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Remarks on the Bifurcation of Two Dimensional
Capillary-Gravity Waves of Finite Depth*

By

Hisashi OKAMOTOt and Mayumi SHOJI*

Abstract

We consider the problem to determine the two dimensional water waves of permanent

configuration. The problem is a bifurcation problem ([16]). In this paper, we define a mapping G

between two Hilbert spaces and prove that the solutions of the above problem are in one-to-one

correspondence to the zeros of the mapping G. Our most important contribution in this paper is to

clarify the role of the aspect ratio, i.e., the ratio between the mean depth of the flow and the wave length.

In particular, we prove that there is no degenerate bifurcation point, whatever the aspect ratio may be.

Key words : progressive, capillary-gravity wave, bifurcation from double eigenvalue with O(2)-

symmetry, degeneracy

§ 1. Introduction

We consider two dimensional progressive water waves on an incompressible
inviscid fluid. By definition, progressive waves move at constant speeds and do not
change their profiles during the motion. Therefore the flows are stationary when we
observe them in a moving coordinate system. In the moving frame, we consider the
wave profile, which is a free boundary to be sought. The fluid flow beneath the free
boundary is determined by the differential equations but the motion of the air above
the free boundary is neglected. The mathematical formulation of the problem goes
back to 1847 by Stokes. We, however, consider this famous and old problem from
the viewpoint of [8, 9].

The problem is known to be a bifurcation problem ([12, 13, 16, 22, 23]). In
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[16] , we formulated the problem as to find zeros of a mapping

F: R2X[0, l)XJir->r,

where X and Y are certain Banach spaces. The detail will be recalled in the next
section. What is important is to notice that our formulation in § 2 contains three
nondimensional parameters :/?EER, q^R, and 7] EE [0, 1) :

® p is the nondimensional gravity constant ;
® q is the nondimensional capillarity constant ;
o 77 Is the aspect ratio of the flow. The depth is finite and infinite according

as 77^(0, 1) and 77 = 0, respectively

Thus we solve a bifurcation problem with three parameters. This suggests us
the possibility of the existence of degenerate bifurcation points of multiplicity two, a
singularity of codimension three.

Our goal in this paper is to discuss the degeneracy. The degenerate bifurcation
points of multiplicity two are well expected by the number of the parameters, but
we explain the situation by a simple account to those readers who are
fluid-mechanics-oriented and are less familiar to the bifurcation theory. Without
entering the details of the equation or seeing the physical meaning, we can say the
following by the generic bifurcation theory : Our problem is to find (p, q, 7] ; x)
satisfying

F(p, q, 77;x)=0,

Assume that F(p, q, 7] ; 0) =0. (We actually prove in § 2 that our problem satisfy
this.) In order to study the bifurcation from the trivial solution x = 0, we consider
the Frechet derivative of F at x = 0. Let DxF(p, q, j] ; 0) denote it. Generically we
can expect that the set of (p, q, 77) at which DxF(p, q, 77 ; 0) fails to be isomorphic
is codimension one In the three dimensional (p, q, 77) space. Let us denote by B this
two dimensional subset such that DxF(p, q, 77 ; 0) fails to be isomorphic if and only
if (p, q, 77) EiB. Then B is the set of points from which bifurcations occur. Usually
B consists of an infinite number of subsets, each of which is of two dimension :

(1.1) B=\jBn.
n = \

For Instance, it is frequently the case that X is spanned by some elementary
functions {</)„} ~= i . Putting

Bn={(p, q, 77) ; DxF(p, q, 7] ; 0)0«=0},
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we assume (1.1). A typical situation is <pn (s) = sin ns. If this is the case, we say that
"solutions of mode n" bifurcate from Bn. Since each Bn are two dimensional, we
may assume generically that Bn ni?m are non-empty one dimensional subsets in (p,
q, 7?) space, if n and m are different integers. Thus we have double bifurcation
points (=bifurcation points of multiplicity two) on Bmn =Bn HBm in the sense that
the null space of DxF(p, q, rj; 0) is spanned by 0m and (f>n if (/?, q, 7]^)^Bmn. On
the set Bmn we may apply generic bifurcation theory ([3, 8, 9]) and prove the
existence of the non-trivial solutions. However, since Bmn is of one dimension, it
may well be possible that there exists a point on Bmn such that the genericity
assumption fails to be met at the point. It is known ([8, 9] ) that the zero set has
complex structure near such degenerate bifurcation points.

The above argument is of pure mathematical nature. On the other hand, there
is a numerical evidence that a degenerate bifurcation point exists. [18], [19] and
[21] performed numerical computations of the bifurcations of water waves of
infinite depth. Namely they solved F(p, q, 0 ; x) =0. The numerical computation
strongly suggests the existence of a certain degeneracy, which will be explained in
§ 5 in detail. It is easy to show that there is no degenerate bifurcation point in the

plane {(/?, q, 0)}. Therefore it must be sought in the three dimensional space
{(/?, q, 77)}. However, to our surprise, [18] proved that there is no such degenerate
bifurcation. Thus we have reached a kind of paradox.

In this paper we take another look at the progressive waves of finite depth.
Since formulation in this paper is different from those in [16, 18], we here try to
look for the degenerate bifurcation points again. Our conclusion is the same as
before : there is no degenerate bifurcation point.

