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Cyclic Generalized Vectors for Algebras
of Unbounded Operators

By

Atsushi INOUE * and Witold KARWOWSKI **

§1. Introduction

Algebras of unbounded operators called O*-algebras appear in rather broad
pure mathematical context (operator theory, topological *-algebras, represen-
tations of Lie algebras etc.) and the physical applications (the Wightman quantum
field theory, unbounded CCR-algebras, quantum groups etc.). This motivated
systematic studies carried on for about three decades.

One of the most serious difficulties in the investigations of O*-algebras is
caused by the pathological relations between the invariant subspaces and
projections of the commutant .#+w of an O*-algebra .#[6, 15! which prevents .#
from being spatially isomorphic with a direct sum of O*-algebras possessing cyclic
vectors in general. In other words only a very special subfamily of O*-algebras
have representations with cyclic vectors. On the other hand the concept of cyclic
vector proved to be very useful for studies of O*-algebras [4, 9, 10, 12, 19]. These
facts suggest that perhaps a generalization of the notion of cyclic vector would
provide a useful tool for investigations of a wider class of O *-algebras. In this note
we shall pursue this idea.

To be more specific, let .# be a closed O*-algebra on a dense subspace & in a
Hibert space J# satisfying #w%2 C 2. The motivations as well as the guidelines for
the choice of appropriate definition of generalized vector emerge from following
three problems :

(i) Vectors in # — 9. It seems reasonable to require that any vector £ #
should be a generalized vector for .#. Observe that if £E 2 then it defines a linear
map A¢ from A into 2 by

1e(A4)=AE AEM.
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This map has following property
A:(X4)=X1:(4) forall X, A€ ..

This suggests that if £& 5 — 9 then it can still define a linear map from a (possibly
trivial) subspace 2 (A;) C . into 9. If we wish to preserve the above multiplicative
relation, then 2 (1;) has to be a left ideal of .#. This requirements result (see Sect.
3) in the following :

For any £E#, A is a linear map defined by

DQp=&cu; EE2(X™) and X *EE€ 9},
LX) =X x€9Qy).

(ii) Weights on O*-algebras : It is well known that weights play an important
role for the study of the structure of von Neumann algebras [2, 5, 21], and so it
seems useful to extend the notionn of weights on von Neumann algebras to
O*-algebras. A map ¢ of Z(M)= {k; XiX.; Xl (k=1,2,...,n), nEN} into
[0, 4 o] is said to be a weight if p(A+B) =¢(4) +¢(B) and ¢ (A4) =1¢(4) for
A, BE? (M) and 2 >0. Then the GNS-construction (7,, 4,, #,) is well-defined.

Taking A; in (i) and A, in (ii) into consideration, we define the notion of
generalized vectors for .# as follows: A map A of ./ into 2 is said to be a
generalized vector for . if it is a linear map of a left ideal D(1) of ./ into 2
satisfying 1 (X4) =XA (4) for all X&.# and ASD (). A generalized vector A for
A is said to be cyclic if A\(D(1)) is dense in .

(iii) A generalization of the Tomita-Takesaki theory to O*-algebras : Tomita-
Takesaki theory plays an important role for a study of structures of von Neumann
algebras and for a study of quantum physics, and so it is desirable to extend the
results of Tomita-Takesaki theory to O*-algebras. With this viewpoint, in the
previous paper [9] one of us A. I defined and studied the notions of standard
system and modular system which made it possible to develop the Tomita-Takesaki
theory in O*-algebras with cyclic vector. In this paper we shall extend the concepts
of standard systems and modular systems to O*-algebras with cyclic generalized
vector by the following procedure :

Let (#, A) be a pair of a closed O*-algebra .# on @ in # satisfying 42 C 9 and
a generalized vector A for ./ satisfying A ((D (A1) ND(A)")?) is total in s#. Then we
define three commutants 1”, 1° and A° and the bicommutants 1”, 1°, 2* of 1 which
are generalized vectors for the von Neumann algebras 4, and (),
respectively. Suppose A'((D(A")ND(A")*)?) is total in #. Then, the map
2X)—=>2 X", xeD@)NDQ)' and 2"@)—>2"(4*), AEDQA")NDQA")* are
closable in # and their closures are denoted by S; and Sy-, respectively. Let S;=
Jy 43 and S;r=J;- 41 be the polar decompositions of S; and Sj-, respectively.
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Then we see that S; CS,», and J,» (M+) J1» =M% and A% (ML) A7 = (M.,)" for all
tER by the Tomita fundamental theorem. But, we don’t know how the unitary
group {4%-},cr acts on the O*-algebra .#, and so we define a system which in this
respect has the best properties : (#, A, ") is said to be a standard system if

(S1) 4492=9 and Ay M A7 =M GER),
(82) 44D NDWN4#=DQ)NDQA)' tER).

Then we shall show that if (#, A, 1" ) is a standard system, then S;=S;-, {0}}.cr
(X)) =44X 45", XE M, t=R) is a one-parameter group of *-automorphisms of
M and 1 satisfies the KMS-condition with respect to {07},cr. Suppose A1¢((D (1)
ND(A)M)?) is total in #. Then S, Jyec and Ajee are similarly defined. (4, 2, A°)
is said to be an essentially standard system if

(S3) A%2=9 and A% MAF =M (tER),
and further if
(84) A&DWNDWHA#F=DRA)NDQA)' tER),

then (#, A, A°) is said to be a standard system. We shall show that if (#, A, 1°)
is a standard system, then (., A, 1) is a standard system and S; =S =Sjec.
Furthermore, we shall show that if (#, A, A°) is an essentially standard system,
then there exists a cyclic generalized vector A, for .# which is an extension of A such
that (#, A., AS) is a standard system. By relaxing the requirements (S3) and (S4),
we define the notion of modular systems which enable us to develop unbounded
Tomita-Takesaki theory and which is more applicable to examples. Roughly
speaking, (#, A, 1°) is a modular system if there exists a good subdomain in 9
which is .#-invariant and {A4Ye}-invariant. We shall show that if I'= (., 4, A¢) is
a modular system, then there exists a standard system (% (I"), 4,, 15) which is an
extension of (L, A, 1°) in a certain sense. We shall finally apply these results to
(M, Xg, A5), where & is a cyclic and separating vector for (M)’ , and give standard
systems and moduler systems for unbounded CCR-algebras.

