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Cyclic Generalized Vectors for Algebras
of Unbounded Operators

By

Atsushi INOUE * and Witold KARWOWSKI **

§ 1. Introduction

Algebras of unbounded operators called 0* -algebras appear in rather broad
pure mathematical context (operator theory, topological *-algebras, represen-
tations of Lie algebras etc.) and the physical applications (the Wightman quantum
field theory, unbounded CCR-algebras, quantum groups etc.)- This motivated
systematic studies carried on for about three decades.

One of the most serious difficulties in the investigations of O*-algebras is
caused by the pathological relations between the invariant subspaces and
projections of the commutant ^w of an 0*-algebra Jf[69 15] which prevents Jf
from being spatially isomorphic with a direct sum of 0*-algebras possessing cyclic
vectors in general. In other words only a very special subfamily of 0*-algebras
have representations with cyclic vectors. On the other hand the concept of cyclic
vector proved to be very useful for studies of 0*-algebras [4, 9, 10, 12, 19]. These
facts suggest that perhaps a generalization of the notion of cyclic vector would
provide a useful tool for investigations of a wider class of 0*-algebras. In this note
we shall pursue this idea.

To be more specific, let Ji be a closed O * -algebra on a dense subspace 2 in a
Hibert space 3tf satisfying ^W^C £^. The motivations as well as the guidelines for
the choice of appropriate definition of generalized vector emerge from following
three problems :

(i) Vectors in ffl — Q). It seems reasonable to require that any vector f£J"f
should be a generalized vector for Jt. Observe that if f£=^ then it defines a linear
map Af from M into & by

Communicated by H. Araki, October 26, 1992. Revised August 27, 1993.

1991 Mathematics Subject Classifications : 47D40

* Department of Applied Mathematics, Fukuoka University, Fukuoka, Japan.

** Institute of Theoretical Physics, University of Wroclaw, 50205 Wroclaw, ul. Cybulskiego 36,

Poland.



578 ATSUSHI INDUE AND WITOLD KARWOWSKI

This map has following property

*AfGO for allX,

This suggests that if f GE ffl — 2 then it can still define a linear map from a (possibly
trivial) subspace <3> (A^) C Ji into Q). If we wish to preserve the above multiplicative
relation, then ^(Af) has to be a left ideal of Ji. This requirements result (see Sect.
3) in the following :
For any fe jf , Af is a linear map defined by

(ii) Weights on Q* -algebras : It is well known that weights play an important
role for the study of the structure of von Neumann algebras [2, 5, 21], and so it
seems useful to extend the notion of weights on von Neumann algebras to
0*-algebras. Amap<pof^(Jf^ = {^XiXk'9Xk^Jif(k = l929 ... , it), n^N} into

[0, +00] issaidtobeaweigAMfpU+£)=0>U)-i-0>CB) and0>(14)=ApU) for
4, B^&(Ji) and 1 >0. Then the GNS-construction (T^, A*, .#%,) is well-defined.

Taking Af in (i) and A9 in (ii) into consideration, we define the notion of
generalized vectors for Ji as follows : A map A of Ji into 2 is said to be a
generalized vector for Ji if it is a linear map of a left ideal D(A) of ^ into ^
satisfying A (XA ) = Jf A (A ) for all X£ Ji and 4 £D (A ). A generalized vector A for
Ji is said to be cyclic if A (D(A)) is dense in ffl .

(iii) A generalization of the Tomita-Takesaki theory to O* -algebras : Tomita-
Takesaki theory plays an important role for a study of structures of von Neumann
algebras and for a study of quantum physics, and so it is desirable to extend the
results of Tomita-Takesaki theory to O* -algebras. With this viewpoint, in the
previous paper [9] one of us A. I. defined and studied the notions of standard
system and modular system which made it possible to develop the Tomita-Takesaki
theory in O*- algebras with cyclic vector. In this paper we shall extend the concepts
of standard systems and modular systems to O*- algebras with cyclic generalized
vector by the following procedure :
Let 0^8r, A) be a pair of a closed O* -algebra Ji on & in Jf satisfying Ji'^^Qi and
a generalized vector A for Ji satisfying A ((D(A) nD(A) f)2) is total in jf. Then we
define three commutants A' , Aa and Ac and the bicommutants A", ACTa, Acc of A which
are generalized vectors for the von Neumann algebras Ji'^ and C^)',
respectively. Suppose A'(dXA' ) HD(AX )*)2) is total in Jf. Then, the map
AOtO^AQirO, JTeD(A)ni}(A)t and A%4)^A"U*), ^eD(A / /)nD(A / /)* are
closable in ffl and their closures are denoted by S* and Sr , respectively. Let S* =

and Sx"=J^"/i^'2 be the polar decompositions of S^ and Sr, respectively.
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Then we see that Si CSr , and Jr (<X) '/A- = -X and A\- (uTi) 'Jp" = CX) ' for all
t £=R by the Tomita fundamental theorem. But, we don't know how the unitary
group {JrKeR acts on the 0*-algebra M, and so we define a system which in this
respect has the best properties : C/^, A, A' ) is said to be a standard system if

(51) Ji-^ = ̂  and

(52) J

Then we shall show that if (^, A, A' ) is a standard system, then Sx=SjL",
AiXAx11, X^Jl, r£R) is a one-parameter group of * -automorphisms of

and /I satisfies the KMS-condition with respect to {o}}t*=R. Suppose AC((D(AC)
)2) is total in jf. Then SVs JACC and JA

CC are similarly defined. (J(, A, Ac)
is said to be an essentially standard system if