This paper consists of six sections. We define in § 2 an integro-differential
equations, which is a master equation. § 3 is concerned with the reduction to a
four dimensional subspace by the Lyapunov-Schmidt method and obtain the
bifurcation equation. Then in § 4 we prove that the bifurcation equations satisfy
a relation called O (2) -equivariance. We also prove that the bifurcation equation is
of a simple form. § 5 is the core of this paper: we prove nonexistence of degenerate
bifurcation points. Concluding remarks are given in § 6. The relation of the
present paper and [18] will be explained at the end of § 2.

§ 2. The Fundamental Equation

In this section, we derive the fundamental equation which describes all the
properties of the free boundaries. It consists of two subsections, 2.1 and 2.2. The
first half, 2.1, is abstracted from [16]. It is included here in order to make the
paper self-contained. The second half, 2.2, is a remark about the aspect ratio of the
flow.
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2.1. Levi-Civita's formulation
We consider progressive water waves. We assume that the density of the fluid

is constant and we neglect the viscosity. The flows are assumed to be two
dimensional and irrotational. In a reference frame moving at the propagating speed
of the wave we take (x, y} coordinate system with x horizontally to the right and
y vertically upward. We let y =h (x) represent the wave profile, which is stationary
in our coordinate system. We further assume that the wave profile is periodic in x
with a period, say L, and that the wave profile is symmetric with respect to the
j-axis. We consider two cases: the case where the flow is infinitely deep and the
case where the depth of the flow is finite. By the assumption, we have only to
consider the fluid in

R={(x,y); ~L/2<x<L/2,y0<y<h(x»,

where j;0 is either a finite constant or — °° (see Figure 1). Since the fluid motion
is described by the velocity potential and the stream function we denote by

f=U+iV

the complex potential of the flow. Here U is the velocity potential and V is the
stream function.

Figure 1. A progressive wave of permanent configuration.

We first consider the case where the flow is infinitely deep. Then the problem
is to find a wave profile function y—h(x) and complex potentials such that/is
analytic function of z =x +iy in — °° <y <h (x), and satisfies the following (2.1-4).

(2.1) u(±^-,y)=±~, on-™<y<h(±y), respectively,

(2.2) V=0 onj>=/zGc)
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(2.3)
dz\ '*"" m

A" = constant

(2.4) -/-—> c as v—> — oo
dz

where g is a constant called the gravity acceleration ; m is the mass density of the
fluid ; c is a constant, which we call mean velocity ; T is a constant called the surface
tension coefficient or the capillarity constant; K is the curvature of the curve y =
h GO, which is represented by

K=-

where the subscript x implies the differentiation. We remark that df/dz is periodic
in x = Re [z] with the period L.

In the case where the depth is finite, the conditions (2.1-3) are retained while
(2.4) is replaced by the condition that the bottom bed {y =yQ} is a stream line. We
write this in the following way :

(2.4X) FGc, j>0) = -fl (-L/2<x<L/2)

where a is a constant. The derivation of (2.1-4) and (2.4') are found in Crapper
[5], Milne-Thomson [14], Zeitler [25]. Note that the constants a and c has the
same sign. For, it follows from (2.2) that U satisfies Neumann's boundary
condition on the bottom bed and the free boundary. We then remark that we may
assume c^O. In fact, if c = 0, then 17=0 and df/dz = 0. Consequently, we have

where SQ is a constant. Putting AiGO =h GO — sQ/g and multiplying the equality by
hi, we obtain hi = 0. This implies that the free boundary is flat and the fluid is at
rest. Thus we may assume that c ̂  0 without losing generality.

It follows from (2.1) that U/c takes its maximum on the side boundary x =
L/2 and its minimum on — L/2. On the other hand, we have

nh(L/2) fty rh(L/2)
a= ^L/2,y)dy=

Jy Uy Jy:

A(I/2)

,o uy uyo

The conclusion now follows from the maximum principle. I

Since both cases are treated similarly, we henceforth assume that both a and c
are positive constants.
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We now introduce a device which was invented by Levi-Civita [13] in the case
of water waves of infinite depth and later used by Struik [22] in the case of finite
depth. We define the following functions :

(2.5) c

We regard C as the independent variable and a> as the dependent variable :
specifically, by the relation £of*>z <-> a), we regard a; as a function off- Note that
(2.5) gives us

dz - L ™

In the case where the flow is infinitely deep, £ runs in the punctured disk 0<
I T I < 1 and a) is analytic in f by the periodicity of df/dz. As f— *0, co converges

zero by (2.4). Thus the origin is a removable singularity and co is an analytic
function in the entire disk : f | < 1. Let 0 and T denote, respectively, the real and
the imaginary part of co. Let (p, a) be the polar coordinates of f, i.e., £=peia. We
further define 9 and r as the real and imaginary parts of w(f), respectively. Levi-
Civita [13] succeeded in writing (2.1-4) in terms of f and a).

Find a function a)=a)(£) which is continuous on { \ £ I <l},is analytic in { | T I
< 1} and satisfies <y(0) =0 and the following (2.7) :

(2.7) e - ^ s i n S + O o n p=l,

where p =gL/ (2;rc2) , q = 2nT/ (c2Lm).

We next consider the case where the flow is finitely deep. In this case, £ runs
in 77 < r I < 1, where rj = exp( — 2xa/cL). co is an analytic function in the annulus
{rj< T < 1}. The condition (2.4') is expressed as 0=0 onp = rj. Now (2.1-3,
4r) is rewritten as follows :

Find a function a) =(*)(£) which is continuous on {rj< \ £ \ < 1}, is analytic in {rj<
< 1} , and satisfies the following (2.8) and (2.9).

(2.8) e _ p e - , s i

(2.9) 9 = 0 on p = 7].

