., 117 (1988),
581-593.
Reshetikhin, N. Yu, Takhtajan, L. A. and Faddeev, L. D., Quantization of Lie groups
and Lie algebras, Leningrad Math. J., 1 (1990), 193-225.
Tarasov, V., Cyclic monodromy matrices for s/(n) trigonometric R-matrices, Comm.
Math. Phys., 158 (1993), 459-483.
Ueno, K., Takebayashi, T. and Shibukawa, Y., Gelfand-Zetlin basis for U,(g/(N + 1))-
modules, Lett. Math. Phys., 18 (1989), 215-221.
Zhelobenko, D. P., Compact Lie groups and their representations, Transl. of Math.
Monographs, 40, AMS, Providence RI, 1973.

On Gelfand-Zetlin bases for classical Lie algebras, in Representations of Lie

groups and Lie algebras, Akadémiai Kiado, Budapest. (1985), 79-106.



