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Yangians and Gelfand-Zetlin Bases
To Professor I. M. Gelfand on his 80th birthday

By

Maxim NAZAROV* and Vitaly TARASOV**

Abstract

We establish a connection between the modern theory of Yangians and the classical construc-
tion of the Gelfand-Zetlin bases for the Lie algebra gln. Our approach allows us to produce the
g-analogues of the Gelfand-Zetlin formulae in a straightforward way.

Let F be an irreducible finite-dimensional module over the complex Lie
algebra Q\n. There is a canonical basis in the space of K associated with the
chain of subalgebras g^ c gI2 c ••• c gln. It is called the Gelfand-Zetlin basis,
and the action of gln on its vectors was explicitly described in [GZ] for the
first time. Since then several authors provided alternative proofs of the original
Gelfand-Zetlin formulae; see [Z2] and references therein.

Denote by Z(gln) the centre of the universal enveloping algebra
U(gln). The subalgebra in U(gln) generated by ZfglJ, Z(gI2),...,Z(gIn) is
evidently commutative. The Gelfand-Zetlin basis in K consists of the eigen-
vectors of this subalgebra, and the corresponding eigenvalues are pairwise
distinct. These properties suggest that for the given module K an explicit
description of Z(gI1), Z(gI2),...,Z(gIw) should be used to construct the Gelfand-
Zetlin basis. It shall be done in the present paper. Namely, for any vector
v of the Gelfand-Zetlin basis we point out an element beU(g!n) such that
v = b • £ where £e V is the highest weight vector (Section 2). Moreover, our
construction implies the Gelfand-Zetlin formulae (Section 3).

We will employ the following description of Z(glfl). Let etj be the standard
generators of the algebra U(gIJ. Consider the sum over all permutations g
of 1, 2, . . . ,n
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E(-i/ (9) ri (w -«' +1) +*.«>.<)
g i = 1 , . . . , n

where /(g) denotes the length of the permutation g. The factors in the above
product do not commute in general. Put them in the natural order; the factor
indexed by i stands on the left of that indexed by ; if i < j. The sum is a
polynomial in u and the coefficients of this polynomial generate Z(gln) [Zl],
cf. [N].

Our construction is based on the chain of subalgebras

where Y(glJ denotes the Yangian [Dl] of the Lie algebra gln, cf. [C2]. In
our construction we use the same generators of the algebra Y(gIJ as were
introduced in [D2], see also [T]. There exists an algebra homomorphism
Y(gU-»U(gy. The generators of Z(glJ mentioned above arise as the images
of canonical central elements of Y(gln) with respect to that homomorhism
(Section 1), cf. [O].

Our construction for U(gIJ also admits a natural generalization to the
quantum universal enveloping algebra Ug(gIJ, cf. [Cl]. This generalization
produces the same ^-analogues of the Gelfand-Zetlin formulae as were given
in [J2]. To make our presentation clearer, we only formulate (Section 4) the
main statements for U^glJ and provide detailed proofs for U(glJ.

§ 1. In this section we state several known facts about the Yangian Y(gln)
of the complex Lie algebra cjln. This is an associative algebra generated by
the elements TLf where 1,7 = I , . . . , H and s = 1, 2,... subjected to the following
relations. Introduce the formal Laurent series in u'1

Ttj(u) = dtju

and form the matrix

Let P be the permutation map in (C")®2- Consider the Yang R-matrix, it is
the End((Cn)®2)-valued function

u — v

Put R(u, v) = P - R(u, v). Then the relations for 7;js) can be written as

(1.1) R(u, v) • T(u) (x) T(v) = T(v) ® T(u) • R(u, v).

Observe that the generators 7^s) with ij= l , . . . ,m obey exactly the same



YANGIANS AND GELFAND-ZETLIN BASES 461

relations as the corresponding generators of Y(glm). Thus we have the chain
of subalgebras

Y(gI 1 )cY( 9 I 2 )cz . . .czY(9l I I ) .