Both Levi-Civita [13] and Struik [22] considered the case where q = Q, while
[16] considered the general case. A compact derivation of (2.7, 8, 9) are given in
[16, 25]. Once &>(t) i§ obtained, we have the free boundary by (2.6). In fact,
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when f=exp(ia), (2.6) yields

uX Li __Tria\ „, ^~—=———e
 T^e ;cos$(e'a),

da ZTT

After the integration with respect to a, these formulae give us the parametric
representation of the free boundary {(x(a), j(a)) ; 0<a<2;r}. In this way the
free boundary problem (2.1-4) and (2.1-3, 4') have been transformed to the
nonlinear boundary value problems of an analytic function satisfying (2.7) and
(2.8, 9), respectively.

Since an analytic function is completely determined by its boundary value, a
further reduction of the equation (2.7) is possible. In fact we can write (2.5) only
by 0(1, a) (0<a<2;r). To this end, we make a definition :

Definition. For 77 e [0, 1) we define the following operator H^ :

n = l 1 7]

When 77 = 0, we simply write H for H0 . We call this operator the Hilbert transform.

Consider the case of infinite depth. Then, we have r(l, Gr)=£T(#*), where
#* (a) =6(1, a). Accordingly the problem is formulated as follows :

Find a In periodic function 6 such that

(2.10) eWB~~-pe-HBsin6+q~eHe~ = Q (0<a<27r).

In this way, we have formulated the original free boundary problem in a second
order equation for a scalar function of one variable. The difficulty of considering
unknown boundary is replaced by the nonlinearity and the existence of the Hilbert
transform H.

In the case of finite depth, the situation is almost the same. We note that r(l,
a) ^Hrj (0(1, a) ) + TQ , where r0 is a constant. If we replace/? and q by pe3ro and qeT°,
respectively, then we have

(2.11) e^—pe'^sm 9 ^ e H = ̂  (0<a<2;r).

This form is very convenient in that both cases are treated in a unified manner. In
fact, we obtain (2.10) if we put 77 = 0 in (2.11). Therefore the free boundary
problem (2.1-4) or (2.1, 2, 3, 4') is transformed to the single equation (2.11). It
is therefore natural to define the following mapping
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F(p, q, n-e)=

and the following function spaces ;

Definition.

Then we have the following theorem which is proved in [16] :

Theorem 2, 1. F zs a C™ -mapping from M2X [0, 1) XX2 into X0.

By this theorem, we can apply any standard theory of static bifurcation theory
like those in [3, 8, 9]. In the statement of Theorem 2.1, the smoothness is
immediate. The point is that F^X0=L2(!Sl)/R, i.e.,

f%-Vsin0(cr)A7=0.
Jo

For the proof, see [16] .

2.2. Explicit formula for the aspect ratio
We have to notice that the meaning of 77 is not intuitive. The constant TJ

depends on the constant a. On the other hand, the mean depth h, which is defined
as

1 C
=-^\L Jo

is a more intuitive parameter. We define the aspect ratio of the flow as r — 2nh/L.
We note that there is an implicit relation among 77, r, and $(cr) . Consequently, r and
7] can not be taken independently. Then, in some sense, the name "parameter"
seems to be more deserved by the triplet (p, q, r) rather than (/?, q, 77). In this view
we should define the following mapping G.

G=(Gi ,G 2 )

(2. 12) Gt 0* q.r;0, 7?) =

(2.13) G2Q>, q,r-,e, ri~ ^ (y (x) -yjdx-r.
jL JQ
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Of course, to determine the set {(/?, q, r ; 6, 77) ; G(p, q, r ; 9, 77) = (0, 0)} is
mathematically equivalent to the determination of the set {(p, q, 7] ; $) ; F(p, q, j] ;
0) =0, 0<77<1}. But 77 is a state variable in G, while it is regarded as a parameter
in F. Since the mapping G may be better suited to the physical intuition, we here
prove that G is a well-defined mapping and that we can apply a standard theorem
of bifurcation to it. Namely we will set up an environment where we can use
established bifurcation theorems.

To go further we need a representation of the right hand side of (2.13) by
6(0). Suppose 6 is given by the following Fourier series :

00

0=2 (flnSin na+bncos no).
k = \

Then, we define co (f) as

(2.14) ^(^-f^^^{(bn-ian)r-(bn+ian)7]2nrn} (/?< I f <1).
n = l 1 77

This function satisfies Re [co (eia}~\ =6(0} and Re [eo (7?e"0] =0. We denote the real
and the imaginary parts of a) by 9 and i. Thus Q is extended from the unit circle

! T I = 1 to the annulus 77 < £ < 1 and satisfy 6(rjeia} =0. By the integration of
(2.6), we have

which gives us

Ir- f
2,71 Jo

r(X)sin

and

y(j)e^ =XO ~^~ Peaces 0(0 v~
2JL Jrj I

Since 3; (77e'a) =j;o and 6(j]eia} =0, we have

We now have the following representation of G2:

p, q, r ; (9, 77) =-^- I [j(e/a) -3
JL/ t/0

27T Jo

do—r

—
t
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_ i p r_I(^')si
2JI Jo Jo

By the definition of a)9 we have

and

(2.16)

for re [77, 1]. Let r,0 and 5,0 denote (2.15) and (2.16), respectively. The
operators T^ and 5, are bounded operators from H2(Sl^/R to ^((77,1)). We
finally get to the following representation of G2:

(2.17) G2(pf 0, r ; 0, 77) =-?- f Vv^cos 0(a)da f^Wx* 5,0(0—
27T Jo JT? f

--!- f 2* fg-V^'sin e(a' )^'e-V
(")cos 9(a}

2,71 Jo Jo

This is the formula of the aspect ratio. We now prove that G is a well-defined
mapping.

