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Quantization in Polar Coordinates
and the Phase Operator

By

Daniel A. DUBIN*, Mark A. HENNINGS** and Thomas B. SMITH***

Abstract

We review some of the difficulties previously encountered in defining the phase operator for finite
quantum systems. We then propose the Wigner-Weyl quantization of the angle function q> on
phase space as the phase operator, and derive a closed expression for its matrix elements with
respect to the Hermite functions. We also determine the quantization of el<?, which turns out to
be a weighted shift operator, its spectrum and that of its adjoint.

This is done in the framework of quantization of a certain symbol class of phase space
distributions, specialized to those which depend on one variable only. After recalling some results
for the position and momentum variables, we apply the scheme to functions of radius or angle. We
give necessary and sufficient conditions for operators obtained by quantizing functions of the angle
to be elements of ̂  + [^(R)] and ^+ [^(R), L2(R)], and a sufficient condition for boundedness.

We then consider the associated questions of commutation relations and uncertainties for
operators in J^+ [5^(R), L2(R)], which we define as bilinear forms. As must be the case, the
commutator between our phase operator and the number operator exhibits noncanonical terms.
Not surprisingly, the Poisson bracket of their phase space symbols also exhibits a noncanonical
term.

§ 1. Introduction

In one of the first papers on quantum electrodynamics, Dirac [1], in
considering the Fourier modes of the field, introduced a polar decomposition
of the raising and lowering operators (equation (10) and §10 of [1]). He
interpreted the positive self adjoint operator so obtained as the number operator
for the mode, and the partial isometry as the exponential of the phase operator.
However, a partial isometry which is not unitary cannot be the exponential
of an operator, so his interpretation was not quite correct. If one ignores
this and proceeds formally, one comes to an operator canonical to the number
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operator. This, too, is not possible in the Schrodinger representation, as shown
by Susskind and Glogower [2].

Since that time, numerous papers have been written trying to overcome
this difficulty. Other than intrinsic mathematical interest, the impetus to do
this is that such an operator would provide a convenient mechanism for
analyzing certain quantum electrodynamical systems which exhibit classical
features in some degree or another, notably quantum optics. The continuing
succession of papers concerned with the phase operator testifies to the fact
that there is no generally accepted definition for a phase operator. A critique
for work up to 1968 may be found in the paper of Carruthers and Nieto [3].

By a canonical phase operator we mean a symmetric map 0eJ^[^(R),
^(R)'] such that

Wl(Ng) - &g](Nf) = ig(f), f, 0e^(R), <u-a)

where JVeJ^+[5^(R)] is the number operator.
Here and below, we employ the standard notation that if E and F are

locally convex spaces, then =£?(£, F) is the space of continuous linear maps
from E to F. The symbol A E <£+ (E, F) indicates that E and F are subspaces
of a Hilbert space, and that both A and its Hilbert adjoint A* <=<¥(£, F). In
this case, A+ is A* restricted to E. If E = F we write J^(£) for £P(E, E) and
^ + (E) for JS?"*"(£, E). By T(f) we mean the bilinear duality pairing between
TEc99(R)/ and /e«^(R). The connection to our convention for the inner
product is that if/e^(R) and 0eL2(R), then g ( J ) = </, 0>. The bar indicates

the complex conjugate function or distribution. Unless a special point is being
made, we shall choose units so that ft = 1.

As noted, no such map 0 exists [2]. By the existence problem for a phase
operator we mean the existence of a map (PeJ^[<5^(R), ,9*(R)'], constructed on
the basis of some physical or mathematical principle, whose commutator with
N differs from (1.1.a) by terms of order ti or higher. If the range of 0 is L2(R),
then we may call it an operator.

We wish to emphasize that the problem we are considering requires the
Schrodinger representation. Then the operator domains contain ^(R), which
is defined by N, and is the natural arena for the unbounded operators of
quantum mechanics [4, 5]. A number of authors have considered the operator
of multiplication by the angle on the Hilbert space L2(T) over the circle [6, 7],
or certain subspaces of it [8]. The resulting operator, which we shall denote
A (3), can then be transported to the Schrodinger representation, which we
shall do in the third section. In this way A(S) is seen to be an operator
which is not the quantization of a function of the angle alone, as discussed
below. For this reason we are not convinced of its physical provenance. We
take the position that phase operators obtained through representations other
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than the Schrodinger representation do not solve the existence problem.
Some authors, notably Barnett and Pegg [9] and Popov and Yarunin

[7], have considered replacing the phase operator by a sequence of rank n
operators, taking the limits of certain matrix elements. (They have, in fact.
considered a sequence of operators on an ascending sequence of finite
dimensional Hilbert spaces, but that comes to the same thing.) The authors
in [9] leave open the question of the convergence of this sequence of operators
in some suitable sense, but this point has been considered by Popov and
Yarunin [7]. Their result is the operator A(E] mentioned above.

A related problem is to construct a bounded operator I/E J2^+ [<9*(R)]
satisfying the integrated form of the commutation relation for number and
phase :

[17, AT] _ /=£ / / , /e^(R). (l . l .b)

In contrast with the phase operator problem, this has many solutions, and the
difficulty is in choosing one with particular significance. Of course there is
no solution which is unitary, for if there were, its generator would be a canonical
phase operator [2].

The earliest solution of (l.l.b) was obtained from the polar decomposition
of the lowering operator [1]. An interesting class of them has been introduced
by Lerner, Huang and Walters [10], namely weighted shift operators

U^.hn = inhn.1 and U*hn = in + 1hn+1, (1.2)

where the hn, n > 0, are the orthonormal Hermite basis for L2(R), and the
sequence / = (/„)„> 0 satisfies /0 = 0; is bounded; /„ > 0 for all n > l ; the
(Ai)/i>o increase monotonically to unity: lim,,^^ /„ = 1 ; and satisfy a chain
condition :

We note that the first two conditions are sufficient to guarantee that the
operators (7A and t/Je^+[5^(R)] and satisfy the commutation relations with
the number operator. The other conditions [10] are used to find the spectra
of the "cosine" and "sine" operators

CA = j ( I7 A +l7?) and S, = 1(17A - 17 J).

The justification advanced in [10] for considering this class of sequences
is based on the resulting spectra of CA and 5A, and that the / are very much
like the sequence /„ = 1 for n > 1 which comes from the lowering operator. But
these considerations do not succeed in selecting one solution from amongst the
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others, nor do any of the sequences / have any particular merit over any
other. In contrast, our quantization procedure applied to the phase space
function e±i(p results in a particular weighted shift operator A(e±i(p] of the form
(1.2), though not one satisfying the conditions proposed in [10], cf, (3.17.b)
below.

Other authors have constructed the operator A(E) in interesting and
unusual settings. Amongst these we note the work of Newton [11] and Ban
[12]. Newton doubles up the system Hilbert space, considering Jtf = L2(R)©
L2(K), and thereby constructs a unitary extension V of the partial isometry
U. Utilizing the isomorphism between J4f and /2(Z) afforded by two copies
of the Hermite basis elements, this unitary extension V may be identified with
the bilateral shift operator. The spectral theorem for V represents it as the
multiplication operator e~ld on L2([_—n,n}}. Hence its generator is well
defined and self adjoint, and is the multiplication operator 9 in the spectral
representation.

One must now project back to the original Hilbert space. The projection
of the generator of V is then the proposed phase operator. A calculation
shows that this is the now familiar operator A ( E ) . We see, then, that while
this approach is interesting and useful for certain purposes, it sheds no light
on the existence problem for a phase operator beyond the considerations
previously discussed.

Ban considers a reservoir-system set-up as in statistical mechanics. This
is evidently an interesting and useful formalism for quantum optics, but it,
too, does not go beyond A(E) for the system alone when projected back. We
might point out that, up to an isomorphism, Ban's universe is a countable
number of copies of the Hilbert space 3? used by Newton.

These considerations apply to a finite number of degrees of freedom
only. For an infinite number of degrees of freedom the situation is quite
different. For Weyl systems there may or may not be a global number
operator. If there is, the representation admits a factorization into a tensor
product of a finite number of copies of the Schrodinger representation and a
trivial infinite dimensional representation, and in such cases the situation is
the same as for ^ degrees of freedom [13]. But there are models of relevance
to statistical mechanics where a number density operator exists and phase
effects are important. These are associated with superconductivity and
superfluidity, and are not relevant to the problem at hand [13-16].

Since a phase operator cannot be canonical, and cannot be defined by a
weighted shift operator, on what basis should it be defined? We propose that
basis to be quantization in the sense of Wigner and Weyl, or harmonic analysis
on phase space. [17-29].

In Section 2 we introduce the relevant quantization scheme, which
associates with any distribution re^(/7)' on phase space 77 a map
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We then consider quantization of phase space
functions of suitable symbol class [29], then specializing to an associated symbol
class of one variable. We find conditions for the resulting operators to be
members of j^+[^(R)] and J^+[^(R), L2(R)].

When our quantization scheme is applied to functions of position and
momentum alone, the results are completely standard, and we note these in
passing. Applied to functions of the radius the results are also known, cf,
§1.9 of Folland's text [29]. We provide some details of this notwithstanding,
since the quantization of functions of the polar angle is set up in the same way.

In Section 3 we consider quantization of functions of the angle. The
results in this case are more complicated than for functions of p, q or r. We
derive an expression for the matrix elements of A(T), give a necessary and
sufficient condition for it to belong to £?+ [^(R)], a sufficient but not necessary
condition for it to be bounded, and a necessary and sufficient condition for
it to belong to J^+ [^(R), L2(R)]. We show that A(e±l»)e& + [^(R)] and
is bounded, and that A(<p)e&'r [^(R), L2(R)] but not J^+[^(R)].

These results are found by considering the matrix representation of these
operators with respect to the Hermite basis. Subsequently, in Section 5, we
use the kernel representation of the angle operators to find a sharper sufficient
condition for boundedness. In the particular case of A(tp] we can do better,
and prove that it is bounded, with norm M(<p)|| < 3n/2.