(S3) Al«9 = 9 and

and further if

(S4) ^

then (exC A, Ac) is said to be a standard system. We shall show that if (Jt, A, Ac)
is a standard system, then (^, A, Ax) is a standard system and Sx= Sx"=Sxcc.
Furthermore, we shall show that if (J%, A, Ac) is an essentially standard system,
then there exists a cyclic generalized vector Ae for Ji which is an extension of A such
that (Jt, Ae, Ag) is a standard system. By relaxing the requirements (S3) and (S4),
we define the notion of modular systems which enable us to develop unbounded
Tomita-Takesaki theory and which is more applicable to examples. Roughly
speaking, {Mt A, Ac) is a modular system if there exists a good subdomain in ^
which is ^-invariant and {Alfc} -in variant. We shall show that ifF= (Jf, A, Ac) is
a modular system, then there exists a standard system (<^CT), As, AJ) which is an
extension of (J(, A, Ac) in a certain sense. We shall finally apply these results to
{M, Af0 , Af0), where f0 is a cyclic and separating vector for (^w)' , and give standard
systems and moduler systems for unbounded CCR-algebras.

In this paper we have treated only O* -algebras Ji on Q) satisfying Jf'^CL^.
In more general case, that is when Jt'^ is not a von Neumann algebra but there
exists a good von Neumann algebra & such that $' C Jt'^ , we can consider cyclic
and separating systems, standard systems and modular systems using the induced
extension i# C/^0 of Ji by $' [11, 19]. But, in order to clear the arguments we
have assumed Jt'^^Q) in this paper (in this case, Ji'^ is a von Neumann algebra
and <T =UO-

In a forthcoming paper we shall investigate when a general O*-algebra is
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algebraically (or spatially) isomorphic to an 0*-algebra with a cyclic generalized
vector, and the problem of constructing standard (or modular systems) from
standard von Neumann algebras. Furthermore, we shall study weights on
0* -algebras in detail.

§ 2. Preliminaries

In this section we state some definitions and basic properties concerning
O*-algebras [3, 6, 11, 13, 15, 18, 19].

Let ^ be a dense subspace in a Hilbert space 2?. We denote by &(&) the set
of all linear operators X from ® into 2 such that 2 (X*) D& and X*2 C ®. Then
&(&) is a *-algebra with the usual operations and the in volution X-^X^=X*[2.
A *-subalgebra of J&^C®) is called by Schmiidgen [19] an 0* -algebra on ^ in ^f
but other authors often write 0/-algebra. Throughout this paper we assume that an
O*-algebra has always an identity operator. Let M be an 0*-algebra on Q). A
locally convex topology on Q) defined by a family { || || x ;X^J?} of the seminorms :
|| f || x= II Xg || (fEE^) is called the induced topology on <&, and denoted by tjt. If

the locally convex space (^, tjf) is complete, then jft is said to be closed. We put

Then 3}{JT) is identical with the completion of (0, r^r) and J^={X ;X^J^} is a
closed 0*-algebra on i${Jf) which is the smallest closed extension of Jt and it is
called the closure of Jt. Hence Ji is called closed if and only if ^ = ̂ (^JT). A
vector fo of ̂  is said to be cyclic (resp. strongly cyclic} for ^ if ̂ fo is dense in the
Hilbert space jf (resp. the locally convex space (®, r^)). If ®* (^) = ̂ ^(X*)
= ̂ (^), then ^ST is said to be essentially self-adjoint, and if ^* (^) = <®, then ^
is said to be self-adjoint. Let *» be an ^-invariant subspace of @ and Jt\ *n the set
of all restrictions X[m of X^Jt to m. Then Jt\ <m is an O*- algebra on m. \tJl\wi
is essentially self-adjoint, then EJ2) equals the closure ~*n<M of m, with respect to the
induced topology IM , where E^=Proj. ^m. Conversely if Jt is self-adjoint and Em@
=^mt-^ , then Jt\*n is essentially self-adjoint [15] . An element f of ^ is said to be
a self-adjoint vector for ^ if M\ ~ M% is essentially self-adjoint [6] .

We define the weak commutant Jt^ of a f-invariant subset M of &(&) as
follows :

^;= {C£ J'QT ) ; (CXf I 77) = (Cf ! Xf?7) for all f, 77^^ and

where J^(jf ) is the set of all bounded linear operators on Jf . Then ^w is a *-
invariant weakly closed subspace of ^ ( Jf) , but it is not necessarily an algebra. It
has been known that if M is a self-adjoint 0* -algebra, then Ji'^Q)^Q) ; and further
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if and only if M'^ is a von Neumann algebra and X is affiliated with
)' for each X^Ji [15, 19].
We fix the notations which will be used in this paper. Let s$ be a * -algebra.

For subsets m, n of s$ we define subsets ^*, win and ^2 of stf by

— {xy ; X G: *^ y E= n] ,

i= {xy ; x,

When j/ is a * -algebra without identity, we denote by stf\ the *-algebra obtained
from j/ by adjoining an identity.

§ 3. Cyclic Generalized Vectors

In this section we define the notion of cyclic generalized vector for an
O* -algebra which is a generalization of that of cyclic vector. Let Ji be an
0*- algebra on a dense subspace Q) in a Hilbert space ffl .

Definition 3. 1. A map A of Ji into Q) is said to be a generalized vector for Ji
if the following conditions hold :

(i) The domain D(A) of A is a left ideal of Ji.
(ii) A is a linear map of D(A) into ^.
(iii) A (X4 ) = JW 04 ) for allX^Jt and ,4 ̂ D (A ).

^4 generalized vector A for Jt is said to be cyclic (resp. strongly cyclic^) if A (D(A)) is
dense in M (resp. (2, r^)).