In this paper we have treated only O*-algebras .# on 9 satisfying 42 C 9.
In more general case, that is when .4, is not a von Neumann algebra but there
exists a good von Neumann algebra 4 such that 8" C.#+,, we can consider cyclic
and separating systems, standard systems and modular systems using the induced
extension ¢y (M) of 4 by %’ [11, 19]. But, in order to clear the arguments we
have assumed .#,% C 9 in this paper (in this case, .4+, is a von Neumann algebra
and & =.45,).

In a forthcoming paper we shall investigate when a general O*-algebra is
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algebraically (or spatially) isomorphic to an O*-algebra with a cyclic generalized
vector, and the problem of constructing standard (or modular systems) from
standard von Neumann algebras. Furthermore, we shall study weights on
O*-algebras in detail.

§ 2. Preliminaries

In this section we state some definitions and basic properties concerning
O*-algebras [3, 6, 11, 13, 15, 18, 19].

Let 2 be a dense subspace in a Hilbert space #. We denote by #1(2) the set
of all linear operators X from 2 into & such that 2(X*) D% and X*2C 2. Then
F1(D) is a x-algebra with the usual operations and the involution X—>X'=X*[ 9.
A *-subalgebra of #1(2) is called by Schmiidgen [19] an O*-algebra on 2 in #
but other authors often write O, -algebra. Throughout this paper we assume that an
O*-algebra has always an identity operator. Let .# be an O*-algebra on 9. A
locally convex topology on 2 defined by a family { || | x ; X&.#} of the seminorm:s :

| £l x= | XE || (EE D) is called the induced topology on &, and denoted by ¢ . If
the locally convex space (2, t,) is complete, then ./ is said to be closed. We put

G (M) =N 2X) and X=X[9 (M) XEM).

Then 9 () is identical with the completion of (9, t,) and A= {X; XE .M} is a
closed O*-algebra on & () which is the smallest closed extension of .# and it is
called the closure of .#. Hence ./ is called closed if and only if D2=9(M). A
vector & of 9 is said to be cyclic (resp. strongly cyclic) for M if ME, is dense in the
Hilbert space #’ (resp. the locally convex space (2, t4)). If 2% (M) = D2 x*)
=9 (M), then A is said to be essentially self-adjoint, and if 9* (M) =29, then A
is said to be self-adjoint. Let s be an .#-invariant subspace of & and .#[ » the set
of all restrictions X[ » of X& . to s». Then M[ s is an O*-algebra on wm. If M[ m
is essentially self-adjoint, then E,.2 equals the closure »:'# of » with respect to the
induced topology ¢, where E,, =Proj. m. Conversely if /4 is self-adjoint and E,,.2
=m'# , then M| m is essentially self-adjoint[15]. An element £ of 2 is said to be
a self-adjoint vector for M if M| ME is essentially self-adjoint [6].

We define the weak commutant M, of a t-invariant subset .# of £1(2) as
follows :

Mo={CEB(H) ; (CXE | n)=(CEF| X') for all £, 7ED and XE M},
where % () is the set of all bounded linear operators on #. Then /4 is a *-

invariant weakly closed subspace of (), but it is not necessarily an algebra. It
has been known that if .# is a self-adjoint O*-algebra, then .#,% C 9 ; and further
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MWD CT D if and only if A, is a von Neumann algebra and X is affiliated with
(M) for each X415, 19].

We fix the notations which will be used in this paper. Let &/ be a *-algebra.
For subsets m, n of o/ we define subsets #*, ## and »* of o/ by

wm*={x*; xEm},

mn=1Xy ; XxEm, yEu},

= mm= {xy 3 X, yEm},

When ./ is a *-algebra without identity, we denote by /; the *-algebra obtained
from 7 by adjoining an identity.

§ 3. Cyclic Generalized Vectors

In this section we define the notion of cyclic generalized vector for an
O*-algebra which is a generalization of that of cyclic vector. Let .# be an
O*-algebra on a dense subspace 2 in a Hilbert space #.

Definition 3. 1. 4 map A of M into 9D is said to be a generalized vector for M
if the following conditions hold :

(1)  The domain D(X) of A is a left ideal of M.

(ii) A is a linear map of D(1) into 9.

Gii) A(X4)=X2(4) for all X&.# and AED(A).
A generalized vector A for M is said to be cyclic (resp. strongly cyclic) if A(D(1)) is
dense in # (resp. (D, tu)).

Let A be a generalized vector for .#. Then, the closure of an O*-algebra
XIA@Q) ; X4} on 2(D(A)) in #A)=2(D(A)) is denoted by .# (1) and
called the O*-algebra generated by A. .# (1) is a restriction of .#. Even if 1 is
cyclic, # (1) does not necessarily equal .# (see [19], Example 8.3.18). If however
A is strongly cyclic, then # (1) =.#. Let A, and A, be generalized vectors for ..
If D(A,)CD(2,) and A,;(X) =2,(X) for each X&D(2,), then A, is said to be an
extension of 1, and we write 1, D4;.

We give some examples of generalized vectors for O*-algebras.

Example 3.2. (i) Let .# be an O*-algebra on 2 in # and EE#. We put

DU =Xeu; f€2(X™) and X ¥ 9},

Then Ag is a generalized vector for . It is clear that A, is cyclic (resp. strongly
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cyclic) if and only if {X'*&; X&D(A;)} is dense in H# (resp. (D, t..)). We remark
that putting

D) =X<EM; E€92(X) and XEE D},
AX)=XE XED(),

D (1) which is not necessarily a left ideal of .# because X +Y 2X+7Y in general,
and so A is not a generalized vector for /.