Theorem 2. 20 G is a smooth mapping from R2X(0, +°o)xX2X[0, 0 to

Proof Since we have Theorem 2.1, we have only to show that G2 is a smooth
function. But the smoothness (actually it is analytic) is clear from the definition. 1

We now see that the free boundary problem is transformed to obtain either
F-1(0) or G~l(Q, 0). The advantages and disadvantages of F and G are as follows :

(1) F contains infinitely deep waves as a special case that 77 = 0. On the other
hand, infinitely deep waves are not realized in G, since the waves correspond
to the case r-^°o.

(2) the aspect ratio r is a controllable parameter but 77 in F has less physical
meaning.

The contents of the present paper have something in common with [18] . [18]
considered F but not G. The Theorem 5.3 of § 5 below is given in [18] but other
results of the present paper including numerical experiments are new.
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§ 3. Bifurcation Equation

In this section we consider the bifurcation equation near the double bifurcation
point of mode (m, n) . This section is divided into two subsections : we consider F
in the first half and G in the second half.

3.1. Bifurcation equation of F
Note first that F(p, q, J] ; 0) =0. We consider the bifurcation from the trivial

solution 9 = 0. Its Frechet derivatives at 0 = 0 is given by

(3.1) DeF(p, q, r, ; 0)w=-^-

The proof of this formula is given in [16], The following theorem follows
immediately.

Theorem 3. 1. D9F(p, q, 77 ; 0) : X2~^X0 has a nontrivial null space if and only
if (/?, q, 77) satisfies

(3-2.) «

for some positive integer n. IfD0F(p, q, 77 ; 0) is regarded as an unbounded operator
in X0 , then it is self-adjoint.

Definition. Consider (/?, q, 77) which satisfy (3.2n) but not (3.2m) withm^n.
We call such a point a simple bifurcation point of mode n. A point which satisfies
(3.2m) and (3. 2n) with different m and n is called a double bifurcation point of
mode (m, n}.

It is proved in [16] that (/?, q, 77) £ [0, oo)2x [0, 1) can satisfy (3.2) for two
different integers but not for three different integers. Thus it is sufficient to consider
simple bifurcation points and double bifurcation points.

Let us define

Bn=((p, q, fl) G [0, °°) X (0, oo) X [0, 1) ; (3.2J holds true}.

Then the set of the double bifurcation points is equal to Bm r\Bn, which is a curve
(one dimensional). The following theorem is easy to prove.

Theorem 3. 2, The null space of D9F(p, q, 77 ; 0) is spanned by the two
eigenfunctions

sin ma, cos ma
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when (/?, q, 7]^^Bm\Uk*mBk- When (p, q, 7i)£=Bmr\Bn, the null space is spanned
by the following four eigenfunctions

sin ma, cos ma, sinrca, coswa.

We name double bifurcation point since cos ma and cos no play essentially the
same role as sin ma and sin no, respectively.

In a neighborhood of the simple bifurcation point, we can only prove the
existence of waves whose profile has n troughs and n crests, which [1, 2] called
regular n- waves. On the other hand, any neighborhood of the double bifurcation
point has both regular n- waves and regular m- waves. The most significant
characteristic of double bifurcation points is that there are solutions in which the
wave profiles are of mixed nature. This occurs as a secondary bifurcation from the
branches of regular waves. This fact is essentially known early in this century
(Wilton [24] ) . The mathematical proof of the existence of the secondary branches
is given in [12, 23] . A slightly different proof was given later in [16] . However,
the global structure of the solution set has not been well understood until the
numerical studies by [1, 2, 19, 20, 21] .

We now define a bifurcation equation by the standard Lyapunov-Schmidt
procedure : Let (p0, #os ?7o ; 0) be a double bifurcation point of mode (m, n) (0<
m<n}. Let Q denote the L2-projection from L2(5'1) onto the four dimensional
subspace spanned by sin ma, cos ma, sin no, and cos no (Theorem 3.2). Then, the
equation

(3.3) (I—Q)F(p, q, T] ; x sin ma+j; cos ma+z sin raa+w cos no

>, q, r]',x, y, z, w)) =0

uniquely defines an (/— Q)X2- valued mapping 0 in some open set containing (/?0,
qo, rjQ ; 0, 0, 0, 0). We define K by

(3.4) K(p, q,7];x, y, z, w) =fiF( * ),

where the arguments of F, *, is the same as in (3.3). This mapping K is a
bifurcation equation of F near (p0 , q0 , T?O) .

3.2. Bifurcation equation of G
We first note that

G(p, q, r ;0 ,£TO = (0, 0).

We consider the bifurcation from the trivial solution (0, 77) = (0, e~r). Computa-
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tions go quite similarly to the previous case of F.
The Frechet derivatives of G at (9, 77) = (0, e~r) are given by

(3.5) DeG^p, q,r;0, e^w^
do r * doL

(3.6) -j-Gi(p, q, r ; 0, e~r)=Q

(3.7) DeG2(p, q, r ; 0, e~r)w = 0

Proo/ The formula (3.5) is the same as (3.1). The equalities (3.6) and (3.8)
are clear from the definition. To show (3.7), we note that

DeG2(p, q, r ; 0, e~ r)w= — I (re-'w)(0 — I I w(a')c?a'da
L//7 ? -<i^Z" t/o Jo

By making use of (2.15), we see that the right hand side vanishes for any w^X2 • I

The following theorem follows immediately.

x (DeGl ^-\
Theorem 3. 3. DG (p, q, r ; 0, e~r) = ^ ]: X2 X R->Z0 X R /zos a «on-

\DeG2

trivial null space if and only if (/?, g, r) satisfies

(3-9.) ^!+g-I

for some positive integer n. If DG(p, q, r ; 0, e~r) is regarded as an unbounded
operator in X0 X R, then it is self-adjoint.