In Section 3 we present an analysis of the spectra of the operators A(e~l(p)
and A(el<p), following [10]. We do not, however, find the spectrum of the
phase operator, although we conjecture that it is purely continuous, covering
[ — TT, TT] . Thus the work in Section 3 implements our main idea, which is that
the quantization A(cp) of <p is a good candidate for a phase operator.

We have not found any similar work in the literature, and so our results
may be of some interest in the theory of harmonic analysis in phase space
[29] as well as in physics.

We wish to point our that the angle function is not periodic, and its
definition requires a certain care, since the pole in polar coordinates is actually
an essential singularity requiring a branch cut. This branch point singularity
is reflected in several ways. For one thing, the Poisson bracket between the

angle and the function -(r2 — 1), whose quantization is the number operator,

must be treated as a distribution. The result differs from 1 by a distribution
concentrated at q = 0. We refer to this non-canonical term as secular. This
is an important new observation, as it is generally held that these functions
are canonically conjugate [13].

The branch point is also reflected in the procedure necessary to determine
its kernel. As this procedure involves a detailed application of Lebesgue
integration theory, we have relegated it to an appendix.
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In Section 4 we use the results of the appendix to present the kernels of
the operators corresponding to (p, e±i(p and r2. We then consider the
commutator of A(q>) and the number operator. Because of domain problems,
the commutator has been defined as a sesquilinear form [30, 31]. The resulting
form differs from canonicity by terms of higher order in fi which we have
called secular in analogy with the classical result. Thus the naive consideration
that number and phase form a canonical pair classically and quantum
mechanically must be modified in both theories.

As noted above, Section 5 contains an analysis of a sufficient condition
for boundedness of angle operators.

This paper follows on from a previous one [32] in which it was proposed
that the quantization of the angle function in phase space be a candidate for
a phase operator. In that work we derived the matrix elements of the phase
operator, but in a less concise form than here and proceeded more symbolically,
emphasizing the physical consequences. The material here serves to justify
and extend the results noted there.

§2. Phase Space Quantization

Although phase space quantization is well known [27-29], in this section
we shall write down a few of the basic formulas with a view towards establishing
our notation.

By phase space quantization we shall mean associating to each tempered
distribution T on phase space a mapping from ^(R) to ^(R)', denoted A(T],
following a well known generalization of the prescription of Weyl [27].

To be precise, let us write 77 for R2 interpreted as phase space, and let
be a tempered distribution. Then for A(T] we take

(2.1)

where »: ^(R2) -> Sf (77) is the transformation

, q) = (27T)-1 I F(q + ^x, q - ~x}eipxdx. (2.2)
JR \ 2 2 /

We note that & is an isomorphism and A(T) is linear and continuous.
To understand the notation the reader must note that / and g are smooth

wave functions in the system Hilbert space L2(R) and T is the phase space
distribution which is being quantized. It should be noted that ^ extends to
a continuous bijection from L2(R2) to L2(77).

A characteristic feature of this theory is that a direct operator form can
be given for the mapping between Sf(Wj and J?[«S^(R), ^(R)'], at least in
certain cases.

Namely, let us define the operator A (p, q) for each (p, q) e 77 by
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\_A(p, q)f-](x) = 2e2ip(x-<»f(2q - x), /e^(R), xeR, (p, q)ell. (2.3.a)

Symbolically, A(p, q) can be written as the Fourier transform of the Weyl
operator :

, q) = —\ ei(pu+qv}e-i(up+vQ)dudv, (2.3.b)
271 JR2

so that

</, A(p, q)g) = 2n%( f ® 0)(p, q). (2-3-c)

It is a temptation to write, as do many physicists [23],

= - T(p, q)A(p, q)dpdq (2.3. d)
2nJn

for suitable T. Although very suggestive, this equation requires a proof that
the operator-valued integral be well defined in a suitable fashion. In fact, this
equation converges weakly in the sense that

, A(p9 q)gydpdq, /, 06^(R). (2.3.e)

We shall not use A(p, q) directly, but it is worth noting that formal
application of these equations often leads to the correct answer in the simplest
fashion.

In certain cases it is known what operator class A(T] belongs to for
special classes of distributions. The standard results are these:
(i) If reL2(/7), then A(T) is a Hilbert-Schmidt operator on L2(R), and

T-> ^/2nA(T) is unitary [24, 25] from L2(/7) onto the space of Hilbert-Schmidt
operators on L2(R):

<r ,S> = 27rtr(^(r)*^(S)); (2.4)

(ii) If Te Ll(II), then A(T) is compact [26];
(iii) If re^(/7), then A(T)E^+ [^(R)]' is a functional on the algebra
^"^[^(R)], such that T-+A(T) is a linear and topological isomorphism
[18]. Recall that J*?+[^(R)]' is the space of all linear maps
such that BAC is closeable with trace class closure for all £,
The formula

A, B - > t r ( A B )

defines the duality between Ae j^+ [^(R)]' and
We have not distinguished between functions and the distributions they
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define, but that should occasion no misunderstanding.

Let us introduce our phase space symbol class [29] £rx(/7):

<r»(77)= U C'M(n), (2.5.a)
n = 0

where

<r<»>(77) = {F: n^C: (p, q)^F(p, q)(l + pV'O 4- g2)-"eL2(/7)}. (2.5.b)

Along with this class we shall consider an associated symbol class of one
variable functions,

< T » ( R ) = U ^("'(R), (2.6.a)
H = 0

where

^(n)(R) = {f: R ->C: x ->f (x ) ( l + x2)~"eL2(R)}. (2.6.b)

It is immediate that if fe£ r / a c(R), then f®/ and / ® f e^x(/7), where

[ f®/ ] (p , f l ) = f(p) and [ /®f](p,g) = fte), (p,<?)e/7. (2.7)

If fe t f^R), we can define two, related, operators f(Q),
L2(R)], in the usual way:

[f (00] W - f (x)^(x) and [^f (P)^] (x) = f (x) [^] (x), ^ 6 ̂ (R), x 6 R.
(2.8)

For the special cases where f is a polynomial, f(0 and f(P) are elements of
J2^[y(R)], since multiplication by (1 + x2)"/(l + x2)" turns f(x)gf(x) into a
product of an L2 and an Lx function.

The connection to phase space quantization comes from noting that

T= \ f ® l \ implies A(T) = \ ̂ ^ i, respectively, f e^ r x (R) . (29)
U ® f J (f(0J

Going over from Cartesian to polar coordinates in phase space, we consider
next functions of the radius alone. As Folland points out [29], many results
concerning quantization of radial functions have been independently discovered
and rediscovered by various authors [33-38]. Nonetheless it seems worth
setting down our results briefly, so as to facilitate comparison with angle
quantization.

Functions f(r) of the radius cannot be written in product form as could
functions of p and q. The crucial step needed for quantization turns out to
be consideration of the generating function for the orthonormal Hermite basis



QUANTIZATION AND THE PHASE OPERATOR 487

on L2(R), namely

Substituting Gs (x) Gt for F in (2.2), we integrate over angles to get

S) G f)](r cos jS, r sin fi)dfi = 2e~r2 ^ ^«(2^"2) (2.11.a)

-^-sr
= 2e 2 ,-2/0(2rVsf), (2.1 l.b)

where Ln is the nth Laguerre polynomial and /0 is the modified Bessel function
of the first kind, of order 0.

Given any function of one variable, f 6^ /oc(R), use it to construct the phase
space function f rade£ r jac(/7),

frad(p^)-f(V?T?); (2.12)

f rade£oao(/7) is what we shall mean by a function of the radius alone. Consult-
ing (2.1), we substitute f rad for T and Gs ® Gt for f®g. By using (2.1 l.a) and

equating coefficients of identical powers of 5 and f, we can evaluate ^(frad)
more or less explicitly.

As one might expect, the Hermite functions are eigenfunctions for A (f rad) :

^(frad)^ = Pn(D^, « > <>, (2.13.a)

with eigenvalues

n(f) = (~ 1)"
o

As the Hermite functions are complete in L2(R), we can read off the spectral
representation of zJ(f rad):

^(frad)= I, PnWPn, (2.13.C)
n > 0

where the Pn are the orthogonal projections corresponding to the hn.
It is standard that the Hermite functions {hn : n > 0] constitute a Schauder

basis for ^(R), and that the map

(0Jn>o - > Z a"^
«>0

affords a topological isomorphism between the space 6 of rapidly decreasing
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sequences and «5^(R) when both carry their usual topologies [4]. The dual of
j can be identified with the space of polynomially bounded sequences.

Using estimates on the Laguerre functions together with fe<:n a c(R), it may
be shown that the sequence (p n ( f ) ) n ^ 0

e j / > anc* so the above isomorphism
between 4 and 5^(R) enables us to deduce that /4(f rad) is an element of

It is of particular interest to consider the quantization of the feth power
of the radius. Considered as a phase space function,

rk(p,q) = (p2 + q2)k/\ (2.14.a)

rke£ rx(/7). The integral for the eigenvalues may be done explicitly:

Pn(r
k) = (- l ) " r f c + l 2F, - n, fc + 1 ; 1 ; 2j, (2.14.b)

in terms of the indicated hypergeometric function, which reduces to a polynomial
here, cf [39]. In particular, the case k = 2 is related to the number
operator. Define the function

v = |(r2-!); (2.15.a)

then

A(v) = N. (2.15.b)

A byproduct of these results is that we can find an integral relation
involving the Moyal product of rk with rl. Now the Moyal product
[17, 19-22, 29] is based on the following considerations. Let #, S 6^(77)' have
quantizations A(R), zf(S), respectively, and suppose that the product A(R)A(S)
is well defined. Suppose further that there is a distribution T such that

A(R)A(S} = A(T). (2.16.a)

Then we write

T=R*S, (2.16.b)

and refer to T as the Moyal or twisted product of R and S. A symbolic
expression for he Moyal product can be given which is certainly valid for
distributions

1 1 1
Pi P2 Pi

I
(2.16.C)
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In terms of the transform ^ of (2.2),

[?-l(R*S)-](x, y) = (l/2n) «f-l(R)(t, y)$-l(S)(x, t}dt. „

For the powers of the radius, it follows from (2.16) that

(2.18)

§3. Quantization of Angle Functions

Quantization of phase functions is technically more difficult than
quantization of p, q and r. This stems principally from the ambiguity in the
definition of an angle function on phase space, viewed as a manifold. We
must choose a branch of the arctangent and then define our angle function
on all of 77 in a manner consistent with the branch chosen. To be precise, we
shall take the angle function defined by the principal branch of the arctangent,
for simplicity. Were we to choose another branch, an inessential reference
angle 9 would appear. Then

f 2 arctan [(y/p2 + q2 - p ) / q ] , if q / 0;

(p(p9 q) = ) 0, if q = 0 and p > 0; (3.1)

[ — n, if q = 0 and p < 0.