Let A be a generalized vector for Ji. Then, the closure of an O* -algebra
(xrA(D(A)) -X^Jt} onA(D(A)) in ^ (A) -A(Z>(A)) is denoted by M (A) and
called the O* -algebra generated by A. ^(A) is a restriction of JI. Even if A is
cyclic, ^(A) does not necessarily equal Ji (see [19], Example 8.3.18). If however
A is strongly cyclic, then ^(A) =Jt. Let AI and A2 be generalized vectors for Ji.
If D (A 0 CD (A 2) and Ai(X)=A2(X) for eachX&D(Ai), then A2 is said to be an
extension of AI and we write Ai^Ai .

We give some examples of generalized vectors for O* -algebras.

Example 3. 2. (i) Let Ji be an O* -algebra on ^ in ^f and fe jf . We put

Then Af is a generalized vector for ^. It is clear that A^ is cyclic (resp. strongly
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cyclic) if and only if {X**£;X^D&£} is dense in tf (resp. (2, *.*)). We remark
that putting

=X£ XGD(A),

which is not necessarily a left ideal of Ji because X+Y~AX+Y in general,
and so A is not a generalized vector for Ji.

(ii) Let stf be a *-algebra and fa positive linear functional on j/. Let Or/,
A/, Jf/) be the GNS-construction for/ If 1EE.S/, then A/(l) is a strongly cyclic
vector for TT/(J/). Let l^j/. Suppose 7r/(x)-^A/(x) is a map, that is, ;z/GO=0
implies A/Gc) =0, and then put

Then A is a strongly cyclic generalized vector for the O*- algebra #/(<£/) i with
)=7r/UO.
(iii) Let «B/ be a * -algebra and let

A map ^? of 9(sf} into R+ U {+ °°} is said to be a wezg^r on ^(j/) if
(i) ^(6Dc*x)=a^(x*^c), x£j/, a>0;
(ii) <p(a+b}=<p(a)+(p(]b}, a, 6e^(j/), where 0 • (+00) =o.

Let ^ be a weight on ̂ (j/). We put

^^ = linear span of {fl*a ;

^ (S afcfl*ak) = S ak(p(a*ak) for 2
k k k

Since(ai+fl2)* (fli +^2) + (fli — 02)* (fli — fl2) =2(01*01+0*02) (fli , 02^^?), it
follows that *% is a subspace of s& and ^ is a well-defined linear functional on *^ •
But, n$> is not necessarily a left ideal of j/, and so we put

It is easily shown that n<p is a left ideal of s& and

^ (6*0) 2<<p(6*6)<P(o*o) for alia,

We put
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Then X^n^^n^/ N9 is a pre-Hilbert space with the inner product

We denote by Jf ^ the Hilbert space obtained by the completion of the pre-Hilbert
space Ap(*fy). We define a * -representation 7$ of j/ by

and denote by ^ the closure of ^. We call the triple (x9, A^, «#%) the
GNS-construction for #>. Suppose ^(a)— ̂ A^(a) (a^n^) is a map and then put

Then A is a strongly cyclic generalized vector for TT^(J/)I with the domain n<p(n<p}.

§ 4. Cyclic and Separating Systems

In this section we define commutants and bicommutants of cyclic generalized
vectors for O*- algebras and then study cyclic and separating systems. Throughout
this section let (^, A) be a pair of a closed 0*-algebra Ji on 2 in ffl and a
generalized vector A for Ji satisfying

(i) X^C^,
(ii) A (D (A^D (A)) is total in JP.

We first define three commutants of A as follows :

PI 0CO s.t.
JfeDU)

A:A (X) =X£K for all

n S0f f*) s.t.
jre/)(A)

KX Gf) =^t*fjf for all

s.t.
KX (X) =X?K for a

Then we have the following
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Proposition 48 1. Ax, Aa a/i^ Ac are generalized vectors for the von Neumann
algebra M* and A C C A X CAa.

Proo/ Since /tdK/O^OO) is total in Jf, it follows that %K is uniquely
determined for JTeD(Ax), D(AX) is a subspace of ^w and Ax is a linear map of
D (A ' ) into ^ Ha) 0 00. Take arbitrary C e ^; and JT eD (A x ). Then, since JT is
affiliated_wMa)(^)/ for each JffGlKA) (by (i)), it follows that CA'GO^

and CJU (X) = CTAX GO =XCX' (JO for all JfeD(A). Hence we have

x) andAx(QO=CA'GO

for all C£^; and A'GDUO. Therefore, D(AX) is a left ideal of M* and Ax is a
generalized vector for Jt(,. We can similarly show that ACT and Xc are generalized
vectors for Jg(,. It is clear that A'CA' CACT.

Definition 48 2. {M, A, AO (re .̂ (uJT, A, Aa), (^ A, Ac)) is ^aiW to ^?e a cyclic
and separating system if it satisfies the conditions (i), (ii) and moreover

(in) A'CDCrrDOl')) (resp. la(f>(W*D(W\ Ac(Dac)*Dac))) is total
in JP.
In case M consists of bounded operators we have /lx=Aa=/lc, and so we simply call

t, A) a cyclic and separating system provided (M, A, Ax) is cyclic and separating.

Let C/^, A, AO be a cyclic and separating system. Then Ax is a cyclic
generalized vector for the von Neumann algebra Ji'^ satisfying A'(D(A')* D(AX))
is total in Jf , and so by Proposition 4. 1 three commutants (A')7 , (A')c and (AX)C T

of A f are well-defined and they are identical. To emphasize the commutant of A '
we use the notation (A'X (simply. A") as the commutant of A' , and then X" is
defined as follows :

s.t.