(ii) Let o/ be a *-algebra and f a positive linear functional on /. Let (7,
s, #;) be the GNS-construction for £ If 1E.47, then A,(1) is a strongly cyclic
vector for 7;(o/). Let 1Z.o/. Suppose 7(x)—>As(x) is 2 map, that is, z;(x) =0
implies A¢(x) =0, and then put

A(7(x)) =2,(x), xE .

Then A is a strongly cyclic generalized vector for the O*-algebra 7;(</); with
D) =n(A).
(iii) Let o/ be a *-algebra and let

W(d)z{kg xix s €L k=1,2, ..., n), nEN}.

A map ¢ of (/) into R* U {+ o<} is said to be a weight on #(/) if
®  elax*x)=apx*x), xEo, a>0;
Gi) ¢l@+b)=9¢@) +o®), a, beP (), where 0 - (+00)=0.
Let ¢ be a weight on 2(s/). We put
no=1{aE o ; pla*a) < o},
m,=linear span of {a*a ; aE=xd},
) (T aata) =% axp(ai‘ar) for > avataxEmy.
k k
Since (a; +a,)* (@1 +a,) + (a1 —a) * (a1 —a,) =2(afa; +afa,) (@i, a,E#Y), it

follows that »J is a subspace of &/ and ¢ is a well-defined linear functional on s, .
But, #5 is not necessarily a left ideal of o/, and so we put

no=1aE xS ; xa =45 for all xE .o/}

It is easily shown that #, is a left ideal of ./ and
| ¢ (b*a) ’<@b*b)p(a*a) for all g, bE s,.
We put
No=laSn,; ¢(@*a) =0},
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A.(a)=a+N,En,/N,, aSn,.

Then 1,(#%,) =,/ N, is a pre-Hilbert space with the inner product
Ae@) | 2,()) =@ (b*a), a, bEm,.

We denote by 5, the Hilbert space obtained by the completion of the pre-Hilbert
space A,(s,). We define a *-representation 75 of .« by

1 (x)2A,(a) =2,(xa), xEA, aEn,,

and denote by 7, the closure of 7z5. We call the triple (z,, X,, #,) the
GNS-construction for ¢. Suppose 7,(a)—2A,(a) (@aE#,) is a map and then put

l(mp(a)) :Afp(a), aSn,.

Then A is a strongly cyclic generalized vector for 7,(2/), with the domain z,(n,).

§4. Cyclic and Separating Systems

In this section we define commutants and bicommutants of cyclic generalized
vectors for O*-algebras and then study cyclic and separating systems. Throughout
this section let (.#, A) be a pair of a closed O*-algebra .# on 2 in # and a
generalized vector A for . satisfying

O M2C2,

G) 2@QDQ) is total in #.

We first define three commutants of 4 as follows :

DA ={KeH,;, &K< ﬂ)@(f) s.t.

XED;

KA (X) =XEx for al XEDQ)},
AV(K)=E, KEDQ').

DAY ={KeMy; &S ) 2(X™) st

xebp@)

KAX)=X"E for al XD )},
1K) =&, KED(1%).
(DAY ={KEM,; *EED st

KA (X)=XE& for al XD (1)},
1K) =&, KEDQ°).

Then we have the following
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Proposition 4. 1. 1’, A% and A° are generalized vectors for the von Neumann
algebra M, and A°C1" C)°

Proof. Since A(D(A)'D(1)) is total in #, it follows that £ is uniquely
determined for KED (1), D(1") is a subspace of .#+ and A’ is a linear map of
D(1") into XQ(})@(X ). Take arbitrary CE .4, and K&D(1"). Then, since X is
affiliated with (#y)" for each X&D(A) (by (i)), it follows that CA'(K)&
N )9(5(:) and CKA (X) =CX21’ (K) =XC2A’ (K) for all XD (1). Hence we have

XED@

CKED(A’) and 2'(CK) =C1"(K)

for all CE #, and KED(1"). Therefore, D(1") is a left ideal of #+, and 1’ is a
generalized vector for .#,,. We can similarly show that 1% and 1° are generalized
vectors for /. It is clear that 2°C1" C2°

Definition 4. 2. (A, A, ") (resp. (M, 2, 1°), (M, 2, X°)) is said to be a cyclic
and separating system if it satisfies the conditions (i), (ii) and moreover

(i) A’MDQAD*DQA")) (resp. 22D A *D(A9)), 2*(D(A)*D(A°))) is total
in .
In case M consists of bounded operators we have 2’=21°=)°, and so we simply call
(M, 1) a cyclic and separating system provided (M, 2, 1”) is cyclic and separating.

Let (A, 2, A") be a cyclic and separating system. Then 1’ is a cyclic
generalized vector for the von Neumann algebra .4, satisfying ’(D(A")* D(1"))
is total in 2, and so by Proposition 4. 1 three commutants ("), (1")¢and (1")°
of A" are well-defined and they are identical. To emphasize the commutant of 1’
we use the notation (1’)” (simply, 1”) as the commutant of 1”, and then 1” is
defined as follows :

D) =4 (u,) ; ZELEH st

AL (K)=KE, for al KED(1)},
A"A)=E,, AED(").

It is easily shown that 1” is well-defined and it is a linear map of the subspace D(1”)
of (M) into #.

Proposition 4. 3. Suppose (M, A, 1) is a cyclic and separating system. Then
()", X") is a cyclic and separating system satisfying A" =(1")" =21".