Because of its importance, we have reserved the symbol cp for this function.
Recall that the phase space function v defined in (2.15.a) has the number

operator as its quantization. Thus it is the natural candidate for a phase space
function canonically conjugate to cp. A naive calculation [13] would suggest
this, but in view of the branch cut in the definition of the phase angle, the
Poisson bracket between v and cp must be defined as a distribution. By
transferring the derivatives to the test function, we find that

{v, cp}(F) = q>(p, q}q- - pdpdq, Fe^(/7). (3.2)
Jn \ dp dqj

This is justified because that part of the integrand multiplying cp is seen to be
in &*(n). The integral is meant in the Lebesgue sense, and can be done by
methods similar to those for the kernel. We have given the necessary
calculations in the appendix. The result is that
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{v, (p}(p, g) = 1 + 2npx(-ao,0)(p)d(q). (3.3.a)

The first term is canonical, and the additional term we shall call secular. As
noted in the introduction, this secular term has a direct counterpart in the
commutator of the number and phase operator (see Corollary 4.2 below):

[IV, A ( < p ) ] * i , (3.3.b)

which is, after all, where the problem began. It follows that to whatever extent
the phase operator is observable, there must be experiments which will measure
the effect of secular terms.

Along with the angle function we shall consider the functions e±l<p. As
functions on phase space they must be defined so as to be consistent with
cp. Thus, e±l<p is given by

.
1, if p = q = 0.

As in the previous section we start our quantization procedure by

substituting Gs ® Gt for F in (2.2), but now we integrate over the radius. We

then proceed as before, but with technical modifications. Starting with
functions f eL2([ — TT, TT)), we construct corresponding phase space functions
\angE(9x(n), and substitute fang for Tin (2.1). The integration over the radial
variable leads to a complicated polynomial in the indices, first given in [39],
cf also [32]. We have been able to simplify this considerably, expressing it
as a ratio of gamma functions. In a sense the next lemma is the crux of our
work, as the analysis of our proposed phase operator was our original
motivation.

There is a certain amount of analysis necessary so as to avoid errors
resulting from a careless treatment of singularities and distributions. For this
reason, and because we do not know of any other treatment of this material,
we have included many of the details.

Lemma 3.1. Substituting Gs ® Gt for F in (2.2) and integrating over the

radial variable, we obtain

cosjS, r sm^)rdr = — £ im-Mm < I Is
wfV ( I I- | f I ) / ? (3.5)

27T m . n > 0

for all s, t e R and — n < f$ < n, where

2-max(m.n)r 1 mm (m? „) + s(m? „)

m, n > 0. (3.6)- -,

in (m, n)\ F\ — max (m, n) + s(m, n)m n
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We have introduced the convenient abbreviation

1/2, min (m, n) even;
s(m, n) =

1, min (m, n) odd.

Proof. Doing a Gaussian integral and expanding the result as a Fourier
series in the angle, we obtain

[&(GS ® Gf)] (r cos jg, r sin P)r dr
o

= Le~^St I e-r
2 + ir(se-*e-te*P)rcir

n Jo

/"-Tl -W + -H + 1 II -
1

2n i,m^>Q llmlnl

_ y -m-n A mfn i(n-m)P
— — Z^ ' ^m.w^ r ^ '

^7T m , n > 0

with

^m,, = Z"
/ = o

We see from this that

Am.n = 4,,m, m, n > 0, (3.7)

and that

Am-m = ^w: m-°' (3-8)

Let us fix m and n with m <n until further notice, and write 5 for s(m, n). Our
task is to simplity Am^n.

A__ = j_ v /mW... , 1 1 'V 'V' - = , / i . v^lJn2m + i"+ ' - ' '2- i""-^m!r ^w m
\2 2 J

where 5 is the beta function,

2 ) \ 2

= 2
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Substituting the integral representation in the sum, we find

1

m\2nr( -n--m
\2 2

sin l l~m~1f(cosmf

1 / I 1 1 ,
B( -m + s, -n m ,

\2 2 2 ''
n-rm!2 F — n — — m

V2 2

from which the result is immediate.

With this result in hand, we are able to consider the matrix elements with
respect to the Hermite basis.

Corollary 3.2. Let f eL2([ — n, n)), and construct the phase space function

t f O • m if r > ° 5fang (r cos /f, r sm$ = ^ 'VF;

0 if r = 0,

from it. Then fange0°°(/7), and

-
ang/^nJ \nm) ~

1 • / x / ^— mm (m, n) + s(m, n

L min (m, n)! 2max(m'n) J /I
Fl — max (m, w) + 5(m, n)

(3.9)

a// m, n > 0, where the

(3-10)

Fourier coefficients of f.

f. We begin by showing that fange0°°(/7). As f eL2([- TT, TT)), the
map

Observing that

+r 2

the result follows.
By doing the radial integration first, we find that
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271

_ . - - -— Am,nl lz m.n.)

from which the result follows upon expanding Amn.

In conjunction with this last result, we shall be able to retain tf'x(77) as
our symbol class for functions of the angle. We must now determine to which
operator class ^(fang) belongs when fang is constructed as above. In order to
do this we use the following estimate, obtained by using Stirling's formula.

Lemma 3.3. There exists a positive constant K such that

max (m, n)

and

\ mm (m,

for all m, n > 0.

Proof. Define the quantity

where k > 0 and j = \ or j = 1. Using Stirling's approximation, we can deduce
the existence of positive constants A, B such that

A(k+ lT 1 / 4 < c i
k ;2

and

A(k+ 1)1 /4<^ ; 1

Since

the desired inequality follows with K = B/A.

This bound is basic to the next three results, which relate properties of f a n g to
the operator class of J(fang). Let f eL2([- n, n)) and let f a n gef*(/7) be
constructed as in Corollary 3.2. Let us introduce the abbreviation
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for the indicated sequence. We can characterize properties of the operator
^(fang) in terms of properties of the sequence /.

Proposition 3.4. z*(fang)e^+[^(R), L2(R)] if and only if F is an element
of /2(Z).

Proof. Suppose first that zl(fang)e ^ + [^(R), L2(R)]. Then for all m > 0,

similarly,

|</ im ,z l (f a n g) + / i 0 > i > ( 7 r 1

We deduce from this that Fe/2(Z), with

I F m
2 <(B 2 / 7 r ) (M(f a n g ) / i 0 | | 2 +M(f a n g ) +

m= - oo

Conversely, suppose that Fe/2(Z). Define C > 0 by

C2= i \F,,\2.
n= — x

Since z/(fang)e^f[,5^(R), y(R)'], we notice that

m > 0

, f m a x ( m , n)
— - - -,

m>o L mm(m, n) + 1

K | | ( | m - « | + l)1/4 |
m > 0

where the norms are with respect to L2(R), K is the constant appearing in the
previous proposition, and



QUANTIZATION AND THE PHASE OPERATOR 495

Thus J(fang)/zneL2(R) with norm

Introducing the family of seminorms (pr)r>0 given by

P r ( f ) = \ \ ( N + l Y f \ \ , /e^W, r > 0 ,

which determine the usual topology on ^(R), we see that J(fang)eJS?[^'(R),
L2(R)], and

ng)'/' II < I !<K, M(U)M

n > 0

The nth Fourier component of the function f is the complex conjugate of
!_„, so that the sequence ((1 + n|)1 / 4 l(f)nIL z is in /2(Z). Then J(fang)e

, L2(R)].
Now

Then

Hence J(fang)e^+[^(R), L2(R)], with

Proposition 3.5. v4 sufficient, but not necessary, condition that ^(fang) 6e a
bounded operator on L2(R) is that the Fourier coefficients of fang be such that

the sequence F is an element of /X(Z).

Proof. If Fe/^Z) then certainly Fe/2(Z) and so z/(fang)E^+[^(R), L2(R)].
Then we can define a continuous function Fe^(T) by setting
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noting that

imioo< I !/„,
n= — oo

so that the nth Fourier coefficient of F is Fn.
Let & be the Hilbert space

^ = {0eL2(T):0n = 0, n < 0},

a closed subspace of L2(T). Let Pej£?(L2(T)) be the orthogonal projection
onto 3^. The function F above serves to define a multiplication operator, a
continuous linear operator fj,(F) E & (JV) by setting

The symbol F# stands for the function obtained by pointwise multiplication.
We note that

II M*1) (0)11 2 = \\P(Fg)\\2 < \\Fg\\2 < | |F|UI0II2 ,
so that

< I
n= - o

The map 0: L2(R)-» J^ given by

is an isometric isomorphism, and so we can transport ^(F) to L2(R) by setting

AF = 0-1

As 0 is isometric, ,4Fe^?(L2(R)), with

Let us calculate the matrix elements of AF\

<hw, AFhny =

for all m, n > 0.
Using Lemma 3.3, we know that there exists a positive constant K such that
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for all m, n > 0.
For any function i^G^(R) with Hermite expansion £^=0^"^ we can

define an associated function |i^|e^(R) by the expansion

w= z iwv
n = 0

Then

for all m > 0 and all i//
Calculating the norm in L2(R),

m > 0

<K2

m > 0

for all i^e^(R), and so ^)(fang) is bounded, with

g ) l l < K M f l l < K Z (1+ n|

We shall show below that A(tp) does not satisfy this condition, but is
bounded. Hence this condition is not necessary.