The relations (1.1) also imply that for any heC the map

T\.(u)t—+Tij(u + h)

defines an automorhism of the algebra Y(gln); here the series in (u + ti)~l

should be re-expanded in u~l.
We will use the following definition. Let X(u) = \_Xij(u)~]™j=l be an

arbitrary matrix whose entries are formal Laurent series in u~l with coefficients
in Y(glJ. Define the quantum determinant of this matrix to be the sum over
all permutations g of 1, 2,. . . ,m

qdet X(u) = £(- l)'to) • Xlg(l)(u)X2g(2}(u - I)- Xm,g(m)(u - m + 1);
9

here f(g) denotes the length of the permutation g. We will also denote by
pdet X(u) the sum

• Xlg(1)(u -m + l)X2g(2)(u -m + 2}^X^g(m)(u}.
9

Consider the formal series

Am(u) = qdet [7J»]^=1 ; m =!,...,«.

Proposition 1.1. a] The coefficients of An(u) belong to the centre of the
algebra Y(glll). b) All the coefficients of y4 1 (M) , . . . ,A n (M) pairwise commute.

Proof. The part a) is well known and its proof can be found for instance
in [KS]. Since the generators 7^s) with i,j= l , . . . ,m obey the same relations
as the corresponding generators of Y(glm), we obtain from a) that

(1.2) |>lm(ii), 7»] = 0; i , ;= l , . . . ,m.

The part b) follows directly from the above commutation relations n

It is convenient to assume A0(u) = 1. Now we introduce the formal series
with coefficients in Y(gIJ which together with y4 1 (M) , . . . , y4 n (M) play the main
role in this paper. For any w = l , . . . , n — l denote by Bm(u)9 Cm(u), Dm(u)
respectively the quantum determinants of the submatrices in T(u) specified by
the rows 1, . . . , m and the columns 1, . . . , m — 1, m + 1 ; by the rows 1, . . . , m — 1,
m+1 and the columns l , . . . ,m; by rows l , . . . , m — 1, m+1 and the same
columns. These quantum determinants have been used in [D2].
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Proposition 1.2. The following commutation relations hold in Y(gIJ :

(1.3) lAm(u), B^v)-] = 0 if l*m,

(1.4) [Cw(ii), B^v}-} = 0 // I * m,

(1.5) [*M(K), fliM] = 0 i/ l / - m | * l ,

(1.6) (u - v) - [Xm(n), Bm(v}-} = Bm(u)Am(v] - Bm(v)Am(u),

(1.7) (u - i?) • [Cm(n), JU")] = Dm(n)>l» - />m(i>Mm(u).

Proof. It follows from (1.1) that the entries of any m x m submatrix in
T(w) obey the same relations as the corresponding entries of the matrix
[?i./(w)]Jj=i. Therefore if we have two square submatrices X(u), Y(u) in T(u)
and one of them contains the other, then due to (1.2)

[qdet X(u)9 qdet 7(i?)] = 0.

This observation provides the relations (1.3), (1.4), (1.5).
It suffices to prove the relations (1.6), (1.7) only for m = n — 1. Introduce

the matrix

where 7^(w) is equal to (— l j ~ j times the quantum determinant of the matrix
obtained from T(u) by removing the row j and the column /. Then

(1.8) T(u)f(u- 1) = qdet r(w),

(1.9) f r(w)T r(w - n + 1) = qdet T(u)

where the superscript t denotes the matrix transposition; see [KS] for the
proof of these equalities. The matrix T(u) is invertible as a formal Laurent
series in u"1; denote by f(u) the inverse matrix. Then from (1.1) we get the
equality

f (M) ® T\v) • R(u, v) = R(u, v) • f(v) ® f(u).

The series qdet T(u) is also invertible and commutes with each entry of the
matrix T(u). Therefore from the last equality, from (1.8) and from

R(u + 1, v + 1) = R(u, v),

we obtain the matrix relation

f (u) ® f(v) • R(u, v) = R(u, v) • f(v) ® f(u).

By the definition of the matrix f(u) we have the equalities

(1.10) An_1(u)= TM(u), Dn^(u)=fn-i,n-i(u),
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The commutation relations (1.6), (1.7) with m = n — 1 are contained in the
above matrix relation D

We will keep using the matrices f(u) and f(u) introduced in the proof of
Proposition 1.2.

Lemma 1.3. For any m = !,...,« — 1 we have the equality

qdet [TJ/ii - n + m)]^=1 = pdet [7)»]?ijs=M + 1 - qdet 7».