Let us define

BH= {(A q. r)<= [0, oo) X (0, oo) X (0, +00) ; (3.9J holds true}.

Then the set of the double bifurcation points is equal to Bm nBn, which is a curve
(one dimensional).

Theorem 3. 4e The null space of DG(p, q, r; 0, e~r) is spanned by the two
vectors

Si —(sinma, 0), Si—(cosma, 0),
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when (p, q, r^Bm\lJk*mBk. When (/?, q, r)^Bmr\Bn, the null space is spanned
by the following four vectors

Si^Csinma, 0), Sz^ (cosmcr, 0), ^i=(smno, 0), 24=(cosno; 0).

We again define a bifurcation equation by the standard Lyapunov-Schmidt
procedure : Let (/?o? qo, ^o ; 0, e~ro) be a double bifurcation point of mode (m, n)
(0<m<«). Let P denote the L2-projection from L2(S1)XM onto the four
dimensional subspace spanned by Si , Sz, 2s, and S4 (Theorem 3.4). Then, the
equation

(3.10) (/-P)GG?, q, r; (0, e~r}

+ 00?, #, r ;x f J, z, w))=0.

uniquely defines an (/— P) (X2XR) -valued mapping 0 in some open set containing
0?o, go, r0 ; 0, 0, 0, 0). We define K by

(3.11) K(p, q, r;x,y,z, w)=PG(*) f

where the arguments of G, *, is the same as in (3.10). This mapping K is a
bifurcation equation of G.

§ 4. O (2) -Equiyariance

In this section, we prove that F and G satisfy a certain property called O (2)
-equivariance and that this property forces the bifurcation equation K to be of a
special simple form ((4.5, 6) below). We first define an action of the orthogonal
group O (2) on X0 as follows : let us recall that O (2) is generated by rotations of
angle a £ [0, 2n) and a reflection. Accordingly,

raO(o)=9(o-a) (0<a<2;r)

defines an action of O(2) on XQ, where ja represents the element of O(2)
representing the rotation of angle and 7- the reflection. Then we have

Proposition 4, 1, The mapping F : M2 X [0, 1) XX2^X0 is O(2)-equivariant, by
which we mean
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F(p, q, 77 ; 7#) =rF(p. 1> V ; #) ( 7^0(2)).

T/ze mapping G : R2 X (0, oo) x^T2 X [0, l)-^ X R is O(2^-equivariant, by which we
mean

G(p, q, r ; 70, 77) = (rG1(p, q,r-6, 77), G2G>, <?, r ; 9, 77)) ( 7^0(2)).

Proof. By the definition, we have

HfyjS)=7aW\ and J^(r-0)

The proof of the O (2) -equivariance of F is now easy to see. Since GI(/?, <?, r ; 7^,
77) =7Gi(/?, g, r ; ^, 77) is the same as the O (2) -equivariance of F, there remains to
prove that G2(p, q, r; 76, 7])=G2(p, q, r\ Q, 77). To this end, we consider the
following path integral :

r eia}

(4.1) I ~d£,
Jr C

where w(r) is defined by (2.14) and the path F is the closed path shown in Figure
2. Note that

Figure 2. The path of integration.

\, 0<a<2;r)

The integral (4.1) is zero by Cauchy's theorem. Taking the real part of it, we
obtain

(4.2) - (V7* cosS0^-+ f Vv sin Oda+ (Vr(V?> cos^fra^)— = 0,
L/7? r i/— a JTI t

since Re [<w (77eZCT) ] =0. The property G2(p, g, r ; JaQ, 77) =G2(p, q, r ; 0, 77) now
follows from (4.2) and (2.17). On the other hand, G2(/?, #, r ; 7-0, 77) =G2(/>, ^,
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r ; 9, 77) is easy to see. Since {?a} and j- constitute a set of generators of O(2), we
are done. 1

Proposition 4. 1 enables us to simplify the bifurcation equation. What we will
write in the remaining part of this section holds equally to both the bifurcation
equation of F and that of G. By Proposition 4. 1 and the fact that the bifurcation
equation inherits the group equivariance from the basic differential equation ( [8] ),
we see that£, too, has an O (2) -equivariance. To represent this more conveniently,
we identify (x, y, z, w)£=R4 with (f, f)E:C2 in the way that £=x-\-iy, Z^z+iw,
Therefore, we can regard K as a mapping on (some open subset of)R3XC2.
Similarly, we can regard that K takes its value in C2. Let (K\9 K^ be the
componentwise expression of K in C2. We then have

Proposition 40 2* The mapping K above is Q(2)-equivariant in the sense that
the following (4.3, 4) hold true.

(4.3)

(e^K^p, q, r ; £ t), einaK2(p, g, r ; f, t)X (a^ [0, to))

(4.4) K(p, q,r;E,& = (K,(p, q, r ; f, t), K2(p, q, r ; f, 0).

For the Proof, see [16] . Proposition 4. 2 forces the mapping K to be of a
special form. Let us prepare some symbols.