In the next proposition we give two necessary and sufficient conditions for

Proposition 3.6. The following three conditions are equivalent.
( i ) zl(fang)6J^[^(R)J;
(ii) for any k > 0 there exists an integer I > 0 and a constant C > 0, depending
on k but not m and n, such that the Fourier coefficients of f satisfy
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,f if i <c ( M + 1)'-Mm — n ' lln — ml — *^ , -• \t '
(m + 1)

(iii) the Toeplitz matrix

and its transpose, obtained from f, are elements of J£ + (a). In other words,
the maps

(0Jn>0 - »( Z l f n - m l « m ) n > 0 and (an)n>0 - »( £ l f m - « I O « > 0
m > 0 m > 0

are ior/z linear endomorphisms of 4.

Proof, (i) => (ii) For any k > 0 we can find a positive constant ^4 and an
index / such that

and

where the seminorms pfc were introduced in the previous Corollary. Then

(m + l ) f e | f w _ M < K(m + l)k+*(n + l

< KA(n + I)1 4

< KA(n + I)1.

The same argument works for f n _ m and ^(fang)+ .
(ii)=>(i) From the assumption,

i ~

I ^

< KC(n + 1)'.

Hence zJ(fang)e^[y(R)], with
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Pk(WmJf) < K C P l ( f ) .

A similar argument holds for the adjoint, completing this implication.
(ii)<=>(iii) This is elementary, and so the proof is complete.

We now come to our candidate for a phase operator-the Weyl quantization
of the angle function in phase space. We shall evaluate its Fourier coefficients
and write down its matrix elements in detail. The matrix for A(cp) is far more
complicated than the matrices for P, Q and ^(frad). These latter are either
diagonal or non-zero only on the diagonals just above and below the main
diagonal. The matrix for A(q>), in contrast, has no such support property. A
careful examination, however, shows that alternate columns increase or decrease
in tandem. We then show that zf((?)eJ^ + (^(R), L2(R)], but ^(^^[^(R)].
From the point of view either of operator theory or physics, A(<p) is far more
interesting than the operators we previously considered.

Before writing down the matrix elements of A(cp) we should like to make
a remark concerning the notation in respect of the angle. The phase space
distribution cp of (3.1) is of the form fang, with the function \ e L2 (\_— n, n}}
given by

In the context of this paper, the choice of the notation cp for this fang serves
to emphasize that we are quantizing the angle function in phase space; the
variable j8 does not have this significance. However, this leaves open the
notation for the corresponding function f, and we have decided to write f = (p,
trusting that no misunderstanding will result from this abuse of notation. A
similar convention holds for the phase space distributions e±l(p.

Proposition 3.7. The Fourier coefficients of <peL2([ — n, n)) are given by

(- l) f c + 1

<i>k = ^^ - (! -^-o). (3.11)
IK

We conclude from this that the phase operator A(q)}e^+ [-S^(R), L2(R)], but
A(<p)£¥ ^"[^(R)] and does not satisfy the condition of Proposition 3.5.

The matrix elements of the phase operator with respect to the Hermite basis
are

r( —min (m, n) -f s(m, n)

(n - m) \ min (m, n)! / /I
r( -max (m, n) 4- s(m, n)

(3.12)
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Finally, we note that the phase operator is symmetric :

A(cp} + =A(q>). (3.13)

Proof. The Fourier coefficients result from evaluating the elementary
integral

They clearly satisfy the condition for A((p)e^ + [^(R), L2(R)]. But if we
consider k = 2 in the second condition of the previous proposition, and let
n = 0, there is no C such that

1 C

m (m+ I)2

for all m> 1; hence A (cp) $ & + [&*(R)~]. By comparing the sequence F with
the harmonic sequence, we see that A(cp) does not satisfy the condition of
Proposition 3.5.

The matrix elements of A(<p) between the Hermite functions follow from
substituting the Fourier coefficients of <p into (3.9). The symmetry is then
evident from the symmetry of the matrix elements.

Were we to choose that branch of the arctangent determined by a cut
from 0 to oo at the angle 9, we would have to choose the angle function
accordingly. With the same abuse of notation as for the angle function
previously considered, we write q>e both for the phase space distribution fang

and the corresponding function f. Then

f (g*) = <pe(ev>) = jB 0<P<9 + 2n.

It is not very difficult to see that the matrix elements of the resulting phase
operator are

<Am , A(<pQ)hn} =(8 + n)5n,m + <hm, A(cp)hnyei(n-^e^.

At this point we can contrast our phase operator with that found in
references [6-8]. Notwithstanding the way these authors derived it, their result
was the operator with matrix elements (up to a choice of 0)

</im, A(E)hny = [1 - ^ J ^^. (3.14)
n — m

This is a bounded self adjoint operator, and the quantization of some phase
space distribution E. We do not have an explicit expression for E, but are
able nonetheless to prove that it is not a function of the angle (in phase space)
alone.
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To see this, suppose E were of the form fang for some function fe
L2([— 7i, n)). Then we would have

r\ — min (m, n) + s(m, n)
r~"+1 im~n rmax(m, n)!T /2 \2

— max (m, n) + s(m, n

We would then have

L=-(i-*».o)-^-

for all meZ. This can be substituted back into the previous equation and
simplified, yielding the following identities:

B fl + -,-i1 2 2

for all a, b > 0, where 5 is the beta function. Using the reduction law for the
beta function leads to

2a+ 1

b

from which we deduce the requirement

2a+ 1
= 1

for all a, b > 0, which is absurd. Thus S is not a function of the angle alone,
which raises questions about its physical meaning as a phase operator.

We consider next the quantization of the phase space function ei(p. In
spite of its complicated definition, the matrix elements of A(eiq>) are calculated
by doing a very simple integral for the Fourier coefficients of el(p.

Corollary 3.8. The Fourier coefficients of ei(p are

el\ = d^k. (3.15)

Clearly C = 1 and I can be found so that condition (ii) of Proposition 3.6 is
satisfied, implying that A(ei(t>}^^

The matrix elements of A(ei(p] are
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(3.16.a)

where

(3.16.b)

1, if n is odd.

Thus A(el(p] is a weighted shift operator:

A(ei(p)hn = /w + A + i, (3.17.a)

where the weighting sequence / = (/„)„> 0 is given by

(3..7.b)

and /0 = 0.
That is, the Weyl quantization of the phase space function el(p determines

a particular solution A(ei(p) = Uf of the commutation relations

L U f , N ^ _ = -Uf. (3.18)

We note the obvious fact that U \ is the quantization of the function e~ll(>.

The sequence A given in (3.17.b) does not satisfy the conditions of Lerner et
al [10]. Rather, the even and odd indexed subsequences monotonically
approach unity from below and above, respectively. It is possible to determine
the spectral properties of C/A and its adjoint.

Proposition 3.9. Fixing the sequence A as in (3.17), we drop it as a subscript,
writing U for A(e~i(p) and U* for A(ei(p). Then U* maps &(R) into itself
continuously. It is bounded, with

\\U*\\=(n/2)1'2, (3.19)

and spectral radius

ra(U*) = 1. (3.20.a)

Its spectrum is
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(j(l/*) = D, (3-20.b)

where D is the open unit disc in C and

D = {zeC:\z\<\} (3-21)

the closed unit disc.
The spectrum of U* contains no eigenvalues; its residual spectrum is the

open unit disc and its boundary is the continuous spectrum:

apt(l/*) = 0, ffre,(U*) = D, <7cont([/*) = D \D. (3.22)

The operator U maps if (R) into itself continuously, is bounded, with norm

\\U\\ =(n/2)112, (3.23)

and spectral radius

ra(U) = 1. (3.24.a)

7te spectrum is

D. (3.24.b)

residual spectrum is empty, the continuous spectrum is the boundary of
the unit disc, and all the points of the open unit disc are eigenvalues:

api (U) = D, ares (U) = 0, acont (U) = D \ D. (3.24.c)

Each eigenvalue zeD of U is of unit multiplicity, with eigenvector

family {ez: zeD} /orm^s1 aw overcomplete set.

(3>25)

Proof. That these operators are bounded and map y(R) into itself
continuously follows from our work above. The remainder of the proof is
very much as in [10], but without the chain condition and taking into account
that our sequence A. is not monotonic.

The definitions of U and U* yield their norms in short order. The
spectral radius of (7* is found by considering

where
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n + k

so that

Although the alternate elements of A straddle unity, the sequences

are decreasing. Hence

//(2fc; 2n) > /z(2fc; 2rc + 1) and /j(2fc; 2n) > /*(2k; 2n + 2),

so

Moreover, using Cesaro convergence,

2k

r
fc-*oo

ra(U*) = lim p(2k; 0)1/2(t = lim [ f[ \ / . r \ ] i / 2 k = 1;
k -» oo fc -» on A A

r = l

this is also the spectral radius of U on general principles.
Writing

ez ~ X £»(Z)^n?
n > 0

the ratio test shows immediately that ezeL2(R) for all zeD. Direct calculation
shows that ez is an eigenvector of U with eigenvalue z, and that z is a
nondegenerate eigenvalue of U.

For z e D \ D the ratio test fails to give a result. However, Stirling's
approximation shows that

lim
V &,T iC

Then we can find a positive integer N such that

- l )<3 /4

for all n > N. Hence Raabe's test tells us that [£,,(z)]<£/2, so we cannot define
ezeL2(R) for z e D \ D . Thus we deduce that

fft(t/) = D < = ( T ( I / ) c = D,
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and so

a(U) = a(U*)= D.