Proof. It is easily shown that 1" is a generalized vector for (/)" . We show
A"(D(A")) is dense in #. Take an arbitrary XD (1). Let X=U | X | be the
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polar decomposition of X and | X | = f tdE (¢) the spectral resolutions of | X | .
0
We put

E,,:f dE(®) and X,=XE,, nEN.
0
Since X is affiliated with (.#2)’, it follows that U, X, (%)’ and

XA (K)=U|X | E.A’(K)=UE,U*X)"(K)

=UE,U*KA1(X)
=KUE, U*2(X)
for all KED(1’) and nEN. Hence we have
X, €D(") and 1"(X,) =UE,U*1(X), nEN. 4.1

Furthermore, since
(UUAX) | V' (KFKy))=UU*KA(X) | 2" (K2)
=UU*X2'(KD) | 1K)
=XV (K) | 2 (K)
=QX) | V' (KFK))

for all K,, K,EDQ') and (DA )*D(A1")) is total in S, it follows that

UU*A(X)=1(x). (4.2)
By (4.1) and (4.2) we have
}i_t)rc}ol”(Xn) =1(X). 4.3)

Furthermore, by the definition of X, we have

lim X ,£=XE £€9X), (4.4
lim Xfn=X*n n€a2(X*). (4.5)

n—co

Since A (D (1)) is dense in #, it follows from (4.1) and (4.3) that

A"(D(A")) is dense in . (4.6)
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We next show that A”(D(A”)*D(1”)) is total in #. It follows from (4.1) and
(4.5) that A*A(Y); AeDQ”), YED)} is dense for AMDQA)'D(Q)).
Furthermore, it follows from (4.6) that A"(D(A")*D(1”)) is total in .
Therefore, 1” =(1")’ is well-defined by :

DA ={KEM, ; EH s.t. KA"(4) =A&«
foral A€D(1”)},
1"(K) =&, KeD@").

It is clear that A" CA”. Hence, ((#,)", 1") is a cyclic and separating system. We
finally show 2”=21". Take arbitrary KED(1"”) and X&D(1). Then it follows
from (4.1) and (4.3) that

lim E,A”(K) =1"(K),
lim XE, A" (K) =lim KA"(X,) =KA (X).

Therefore, 1" (K) € 12 (X) and X1”(K) =K1 (X) for all XD (1), and so KE
D(Q’). This completes the proof.

Let (#, 2, 1°) be a cyclic and separating system. As defined 1” we can define
the commutant (1°)° (simply, 1°°) as follows :

Q) ={de(H,) ;€ st A2°(K) =KE,
for all KD (1%},
A7(4) =&, AED ™).

Then we have the following

Proposition 4. 4. Suppose (M, 2, 1°) is a cyclic and separating system. Then
()", A7) is a cyclic and separating system satisfying 1°°= (1%)7=2°

Proof. This is proved in similar to the proof of Proposition 4.3 considering the
polar decomposition of X™* and the spectral decomposition of | X™*|, X&D(1).

Let (4, 4, 2°) be a cyclic and separating system. As defined 1” and 1% we can
define the commutant (1°)¢ (simply, 1) as follows :

D=4 ()) ;X st A2(4)=KE,
for all KED (1)},
Ac(4) =&y, AED(A%).
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Then we have the following

Proposition 4. 5. Suppose (M, A, 2°) is a cyclic and separating system. Then
(), 2), (M), A") and ((My)", X%°) are cyclic and separating systems
satisfying 2°C A" CA%* and 1°D21" D (A%) =AD"

Proof. Tt is clear that 1 is a generalized vector for (#;) . It follows from
Proposition 4.1 that (#, 2, ") and (4, A, 1°) are cyclic and separating systems,
which implies by Proposition 4.3, 4.4 that ((#)", A”) and ((A+)", 1°°) are
cyclic and separating systems. Further, since AC 21" C A%, it follows that ((%,)’,

2) is a cyclic and separating system. By Proposition 4.1, 4.3 we have A°CA*°C2’
cAe

We remark that A”=21" and 19°=217, but 1°*#A° in general as will be seen in
Example 4.6, (6) below.

Example 4. 6. Let £§,&E# — 9. Suppose & is a cyclic and separating vector for
(M) and {X'Y™E,; X, YED(Ag)} is total in #. Then we have the following
results :

(1) DQE) =M\ and 1E(C) =C&, CE M., ;
DY) = (M) and AT (A)=A&, A= (M) .

Hence (M, Ag,, AZ) is a cyclic and separating system.

@ DUW=KEM;KEE ) D).
(3) DQg)={Ke,; KE£ED).
(4) 25,S 25,528 in general. In fact, if £ )9(?), then IED (1};,) but

1D (AE), and tf’g'gEE ﬂ Q(X) then IEED(/I;D)

(5)  The following statements are equivalent : (@) (M, A, A%,) is a cyclic and
separating system, (3) S| @(X) ) DQAg) =My, (6) Az,=2&. In fact,
suppose (A, X;O, Az,) is a cychc and separating system. Then, since 25 DA and
(1), we have 15, =A% and so by Proposition 4.3, 4.4 15 =1§. And then D(l}o)
My by (1), and SO Eo Q(X) by (2). Conversely suppose £ ey )Q(X)
Then, IED(A;), and 50 X;u—lﬁ, Therefore, (M, Az, Ak) is a cyclic and
separating system.

(6) Suppose (M, Ay, 2%,) is a cyclic and separating system. Then, A%,=Az,=
and ZEOQX“C—A;O }Lgo
In fact, since D(2°) ND(A°)* is a nondegenerate *-subalgebra of .4, there
exists a net {K,} in D(A°) ND(A°)* such that 0<K,<I and K, 1 [ strongly. Then
it follows that
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K;CK,eD(9) ND(A9)*,
1}}}31 1§, (KsCKo) =K CK,Ee——>CEr=125,(C),
lim 15, ((KsCK ) *) =K, C*KpE—>C*E=2%,(C*)

for each CE 4, , which implies A%, =215,. By (4), (5) we have 1%, =1z =A% and 1§,
CAE=2L=25,.

§ 5. Standard Systems and Modular Systems

In this section we study standard systems and modular systems which are able
to develop the Tomita-Takesaki theory in O*-algebras. Throughout this section let
(M, 1) be a pair of a closed O*-algebra .# on a dense subspace & in a Hilbert space
A and a generalized vector A for . satisfying

) M9DCD,

Gi) A(D@NDQA))?) is total in H#.

By Proposition 4. 3 we have the following

Lemma 5. 1. Suppose

Gii) 2’(@@")NDQA)*)?) is total in .
Then the following statements hold :

(1) 2’DQ@)HND(’)*) is an achieved right Hilbert algebra in # equipped
with the multiplication and the involution :

VKDV (K) =2 (KK, 2K =1(K*),
K K, K,eDQ')NDQA)*,
and its right von Neumann algebra equals M.,.