Definition, We call a function/: R3XC2^R O (2) -invariant if

f(a ; €?"*& <P*n =f(a ; f, T) (a^ [0, to))

and

are satisfied. Here o^M3, f,

Remark. From now on, we write as/: R-»R, even when the defining domain
of/ is some small open set of R. For instance, we consider mapping germs at the
origin, although we write as if it were defined in the whole space.

The set of all germs (at the origin) of O (2) -invariant C°°- functions is a
commutative ring with a unit. Let & denote this ring. The set of all the mapping
K : R3 X C2-^C2 satisfying (4.3, 4) is an (f -module. Let E denote this <f -module. In
order to give a simple expression to $ and E, we need to introduce two positive
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integers n and m . We define them as coprime positive integers satisfying n/m —
n' /m . We now have

Proposition 4. 3. Any element /£=<^ is of the following form

f ( f l ; E , f t = g ( f l ; u , v, s)

where g is a C°° function of 3 + 3 variables and u, v, s are defined by

u= f

Proposition 4. 4. 77ze module E is generated over $ by the following four
elements :

x,=(£9 o), x2=(p, p'-'r'), jr3=(o, t), *4=(o, p'r'-1).

The proofs of Propositions 4.3, 4 can be found in [9, Chapter XX] and [15] .

Corollary. The mapping K at the bifurcation point of mode (1, 2) is of the
following form

(4.5) *i=

(4.6) K2=

where fj are of the following form

fj=fj(p> q, r ; f | 2 , r 2,*e[fm 0=1,2,3,4)

Here the parameter r should be replaced by rj when we consider the bifurcation
equation of F.

§ 5. Bifurcation Equation of Mode (1, 2)

In this section we give a normal form of the bifurcation equation of mode
(1, 2). Then we study the degeneracy.

We first consider the case of F. The bifurcation equation K : R3 X C2^C2 is
now written as (4.5, 6). We use the theory in [8, 9] in which mapping germs
containing one parameter are considered. Our mapping, however, has three
parameters. We thereby freeze (p, 7?) and use q as the bifurcation parameter. Note
that the double bifurcation points of mode (m, n) are characterized by(3.2m) and
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(3.2n). Therefore, for each 77 £= [0, 1), there is one and only one (/?, g) which
satisfies the two conditions. We denote it by (/Km, n ; 77), q(m, n ; 77)). We then
consider K(p(m, n ; 77) +//, g(m, ̂  ; 77) +A, 77 ; If, T) and regard it as a mapping
germ of (A, //, 77 ; f, £)• Here A GM and //GR run in a neighborhood of zero, fEE
C and f£=C run in a neighborhood of the origin, while 77 runs in [0, 1). We then
set IJL = 0 and freeze 77. We can now write as

(5.1) *i=/iU ; u, v, s)f+/2(A ; ii, v,

(5.2) *2=/3tt ; n, v, s)t+/4(A ; u, v,

We must, however, remember that K depends on 77 implicitly. If we have shown
that this mapping is finitely determined and if we have computed universal
unfoldings, then the equation for general (/?, q, 77) can be realized by one of the
unfolded mappings ([8, 9]). Thus we are led to the analysis of (5.1, 2).

Since K is a bifurcation equation, all the derivatives of first order vanish at the
origin. Accordingly fj ;(0 ; 0, 0, 0) =0 (y = 1, 3). To be precise, /i(0 ; 0, 0, 0) =
/3(0 ; 0, 0, 0) =0 for all 77 ̂  [0, 1). In order to go further, we need to compute /2

(0 ; 0, 0, 0) and/4(0 ; 0, 0, 0) as a functions of 77. Generically, we can expect that
neither of them vanishes. This is the generic bifurcation which we have mentioned.
This generic case is analyzed in [9, 15] . We now recall the generic case. If /2(0 ;
0, 0, 0) ^0 and/4(0 ; 0, 0, 0) ^0, then the bifurcation equation (Ki , K2) is O(2)-
equivalent ([9, 15]) to

which may be written as

(5.3)

where a, b, c, a, b, c, e, and 5 are real constants and 0; are functions of u, v, and s
of order >2. Concerning (5.3), we have the following theorem :

Theorem 5.1 ([15]). Assume that ed^Q, b^Q,and £b^d(b~a/2). Then the
bifurcation equation (5.3) is O (2) -equivalent to

(5.4) ( [e 'A+6'v]f+fC \_6' A+5'v]r+?2),

where e' =e/ ! e \ , b' =(b-a/2~)/ \b , 6' =6/ d , and b' =b/ \ b
universal unfolding in the sense of [8] of (5.4) is given by

(5.5) K(a, A A ; f, 0 = ([
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Figure 3. The bifurcation diagram. /? = 0.70. The bird's-eye view is on the left. The view
from the q- axis is on the right. The mode 1 branch bifurcates at q = 0.3
subcritically. The two branches of mode 1 have turning points and bend toward
the branch of mode 2. They join with the branch of mode 2, forming a pitchfork.
We see a contact point on the loop of mode 1 solutions but this is a spuriuos one
caused by the projection onto the two dimensional plane. The mode 2 branch
bifurcates supercritically. On the other side of the branch of mode 2, there is a
supercritical pitchfork bifurcation. Thus, we have two primary pitchfork
bifurcation points, two secondry pitchfork bifurcation points, and two turning
points.

Figure 3-B. Blow-up of Figure 3 around the primary bifurcation.

where a and ft are unfolding parameters.