Finally, a simple calculation shows that C7* has no eigenvalues, so its
point spectrum is empty. This implies that the residual spectrum of U is empty,
and the residual spectrum of U* is D. This completes the proof.

This result is more or less remarkable, as we did not set out to choose a
solution of (3.18) in the sense of [10] or a variation of those results. Rather,
employing first principles, a physically motivated choice led to an analogous
result. It seems worth re-emphasizing that A(ei(p) and A(e~i<p] are not the
partial isometries corresponding to the raising and lowering operators, nor do
they satisfy the monotonic chain condition. The even-odd index interleaving
that occurs seems quite interesting mathematically, and is further evidence, if
any is needed, that these operators must be handled with care.

§4. Kernels, Commutators and Expectations

So far, we have determined the operators of quantization in terms of their
matrix elements. For certain purposes it is useful to know the kernels of
operators, and we shall begin this section by determining the kernels of A(cp)

and A(eiv).
There is no great difficulty in finding a formal expression for the kernel

of A(<p)\ the difficulty lies in justifying it. To do so in detail has required a
rather elaborate exercise in integration theory, not very illuminating in itself,
but there does not seem to be any reliable means to avoid it. We have placed
this analysis in an appendix. The result is contained in Proposition A. 14: for
every /, 0e«^(R) we have

</, 4(<p)gy = sign (q)f(q)g(q)dq
R

sign GO e MgI(L}(x)f(y + -x]g(y --x\dxdy,
JR2 \ 2 / \ 2 /

where the integrals are meant in the Lebesgue sense, where

*'1. if \x\El
0, otherwise

and

, > f*'1. if \x\ElL- l,L]',
9i(L)(x) - } (4 1 b)0 h r w i r*-1-^
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r / l r i , if reR\{0};
i f r = 0 .

These expressions define a tempered distribution Jf^((p)e5^(R2)' by

and this distribution is what is meant by the kernel of the operator A(<p).
Now there is no ambiguity about the definition of the kernel, but it is

usual for physicists to write down an expression for a kernel as a singular or
generalized function. Provided that such an expression is understood to be a
symbolic shorthand for (4.1) and (4.2), this is unobjectionable. To arrive at
such an expression, we must substitute the expression for gI(L) and F into
(4.1.b), throw all caution to the winds and interchange limit and integral, write

^AM(x, y)f(x)g(y)dxdy, (4.3)

and then

1 , 1 -±\x*-y*\ 1
A((P} ' I 21 (x-y)'

(4.4)

We note that the kernel is conjugate symmetric in x and >', as we would expect.
As the Fourier transform is a continuous isomorphism of ^(R2)' we can

proceed in the same way for the tempered distribution ^JTA((p}. We find that

*> 30 = (1+ sign (>' - x) - sign (y - x ) e ~ ~ ) — — , (4.5)
2i (x + y)

with the same proviso about its meaning. The high degree of similarity between
JfA((p) and ^tfA(tp) is intriguing, and follows since

9(7 ®9)(P, q) = 9(~Pf®&g)(- 1, P), /, ^e^(R), (p,

so that

= \ tp(-q, p)9(f ®g)(p, q)dpdq,
in



QUANTIZATION AND THE PHASE OPERATOR 507

for all /, ge&(R)9 and where ^e^[L2(R)] is given by

The distribution (p, q)^xp(— q, p), which is well defined, is simply the
distribution cp rotated through an angle n/2 in phase space [29]. Then

q>(- q, p) = (p(p, q} + -n- 2nx(-x,0}(p) X(o. *»(<!)> (P> <?)E#-

Thus 3?^A((p)(&f ®0) and JfA(tp)(f ® g) are indeed closely related.
The kernel of any operator A(T) must be defined with the same care we

gave A(cp). We have done so for A(ei<p) and A(r2), but will omit the tedious
details. We have found that

(4.6)

where Kn is the modified Bessel function of the second kind of index n. For
the square of the radius we find that

(* - 30 - *"(x - 3^)- (4.7)

This completes our treatment of kernels.
We observed at the outset that there could be no canonical phase

operator. Now that we have a phase operator, it is natural to enquire what
its (non-canonical) commutation relation with the number operator is. Because
the phase operator maps ^(R) into L2(R), and the number operator is
unbounded, a commutator of N and A (cp) cannot be defined as an operator
on Hilbert space.

This problem occurs for all operators which map 5^(R) into L2(R), and
we propose defining the commutator between all such operators as forms [31];
we shall call these forms generalized commutators. Using the theory of forms,
a representation of a generalized commutator as a map in JS?[«9*(R), ^(R)'] is
possible. But then a generalized commutator must be the quantization of a
tempered distribution. Our definition is consistent in that if both operators
from which the generalized commutator is constructed happen to belong to
^+[^(R)], the representing map in JSP[^(R), ^(R)'] is, in fact, an element
of JS?

Proposition 4.1. Let A, BE^+ [«5^(R), L2(R)]. By the generalized commu-
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tat or of A and B we mean the sesquilinear form

TX.B: ^(R) x ^(R) — >C

given by

?A,BU,gl = <A+f,Bgy-<B+f,Agy, /0e^(R). (4.8)

Given TA<B, there exists an XA^£<e D$^(R), ^(R)'] such that

where

XAtB = AlB-B^+A. (4.9.b)

PFe rcote that as XAtBE&[y(R), ^(R)'] //zere exwte a distribution TA,BE^(R2)f

such that

XA.B = <*(TA,B). (4.9.C)

By y4e^f[L2(R), ^(R)7] we wea« the continuous operator defined by

[^fo)](/) = 04(7) ,0X ^6JSP+[^(R)],/e^(R), ^eL2(R). (4.10)

7f the operators A, Be& * [^(R)], then

XA.B = W,Bl-9 (4.11)

wAzcA belongs to JSf

Proof. The only non-trivial part of the proof is the continuity of A for
any Ae^+l^(R), L2(R)]. As i differs from the adjoint of ,4 only by the
incorporation of some necessary conjugations, this is straightforward to show,
and we omit it.

We note that, in general, these generalized commutator forms can be extended,
the extension depending on the particular operators involved. We shall not
consider this here.

Of particular interest is the commutator between the phase and number
operators.

Corollary 4.2. The matrix elements of the generalized commutator of the
phase and number operators with respect to the Hermite basis are
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r - m i n ( m , n) + s(m, n)

\min (m, n)\ J J\
F\ — max (m, n) + s(m, n>

(4.12)

/or #// n, m > 0.
The tempered distribution on phase space whose quantization is this generalized
commutator is

f00 f
TN,A(<p)(F) = 2ni \ F(-r, 0)rdr - i \ F(p, q)dpdq, VFe^(77). (4.13)

JO J/7

Let LT6J5?[^(R), ̂ (R)7] be defined by

= i™ { g I ( L } ( x ) f ( x ) g ( - x)dx, /, geSe(R). (4.14.a)
L^°° JR

XNtA((p}e^l^(R), «5^(R)'] w/z/cA w /Ae quantization of the
distribution TN^A((p) is given by

(4.14.b)

Symbolically, we can write this as

(4.14.c)

where d is the delta distribution concentrated at the origin and the primes indicate
derivatives in the distributional sense.

Proof. The matrix elements may be read off from the general expression.
We can also find the matrix element between Hermite generating functions. In
a notation we used for finding the matrix elements of general functions of the
angle,

= ' E >m~"Am.ns
mt"\:(-ir'"-sm_n]

n,m>0
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- 2ni [9(Ga ® G,)] (~ r, tyrdr - ie2

Jo

r°° - f -- 27d [^(Gs ® Gt)] (- r, 0)rrfr - i [»(G5 ® Gr)] (p,
Jo J77

for all real s, t. With the definition of TNtA(<p) above, this yields

We shall not write down the derivation of (4.14.b); the techniques are
those of the appendix. We do note, however, that

2nir[?(f® 0)](- r, 0) =

where

h(x)=f(x)g(-x),

which leads to

1 / r
[**.4<*)0] (/) - - ~ [1 + sign (r)] [#7i'] (r)dr - f f(x)g(x)dx

*• V ^ JR

gI(L)(x)ti(x)dx,

from which the result follows in a few steps.

Equation (4.14) displays the generalized commutator of N and A(<p) in a
form in which the deviation from canonicity is explicit. We shall refer to — ig
as the canonical term, and the other terms as secular. It is the presence of
these terms which makes working with A(<p) so delicate; it is to avoid these
terms that the C and S operators in the literature have been constructed.

We note that if we were to change units so that fi were to appear explicitly,
then the secular terms would be multiplied by a factor h. We conclude this
by dimensional arguments: the secular terms differ from the canonical term by
a dimensional factor length"2.

This leaves an interesting problem. If we were able to exponentiate A(cp),
the exponential would differ from A(el<p) by the secular terms. It would also
differ from any of the Uf operators so far considered in the literature. As
these secular effects are of higher order in fi than the canonical term, one
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suspects that all these ''exponentials" will have the same classical limit. But
the secular effects are of crucial importance for the theoretical and structural
considerations of quantum mechanical phase. It is only by operational
considerations that a final choice of phase operator can be made. Perhaps
more than one sort of phase phenomenon occurs, and one requires different
operators for these different effects. It is tempting to conjecture that the
quantum optical effects described by the phase operator requires /f(cp), and the
analysis in the literature has left out higher order quantum effects.

As well as commutators, another construct of importance in quantum
theory is the expectation value of an operator in a given state. As we are
mostly considering maps in ^+ [^(R), L2(R)], the existence of expectations
requires delicate arguments which depend upon the particular operator being
considered. For the expectation of the square of such a map, things are even
more delicate. In particular, we shall have to give a definition of expectation
which gives meaning to the relevant trace.