2) A’@@")NDQ")*) is an achieved left Hilbert algebra in H# equipped
with the multiplication and the involution :

2(AX(B)=1"(4B), A1"(A)'=1"(4™),
A4, BEDQ")NDQA")*,
and it equals the commutant of the right Hilbert algebra A’(D(A") ND(A")*).
(3) DA")=4s(,) ; Pe=H s.t. AV (K)=KE, for all KED')N

DQ')*} and 1"(4) =&, for ASD(A").
4 DQA)=DQ")={(KEM,; EEH s.t. K\"(A) =AEx forall AED(1")
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NDA")*} and 2" (K) =&k for KED(A").

Suppose 1’ ((D(A") ND(A")*)?) is total in #. By Lemma 5. 1 the map 1”(4)
—1"(4*), AeD(A")ND(A1")* is a closable conjugate-linear operator in 5, and
so its closure is denoted by S;-. Since

A |V EKEK)) =@ KFKD) | 2(&XN)
for all XeDQA)NDA)' and K,, K,EDQA')NDA’)*, it follows that the map
AX)—=2&x", xeDb(Q) ND(A)' is a closable conjugate-linear operator in #, and
so its closure is denoted by S;. Let S;»=Jy A4} and S,=J,47* be the polar
decompositions of S;- and S;, respectively.

Lemma 5. 2. Suppose A’((D(A") ND(A")*)?) is total in #. Then S;CS;.

Proof. Take an arbitrary XD(A) ND(A)" Let X=V | X | be the polar
decomposition of X, | X | = f t dE(t) the spectral resolution of | X | and E,=
0

j(; ndE (t) for nEN. We put
X,=XE,, n€N.

Then, by (4.1) and (4.2) we have

X,eD(A"), 2"X,) =UE,U*A(X) (nEN) and UU*A1 (X)) =21(X). (5.1)
Furthermore, we have

X (K)=E, X"2'(K) =K (E,A (X))
for all KED(1"). Hence we have
X;yeD”) and "(Xf) =E.A(X") (nEN). (5.2)

By (5.1) and (5.2) we have

X, €D@A")NDQA")*, lim 2"(X,) =2(X) and lim 2"XF) =2xh. (5.3)

Therefore, A(X)E2(Sy») and Sp-A(X)=2(X")=8;A(X). This completes the
proof.
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By the Tomita fundamental theorem [22] we have
Jo (M) Ty =M, (5.4)
ol W) =444 (M) (AE(MY), tER), (5.5

a"D@A")NDQA")*)=D@A")ND@QA")* and
2" (B))=4%2"(B) BeD(A")NDQA")*, tER), (5.6)

ot (C)=diCa7 e, (CEM,, tER), (.71

o MDAHNDA)N*)=DQA’)NDQA’)* and
V(X K)=442K) KEDQ)NDQA)* tER). (5.8)

Furthermore, we have
o’ (D(A"))=D(1") and 1"(0?'(B)) = 4%1"(B), (BED"), tER), (5.9)
o¥(D@A"))=DQ") and 1’ (6} (K)) = 4%2'(K), (KED"), tER). (5.10)
In fact, the statement (5.9) follows from Lemma 5.1, (3) and

ol (B)A'(K) = 44-B 472’ (K)
= A%BA" (0¥, (K)) (by 5.8)
= A%0%,(K)2"(B)
=K 4%2"(B)

for all BED(1”), KED(A')NDQA’)* and t=R. The statement (5.10) follows
from 2”=21" and (5.9).
We have the almost same results as Lemma 5.1, 5.2 and (5.4) ~(5.10) for 1«

Lemma 5. 3. Suppose

Gii)"  22(@QA)YNDQA)*)?) is total in H#.
Then the following statements hold :

(1) 2@ )NDQA)*) is a right Hilbert subalgebra of the right Hilbert
algebra 2’(D(A")NDQA")*).

@) 22(D@A<)ND(A*)*) is an achieved left Hilbert algebra in H# containing
A'DQA"HYNDQA")*).

(3) Let Sy be the closure of the involution 2<(A4)—2*UA*)AeD ()N
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D(A*)*) and let Sycc=JcA}% be the polar decomposition of Syee. Then, $;CSyC
Syee.

@ Taee( M) Tre= M .

(5) o =diAdte M) As(H) , tER),

ol (D (%)) =D(*) and 2*(0}" (B)) = 4%=2“(B)
BeDQ®), tER),
oD QA=) NDQA*)*)=D(A*) ND(A*)* and

2<(0" (B)) = 4%=2=(B) (BEDA*) ND(A)*, t=R).
(6) o (C)=diCAte M, (CEM,, tER),

al“ (D @A=)) =D (") and A* (01" (K)) = Aec2 (K)
(KEDA*), t=R),
Utx“’ (D (Accc) ND (;{ccc) *) =D (Accc) ND (Accc) * and

1°¢ (0¥ (K)) = A% (K) (KEDA) ND(A=)*, tER).

Remark. Let & be as in Example 4.6. As seen in Example 4.6, (6), (M, Ag,,
A§) is a cyclic and separating system, then 2%, =25, and so the right Hilbert algebras
2A2MDAH)YNDA)*) and A’(DQA')NDA')*) are equivalent. But, in general we
don’t know whether their right Hilbert algebras are equivalent, or not.

By Lemma 5.3 the unitary groups {4%},cr and {4%}.cr implement
one-parameter groups {07 },er and {0} },er of automorphisms of the von
Neumann algebra (.#+,)’, respectively. But, we don’t know how they act on the
O*-algebra #, and so we need to define the following notions :

Definition 5. 4. A triple (M, A, 1) is said to be a standard system if it satisfies
the above conditions (i)~ (iii) and the following conditions (iv) and (v) :

Gv) A%DC D and A4 MATF =M GER).
& " OMONDMWH=DQ)NDQA)' ¢tER).

A triple (M, 2, %) is said to be an essentially standard system if it satisfies the
conditions (i), (ii), (iii)" and the following condition (iv)’ :

(Gv)' A3«2C D and A MAF =M (tER).
Furthermore, if

&' OO NDW)OH=DQ)NDA)' t=R),
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then (M, 2, X°) is said to be a standard system.