=K£A for all

It is easily shown that A " is well-defined and it is a linear map of the subspace D (A " )
of CJC)' into JT.

Proposition 40 3, Suppose {M, A, Ax) zs a cyc/i'c an^ separating system. Then
w)' , A / x ) zs a cj;c//c and separating system satisfying A"' = (A / x)x — Ax.

Proo/ It is easily shown that A/x is a generalized vector for (J^^Y . We show
A / X(D(AX /)) is dense in jf. Take an arbitrary JTeD(A). Let X=U \ X \ be the
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_ _ p°° _
polar decomposition of X and X\ = I tdE(t) the spectral resolutions of X

Jo

We put

En= dECO SLndXn=XEn,
Jo

Since X is affiliated with CX)' , it follows that U, Xn^ CX)' and

for all K^DQ'} and n£N. Hence we have

Xn^DW) and A/x(Xj = t/EnC/*A(Jr), /i^N. (4.1)

Furthermore, since

for all Xi, ^2ei>(A') and A'(DU')*i>(A')) is total in tf, it follows that

C/t/*A(X)=A(JSr). (4.2)

By (4.1) and (4.2) we have

limA'Of,)=AOf). (4.3)
«— >°o

Furthermore, by the definition of Xn we have

limJfBf=j£ fe^a), (4.4)
n-^-oo

lim^*7?=X*7?, jye^Cf*). (4.5)
n-*oo

Since A (D (A)) is dense in jf, it follows from (4.1) and (4.3) that

")) is dense in ̂ . (4.6)
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We next show that A"(Z>(A")*lKA")) is total in Jf. It foUows from (4.1) and
(4.5) that U*A(7); A^D&"\ 7eED(A)} is dense for AdKA) fD((A)).
Furthermore, it follows from (4.6) that A"(ZKA")*D(A")) is total in jf.
Therefore, A"' = (A77)' is well-defined by :

s. t. ja"G4) =^1*

It is clear that A' CA'". Hence, (C/^w)' , A") is a cyclic and separating system. We
finally show A"=A7 . Take arbitrary ^eD(A'") and JffeD(A). Then it follows
from (4.1) and (4.3) that

=lim *A"(X) -
H— >oo n-*oo

Therefore, A7//(^) e n ® (AT) andlA/x/(j:) -J^A (JT) for allXeD(A), and
^reD(A)

D(AX). This completes the proof.

Let C/^, A, Aa) be a cyclic and separating system. As defined A" we can define
the commutant (Aa)a (simply, Aaa) as follows :

Then we have the following

Proposition 40 4. Suppose {Jl, A, Aa) w a cyclic and separating system. Then
((^y , Aacr) is a cyclic and separating system satisfying Aaaa- (A^)a=Aa.

Proof. This is proved in similar to the proof of Proposition 4.3 considering the
polar decomposition of X^* and the spectral decomposition of X** |, XGED(A).

Let (M, A, Ac) be a cyclic and separating system. As defined A" and ACTa we can
define the commutant (Ac)c (simply, Acc) as follows :
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Then we have the following

Proposition 4. 5. Suppose {Jt, A, Ac) is a cyclic and separating system. Then
(CX)' , Acc), (CX)', A") and (CX)' , Aaa) are cyc/ic ancf separating systems
satisfying AaaCA"CAcc and Aa:DA' ZXACC)C=ACCCDAC.

Proo/ It is clear that Acc is a generalized vector for (Jt'*)' . It follows from
Proposition 4.1 that (^, A, A' ) and C^, A, Aa) are cyclic and separating systems,
which implies by Proposition 4.3, 4.4 that (CX)', A") and (C^C)', Aaa) are
cyclic and separating systems. Further, since Aac7CA" CACC, it follows that (C/^w)' ,
Acc) is a cyclic and separating system. By Proposition 4.1, 4.3 we have ACCAC C CCA /

CAa.

We remark that A'"=A' and Aaaa=ACT, but ACCC7^AC in general as will be seen in
Example 4.6, (6) below.

Example 4. 6. Let Ifo^Jf — ̂ . Suppose fo is a cyclic and separating vector for
C)' and {Xty^fo ; *, yeiKAft)} is tote/ m Jf . Then we have the following

results :

(1)

Hence (^, A f o , Ag,) is a cyclic and separating system.

(2)
(3)

(4) AgjSAftSAg, ITI gewero/. In fact, if F0e ^ ) @(X\ then
, then " "

(5) The following statements are equivalent : (a) (Jf, Afo , A^0) is a cyclic and
separating system, (0) f0e ^^(X), (7) Z>a /

fe)=^r;, (5) A'^A?0. In fact,
suppose (^, A f t , Af0) is a cyclic°and separating system. Then, since AftDAg7 and
(1), we have Aft^Ag7, and so by Proposition 4.3, 4.4 Af t=Af 0 . And then D(A7

ft)_=
^; by (1), and so F0e ^n }^(X) by (2). Conversely suppose f0e ^H }^(Z).
Then, I&D(Af0), and so Aft=Ag, . Therefore, (^, A f t , Aft) is a cyclic and
separating system.

(6) Suppose {Jt, Aft , A|o) is a cyclic and separating system. Then, Ac|0= Af0=
1 0(J si^sl ^ ) C ( — "1CCC _ •)' _ TC7Aft and A f t M A f t — A f t — Aft.