In the remainder of this section we shall consider only functions fe
L2([— n, n)) and the corresponding phase space function f ang e £rj * (77) of the
angle alone, cf, Corollary 3.2. We shall suppose that f satisfies the condition
of Proposition 3.4 and is real valued, so that zf(f a n g)eJ^+ [^(R), L2(R)] is
symmetric. Of course this includes the phase operator.

Proposition 4.3. Let f be as stated above. Then

ang)] = tr

and we refer to the common value

as the expectation of the operator ^(fang) in the state Xe^+l^(R)J, where
by a state we mean a positive normalized element of J^

Proof. Since f satisfies the conditions of Proposition 3.4, the sequence
Fe/2(Z), and so we can define a function FeL2([ — n, n)} by setting

F(et')= Z /„*"*.
n — — oc

We also define # e L x ( [ — n, n)) by setting

g(e")= £ ( f c+ l ) -V" .
Jc = 0

The pointwise product F#eL2([— TT, TT)), and its mth Fourier coefficient is
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= (k

set

For any ^eJ*?+ [5^(R)]' and m, n > 0, we have

K/zm, j(fang)M,>l< £ \<hn,Jttanjhky\\<hk9xhny\
k = 0

< K f> + l)~2(k + l)-2Fm-k \\(N + 1)2X(N

= K(n + \T2(Fg}m \\(N + l)2X(N

We deduce from this that the norm

< KD(n + I)'2 II (AT + l)2X(N + 1)2||

for all n > 0.
If we consider the action of 4(fang) X on finite linear combinations of

Hermite functions and then go to the limit, we find that

\}2X(N+ 1)2

'90

hence J(fang)X is bounded. Moreover, its closure is trace class, with

* n2

M(fang)*ll tr ^ Z N (fang)^n II ^ — ̂ ^ II (N

Also, it is easy to show that the range of ^(fang) is contained in the domain
of AT*, that Ar*z((fang) is a closable map with trace class closure, and that

The proof of this is simpler and we omit it.
Now we must show that the two traces are equal. In the chain of equalities

below, we can use some of the above inequalities to legitimize the interchange
of summation order used below.

Then
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tr [(* + )*^(fang)] = E <hn,
H > 0

= E L E <x+hn,L~t L Z_j N «'
n > 0 m > 0

= E [ E <*., xh,
m>0 n>0

= E

= E <J»m,
m > 0

We note without proof the following extension of this result, shown in a
similar fashion:

Corollary 44. W'Wj the same notation as in the previous proposition, let

77i677 F 2 ( fang ' ^) ^ a linear map from ^+[C99(R)]' to the trace class operators
on L2(R), with

then define

Exp[J(fang); J(fa n g); AT] = tr [P2(fang

be the expectation of the square of ^(fang) in the state X.

In special cases where f leads to operators in ^+[5^(R)], these expectations
reduce to the usual expressions.

By using these last two results, presumably one could compute the standard
deviations for the number and phase operators, and so test for an uncertainty
relation, but we have not done so. In this regard, Carruthers and Nieto point
out that if ej is the natural frequency of an oscillator, A((p)/oj is a "time
operator" for the oscillator, and TicoN is its energy operator. Then the above
calculation would lead to some sort of energy/time uncertainty relation. As
this is a rather contentious issue, we prefer not to pursue the matter here, save
to note that such an enquiry is possible if one is so minded.
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§5. Boundedness of Angle Operators

In Proposition 3.6 we gave a necessary condition on f in order that /4(fang)
be bounded, based on considerations of its matrix representation. This is not
the strongest result possible, and the phase operator, for one, does not satisfy
it. In this section we shall improve this result by considering the kernel
representation of zf (fang). The new result will cover A(<p), but for this important
operator we will proceed directly and get a sharper bound yet.

We begin by considering a singular kernel which appears in subsequent
calculations.

Proposition 5.1. The equation

lKu](x) = ^ ^- dy, ueL2(Q, oo), x > 0,
P.l.a)

defines a bounded linear operator KeJ2?[L2(0, oo)] with norm

\\K\\ <-*• (5.1-b)

Proof. Consider the measurable positive function K: (0, oo) x (0, oo) ->
[0, oo ) given by

">-<» „ „ < „ * * (5-2>
Since

r -1/2 _! -1/2Jo
 x K x , y x--ny , y > , (5J_a)

and

f - 1y 1 / 2 K ( x , y ) d y = -nx~1/2, x > 0, (5.3.b)
JR 2

by the Schur test [42], we deduce that the operator K is well defined and
bounded. The bound S.l.b is trivial to verify.

Corollary 52. Let P±£^f[L2(R), L2(0, oo)] be given by

= g(x), x > 0, geL2(R), (5.4.a)

= g(— x), x > 0, 0eL2(R). (5.4.b)

Define the operator K on L2(R) by setting
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](x) if x > 0 ,

= { 0 ifx = 0, cjEL2(R). (5.5.a)

](-x) if x < 0 ,

Then K is bounded, with

\K\\<-n. (5.5.b)

Proof. The result follows from the observation that

\\Kg\\2 = \\KP+g\\2+ \\KP.g\\2

<n-\\P+g\\2 + n- \\P-g\\2

4 4

The idea underlying our analysis is to write /4(fang) as an integral over
operators which are the quantizations of characteristic functions of (or sign
functions associated with) various wedge-shaped region of phase space. This
requires us to consider the problem of quantization of such regions, and the
effect of certain transformations of phase space which define elements of the
metaplectic representation of the symplectic group Sp(l). In a sense, then, we
are employing what might be termed the method of integral geometry on phase
space. We believe that this method is amenable to considerable generalization,
and of interest in its own right.

To begin with, we consider the quantization of the phase space distribution
sign (x) sign, which places a ± 1 in each of the four quadrants : a rectangular
checkerboard distribution.

Proposition 5.3. The operator A (sign ® sign) is bounded, with

(sign® sign) || < 2. (5.6)

Proof. Given f,gE<?(R), it will be convenient to define Fe^(R2) and
by setting

y - -x

G(x)= sign(j/)F(x, y)dy.

Note that
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(A (sign ® sign)#) ( / ) = sign (p) sign (q)&( f ® g) (p, q)dpdq
in

sign (p) sign (q) [J^ l F] (p, q) dpdq
2n J n

= - lim
77- L,-» oo

Now for L> 1, we can apply Fubini's theorem and rearrange matters to
see that

, G>

R2

00

o \ R

y)f(x)g(y)dxdy

>}dx

f° _ / f f^ \
/(*) ~ ^/(L)(^ - y)g(y)dy + 2 fif/(L)(x - y)g(y)dy\dx

J-oo \ JR J-.x- /

= <sign(0/

- x
— x

The asterisk indicates convolution, as usual.
To proceed further we must apply the dominated convergence theorem

several times, and it will save space to refer to it as the DCT. Then since
for L > 1 and 0 < x < y,
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+ y)LP-g](y)\ ^ (* + y)"1 \P-g(y)\
and

lim 0/(L)(x + y)\_P-g](y) = (x + y)~lf
L-+ oo

the DCT implies that

1, x > 0,

and

Um gI(L}(x + y)\P-g}(y)dy = [KP_0] (x) = \Kg\ (x), x > 0.
J X

Another application of the DCT now yields

Urn /(x) glw(x + y)lP-g^(y)dydx= /(x)
° °Jo \Jx / Jo

Similar analysis of the other integral leads to

— i 2i
(A(sign® sign)0)(/) = - lim <sign(Q)/, g f j ( L ) * ^ > </,

7T L"°° 7T

= i<sign(Q)/ ,^>-~<
71

Here Jf is the Hilbert transform

= lim -0/(L)*/(x) = - Pv | ±^-dy, a.e., /eL2(R).
-L^x n n

Thus

^ (sign ® sign) = / sign (Q) ° J^ -- X
7T

is bounded, and || A (sign ® sign) || < 2.

We now use the symplectic group to distort sign ® sign to an oblique
checkerboard distribution :
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f 1 if r > 0, 0 < 0 < a,

1 if r > 0, - 7 i < j 8 <

Da(r cos /?, r sin ft) = • - 1 if r > 0, a < $ < n, (5.7)
-1 if r > 0, - TT + a< j5 < 0,

( 0 if r = 0.

Proposition 5.4. For any 0 < a < TT, DaeL°°(/7),

D0 = - 1, DK/2 - sign ® sign, Dn = 1, (5.8)

so that

= /, (5.9)

ll = l- (5.10)

More generally, A(D^ is bounded, with

(5.11)

Proof. The statements concerning the angles 0, n/2 and TT are obvious.
For general a we begin by introducing the unitary operator of the metaplectic
representation given by

~ 2 (5.12)

and note that it maps ^(R) to itself for each £.
A direct calculation gives

for (p, q)eU and /, ge^(R). This gives us a basic transformation scheme from
the rectangular to the oblique checkerboard distribution:

^/2-arctan s
K(<7> P) = Sign (P ~ £#) §ign fa), &.e. (5.14)

Then

f
< £/*/, zl(sign ® sign) U*gy = sign (p) sign (<?) [^( / ® g}~] (p + £q, q)dpdq

Jn

(P.
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Thus we see that A(D^ is a unitary transform of zl(sign (x) sign), with

^0>J = tf*t.°^(sign ® sign)o £/cota. (5.15)

Hence we have the bound

N(Z) a) | |<2

for 0 < a < n.

We can write /4(fang), and in particular ^((^) as an integral over A(D^ plus
the Fourier transform of the Hilbert transform. To begin with, it is convenient
to know that the basic radial integral is a continuous function of angle.

Lemma 5.5. // /, 0e«9"(R), define Qf^g: [- n, n~] -> C by

cos 0, r sin
"-"-"• (5.16)

_^ ^ continuous.

Proof. Define X by

J\T = sup |(1 4- p2 + q2}2[$( f (x) g)] (/?, q)\.