Theorem 5.5. Suppose (M, A, ') is a standard system. Then the following
statements hold :

(1) Sl :Sﬂ.

2) otX)=4tXd7*=0F X) (XE M, tER) and {0}},cr is a one-parameter
group of *-automorphisms of M.

(3) 2 satisfies the KMS-condition with respect to {0}},cr, that is, for each X,
YED(A) ND(A)! there exists an element fx, y of A(0, 1) such that

fux@=Q 0! X)) 1 2(Y)) and fx, y@+D)=Q X" | 2(af X))

for all tER, where A(0, 1) is the set of all complex-valued functions, bounded and
continuous on 0<Im z<1 and analytic in the interior.

Proof. Take arbitrary X, YED () ND(A)". By (5.3) there exists sequences
{X,} and {Y,} in D(A")ND(1")* such that

lim 2"(x,) =ACO),  lim 2" (%) =2 (XN,
lij{; 27(Y,) =2(Y), lim A"(YF)=2(Y". (5.11)

By ([22] Theorem 10.17) and (5.6), for each n &N there exists an element f, &
A0, 1) such that

LH@®=Q" (0" X)) 1 2"(¥) = (452" | 27(Y),
LG+HD=Q @5 [ 270 Q) =Q (X)) | 452" X)) (5.12)
for all t&R. By the condition (v) in Definition 5.4, 1 (07 (X)) is well-defined and
2(F X)) =442X) tER). (5.13)

In fact, this follows from the equality :

Ao Q) | 2 KFK)) = (o GO KD | 2’ (K)
=(45x2' (0% (KD) | 2 (Ky))  (by 5.8)
=& 142X) | 2'(K2)
=42 X | 2 (KTK2)
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for all K,, K,ED(A')ND(A’)*. By (5.11), (5.12) and (5.13) we have
sup lH@®—QW X)) 12|

<IA&D =2 1127 |+ 120G T A"(Y) =AY | =20,

n—>co

sup FAGEIEICICORPICAC NN

< NA@H=2@D HA&H 1T+ 120D 1HA"&H —2& ) | 0.

n—>o

Hence, there exists an element fx y of A(0, 1) such that

frr@=QW’ X)) | 2(Y)) and fx, yt+i) =QA XN | 2(cF'&XN)) tER).
(5.14)
We next show S; =S,-. Let A be the closure of {A(X) ; X'=x&DQA) D) in
#. Then A is a closed real subspace of #. Since A(D(A1) D)) C A +iA and
it is dense in #, we have (# +ix#") - = {0}. Furthermore, we have # Nix = {0}.
In fact, take an arbitrary £&2¢"NiA". Then there exist sequences {4,} and {B,} in
D) ND(A)' such that A}=A4,, Bl=B,, lim 4,=£ and lim B, = —i, and then we
have ! i
(& | X'(K?‘Kz))=}lm AU, | V(KTFK))
=lim (4,2'(K,) | 2'(K2))
=3gg Q'K | K:AA4,)
=" KFK) | &

for all K,, K.,ED')ND(A’)*, and so

—i(&] l’(Kf"Kz)):}ijI; (A(B,) | V' (KFK,))
=Q'KFK) | —if)
=i(A’KFKD | ©)
=i(£ | V(KTK2)).
Hence, (£ | 2’ (KfK,)) =0 for all K;, K,EDQA')NDQA')*. Since A’ ((DQA')N

D(Q’)*)?) is total in J#, we have £=0. Therefore, it follows from [17] that S;
equals the closed operator S defined by
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SE+in)=E—in (E nEX). (5.15)

Furthermore, by (5.14) the one-parameter group {A4{}.cr of unitary operators
satisfies the KMS-condition with respect to 2 in the sense of ([17] Definition 3.4)
and by (v) in Definition 5.4 A% C A for all t=R, and so it follows from ([17]
Theorem 3.8) and (5.15) that A% = A% for all t=R. Therefore, S;-=S;, and so by
(v) in Definition 5.3 and (5.14) A satisfies the KMS-condition with respect to the
one-parameter group {07},cr of *-automorphisms of .#. This completes the proof.

Theorem 5. 6. Suppose (M, 2, A°) is a standard system. Then (M, A, X') is a
standard system satisfying S; =S;» =Sjce.

Proof. We can show S; =S« in the same way as in Theorem 5. 5, and by
Lemma 5. 3, (3) S$1=S;-=S;e«. Therefore, (#, A, 1") is a standard system. This
completes the proof.

Remark 5. 7. Suppose 2°((D(1°) ND(A%)*)?) is total in #. Then the closed
operator S;o0 is defined as the closure of the involution 2°°(A)—21(4*) and S;00C Sy
CSjee, but Syo0 and S; don’t have any relation in general. So, we don’t consider the
standardness of (M, A, 19).

We next show that if (#, A, A°) is an essentially standard system, then there
exists a cyclic generalized vector A, for .# which is an extension of A such that (4,
Ao, AS) is a standard system.

Theorem 5.8. Suppose (M, A, 1) is an essentially standard system and then
put

{D(Ae) = (LY X ; YiEM, X, ED(Q)}
2 (L YiXe) = ;ykﬂxk),

where

D)= XEM; * {4} CDO) s.t. A,E—XE YEED and 1*(4,)—~EE D},
2X) =&, XEDQ).

Then A. is a cyclic generalized vector for M such that

(1) .04,
2 =1,
(3) (A, 2., 2%) is a standard system.
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Proof. Since 1°((D(A°)ND(A)*)?) is total in s, it follows that Ais a
well-defined linear map of the vector space D (1) into 9. Take arbitrary KED (1°)
and XD (). Then there exists a net {4,} in D(2*) such that 4,£—XE¥ for each
EEP and 1°(4,)—A(X). Since 1°(K) €9, we have

X2¢(K) =lim 4,2°(K) =lim K1=(4,) =K1 (X),
T s
which implies that A, is a generalized vector for .# such that
(; Y XA (K) :Kle(; YiX,), ; Y X, ED(A.).