In fact, since D(AC) riD(Ac)* is a nondegenerate *-subalgebra of Jt'v, there
exists a net fc} in D(AC) nD(Ac) * such that 0</^a</ and Ka f / strongly. Then
it follows that
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lim
a, 0

lim AUCKflCO *) =KaC*Ke£0 - >C*f0=A'fo(C*)
a, p

for each C^Jf* , which implies Af0= A|0 . By (4), (5) we have Af0= Aft = A|a and A£0
*i '

ft

§ 5. Standard Systems and Modular Systems

In this section we study standard systems and modular systems which are able
to develop the Tomita-Takesaki theory in 0*-algebras. Throughout this section let
(e/^5 A) be a pair of a closed O*- algebra M on a dense subspace 3f in a Hilbert space
Jf and a generalized vector A for M satisfying

(0 ^;^c^;
(ii) A((Da) tnDa))2) is total in jf .

By Proposition 4. 3 we have the following

Lemma 5. 1. Suppose
(iii) A'CCDGO HDUO*)2) is total in jf .

r/zew ^/ze following statements hold :
( 1 ) A ' (D (A 7 ) P D (A x ) * ) is an achieved right Hilbert algebra in jff equipped

with the multiplication and the involution :

f //s ng/if vow Neumann algebra equals Jt'^ .
(2) r(D(;i") HDU")*) w an achieved left Hilbert algebra in 3ff equipped

with the multiplication and the involution :

A,

and it equals the commutant of the right Hilbert algebra /T
(3) DGO^eCX)7 ; ^A^-M s.t Ah'(K}=K£A for all

7)*} and
(4)
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and X(K)=

Suppose A'((D(A') flDGT)*)2) is total in 3f. By Lemma 5. 1 the map A"G4)
->;i"U*), ;4eZ>U") nD(A")* is a closable conjugate-linear operator in jf, and
so its closure is denoted by Sr • Since

a CAD i Aw*2))=aw*i) i AGO)
for all ZeDU)nD(A) t and J^, j£2eZ>U') nD(A7)*, it follows that the map
A (AT)->A (Xf), XeDOl) nZ>(A) r is a closable conjugate-linear operator in 3? , and
so its closure is denoted by S*. Let Sr— «/r^K2 ^«^ 5fA=:/A^I/2 be the polar
decompositions of Sr and5^, respectively.

Lemma 5. 2. Si//?/wwe A'CCDUO nDCA')*)2) is toto/ 1/1 ^. Then

Proof. Take an arbitrary XeD(A) HDU)1. Let Z=F | X \ be the polar

decomposition of X, \ X \ = I t dE(t) the spectral resolution of X and En =
Jo

r"dE(0 forn^N. We put
Jo

Xn=XEn,

Then, by (4.1) and (4.2) we have

J^&DOl"), rOO = ^£nC7*AOO(neN) and C/I7*A(^) =AGO. (5.1)

Furthermore, we have

for all K &D (A ' ). Hence we have

JT*eD(r) and A^CJSr*) =£^01:0 (n^N). (5.2)

By (5.1) and (5.2) we have

(5.3)

Therefore, A(jr)e^(SA") and 5rA(X) =A(JT f) =5AA(JT). This completes the
proof.



590 ATSUSHI INOUE AND WITOLD KARWOWSKI

By the Tomita fundamental theorem [22] we have

(5.4)

Q' , f €ER), (5.5)

(5.6)

(5.7)

a?'(Da')n JDa')*)=DU')nD(A')* and
(5.8)

Furthermore, we have

')) =D(r) and A'(a?'(fl)) = JH'(B), (BeiXA'), reR), (5.9)

). f^K). (5.10)

In fact, the statement (5.9) follows from Lemma 5.1, (3) and

(by 5.8)

for aU JJeDCA"), K^D(f) RDU 7 )* and f£R. The statement (5.10) follows
fromA" r=A / and (5.9).

We have the almost same results as Lemma 5.1, 5.2 and (5.4) ~ (5. 10) for Acc.

Lemma 5. 3. Suppose
(iii)' AC((D(AC) rLD(Ae)*)2) u tote/ /n 3f.

Then the following statements hold :
(1) Ac(D(Ac)nD(Ac)*) w a right Hilbert subalgebra of the right Hilbert

algebra A'^UOnDU')*)-
(2) Acc (D (Acc) n D (Acc) * ) is an achieved left Hilbert algebra in tf containing

(3) Let S,cc be the closure of the involution ACCU)-^ACCU*)U^^(ACC)
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D(ACC) *) and let S^=J^A\« be the polar decomposition of S^c. Then,

(4) /,c

(5) o

and

afCD(Acc) nD(Acc)*)=D(Acc) nD(Acc)* and

Acc (af (5) ) = A *<*ACC CB) (5 eD (Acc) n D (Acc) *, t e R) .

(6) ar(C) = J?«CJi?eur; CCeEur;,f6ER),

af (D (Accc) ) =D (Accc) and Accc (af (A') ) = J ̂ A

af (D (Accc) n D (Accc) * ) =D (Accc) H D (Accc) * and

Remark. Let f0 be as in Example 4.6. As seen in Example 4.6, (6), (J(, A f o ,
A|0) is a cyclic and separating system, then /lf0=A?0, and so the right Hilbert algebras
Ac(DUc)nD(Ac)*) and A 'CDUOnDCA 7 )*) <*«? equivalent. But, in general we
don't know whether their right Hilbert algebras are equivalent, or not.

By Lemma 5. 3 the unitary groups {JrheR and {J^c}teR implement
one-parameter groups {a/1 }reR and {aOreER of automorphisms of the von
Neumann algebra C^w)' , respectively. But, we don't know how they act on the
O*- algebra ^, and so we need to define the following notions :

Definition 5. 4. A triple (Jtf, A, /T) is said to be a standard system if it satisfies
the above conditions (i) ~~ (in) and the following conditions (iv) and (v) :

(iv) J?"^C^ and

(v) o? '0>CA)nDCA) t )=DCA)nDCA) t

, A, Ac) /5 safe? fo be an essentially standard system if it satisfies the
conditions (i) , (ii) , (iii) ' and the following condition (iv) ' :

Furthermore, if

(v)' a



592 ATSUSHI INOUE AND WITOLD KARWOWSKI

then (M, A, Ac) is said to be a standard system.