Then

|[^(/ <B> flf)] (r cos j8, r sin /?)| < J^(l 4- r2)~2

for r > 0 and — n < ft < n. Using the fact that ^( / ® gf) is continuous, and

applying the DCT, it is clear that 6/,ge<^[~ TT, TT].

This result enables us to prove that A(D^ is weakly continuous.

Lemma 5.6. For all /, ge^(R), </, J(DJgf> 6^towg5 fo ^[0, 71]
function of a,

0!|. (5.17)

Proof. This follows from writing, in an obvious notation,

/•-* + * fO pa ^N

- + - )Qf.t(SDdfl. (518)
J -7i J -7r + a JO Ja /

For the phase operator we have the following representation and bound.

Proposition 5.7. The phase operator may be expressed in terms of the
operator A(Da) by writing
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from which it follows that it is bounded, with

. (5.20)

Proof. We integrate (5.18) over a and rearrange, and find that

\n sign (fi-2p]Qf.,(0)dp

= n sign (q)[_y( f ® #)] (p, q)dpdq — 2 cp(p, q){_^( f ® #)] (p, q)dpdq
J n J/i

= nf signte)7Mff(«)d«-2|>J(<j!>)ff](7),
JR

from which the result is immediate.

We shall now use a similar approach in the general case. Naturally the
details are a bit more involved. We begin by using the results for the sign
function to study the characteristic function of the second and third quadrants.

Lemma 5.8. The quadrant functions can be expressed in terms of the sign
function as

Z(-oo o) ® X(o x) = — [1 ® 1 — sign® 1 + 1 ® sign — sign® sign],
4

X(-x o>® X(-oo o) = — [1 ® 1 — sign® 1 - 1 ® sign + sign® sign],
4

so that

= 7 U ~ siSn (p) + sign (Q) - zl(sign ® sign)],
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X(-oo.o)) = - U ~ sign (P) - sign (Q) + zf(sign <g> sign)].

Hence ^fa (-oo,o)® X<o,oo)) ^ ^fa(-oo,o)® X(-*,o>) ^ bounded, with

M ( X ( - c o , o ) ® X < o , « ) ) l l <5/4, N(x ( -oo ,o)®% ( -oo .o) ) l l ̂ 5/4.

We shall need the wedge distributions as well : for 0 < a < n we define

1 if r > 0, a < j8 < TT,
£a(r cos j8, r sin jB) = .

0 otherwise,

and

Fa(p, q) = Ea(p, - q).

We summarize the properties of these distributions and their quantizations in
the next proposition, which is proved by the same methods we used previously.

Proposition 5.9. For the angles 0, n/2 and n we have

E0= l ® X ( 0 . o o ) > En/2 = X ( - o o . O ) ® X ( 0 , o c ) > E* = °»

and

FO = l ® X ( - o o , 0 ) » F7r/2 = X ( - c o , 0 ) ® X ( - o o , 0 ) » ^W = 0,

almost everywhere. For their quantizations we have

= 0,

Hence all these operators are bounded, with

(£0)|| = IM(f0)|| = l, M(£n/2)||, M(FIl/2)||

Applying the metaplectic unitary transformation used above yields

for ^eR. r/zw^1 £,., a«rf Fa are bounded, with

\\EJ,\\Fa\\<5/4

for 0 < a < n.

We are now ready to present our general result on boundedness.
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Proposition 5.10. // fe^l\_~ n, rc], then

(5.21)

Then ^(fang) u bounded, with

Proof. Our strategy will be recognized as following the proof for the
phase operator. Under the stated conditions, for /, ge^(R) the functions

are continuous for 0 < a < n; and for these angles,

and <

Moreover, the bounds

hold.
Fubini's theorem can now be used to interchange order of integration in

0 \ Ja

>n / rp

o \Jo

A similar calculation works for <4(Fa), yielding

Subtracting these two results gives the representation for ^(fang)- As we have
bounds for all the terms in the representation, we find that
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from which the bound on ^f(fang) is immediate.

The connection between this result and Proposition 3.5 needs clarification.
Let us observe that if f e<^1[— n, TL] and if

a simple calculation shows that

l = ~L K / 0 .
in

As the sequence (f^)z is in I2(Z) and (n~3/4)N is in /2(N), then the condition
of Proposition 3.5 is satisfied. So for functions in this class, with the cyclical
boundary condition, Proposition 3.5 could have told us that ^(fang) was
bounded.

We know by considering the phase operator that Proposition 3.5 is not
necessary, and does not cover all the functions f e^7 l[— TT, TT]. A closer analysis
shows that, in fact, Proposition 3.5 covers only those ^e^\_—n,n\ which
satisfy the cyclical boundary conditions. In words, it applies to ^?1 functions
on the circle.

§ 6. Conclusions

We began by reviewing a number of previous attempts to define a phase
operator for systems with a finite number of degrees of freedom. Having given
our reasons for considering the situation as unsatisfactory, we proposed to
quantize the angle function in phase space. In order to do so we consider
Wigner-Weyl quantization in polar coordinates. After recalling some results
known for phase space functions of p or q or r, in section 3 we set up the
machinery for functions of the angle. The basic algebraic scheme is given in
Lemma 3.1.

Before considering the phase operator as such, we considered the various
operator classes that result from various classes of phase space functions. In
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particular we give necessary and sufficient conditions for functions f of the
angle to determine maps 4(fang) in ^[^(R), L2(R)] and in ^+[y(R)], and
a sufficient condition for zl(fang) to be bounded.

The quantization of the phase space exponential functions e±l(p determines
bounded operators which are shift operators with respect to the Hermite
functions. Interestingly, the shift sequence is of a type not considered
before. Being shift operators, it is possible to give a complete spectral analysis,
and we do so. The spectrum of the operator obtained by quantizing ei(p has
a nonempty residual component. It is known that the absence of a residual
component in the spectrum of a Hamiltonian is sufficient for asymptotic
completeness to hold, but the physical significance of its presence here is not
clear to us.

Turning to the phase operator itself, we begin by carefully defining the
angle function in phase space, taking due care of the branch point at the
origin. This singularity simply cannot be overlooked, even in classical
mechanics. This point is brought home by our calculating the Poisson bracket
between the phase function and the radial function whose quantization is the
number operator. We prove that this pair is not canonical. In addition to
the canonical term it has further terms which we call secular.

Quantizing the angle function, our method provides us with an infinite
matrix representation, taken with respect to the Hermite functions. We are
able to show that the operator /4(<p)eJ?+[.^(R), L2(R)], but is not in
j^+[y(R)]. We also give both the kernel of this operator and its Fourier
transform in Section 4.

In Section 5 we used the kernel representation to prove that if f is of
class <^1[— TT, TT], then ^(fang) is bounded. We did this by representing ^(fang)
in terms of the quantizations of the characteristic functions and the sign
functions of certain wedge-shaped regions. This method is reminiscent of
classical integral geometry. The bound we obtain can be sharpened still further
in the case of A((p)9 and we showed that it was bounded by 3n/2.

Since the range of the angle function is [— TT, TT], the bound 3n/2 is
unexpected, and we suspect that it is not the norm.

Some insight into this problem is afforded by a numerical study. In
particular, we have considered the matrices An obtained from (hh J((p)/Zy> by
setting to zero all matrix elements for f, j > n. We may then consider the
norm of An by finding its largest eigenvalue. To this end we have computed
\\An\\ for a number of values of n up to 120 numerically, using Mathematica
2.0 [41] on an Apple Mac Ilsi. A few values are given in the table below.

n

114, I I

0

0

5

2.26

10

2.61

20

2.84

30

2.93

40

2.98

58

3.02

70

3.04

120

3.08
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A graph will show that the norms seem to approach n "asymptotically" very
smoothly. The distribution of the other eigenvalues seem to be uniform. As
the norm of A(cp) is certainly not less than the supremum of the \\An\\, and
in view of the interpretation of A(cp), we are led to the make the following
conjecture.

Conjecture 6.1. The norm of the phase operator is \\A(q>}\\ = n, and its

spectrum is purely continuous, with

a(A((p)) = aconi(A(cp)) = [- n, TT].

Because the number operator is unbounded, and &*(R) is not stable
under the phase operator, we defined the commutator of A(<p) and N as a
form in Section 4. Just as in the classical case, the commutator consists of
both canonical and secular terms. These latter are dependent on ft, and thus
provide a possible source of interesting quantal effects. We also define the
relevant expectations, and these, too, could be measured, in principle.

Appendix

We begin with a more or less standard lemma concerning the Cauchy
principal value. To avoid misunderstandings, we note that the integrals are
Lebesgue integrals [40].

Lemma A.I. For any /e^(R) and PeR, the limit

exists, and

Jim /„(/) = 7n/(0)

P-*oo

Proof. We can transfer all integration to the positive real axis by a change
of variables:

f ( x ] e i P x f °° f(x) — f(— x)
JW^- dx = J(X) J( -^ cos (Px)dx

so it follows that IP(f) exists, and we can write
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Jo x Jc

_ .
cos (Px)dx + / - - sin (Px)dx

, . f1 /(x)+/(-x)-2/(0)
+ i - sin (Px)dx + 2i/(0) - ax

o o

sin x
i

)o * Jo

The limit results are now immediate from the Riemann-Lebesgue lemma.

Lemma A.2. For any /e^(R) and q / 0, we have that

<P(P>
R

. Note that for q / 0,

P .ipx

5 P > 0 ,

and that

Jim | -^——i = ̂ e~x^ xeR,

and also that

lim <p(P, q) = 0 and Jim cp(- P, q) = n sign I

Then
I

i
-p

= (2n)-1/2 f < p ( p , 9 ) [ f f(x)eipxdx\dp
J-p LJe J
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lim <p{p,q)
~

* -P

£lim f ( x ) (p(p, q)ei**dpdx

lim

lim

~ P, q)I-P(f)
p ^x

(- P, q)I-P(f)

o ^ -pP +<7

Applying the dominated convergence theorem and substituting from above gives

= lim

= « sign («)/(0) - i si

completing the proof.