Proof. Let wl5 w 2 , . . . ,w w be the standard basis in Cn. Let / be the n x n
matrix unit and JeEnd((C")®") be the antisymmetrization map. Then

T(u)® T(u- I ) ® - - - ® T(u- n+ 1) • J = J • qdet T(u)\

see [KS] for the proof of this equality. It implies that

= f(u - n + m + 1) ® ••• ® 7> - 1) ® 7>) ® /®m • J • qdet r(w).

Thus we have a matrix equality over the space (C")®n. Taking its diagonal
entry corresponding to the vector

Wm+l ® • • • ® Wn-1 ® Wn® Wx ®"-® W m _ ! ® Wm5

we get the equality claimed by Lemma 1.3 D

Proposition 1.4. The following relation holds in Y(gIJ :

Cm(u)Bm(u - 1) = Dm(u)Am(u - 1) - 4,,, !(«),!„,_!(« - 1).

Proof. It suffices to prove Proposition 1.4 only for m = n — 1. Applying
Lemma 1.3 to m = n-2 and using the equalities (1.8), (1.10) along with
Proposition 1.1 (a), we get

An(u)An_2(u - 1) = qdet T(«) - qdet [IJ/u - 1)]?^

= qdet T(«) • pdet [TJ/u + !)]?.,.=„_! • qdet r(w + 1)

= qde t r (« ) - ( f B _ 1 . I 1 _ 1 (M)f w l (u+ l )

- ft-^Mf^^u + !))• qdet r(« + 1)

= t-i.n-i("- i)t,B(u)- f n _ 1 - H (u -

Due to the relation (1.7) the right hand side of the above equalities coincides
with

A,-i(«)4,-i(" - !) - C.-^M^-^M - 1).
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Thus Proposition 1.4 for m = n — 1 is proved D

§ 2. Let etj be the standard generators of the universal enveloping algebra
U(gIJ. The algebra Y(gIB) contains U(gIJ as a subalgebra: the maps e^tW
define the imbedding. One can also define a homomorphism Y(glw) -> U(gIJ by

Tij(u)\ - idyl* + €#.

Denote the images of the series Am(u), Bm(u), Cm(u) and Dm(u) under this
homomorphism by am(u), bm(u), cm(u) and dm(u) respectively. These images are
polynomial in u and

(2.1) an(u) = um + (eil + - + emm - m(m -

bm(u) = em + ̂ mum~1 + - . . , cn(u) = em,m + lu
m~l + • • • .

The above equalities show that the coefficients of the polynomials am(u), bm(u)
and cm(u) generate the algebra U(gln). We will explicitly describe the action
of these polynomials in each irreducible finite-dimensional module of the Lie
algebra gln. We will use Proposition 1.2 and Proposition 1.4 along with the
following observation: if n is the subalgebra in glm spanned by the elements
eij9 1 ̂  i <j ^ m then by the definition of the quantum determinant

(2.2) am(u) E fl (u + eu - i + 1) + U(gIJ n,
i = l

(2.3) cm(w)6U(gIJn.

Let V be an irreducible finite dimensional gln-module. Denote by £ its
highest weight vector:

eir£ = ̂ i g y - < J = 0, i<j.

Then each difference Aj — Ai+l is a non-negative integer. For any heC the
mappings

*a ' — ^ *u + h ; eu l — ' etj> l * J

define an automorphism of the algebra U(gIJ. So we will assume that each
Af is also an integer. Denote by y the set of all arrays A with integral entries
of the form

Ai-1
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where lni = ^ and ^ ^ Ami for all i and m. The array A is called a
Gelfand-Zetlin scheme if

for all possible m and i. Denote by Sf the subset in ^ consisting of the
Gelfand-Zetlin schemes.

There is a canonical decomposition of the space V into the direct sum of
one-dimensional subspaces associated with the chain of subalgebras

These subspaces are parametrized by the elements /I e ̂ . The subspace VA^ V
corresponding to Ae£f is contained in an irreducible glm-submodule of the
highest weight (km l , Am2 , . . . , Amm) for each m = n - 1 , n - 2, . . . , 1 . These
conditions define VA uniquely, cf. [GZ]. Denote by A° the array where Ami = X{

for any m; then AQeSf and £eVA..
For any AtZT put

Proposition 2.1. 77z^ subspace VA c: V is an eigenspace of am(u) with the
eigenvalue amA(u).