Hence, KED(X5) and 15(K)=2°(K). By (5.3) we have 1DA, and so A.DA.
Hence, ACA°. Thus we have A5=2° and so (#, 2., AS) is an essentially standard
system. We finally show o (D(A.) ND()H D) NDA)?! for each tER.
Take an arbitrary XD (1,) "D(A.)" Then, since 1/CA<=2%, it follows from
(5.3) that there exists a sequence {X,} in D(A°) ND(A*)* such that X,——X
(that is, lim X,§=X& and th*E X' Yeeg), lim 22X, =21.(X) and
lim Ac (X, *) A (x1). Hence it follows from Lemma 5. 3 (5) that for eacht
ER{0F(X,)} CDO®) D)%, L4«DC 9, of" X)) —>0i" X0, lim 2 (01" (X,))
=lim 4% )% (X,) = A%ecA(X) and hm A< ((X)*) = Atecd (X, Wthh implies that

"“ (X) eD () ND )t and l (o, (X)) = A4, (X). Therefore, we have

lcC(D(). YNDAIN CDA,) ND(A)! for each tER, which implies (A, 2., 15) is
a standard system. This completes the proof.

Remark 5.9. Suppose (M, A, 1’) satisfies the conditions (i)~ (iv) and it
doesn’t satisfy the condition (v). Then we don’t know whether the same result as
Theorem 5. 8 holds.

Weakening the condition (iv)’ in Definition 5.4, we define the notion of
modular systems which is able to apply the unbounded Tomita-Takesaki theory to
more examples.

Definition 5. 10. 4 system I'= (M, A, X°) is said to be modular if the conditions
(), (i) and (iii)’ in Definition 5. 4 and the following condition (iv)” hold :

(iv)”  There exists a dense subspace & of (9, t4) such that

)7 2@ NbHce,

(v); {A°KiKy) ; KEDQA)NDQA)* st 1K), *KX¥)EE, i=1, 2} is
total in the Hilbert space 9 (Sy),

(v); MECE,

(iv)s  A4«EC & for each t=R.

Let I'=(A, A, 2°) be a modular system. Then there exists the maximal
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subspace 9 of & satisfying the above conditions (iv){~(iv);. Since P is
maximal, it follows that #9rC 9, which implies by ([7] Theorem 3. 3) that

u (N ={XEL"(Dy) ; X is affiliated with (Z,)"}

is a generalized von Neumann algebra on 9 over (#+,)’ generated by .#[ 2 and
the O*-algebra £ (I") on 9 generated by {A%«.M A3 [ Dr; t=R} is a closed O*-
subalgebra of #(I"). Furthermore, {0}},cr is a one-parameter group of *-
automorphisms of #Z(I") and % (I"). For modular systems we have the following

Theorem 5. 11. Suppose I'= (M, A, 1) is a modular system and then put

D) ={XZYiXi; YiEM, X, DD},
/L(Z Yka) = Z ka (Xk>,

where

DQ)=&cul);?*{4,,CDQA*) st A,E—>XE YEED,
and 2“(4,)—=EEDr},

21X =&, XE2 Q).
Then A, is a cyclic generalized vector for % (I") such that

(1) DQAY={KeEDQ); 2*(K)EDr} and
D) NDAL)*=DA<) NDQA«)* ;
Q) (@), A, X%) is a standard system ;
B) (W), A2, AJLUT))) is a standard system, where D (A,
[ZIN)=DA)NLU) and A [ £ ) X)=2,X) for XD A, £ I)).

Proof. We can show in similar to the proof in Theorem 5. 8 that 4, is a
generalized vector for % (I"). Since % (I") is a generalized von Neumann algebra on
9r over (M), it follows that % (), Dr= M\ DrC Dr. Since A(DQ)NDR)H
CEC Dy, it follows from (4.4), (4.5), (5.3) and 1" CA* that

X9, €D NDA)T and 1,XT2r) =2(X) (5.16)

for all XD (A1) ND(A)Y, which implies that 1,((D(A,) ND(A,)")?) is total in #.
We show

DQ)={KEeM,; 35xED s.t. KAX)=XE
for al XxeD() NDQ). (5.17)
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Take an arbitrary K & ., such that
KA(X)=X&, "xeDpQ) NDQ)!
for some £, 9. Since YIX&eDQ) NDQ)' for each X, YED(Q), it follows that
Y'K2 (X)) =K2(Y'X) =Y"X&. (5.18)

Further, since D(A°) ND(A°)* is a nondegenerate *-subalgebra of .#, and
A(DQ)) is dense in #, it follows that DA DA)NDQA)*)=DA)N
DQ)*)A(D(A)) is total in #, which implies by (5.18) that KA (X) =X& for all
XEeD(A). Hence, KED(A°). The converse inclusion is trivial. Thus the statement
(5.17) holds. We show

DQH={KeDQ) ; *K)EDr}. (5.19)

Take an arbitrary K €D (1°) such that 1°(K) €9,. For each XD (1) there exists
anet {4,} in D(2*) such that 4,§—XE V£ P and 2*(4,)—A (X). Then we have

X2¢(K) =lim 4,2°(K) =lim KA1 (4,) =K1 (X),
T T
which implies
(; Y XA (K) :Kls(; YiXo), ; Y X ED(A,).

Hence, KED(XS). Conversely, take arbitrary KED(A¢) and XD () ND Q)"
By (5.16) we have

K2(X)=KA, (X[ 9r) =X2:(K).

Hence, it follows from (5.17) that KED(A¢) and A*(K) =25(K) E92. Thus the
statement (5.19) holds. It follows from (5.19) and (iv); in Definition 5.10 that
D) ND(AE)* is an achieved left Hilbert algebra in # equivalent to D(1%) N
D(@)*. Hence, D(A*) NDQAL)*=DQ*°) ND(A*)*, and so 4 = dyee. Further-
more, it follows from Lemma 5.3, (5) that o2*(DA,) NDGAO)H D) ND(A)?!
for all t=R. Therefore, (#(I"), A, AS) is a standard system. Similarly, we can
prove that (Z (), A2, AL £ 7)) is a standard system. This completes
the proof.