Theorem 50 §0 Suppose (Jf, X, A') is a standard system. Then the following
statements hold :

(1) Si=S,».
(2) a}(X} = A\XAr*=o}'(jC)(Z^Ji, reR) and {a^} t^R is a one-parameter

group of * -automorphisms of M.
(3) A satisfies the KMS-condition with respect to {cr?}feR, that is, for each X9

)1" there exists an element fx, Y of A (Q, 1) such that

A 00) flnd/^y&+i) = a(rt) i A (a?

/or a// f EER, w/zere ^4(0, 1) w f/ie set o/a// complex-valued functions, bounded and
continuous on 0<Im z<\ and analytic in the interior.

Proof. Take arbitrary X, FeD(A) fllKA)1. By (5.3) there exists sequences
{Xn} and {yj inDCAOnDCAO* such that

Mm X'&J =A (X), lim A"(X*)
n-^-cxo H— >°o

(5.11)

By ([22] Theorem 10.17) and (5.6), for each n^N there exists an element /„£=
^4(0, 1) such that

W(Y*) I A/W(X*))) = (A//(F*) I JW^X*)) (5.12)

for all r^R. By the condition (v) in Definition 5.4, A (a? (XO is well-defined and

A(afCr)) = ̂ ACr) (JEER). (5.13)

In fact, this follows from the equality :

A'CO) (by 5.8)
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for all^^z&DOOniKA')*. By (5.11), (5.12) and (5.13) we have

sup | /.(O- U (of C*)) I A 00)

A WOO)) i
*eR

< | | A'CY-JO-ACY*) II II A"CC) II + II A(yt)

Hence, there exists an element fx, Y of A(fl, 1) such that

A (7)) and/* y(f +0 = 01(1*) A (af

(5.14)

We next show S^Sr- Let jf be the closure of {A 00 ; JTt=jre/)(A) nD(A) f} in
Jf . Then JT is a closed real subspace of jf . Since A (D (A) HD (A) f) C jf +/ jf and
it is dense in tf , we have ( Jf +i jf ) ̂  = {0} . Furthermore, we have Jf H / Jf = {0} .
In fact, take an arbitrary fEE jf D/Jf . Then there exist sequences {/4j and {Bn} in
D(A)nD(A) tsuchthat^I=^n , Bl=Bn, lim^n = f and \imBn= —i£ and then we

n-^-oo «-^oo
have

(S

= lim (A '(

foraUA'i ,A'2eD(A')nZ)(A')*, and so

=a'(^2*^,) i -if)
=i(A'CK2*X,) I f)

=«(f A'asri-jfO).

Hence, (f | A'(XfJS:2))=0 for all ̂ u A:2eD(A')nD(A')*. Since A'((D(A')n
I>U')*)2) is total in 3ff, we have f=0. Therefore, it follows from [17] that 5A

equals the closed operator S denned by



594 ATSUSHI INOUE AND WITOLD KARWOWSKI

(5.15)

Furthermore, by (5.14) the one-parameter group {JrheR of unitary operators
satisfies the KMS-condition with respect to Jf in the sense of ([17] Definition 3.4)
and by (v) in Definition 5.4 zf'r JfC jf for all r<ER, and so it follows from ([17]
Theorem 3.8) and (5.15) that A*' = A* for all t £R. Therefore, Sr =S*, and so by
(v) in Definition 5.3 and (5.14) A satisfies the KMS-condition with respect to the
one-parameter group {ofKen of * -automorphisms of Ji. This completes the proof.

Theorem 5« 6. Suppose (*/C A, Ac) is a standard system. Then {Jt, A, A') is a
standard system satisfying S* =Sx* ^S^.

Proof. We can show Sx=Sxcc in the same way as in Theorem 5. 5, and by
Lemma 5. 3, (3) Si=Sx*=Sx<x. Therefore, (^, A, A') is a standard system. This
completes the proof.

Remark 5. 7. Suppose Aa((D(Aa) HD(Aa)*)2) is total in JP. Then the closed
operator Sxaa is defined as the closure of the involution Xao(A}^Xoa(A *) and S^CSV'
CS^cc, but Sx°° and S* don't have any relation in general. So, we don't consider the
standardness of (^, A, ACT).

We next show that if (^, A, Ac) is an essentially standard system, then there
exists a cyclic generalized vector Xe for M which is an extension of A such that (^,
Ae, Ag) is a standard system.

Theorem 5B 8. Suppose {Jt, A, Ac) is an essentially standard system and then
put

k

where

; 3 {Ar} CD(ACC) s.t. A7g-+X£ yg^@ and

Ae is a cyc/ic generalized vector for M such that

(1) AeDA,
(2) A^-AC ,
(3) (^, Ae, Ag) is fl standard system.
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Proof. Since AC((D(AC) n/>(Ac)*)2) isjotal in jf, it follows that I is a
well-defined linear map of the vector space D (A) into ^. Take arbitrary A"EED (Ac)
andJreD(A). Then there exists a net {A7} in D(ACC) such that A7g-*Xg for each

and ACCU7)^A (X). Since ACGO e®, we have

= lim£"AccC4r) =JTA GO,
7 7

which implies that Ae is a generalized vector for Jt such that

Hence, *:&D(AD and AS (A') = ACOO- By (5.3) we have A D A , and so A e DA.
Hence, AgCA c . Thus we have Ag = Ac and so (./C Ae, A£) is an essentially standard
system. We finally show af(£>(Ae) nD(Ae)

t)CI/)(Ae) nD(Ae)
t for each r^R.