Proof. The coefficients of the polynomial am(u) belong to the center of
the algebra U(gIJ and act in any irreducible glm-submodule of V via
scalars. Applying am(u) to the highest weight vector in this submodule and
using (2.2) we get Proposition 2.1 by the definition of the subspace VA D

Endow the set of the pairs (m, i) with the following relation of precedence:
(m, i) X (/, j) if i < j or i = j and m > 1. This relation corresponds to reading
A e y by diagonals from the left to the right, downwards in each diagonal. Let
vmi = i — hmi — 1, it is a root of the polynomial amyl(w). Note that if AE^
then vml < vm2 < • • • < vmm. Put vf = i - ^ - 1, then vmi > v£. Consider the
vector in V

here for each fixed / the elements ^(s)eU(gIn) commute because of the relation
(1.5). The products in brackets do not commute with each other in
general. We arrange them from the left to the right according to the above
relation of precedence for the pairs (m, i).

Theorem 2.2. For any AeZT we have the equality
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Proof. We will employ the induction on the number of the factors b^s)
in (2.4). If there is no factors then A = A° and £A = £eVAo. In particular,
the required equality then holds by Proposition 2.1.

Assume that A / A°. Let (/, j) be the minimal pair such that AZj- ^ A.J. Let
Q be the array obtained from A by increasing the (/, ;)-entry by 1. Then

and

(2-5) k = W v y - l ) - ^ .

If //m then ocmn(u) = a,mA(u). By the relation (1.3) and by the inductive
assumption we get

Now suppose that / = m ; then by the definition of Q we have

In particular, by the inductive assumption we then have

0m(vmj - 1) • ta = xmn(vmj ~ l)5fl = 0.

Therefore by the relation (1.6) and again by the inductive assumption we get

am(u) • £A = am(u)bm(vmj - 1) • £a

u - vn'mj

u - vmj + 1
bm(vmj ~

u - vmj + 1
1 ml mj ) mQ\ )^Q mA\ )^A'

Thus Theorem 2.2 is proved for any m D

The subspaces VAaV are separated by the corresponding eigenvalues of
^(M),...,*^ ̂ (w). Therefore by comparing Proposition 2.1 and Theorem 2.2
we get

Corollary 2.3. For any A e & we have f)AeVA.

In the next section we will describe the action of the polynomials bm(u) and
cm(u) on the vectors £A with AE&*. Then we will prove that all these vectors
do not vanish.

Proposition 2.4. If AeF \y> then £A = 0.
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Proof. As well as in the proof of Theorem 2.2 we will employ the
induction on the number of the factors b^s) in (2.4). If there is no factors
then A = A°E&> and we have nothing to prove.

Assume that A / A°. Let (/, j) be the minimal pair such that Azj / /,-.
Denote by Q the array obtained from increasing the (I, j)-entry of A by 1,
then QeZT and we have the equality (2.5). If Q$<f then £Q = Q by the
inductive assumption, so that £A = 0 due to (2.5).

Now suppose that QE^. We will prove that either A E <f or £A = 0. By
Theorem 2.2 the vector £A is an eigenvector for the polynomials fl^w),...,«„_!(«).
Their eigenvalues separate the subspaces V} a V with YE £f. Therefore ^AEV1

for some YE y. Suppose that £A ^ 0, then

amyl(M) = am}(M), m = !,...,«- 1.

Consider the roots vmi = i - lmi - 1 of the polynomial xmA(u). Since Q E ^,
we have the inequalities

Vmi < vm 2 < • • • < vm m if m^ I;

Therefore the array A can be uniquely restored from the collection of the
polynomials a1 A(w),. . . ,an_ l 5 / l(w). Thus A = YE^ and the Proposition 2.4 is
proved Q

Remark 2.5. Let us form the matrix £ = [— ejiJlJ=1. The coefficients of
the polynomial an(u) = qdet (u — E) belong to the center of the algebra U(gIJ
and from (1.8), (1.9) we obtain the matrix identities

(2.6) an(E) = 0, an(E< + n - 1) = 0.