Example 5. 12. Let ./ be a closed O*-algebra on 2 in # satisfying A2 C
9 and & a cyclic and separating vector for (#+,)’. We consider when I"'= (M, A,
A§) is a standard (or modular) system, where A, is a generalized vector for .4
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defined in Example 3.2, 4.5.

(1) If the following conditions (i)~ (iii) hold, then (4, Ay, %) is a
standard system satisfying A@;:Aﬁ,, where A4, is a modular operator of the
achieved left Hilbert algebra (/) &.

G  X'Y™g; X, YEDQ) NDAg)' is total in #.

(11) {K1K2§0 5 K,E./”:v S. L. K,'Eo, Ki*EOE@y i= 1, 2} is total in .

Gil) 4%L2CD and AL MAL" =M for each tER.
In fact, by Example 4.5 (A, A, 1§) is an essentially standard system satisfying
D) = (M) and A% (4) =AE, for each A€ (M) and dg= 4y,. Furthermore,
since 4% Ey=& for each tER, it follows that £E 2 (afo(XN)*) N2 (ofo(X)*) and
oo (XN *&y, 0o (X) *E,E D for each XED (Ag,) ND(A¢)" and t =R, which implies
that gfo(D(Ag,) ND Q)N CTDAg) ND(Ag)" for each t=R. Therefore, (M, Ay,
A§) is a standard system.

(2) If the above conditions (i), (ii) and the following condition (iii)’ hold,
then I'= (M, Ay, X;O) is a modular system :

(iii)"  There exists a dense subspace & of (D, t4) such that

(D7 (X™&; XEDA,) NPT C6,

Gi); K K& ; K e, st K&, KFEEE i=1,2}
is total in H#,

(iii); A#ECE,

(iii)s 4§ ECE for each tER.
In fact, by (iii); 2= {K& ; KE My s.t. KEy, K*EsE D} is a right Hilbert algebra
in # whose commutant 2’ equals the achieved left Hilbert algebra (.#+,)’&; and so

#* is total in the Hilbert space Q(S;). Therefore, (M, Ag, A§) is a modular
system.

Below we give examples of standard systems and modular systems for the
unbounded CCR-algebras.

Example 5.13. Let #(R) be the Schwartz space of infinitely differentiable
rapidly decreasing functions and {f,}.-0,1,- C%(R) an orthonormal basis in the
Hilbert space L>(R) of normalized Hermite functions. We denote by L*(R) ®
L*(R) (simply, L?>®L?) the Hilbert space of Hilbert-Schmidt operators on L?(R)
and put

n(A)T=AT, 7'(A)T=TA

forAS#(L*(R)) and TEL*®L% Then 7(#(L*(R))) is a von Neumann algebra
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on L>®L? satisfying 7(#(L>*(R)))'=z'(#(L>*(R))). Let
2 ={{a.}EP; 2,>0,n=0, 1, ---},
Q) =§0 0 fo®Fn, {an} EP .

By ([7] Lemma 5. 2) Qi) is a cyclic and separating vector for 7(#B(L*(R))) and
the modular conjugation operator J, _ . equals the involution TEL? ®L>>T*CL?
®L? and the modular operator 4o, equals 7 (4 ))n(.Q(a 1), where 2 (7' (2, )

= {TEL*®L?; s TR, )EL2®L2} and 7 (Q(a DT= T.Q(,, , for Te9 (@’ (Q(a 1)). Let
&/ be the unbounded CCR-algebra for one degree of freedom and 7, the
Schrodinger representation of /. Then 7(of) is a self-adjoint O*-algebra on
F(R) satisfying 7,(#)w=C1. Let .4 be an O*-algebra on & (R) containing
7o(s/). Then we put

S ®L*={TEL*QL*; TL*(R)C ¥ (R)},
7X)T=XT, XE M, TES L’

and then 7(#) is a self-adjoint O*-algebra on F®L? satisfying 7(#),=
7' (B(L*(R))) and (x(M).)" =@(BL*R))). Let {a,}EL. Then Q,,is a
cyclic vector for the von Neumann algebra 7(#(L*(R))) but it is not a cyclic
vector for the O*-algebra 7(#) in general, and so we need to consider the
generalized vector Xg(an} for n( M) :

D(Qg, )=z Ex(M) ; Q) ED(@(XN*) and (XN *Q,,,EF ®LY,
g, (@@X)) =n(XN)*Qy,), xX)ED g, ).

We have the following results for the standardness (or modularity) of (z (%), A r
}'Cg(a")) ;

(1) Suppose {x(Y)n(X") *Q{an, : X, YED (Ag(an)) ﬂD(Ag(an))*} is total in L*®
L% Then I'= @ (M), Ag(an), )fg(an)) is a modular system satisfying 9r=S QL™

(2) Suppose MO {f,®f;n, nENU{0}}. Then (z( M), Ao, Ko, ) is a
modular system.

3) @(FH(F®R)), o, o X, )) is a standard system. In fact, since N =
Z (n+ 1)f,,®f,167ro(;zl) and ¥(R) = Al 2 (N®), it follows that {a R CFL(R)
for all t&R, which implies A (my ®L2C9’ ®L? for all tER. Furthermore, it
follows that
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{7 (£ ®f ) A(fi®f)Qy ;3 n m, k, IENU {0} and A€ 8(L*(R))} C¥'®L?

and it is total in L*® L% Hence, the statement (1) follows from Example 5. 12. If
MO, ®fw; n, mENU{0}}, then {z(f,®f,); n, mENU {0}} CD(AQ( )N
D (2, ))' and {z(Nz(XN*Q,,; X, YED(,, )OD(AQ( ) is total in L*®L?,
and so the statement (2) follows from (1). Slnce Q{a )Eff*(y (R)) for all tER,
it follows that 45 7(£'(#(R)) Agj{Z}Cﬂ(.‘l’T(y(R)) for all tER. Therefore,
#Z(FH(F®R)), Ag(a . Ao, )) is a standard system.
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