For the next step in the derivation of the kernel, define the function
by setting

Then

and the function p^CFQ?, q) - F(- p, q)] is in ^((0, GO) x R). Then

/^ _
<p(p, q)[_&-1 F] (p, q)dp = nl- sign («)/(«) »(«)
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for all q ^ 0.
Recalling the function gjel/nL00 for L> 1, given in (4.1. b), we see that

= (In)'112 9(P, tii^^FKp, q)dpdq
/7

_
= - siga(q)f(q)g(q)dq

^ JR

-ilim f sign (,)
-

l /L

^ r _ i r
= - sign (q)f(q) g(q)dq - - lim sign (q)gI(L}(x)F(x, q)e~lxqldxdq

2 JR 2 L ^ 3 0 J R 2

= sign(q)f(q)g(q)dq
R

n

which is the expression we require.
In this next part of the appendix we consider the classical Poisson bracket

between the number and phase distributions,

v(f) = |f (P2 + q2 - 1)/(P, q)dpdq,
^ JTI

9(f)=\ V(P, q)f<P, q)dpdq, /eS(/7).
n

It is convenient to work with the distribution v' = v + f . Then integration by
parts to clear all derivatives from g gives us

This means that v is of such a class that if we extend the Poisson bracket to
)' in one variable,

/?: ^(77)' x y(77)

by the formula
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= T({f, g}),

then

J8(v', f)(p, q) = pd2f(p, q) - qdj(p, q)

is not only well defined, but is in ^(77); similarly for v which has the same
bracket relations as v' does.

This is not true of <p. Let us evaluate the two terms in this case. For
the first term, if/, ge^(TI] we have

, q)d1g(p, q)dpdq
n

= - Jim dp [d^fo q)d2f(p, q) + (p(p, q)d1dzf(p, qflg(p, q)dq
| <R

, q) - q>(p, q)d1d2f(p, q)~\g(p, q)dpdq.
n

The second term is

<P(P> <?)di/(p, q)S2g(p, q)dpdq
7

f= ]im [<P(P> q)d\f(p, q)g(p, q)\q
q=-R - 9(p> q)SJ(p, q)g(p, c

K-^oo I

n

dp ^29(P, q)dJ(P, q) + <P(P, q)81d2f(p, qftg(p, q)dq
R Je<\q\<R

= - 2 n r SJ(p, Q)g(p, Q)dp
J — oo

f 2 2 1[P(P + q ) di/(A ^) + cp(p, q ) d l d 2 f ( p , q}]g(p, q)dpdq.
Jn

Thus

o , f ) ( g ) = -27T I d1f(p90)g(p,0)dp

n

We now extend the Poisson bracket to those pairs of tempered distributions
S, T for which
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is well defined for all fe^(IT). This so for tp and v', with

°
pf(p,0)dp

o

- (P2 + q2r1[pdiv(p, q) + qd2v(p, q)lf(P, q)dpdq
n

= - 2n pf(p, Q)dp - /(p,
n

which is equivalent to (3. 3. a).

References

[ 1 ] Dime, P. A. M., The Quantum Theory of the Emission and Absorption of Radiation, Proc.
Roy. Soc. (London), A114 (1927), 243-265.

[2] Susskind, L. and Glogower, J., Quantum Mechanical Phase and Time Operator, Physics,
1 (1964), 49-61.

[ 3 ] Carruthers, P. and Nieto, M. M., Phase and Angle Variables in Quantum Mechanics, Rev.
Mod. Phys., 40 (1968), 411-441.

[4] Dubin, D. A. and Hennings, M. A., Quantum mechanics, algebras and distributions, Pitman
Research Notes in Mathematics 238, Longman, UK, 1990.

[ 5 ] Schmiidgen, K., Unbounded Operator Algebras and Representation Theory, Akademie-
Verlag, Berlin, 1990.

[6] Garrison, J. C. and Wong, J., Canonically Conjugate Pairs, Uncertainty Relations, and
Phase Operators, /. Math. Phys., II (1970), 2242-2249.

[7] Popov, V. N. and Yarunin, V. S., Quantum and quasi-classical states of the photon phase
operator, J. Mod. Opt., 39 (1992), 1525-1531.

[8] Galindo, A., Phase and Number, Lett. Math. Phys., 8 (1984), 495-500.
[9] Pegg, D. T., Vaccaro, J. A. and Barnett, S. M., Quantum-Optical Phase and Canonical

Conjugation, J. Mod. Opt., 37 (1990), 1703-1710.
[10] Lerner, E. C., Huang H. W. and Walters, G. E., Some Mathematical Properties of Oscillator

Phase Operators, J. Math. Phys., 11 (1970), 1679-1684.
[11] Newton, R. G., Quantum Action-Angle Variables for Harmonic Oscillators, Ann. of

Phys. (N.Y.), 124 (1980), 327-346.
[12] Ban, M., Phase State and Phase Probability Distribution, Optics Communications, 94

(1992), 231-237.
[13] Rocca, F. and Sirugue, M., Phase Operator and Condensed Systems, Comm. Math.

Phys., 34 (1973), 111-120.
[14] Dubin, D. A., Bosons in Thermal Contact: A C*-Algebraic Model, Comm. Math. Phys.,

32 (1973), 1-17.
[15] Rieckers, F. and Ullrich, M., Extended Gauge Transformations and the Physical Dynamics

in a Finite Temperature BCS-Model, Acta Physica Austr., 56 (1985), 131-152.
, Condensed Cooper Pairs and Quasi Particles in a Gauge Invariant Finite Temperature

BCS-Model, Acta Physica Austr., 56 (1985), 259-274.



QUANTIZATION AND THE PHASE OPERATOR 531

[16] Dubin, D. A., Solvable Models in Algebraic Statistical Mechanics, Oxford Univ. Press
(Clarendon), Oxford, 1974.

[17] Berezin, F. A. and Subin, M. A., Symbols of Operators and Quantization, Colloquia Math.
Soc. J. Bolyai, 5 (1980), 21-52.

[18] Lassner, G. A., Operator Symbols in the Description of Observable-State Systems, Rep.
Math. Phys., 16 (1979), 271-180.

[19] Hansen, F., The Moyal Product and Spectral Theory for a Class of Infinite Dimensional
Matrices, Publ. RIMS, Kyoto Univ., 26 (1990), 885-933.

[20] Daubechies, I., On the Distributions Corresponding to Bounded Operators in the Weyl
Quantization, Comm. Math. Phys., 75 (1980), 229-238.

[21] Daubechies, I., and Grossmann, A., An Integral Transform Related to Quantization, /.
Math. Phys., 21 (1980), 2080-2090.

[22] Moyal, J. E., Quantum Mechanics as a Statistical Theory, Proc. Cambridge Soc., 45 (1949),
99-124.

[23] deGroot, S. R. and Suttorp, L. G., Foundations of Electrodynamics, North-Holland,
Amsterdam, 1972.

[24] Segal, I. E., Transforms for Operators and Symplectic Automorphisms over a Locally
Compact Abelian Group, Math. Scand., 13 (1963), 31-43.

[25] Pool, J. C. T., Mathematical Aspects of the Weyl Correspondence, J. Math. Phys., 1 (1966),
66-76.

[26] Loupias, G., C*-algebres des systemes canoniques, //. Ann. Inst. H. Poincare VL 1 (1967),
39-58.

[27] Weyl, H., Gruppentheorie und Quantenmechanik, S. Hirzel, Leipzig, 1931.
[28] Wigner, E.P., On the Quantum Correction for Thermodynamic Equilibrium, Phys. Rev.,

40 (1932), 749-759.
[29] Folland, G. B., Harmonic Analysis in Phase Space, Princeton University Press, Princeton,

N.J., 1989.
[30] Reed, M. and Simon, B., Methods of Modern Mathematical Physics, I, Academic Press,

New York, 1972.
[31] Kato, T., Perturbation Theory for Linear Operators, Springer, New York, 1966.
[32] Smith, T. B., Dubin, D. A. and Hennings, M. A., The Weyl Quantization of Phase Angle,

J. Mod. Opt., 39 (1992), 1603-1608.
[33] Klauder, J. R., The Design of Radar Signals Having Both High Range Resolution and

High Velocity Resolution, Bell System Tech. J., 39 (1960), 809-820.
[34] Itzykson, C., Remarks on Boson Commutation Rules, Comm. Math. Phys., 4 (1967),

92-122.
[35] Miller, W., Lie Theory and Special Functions, Academic Press, New York, 1968.
[36] Vilenkin, N. Ya., Laguerre Polynomials, Whittaker Functions and the Representations of

Groups of Bordered Matrices, Math. USSR Sb., 4 (1968), 399-410.
[37] Peetre, J., The Weyl Transform and Laguerre Polynomials, Le Mathematiche (Catania), 27

(1972), 301-323.
[38] Howe, R., Quantum Mechanics and Partial Differential Equations, J. Funct. Anal., 38

(1980), 188-254.
[39] Smith, T. B., Correspondence Limit in the Wigner-Weyl Picture, Phys. Lett., 95A (1983),

219-222.
[40] Rudin, W., Real and Complex Analysis, Springer, Berlin, 1978.
[41] Wolfram Research, Inc., Mathematica 2.0, Wolfram Research, Inc., Champaign. 111., 1991.
[42] Halmos, P. R., and Sunder, V. S., Bounded Integral Operators on L2 Spaces, McGraw-Hill,

New York, 1974.



532 DANIEL A. DUBIN, MARK A. HENNINGS AND THOMAS B. SMITH

Note added in proof: At the 1993 Wigner Symposium held in Oxford, Royer independently
proposed our operator A(tp) as a phase operator. Using techniques similar to those of our earlier
paper [32], he derived its Hermite matrix elements. He also considered the quantization of the
symbol cp in quantization schemes other than that of Wigner-Weyl.