We say that (5.4) is a normal form of (5.3). This theorem enables us to obtain
a qualitative picture of solutions around a double bifurcation point of mode (1, 2).
Since we consider only the symmetric waves, we may restrict ourselves to the
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Figure 4. The bifurcation diagram. p=2/3. The point q = 1/3 is the double bifurcation point
of mode (1, 2).

Figure 4-B. Blow-up of Figure 4 around the primary bifurcation.

solutions of K(a, ff, A, x, z)=0, where x and z are real variables. After some
computation, we note that the unfolding parameter & does not change the diagram
^-1(0) qualitatively. Namely P is a modal parameter in the sense of [8].

We are now in a position to explain numerical solutions. Figures 3-7 show five
numerical bifurcation diagrams, in each of which p is fixed and q is taken as a
bifurcation parameter. Here 77 = 0. We computed (p, q, 0; 0) such that F(p, q, 0 ;
0) =0 for p =0.47, 0.55, 0.61, 2/3, 0.7. Note that the double bifurcation of mode
(1, 2) takes place at p = 2/3 (see (3.2)). In Figure 3-B, 4-B, and 5-B, we gave
blow-ups of Figure 3, 4 and 5, respectively. Numerical continuation of the solution
paths is carried out by H. B. Keller's method ([10]). Wave profiles of three
solutions are shown in Figure 8. They are regular 1-wave, regular 2-wave, and the
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Figure 5. The bifurcation diagram. p = 0.61. The branch, which appeared as a secondary one
when p = 0.7, now becomes the branch of mode 1. It occurs supercritically. The
branch of mode 2 possesses a closed loop, which has two turning points on it. It is
connected to the branch of mode 2, by two pitchforks.

Figure 5-B. Blow-up of Figure 5 around the primary bifurcation.

mixed mode wave, respectively. We now compare Figure 4 with abstract
bifurcation diagrams produced by (5.5). Since we consider real solutions only,
(5.5) becomes as follows :

(5.6) ([e'A+a+fcVlx+xz, [6'A+£V]z+;c2),

where we put /3 = 0, since it is a modal parameter. Figure 9 shows the case where
e=6=l,b'=b'=-l. This is the same as (12-h) of [6]. The figures faithfully
reproduce a part of Figures 3-7 but they can not predict the existence of turning
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Figure 6. The bifurcation diagram. p = 0.55. The difference between this figure and Figure 5
is that the loop does not have a turning point. The secondary bifurcation at the
lower side of the loop, is almost vertical. The solid circles show the solutions
whose profiles are drawn in Figure 8.

Figure 7. The bifurcation diagram. p=0.47. The loop has no turning point. It shrinks.
When p < 0.45, there is no secondary bifurcation.

(limit) points which are present in Figures 3 and 4. Here the following remark may
be useful. The complete set of (5.6) may actually contain turning points. But this
is away from the origin with finite distance. Since we consider the mapping germs,
what matters is those which can appear in an arbitrary neighborhood of the origin
as a varies about zero. In this sense, (5.6) can not reproduce the turning points.
Therefore (5.5) is of limited use in the present problem.

We now suspect as follows : since/2(0 ; 0, 0, 0) and/4(0 ; 0, 0, 0) depend on
the parameter 77, our assumption/z/i^O may be violated at some 77. If this violation
happens, we surely have a different normal forms. If this is the case, we have two
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Figure 8. The wave profiles. p= 0.55. (A) : regular 2 wave. (B) : regular 1 wave. (C) wave of
mixed mode. The wave profile of the solution D is obtained by shifting (A) by
half the wave length. The wave profile of the solution E is obtained from (B) by
the shift. The wave profile of the solution F is obtained from (C) by the shift.

Figure 9. The bifurcation diagram of the mapping germ (5.6).
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Figure 10.

Figure 11.

possibilities : (1)/2(0 ; 0, 0, 0) =0 and/4(0 ; 0, 0, 0) ̂ 0, (2)/2(0 ; 0, 0, 0) 7^0 and
/4(0 ; 0, 0, 0) =0. After some hand computations, we found that the case (1) fits
our numerical results. So let us now assume that/2(0 ; 0, 0, 0) =0 and/4(0 ; 0, 0,
0)^0. Under this assumption, the bifurcation equation may be written, after
dividing K2 by/4, as follows :

(5.7)

where a, -•• , e, k, a, b, c, e, d, 77 are real constants. 0, are functions of u, v, and s
of order >2. We will show that this degeneracy assumption leads to Figure 3. As
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Figure 12.

Figure 13.

in Theorem 5.1, we can have a normal form of (5.7) as follows

Theorem 5. 2 ( [15] ). Under a certain generic assumption on the coefficients a,
b, a, b, e, e, d, (5.6) is O (2) -equivalent to

>4 universal unfolding of this is given by

(5.8)
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Figure 14.

where a, ft, and 7/0' = 1, 2, 3, 4) are unfolding parameters among which a and $ are
essential and 7; are modal parameters.

We now use this theorem to draw bifurcation diagrams. Some drawings are
done in [7, 17]. In fact Figure 19 through 24 in [17] are obtained in this way
(namely under the degeneracy assumption /2 (0 ; 0, 0, 0) = 0) , by choosing the
constants a, b, etc. Figures 10-14 are taken from [17] . Here applies a remark
similar to the one we presented to Figure 9. When we say that Figures 10-14 are
obtained, it means that these figures do appear in the mapping germs as we vary a
and/3. We see that Figures 3-7 and the diagrams in Figure 10-14 are qualitatively
the same, if we make the change of variables (x, z)i - >(— x, — z). Thus a
universal unfolding of the degenerate bifurcation equation can explain the
phenomena well. Therefore it would be quite reasonable to expect that there is a
degenerate bifurcation point (p, q, 77) for some 77 £= [0, 1).