Now consider the matrix S — [_Sij]
flj=1 where Stj denotes the image of the

element — ejt in the module K Replacing the coefficients of the polynomial
an(u) by their eigenvalues in the module V and taking into account Proposition
2.1, we get the characteristic identities [G] for the Lie algebra gln:

n n

fl (S + Af - i + 1) = 0, 0 (s* + ;-i - i + n) = 0.
i = l i = l

§3. Let AE^ be fixed. The functions b m ( u ) - ^ A and cm(w) • ̂  are
polynomial in u of the degree m — 1. Since vml < vm2 < ••• < vmm, to describe
these functions it suffices to determine their values at u = vmi for each
i = l , . . . ,m. This will be done in the present section. Put

i i-i
ymiA = FI (Vmi - Vj) D (Vmi ~ V7- - 1) X

7 = 1 7 = 1
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m+ 1 m— 1
X Fl (Vm+l,j - Vmi) n (Vm-l,j - Vmi- + 1).

Let the indices m < n and i ^ m be fixed. Denote by A + the array
obtained from A by increasing the (m, 0-entry by 1.

Theorem 3.1. We have

~ ,0 otherwise.

Proof. If A = A° then A+ ^^. On the other hand then £A = £ while
due to (2.3)

Assume that yl 7^ A°. Consider the minimal pair (/, j) such that
Atj 7^ Aj. As well as in the proof of Theorem 2.2 let Q be the array obtained
from A by increasing the (/, j)-entry by 1. Then Qe^ and we have the
equality (2.5). We will prove first that

(3-1) UvJ^Vy - 1) • ta = &l(Vy - l)cm(vmi) • ^

for ( I , j ) ^ ( m 9 i ) . If / / m then we obtain (3.1) directly from the relation
(1.4). If I = m but j ^ i then vmj- - 1 ̂  vmi since Oe^. Due to Theorem 2.2
we then also have the equalities

Therefore by the relation (1.7) we again obtain that

cm(vmi-)Mvmj - !)•£« = ^(vmj - l)cm(vmi) • ^.

If Amf = Aj then yi+^5^. On the other hand, applying the equality (3.1)
repeatedly we then get

as we have claimed. Now we assume that Ami < /£.
Consider the array T obtained from A by changing each entry

corresponding to (/,;)< (m, i) for A7-, and by increasing the (m, i)-entry by
1. Then Te^"" and due to Theorem 2.2 we have
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U v ™ - l ) - £ , = aM I(vm i- 1K, = 0.

We then also have

fyi = Pbm(vmi - 1) ' f ,

where

/ v i j - lp= n n M
(I , j)-<(m,i) \ s=v ,

Therefore applying the equality (3.1) repeatedly and using Proposition 1.4 we get

The last equality proves Theorem 3.1 when A+ e^. If A+ $tf then

c»(vj • ̂  = 0

by the same equality and by Proposition 2.4 Q

Remark 3.2. If A+ E^ then ymiA > 0. Indeed, if AtSf then we have the
inequalities

Vmi < V m + l , i + l < V m + l , i + 2 < "' < V m + l , m + l 5

vmi < v m _ l i f < v m _ l i f + 1 < -.. < v m _ 1 > m _ 1 .

If A + e £f then we also have

Vmi- 1 ^ v t> V f - i > • • • > V j , .

Thus all the factors in the product ymiA are positive.

Proposition 3.3. If A E Sf then ^A / 0.

Proof. As well as in the proofs of Theorem 2.2 and Proposition 2.4 we
will employ the induction on the number of the factors b{(s) in (2.4). If there
is no factors then A = A° and ^ = f ^ 0.

Assume that A ^ A°. Let (/, 7) be the minimal pair such that Atj ^ Ay. Let
Q be the array obtained from A by increasing the (/, j)-entry by 1. Since
A £ <9", we also have Q e Sf . Then £a ^ 0 by the inductive assumption. On
the other hand, by Theorem 3.1 we then have



470 MAXIM NAZAROV AND VITALY TARASOV

where yljA ^ 0 due to Remark 3.2. Therefore £A ^ 0 Q

Now consider the array A~ obtained from A by decreasing the (m, f)-entry of
A by 1 ; then A ~ e ?T . Since

(3.2) vmi^ vt > vi_1 > • • • > vl5

one can define

1 y — y . _|_ 1 t ~ 1 -u . — -y
n _ FT mt F«+1,J ' FT mi ^m-l . J
PmiA - I 1 - - — — j - I 1 " -

Theorem 3.4. We have

0 otherwise.