Take an arbitrary XGD(Ae) PlKAjt Then, since AXAf = ACC, it follows from
(5. 3) that there exists a sequence {Xn} in D(ACC) RD(ACC)* such that Xn—^X
(that is, VimXnS=XS and l\mX?g=X^, vfe^), lim Acc(Xj =Ae(AT) 'and

AT^^AeOSTO. Hence "it follows from Lemma 5.3°, (5) that for each?
fCO} CD(ACC) nD(Acc)*^'/^C^,afan)^-ar(X), lim A* (of GO)

lim JfccAcc (JSTJ - J J«Ae (X) and lim Acc ( (Zn) * ) - J J«Ae (X
f), whch implies that

f Gf) ̂  ^> OU) n D (Ae)
 f and ^Gf Gf ) ) = ^/AccAe (X). Therefore, we have

j nZ>(Ae) t)CD(Ae) nD(Ae)
f for each r^R, which implies (U8T, Ae, AS) is

a standard system. This completes the proof.

Remark 5» 9. Suppose {Jt, A, Ax) satisfies the conditions (i)~(iv) and it
doesn't satisfy the condition (v). Then we don't know whether the same result as
Theorem 5. 8 holds.

Weakening the condition (iv)x in Definition 5. 4, we define the notion of
modular systems which is able to apply the unbounded Tomita-Takesaki theory to
more examples.

Definition 5. 10. A system F= {Jt, A, Ac) is said to be modular if the conditions
(i), (ii) and (iii)x in Definition 5. 4 and the following condition (iv)" hold :

(iv)" There exists a dense subspace $ of (<2>, ^) such that

i = l, 2}
in the Hilbert space

Let P={Jt, A, Ac) be a modular system. Then there exists the maximal
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subspace @r of 2 satisfying the above conditions (iv)i/~(iv)4/. Since <3)r is
maximal, it follows that Ji'^r^^r, which implies by ([7] Theorem 3. 3) that

*(D = {X^&(®r) ; X is affiliated with CX)' }

is a generalized von Neumann algebra on &r over C/^i)' generated by <M\$)r and
the 0*-algebra Jgf (D on @r generated by {Al{«J( A ̂  \®r ; f £R} is a closed O*-
subalgebra of ^(/O. Furthermore, {erf 'hen is a one-parameter group of *-
automorphisms of <£ CO and ^ CO . For modular systems we have the following

Theorem §0 11. Suppose F= (Jf, A, Ac) w a modular system and then put

w/iere

D (I) - {X ̂  ^ (D ; 3 {4r} CD (Acc) s. f.

As w a cyc/zc generalized vector for ^(/") swc/z

(1) D(AS
C)= {^CDCAO ; Ac(^)e^r} and

D (A?) HID (Af ) * =D (Acc) HD Ucc) * ;
(2) d%(T\ A,, AJ) is a standard system ;
(3) (jSf(D, A/JSfCD, (A5r^f(D)c) £s a standard system, where

and

Proof. We can show in similar to the proof in Theorem 5. 8 that As is a
generalized vector for ^ CO . Since °U (jT) is a generalized von Neumann algebra on
@r over CXX , it follows that ^(r);^r=<X^rC^r. Since A (D (A) nD(A)0
C^C^r? it follows from (4.4), (4.5), (5.3) and A / X CA C C that

Xr^rCDOQ nD(As)
f and As(^r^r) =A(X> (5.16)

for allXCD(A) HDU)1; which implies that A,((D(A5) H/XA,)1)2) is total in Jf .
We show

D(AC) =

. (5.17)
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Take an arbitrary K^Ji'^ such that

KX (AT) =x£K, VX&D(A) n/KA)1"

for some &^®- Since Y*X^D(tf HlKA)1" for eachZ, YGD(A), it follows that

Y'la OO =^A (YtAO = YfJir&. (5.18)

Further, since D(AC) ni)(Ac)* is a nondegenerate *-subalgebra of Ji'^ and
A(D(A)) is dense in 2tf , it follows that D(A)ACCD(AC) ni>(Ac)*) = (£>(AC) H
D(AC) *)A CD (A)) is total in ^f , which implies by (5.18) that KX (AT) =jr& for all
JT^D (A). Hence, K^D (Ac). The converse inclusion is trivial. Thus the statement
(5.17) holds. We show

D(^ = {KE^DW • AcOOGE^r}. (5.19)

Take an arbitrary K ̂ D (Ac) such that Ac (A') £ ^r - For each X^D (I) there exists
a net {A7} inD(Acc) such that Ar%-+X& vg^@r and ACCU7)-^I(Z). Then we have

=lim AAC

r

which implies

Hence, A&DUJ). Conversely, take arbitrary ^eD(As
c) and XGD(A)

By (5.16) we have

Hence, it follows from (5.17) that K^D(XC) and Ac (A) = As
c (A) G ̂ r - Thus the

statement (5.19) holds. It follows from (5.19) and (iv)J in Definition 5.10 that
ni)(Af)* is an achieved left Hilbert algebra in J4f equivalent to D(ACC) H
*. Hence, DUf) nD(Af) * =DUCC) nDUcc) *, and so J^ = JAcC. Further-

more, it follows from Lemma 5.3, (5) that af^OU nDU,)f)CZ)(As) ni>Us)
t

for all ?£R. Therefore, (^(.T), As, AJ) is a standard system. Similarly, we can
prove that (j&?(D, A5fJ2f (A (A/^f(r))c) is a standard system. This completes
the proof.