We now examine the existence of the hypothetical degeneracy. Namely we
wish to know if /2 (0 ; 0, 0, 0) = 0 for some 7] in our mapping K. We hereafter check
if this is the case or not.

Theorem 5. 3. It holds that

. /.CO; 0, 0, 0)—
"'"'"' 2(1-7?2)2 ' -/^ > < " " • " ' (1-^)2 •

In particular, neither of them vanishes for any rj EE [0, 1).

Proof. Actually this theorem is proved in [18]. We reproduce the proof here,
since the volume (called Kokyu-roku) containing [18] is of a private nature. We
have
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4 2

(5.9) 4^(1, 2 ; 7?) +/>(!, 2 ; 77) ̂ 2-y^, ?(1, 2 ; 77) +/>(!, 2; 7?) =

since m = 1 and « = 2. We note that

/2(o; o, o, o) =-^-(0; o, o).

It holds that

(5.10) ~^-(A ; £ £)=GA^FO>(1, 2; 77X9(1, 2; 77)+A, 77;

where # denotes jcsin cr+j;cos a+zsin 2a+wcos 2a+0. Differentiating (5.10) in z,
we obtain

62K
-(0 ; 0, 0) =QD0F

0(<j>°xz) +QD2
0F°(sin o, sin 2a)

where ° implies that the functions are evaluated at (/?(!, 2 ; 77), g(l, 2 ; 77), 77; 0).
Since <p is (I—Q)X2-valued and since DeF° commutes with Q, the first term of the
right hand side vanishes. Hence/2(0; 0, 0) is the coefficient of sin a in D0F°
(sin a, sin 2a). We now compute the second order Frechet derivative of F. We
have ([16])

DlF(p, q, 7] •

for all/ gSX^, where we write H instead of Hj,. This formula yields

1+772

1-772 1-774

1+774 ^ . , 1+772

DeF(p, q, 7]; 0) (sin a, sin 2a) =2 1 _ 2 1 >4 -^-(cos a cos 2a)

? 7/ x
r cos 2a sm o+- ^- cos a sin 2a)4 — 2 J

1+774 ^ x
cos a • 2 cos 2a — - - r cos 2a cos a ).

-4 ^y Ja^ l-?72 I-?;

Consequently we obtain

QD2
eF(p, q, rj ; 0) (sin a, sin 2a) = 2 • 4 (-sin a)

By this equality and (5. 9) we have
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f(n n n rrt- 3p(l, 2 ; 77) (/>(!, 2 ; 77) +g(l, 2 ; 77)) _ l+477
2+7?

4

/2(0; 0,0,0)- ^ - 2(1_^)a •

In a similar way we obtain

/4(0 ; 0, 0, 0) =QD2
eGl(p, q, rj ; 0) (sin a, sin a) = -

This completes the proof. I

We now consider the bifurcation equation of G. The double bifurcation points
are now written as (p(l, 2 ; r), g(l, 2 ; r)) for r£ (0, oo). We again get to (5.1, 2)
depending implicitly on r^(0, °o).

Theorem 5. 4. It holds that

MO ; 0, 0, 0) = ~

Proof. We have

(5.11) 4^(1, 2;r)+p(l, 2 ; r )=2 1 _ g _ 4 r , g(l f 2 ; r) +p(l, 2 ; r) =

since m = 1 and n =2. We note that

It holds that

(5.12) |^a ; £ fl=PDG(Xl, 2; r), ?(1, 2; r)+A, r;

where # denotes (0, e ~0 + jc S i + y S 2 +z S 3 + w S 4 + 0 . Differentiating (5 . 1 2) in z,
we obtain

where ° implies that the function is evaluated at (/?(!, 2 ; r), q(l, 2 ; r), r ; 0, e~r).
Since 0 is (f—P)Xr valued and since DG° commutes with P, the first term of the
right hand side vanishes. On the other hand, since the second components of 2/ are
zero, it follows that PD2G°(Si , S3) =QDiGi(sin a, sin 2a). Hence /2(0 ; 0, 0) is
the coefficient of sin a in D|G? (sin a, sin 2a). Since GI is the same as F, we get the
same conclusion as that of Theorem 5.3.
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§ 6. Conclusion

The conclusion of § 5 is that neither of F nor G contain the degenerate
bifurcation point. On the other hand, the hypothesis of the existence of the
degeneracy reproduces the numerical diagrams by an abstract way. Therefore we
must look for a new parameter, say #, and a new mapping F(p, q, % ; * ) which
satisfies the following two conditions :

(1) F(p, q, x ; e ) is an extended mapping of the mapping F(p, q, 0; #)
which is defined in § 2, in the following sense ; At a point Xo > the mapping
F(p. <1> Xo; * ) is equal to F(p, q, 0 ; ff).

(2) The mapping F(p, q, X I * ) has a degenerate bifurcation point. In other
words, there exists a Xd at which /2(0 ; 0, 0, 0) =0

The depth of the flow (or the aspect ratio) is not the parameter by the Theorems
5.3 and 5.4. We must look for another parameter. This is our conclusion.

If we consider the two phase flow (i.e., we consider both the flows above and
beneath the free boundary), then we may have a candidate of the new parameter.
The parameter is the ratio of mass densities of the two fluids. The present problem
is realized as a special case of zero density ratio. The two phase flow problem is
studied by Kotchine [11]. We will examine the degeneracy in this new context in
the forthcoming paper.
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