Proof. We will use again some of the arguments which appeared in the
proofs of Theorem 2.2 and Proposition 2.4. Consider the vector bm(vmi) - ̂ A e K
It is an eigenvector of the element a^u) with the eigenvalue aM-(w) for any
/. Indeed, if / ^ m then a z / i-(w) = oclA(u). On the other hand, by the relation
(1.3) and by Theorem 2.2 we then get

Now suppose that / = m ; then by the definition of yi ~ we have

Since am(vmi) • ̂ A = 0 due to Theorem 2.2, by the relation (1.6) and again by
Theorem 2.2 we get

am(u)bm(vmi) - ̂  = "^L^l bm(vmi)am(u) - £A

The subspaces Vn c K with & e 5^ are separated by the eigenvalues of
fl1(w),...,fln_1(w). Therefore bm(vmi)- £AeVn for some Qe£f. Since yie«5^, the
array ^i~ can be uniquely restored from the collection of the polynomials
< X i A - ( u ) , . . . , o i n - l t A - ( u ) . Thus if A~$Se then

as we have claimed.
Assume that A~ E&. Then the above consideration implies that
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Therefore by Corollary 2.3 and Proposition 3.3 we obtain that

(3.3) bn(vmd-tA = MA-

for some /JeC. We will prove that /? = fimiA.
Let us compare the action of the element cm(vmi 4- 1) on both sides of the

equality (3.3). By Theorem 3.1 we have

where ymiA - / 0 due to Remark 3.2. On the other hand, applying Proposition
1.4 and using the equality

we get

Since ^A ^ 0 by Proposition 3.3, we finally obtain that

P= ~ *m+l,A(Vmi + l)am-l^(vm i)Vmiil- = /^miA-

Thus we have proved Theorem 3.4 Q

Remark 3.5. If ^ e ̂  then jSmiyl > 0 for any indices m and i. Indeed, then

These inequalities along with (3.2) show that all the factors in the product [}miA

are positive.

Theorems 2.2, 3.1, 3.4 and Proposition 3.3 along with Corollary 2.3 completely
describe the action of the Lie algebra gln in the module K In particular, they
provide explicit formulae for the action of generators emm, e m ,m+i anc* em+1 ,m

on the vectors £A with AE<?. The first equality in (2.1) and Theorem 2.2
imply that

(3-4) emm^A
\ i = i

Put
m

^miA = 0 (Vmi- V^-)'1.
j= l
7 * «

Then using the Lagrange interpolation formula we obtain that
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(3-5) em,m+l ' S/l — 2^ ymiA ^miA <*A + '
A +

em + 1 , m ' C A = Z-j PmiA ^miA ^A ~
A ~

where A+ and A~ are Gelfand-Zetlin schemes obtained from A by increasing
and decreasing the (m, 0-entry by 1 respectively.

Remark 3.6. The equalities (3.5) are not the Gelfand-Zetlin formulae in
their canonical form [GZ]. To obtain the latter, one should employ vectors
which differ from £A by certain scalar factors. Namely, one should replace
the factor bt(s) in the definition (2.4) of £A by

j 7-1 1+1 l-l \ - l / 2n (s + 1 - Vfc) n (s - vk) n (^^ - * - v n (v,-w -
k=l fc=i k = j + l fc=J

Since yl e^ and v^- ^ s < v/7-, all factors in the four above products are positive.

§4. The construction given above admits a natural generalization to the
case of the quantum universal enveloping algebra U^(gln). We will point out
here only the main statements. The proofs are quite similar to those in the
case of U(gln) and will be omitted. Some of them are contained in [T].