Example 58 12. Let ̂  be a closed 0*-algebra on 0 in Jf satisfying
Q> and f0 a cyclic and separating vector for (^w) ' • We consider when F= (M, Af0 ,
A|0) is a standard (or modular) system, where Af0 is a generalized vector for ^
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defined in Example 3.2, 4.5.
(1) If the following conditions (i)~(iii) hold, then (^, Af0 , A£o) is a

standard system satisfying A^ = A%, where A^ is a modular operator of the
achieved left Hilbert algebra (J^w)' f0.

(i) {yty^fo ; X, ye/) (Aft) n/XAft)1} u total in #.
(ii) {A'lJK'zfo ; Ki^jK'v s.t. K&, K?&^&, i = 1, 2} w tofa/ m Jf .
(iii) A^2CL2 and A^MA^ = Mfor each

In fact, by Example 4. 5 (^, Af 0 , A|0) is an essentially standard system satisfying
D(Ac|0) = (^;)/andAc|)U)=^|:ofor each^e(^;)xand 4g = ̂ fe. Furthermore,
since J|Fo = Fo for each f£R, it follows that ^^(afoO^)*) n®(afo(AT)*) and
afoOirO*^, afo(X)*f0e^ for eachXeD(Afo) nD(Afo) t an^ reR? which implies
that t7fo(/)(Aft) n/XA^Oc/XAft) n/XAft)^^ each reR. Therefore, (^, A f t ,
A|0) is a standard system.

(2) If the above conditions (i) , (ii) and the following condition (iii) ' hold,
then F= {Jt, Af 0 , A|0) is a modular system :

(iii)x There exists a dense subspace $ of ($), tjt) such that

(iii); {X^fo ; *e/XAft) n/XAft)1} c^,
(iii)J ttTi^fb; K^Ji'^ s.t. JC,F0, Kf&^f, i = l, 2}

(iii) 3

(iii) i J | <f C <T /or eac* r e R.

In fact, by (iii) 2 «= {^"fo ;K^J^ s.t. A'fi,, ^""foe^r) is a right Hilbert algebra
in Jf whose commutant £%' equals the achieved left Hilbert algebra (.^O'Fo and so
^2 is total in the Hilbert space 0(5^). Therefore, (^, A f t , A|0) is a modular
system.

Below we give examples of standard systems and modular systems for the
unbounded CCR- algebras.

Example 50 130 Let & (R) be the Schwartz space of infinitely differentiable
rapidly decreasing functions and {fn}n=o, i, - C^(R) an orthonormal basis in the
Hilbert space L2(R) of normalized Hermite functions. We denote by L2(R)(x)
L2(R) (simply, L2(8)L2) the Hilbert space of Hilbert-Schmidt operators on L2

and put

and T<=L2®L*. Then ;r(^(L2(R))) is a von Neumann algebra
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on L2<S>Z* satisfying ^r(J'(I,2(R)))'=7r'(^(L2(R))). Let

72
+={{an}e/2;an>0, B=0, 1, -},

,̂ {a.}

By ([7] Lemma 5. 2) Q{cLn] is a cyclic and separating vector for 7r(^(L2(R))) and
the modular conjugation operator JQ{a } equals the involution T^
(x)L2 and the modular operator AQ{CL } equals n\Q^)n(Q2

{an}^) , where
= {T^L2®L~2 ; rD^&L^Z2} and n^Q^T^TQ^ for re 00^(0^)). Let
j/ be the unbounded CCR-algebra for one degree of freedom and TTO the
Schrodinger representation of jtf. Then 7Z"0(j2/) is a self-adjoint O*-algebra on

satisfying 7r0(^)w==Cl. Let Jf be an 0*-algebra on ^(R) containing
. Then we put

and then it(^T) is a self-adjoint O*-algebra on £f®L2 satisfying n(
^•/(^(L2(R))) and OrC^Ow)' — (7r(^(L2(R))). Let {an} EE/+ . Then Q{a } is a
cyclic vector for the von Neumann algebra 7r(^(L2(R))) but it is not a cyclic
vector for the 0*-algebra Tr(^) in general, and so we need to consider the
generalized vector XQ{a} for TT(^) :

) and

We have the following results for the standardness (or modularity) of (Tt

(1) Si/pipose {n(Y}n(X^ *Q{oLn} ; X, 7eD(A0{a }) nD(A0{a })
f} w ?oto/ m L2

L2. r/ze« r= OrC/dO, A0{a }, 4{a }) zs a modular system satisfying ^r=

(2) Suppose Ji^ {fn®fm ; n, m ^ N U {0}}. T^en (n(Jt\ A% }f Ac
% }) is a

modular system.

(3) (TrC^^^CR))), ^{a }, Ac
fl{a }) is a standard system. In fact, since N =

S (n + !)/„ ®^e^0(^/) and ̂  (R) = HN ® QV*), it follows that i?/^^ (R) C 5^ (R)

for all r^R, which implies J S ^ ^ ^ C ^ ^ for all fGR. Furthermore, it

follows that
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a<, ; n, m, k, /eNU {0}

and it is total inL2®L2. Hence, the statement (1) follows from Example 5. 12. If
mGENU{0}}, then M/,®/*) ; n, mEENU {0}} CD(Afi{a })_H_

Or(rMArO*Q{«,};* yeDtt^pni)^/) is total in L2(g)L2,
and so the statement (2) follows from (1). Since Df^e^C^CR)) for all t £R,
it follows that J^TrO^C^CR)) J^CTrG^C^CR)) for all t^R. Therefore,

, A0{"a' } , XQ{a }) is a standard system.
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