Let us introduce the quantum Yangian Y^(gIM), cf. [Cl]. This is an
associative algebra over the field F = Q(q), generated by the elements 7]js) where
j, ;=!,.. . ,« and 5 = 0,1,... such that 7^0) are invertible and 7]J0) = 0 for
i > j. These elements are subjected to the following relations. Introduce the

Ttj(x) =

and form the matrix

Let W I ? . . . , W M be the standard basis in Fw. Consider the Cherednik R-matrix,
it is the End ((F"f2)- valued function Rq(x, y) such that

xq-yq'^WitSWi, i = j ;

Let P be the permutation map in (F")®2; put R(x, y) = P • R(x, y). Then the
relations for 7]js) are of the same form as (1.1) above:

(4.1) R(x, y) • T(x) ® T(y) = T(y) ® T(x) • R(x, y).
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The generators T^ with i,j= l , . . . ,m obey exactly the same relations as
the corresponding generators of Yq(glm). Thus we have the chain of subalgebras

The relations (4.1) also imply that for any /ZGF\{0} the map

r0.(x)i - >Ttj(xh)

defines an automorhism of the algebra Y9(gln).
Let X(x) = [Xij(x)']™j=1 be an arbitrary matrix whose entries are formal

Laurent series in x"1 with coefficients from YJglJ. Define the quantum
determinant of this matrix to be the sum over all permutations g of 1, 2, . . . ,m

qdet X(u) = £(- q)-'w •
9

We will also denote by pdet X(u) the sum

Define the formal series Am(x), Bm(x), Cm(x) and Dm(x) by the matrix T(x)
in the same way as the formal series Am(u), Bm(u), Cm(u) and Dm(u) were defined
by the matrix T(u) in Section 1.

Proposition 4.1. a) The coefficients of An(x) belong to the centre of the
algebra Y9(glw). b) All the coefficients of y41(x), . . . ,y4n(x) pairwise commute.

Define the g-commutator \_X, Y\ = XY- qYX as usual. Then we have

Proposition 4.2. The following commutation relations hold in Y^glJ:

lAm(x), B&)] =0 if l*m,

[Cm(x), B&fi =Q if I / m,

lBm(x)9Bl(y)l=0 if \l-rn * 1,

~ n(x)9 Bm(y)\ = yBm(x)Am(y) - xBm(y)Am(x),_
q-q

-^^ [Cm(x), Bn(yK = y(Dm(x)Am(y) - Dm(y)Am(x)).
q-q

The matrix T(x) is invertible as a formal Laurent series in x"1; denote by
f ( x ) the inverse matrix.

Lemma 4.3. For any m= l,...,n — 1 we have the equality

qdet [7;.,(x?
2(m-"')]-,= 1 = pdet [fy(x)]7J=M + 1 • qdet 7(x).
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Proposition 4.4. The following relation holds in Y9(gln):

qCm(x)Bm(xq-2) = D m(x] Am(xq- 2) - Am + 1(x)Am_1(xq-2).

By definition, the quantum universal enveloping algebra Ug(gIJ is an associative
algebra over F generated by the elements ti9 t^

1 with i = l , . . . ,n and ei9 ft with
i = !,...,« — 1. These elements are subjected to the following relations [Jl]:

q-q

Iei9ej-] = lfi9fj]=0 if | f - j | > l ,

l>i, [*i±i, eJJ* - [/i? [/i±1,/JJ, = 0.

Introduce the ^-analogues of the root vectors in gln by induction:

One can define a homomorphism Yg(gln) -> Ug(glw) as follows [Jl]:

(4-2) 7 J f ( x ) H - > ^ ,

Denote the images of the series Am(x), Bm(x), Cm(x) and Dm(x) under this
homomorhism by am(x), bm(x), cm(x) and dm(x) respectively. These images are
polynomial in x and

cm(u) = (x^^c + ... + (- I)memtr1-t-1) • to - ^1)1"m

for some b, ceU^glJ. The above equalities show that the coefficients of the
polynomials am(x), bm(x) and cm(x) generate the algebra Ug(gIJ.

Let us recall several known facts about finite-dimensional U^glJ-modules
[Jl, L, R]. It is known that any such module is completely reducible and all
the irreducible modules are uniquely characterized by their highest weights. Let
V be an irreducible finite-dimensional U^glJ-module of the highest weight
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(Kl9 K 2 9 . . . , K n ) . Denote by £ the highest weight vector:

t i - £ = K£\ e0 . .£ = 0, i<j.

Then Ki = s^1 where ef = ± 1, A f e Z and At^ li+1. The maps

define an automorphism of Ug(gln). So we will assume that each et= 1.
There is a canonical decomposition of the space V into the direct sum of

one-dimensional subspaces associated with the chain of subalgebras

These subspaces are parametrized by the Gelfand-Zetlin schemes A. The
subspace VAaV corresponding to A e ̂  is contained in an irreducible
Ug(glm)-submodule of the highest weight (gAml, gA m 2 , . . . ,gA m m) for each m = n — 1,
n — 2,...,1. These conditions define VA uniquely.

Let again vmi = i — kmi— I. For any Ae^ put

Proposition 4.5. 77ze subspace VA a V is an eigenspace of am(x) with the
eigenvalue <f (1~m)/2am/l(x).

For any Ae 9~ define the vector £,A in a way similar to (2.4):

here for each fixed / the elements &z(g2s)eUg(gIn) commute because of
Proposition 4.2.

Theorem 4.6. a) For any AE^~ we have the equality

b) For any A e ̂  we have £A

c) If AE«T\¥ then £A =0.

k —k
a — a

For any k e Z put [fc] = - ir- and define
q-q

R _ FT EVmi ~ V m + l , j '
PmiA - 1 1 - r —

J = l

- v j + l ] A*i [vm;-v,]
i- 1

mi jJ 11 L mi j J
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vmiA = 0 [ymi-vmj]~l-
ft

Let the indices m < n and i ^ m be fixed. Denote by A " and >4 ~ the arrays
obtained from yi by increasing and decreasing the (m, i)-entry by 1 respectively.

Theorem 4.7. a) We have

(l -m)/2 + mvmi i: if A
JmiA $A + 1J /L

b) If Ae^f then £A ^ 0.
c) We have

.
otherwise.

nm(l - m ) / 2 + m v m i - l /? e ii AP»i/iC>i- (/ ^
. .
0 otherwise.

Theorems 4.6, 4.7 completely describe the action of the algebra U€(gIJ in the
module V. In particular, they provide explicit formulae for the action of
generators tm, em and fm on the vectors £A with AE^~, parallel to the formulae
(3.4), (3.5):

i = i

Jm ' ̂ A = ^ PmiA^miA^A-
A ~

where A+ and A~ are Gelfand-Zetlin schemes obtained from A by increasing
and decreasing the (m, f)-entry by 1 respectively. The last two formulae look
exactly as (3.5).

To obtain the g-analogues of the canonical Gelfand-Zetlin formulae given
in [J2] for the first time and rederived in [UTS], one should extend the basic
field F and to rescale the vectors £A in a way similar to that at the end of
Section 3. Namely, one should replace the factor b^q25) in the definition (4.3)
of ^ by

j-l l + l l-l \ - i / 2+ i - v j n i > - v * ] n [vz+u-s-
k=l k = j+l

Remark 4.8. Introduce the matrices
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where f^u) is equal to (— q)j~l times the quantum determinant of the matrix
obtained from T(x) by removing the row j and the column i. Then

(4.4) T ( x ) f (xq~2) = QTt(x)Q-lTt(xq2-2n) = qdet T(u)

where the superscript t denotes the usual matrix transposition; see [Cl], [T]
for the proof of these equalities. Let E± be the matrices taking part in the
homomorphism (4.2):

T(x)i - >xE+ - E_,

cf. the matrices L (±) from [RTF]. The coefficients of the polynomial
an(u) = qdet(x£ + — £_) belong to the center of the algebra Uq(ojln) and from
(4.4) we obtain the matrix identities

an(E_E~1} = 0, aME^-'E-q2"-2) = 0

which are the ^-analogues of (2.6).

Remark 4.9. We can also treat q as a complex number rather than an
indeterminate and consider U^glJ, Y?(gIJ as algebras over C. If q is generic
then the results of this section remain valid. In the peculiar case of q being
a root of unit it is easy to generalize these results to the irreducible highest
weight modules. Moreover the technique works for the periodic and
semiperiodic modules [T] as well. This allows us to determine the branching
rules corresponding to the restriction from Uq(cjln) to Ug(gl f l_1) and to define
the Gelfand-Zetlin bases for U^glJ-modules without classical analogues. It
will be done in details in the forthcoming paper.
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