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On the Cones of a- and Generalized a-Positivity for
Quantum Field Theories with Indefinite Metric

By

Gerald HOFMANN *

Abstract

In order to construct a Krein-space theory (i.e., a *-algebra of (unbounded) operators which are

defined on a common, dense, and invariant domain in a Krein space) the cones of a-positivity and

generalized a-positivity are considered in tensor algebras. The relations between these cones, algebraic

#-cones, and involutive cones are investigated in detail.

Furthermore, an example of a P- functional 0 defined on (C2)® (tensor algebra over C2) not being

a-positive and yielding a non-trivial Krein-space theory is explicitely constructed. Thus, an affirmative

answer to the question whether or not the method of P-functionals (introduced by Ota) is more general

than the one of a-positivity (introduced by Jakobczyk) is provided in the case of tensor algebras.

§ 1. Introduction

The present investigations are motivated by the algebraic approach to general
(axiomatic) quantum field theory (QFT). The formalism introduced by Borchers
[8] and Uhlmann [30] works for massive fields as well as for massless or gauge
fields and is entirely equivalent to the Wightman axioms. Starting with a tensor
algebra E® over some nuclear space E of test functions and a normalized
continuous Hermitean functional W^E®' satisfying some further physically
motivated conditions (linear program), a QFT is reconstructed by means of the
GNS (Gelfand, Naimark, Segal) construction.

It is now necessary to distinguish between i) massive fields, and ii) massless or
gauge fields. In the case of i) W is taken to be a positive functional (Wightman
functional), and thus the space of state vectors becomes a Hilbert space. In the case
of ii) there are no-go theorems (see [22], [29]) stating that locality, covariance

Communicated by H. Araki, June 22, 1993. Revised October 13, 1993.

1991 Mathematics Subject Classifications : 46C20, 81T05

* Universitat Leipzig, Fachbereich Mathematik und Informatik, Augustusplatz 10, D-04109 Leipzig,

Germany



642 GERALD HOFMANN

and positivity cannot be satisfied at the same time. From the point of view of
general QFT it seems to be better to keep covariance and locality, and thus the
positivity condition has to be abandoned. Such models were discussed, e. g., in [2],
[7], [10], [14], [15]. The GNS representation then gives a state space with
indefinite metric. Hence, indefinite metric is a general feature of all local and
covariant formulations of QED, but also of gauge theories of Yang-Mills type and
other similar theories (see also [11], [21], [24]).

The pseudo-Wighman axioms introduced by Strocchi [28], [23] ; [6 ; Chapter
10] are an axiomatic approach to such theories. A publication by Araki [3]
considers the specific problem of group representation on a space with indefinite
metric such as is found in the situation of Gupta-Bleuler QED, and this theory also
applies to the algebraic approach to QFT with indefinite metric. Further
discussions on this subject are contained in [9], [31].

The present note is concerned with one mathematical aspect of this formalism,
namely the GNS representation in state spaces JT with indefinite metric. In order
of decreasing generality, JT can be chosen to be :

a) a general space with indefinite inner product,
b) a Hilbert space with an inner product < . , . > ,

connected to (. , .) by a bounded linear Hermitean operator G (Gram operator)
such that (., .) = <. ,G.>, ([5; p. 89]).

c) a Krein space (see § 3).
(Other choices of Jf are also posible.)

In order to make the theory mathematically manageable and in particular to
avoid topological complications (e. g., in the case of c) M^CM holds for every
subspace MC jf* and thus the results of [3] apply immediately), it is desirable to
obtain a Krein space for Jf (see [4], [5], [16] ). The pseudo-Wightman axioms are
formulated in this case. There are also physically motivated conditions for
achieving that goal (see [20 ; Ch. 3]). Thus the following question arises in our
context: Are there conditions upon the functional W^E®' so that the space of
state vectors Jf becomes a Krein space. Answers were given by Yngvason [33],
Jakobczyk [17], Antoine and Ota [1], [25], Morchio and Strocchi [23]. While
topological methods were used in [33], [23], the considerations in [1], [25], [17]
are on a purely algberaic level.

For tensor algebras E® , Jakobczyk introduced the concept of a-positivity and
showed that every a-positve and invariant linear functional yields a Krein-space
theory via GNS representation (see §3). Ota generalized that to the case of
arbitrary *-algebras with unity. Among others the concept of a-positivity is
generalized to the one of generalized a -positivity (see § 3). Let us also mention
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that there is a minor generalization of the concept of a-positivity (see Remark 3. 6),
which coincides with the "usual" one in the interesting case of alg-# cones in tensor
algebras (Corollary 4. 6).

The aim of this note is threefold. 1) The setups introduced in [1], [25] are
applied to the case of tensor algebras E® (Proposition 3. 1). 2) The cones derived
from a-positivity and generalized a-positivity, respectively are discussed for E®.
Along these lines it is shown that every cone of a-positivity also is a cone of
generalized a-positivity (Proposition 4. 5). Furthermore it is investigated whether
or not those cones are alg-# cones and involutive cones, respectively (Proposition
4. 1). These considerations are of interest because the concepts of alg-# cones and
involutive cones fit tensor algebras very well, and all the results given in [13] apply.
3) About the relevance of the considerations given in [1], [25] for the case of
tensor algebras, the following question arises :

(Q) Are there P-functionals (see § 3) on E® which are not a-positive and yield
a Krein-space theory with indefinite metric via GNS representation?

Proposition 5. 5 gives an affirmative answer to (Q) and shows that for tensor
algebras the results of [1], [25] really apply to more functionals than those of [17].

From the mathematical point of view it is of interest to develop a general
theory of unbounded representations of * -algebras, and there one has to deal with
a class of representations which are not * -hermitean ( [27]). Typical examples of
such representations are /-representations on Krein spaces (see § 3). The results
obtained in this note fit this theory. Furthermore, in § 5 there it is shown how to
construct examples to test and discuss the general theory of unbounded
representations.

The pattern of the present note is as follows. In § 2 there are collected the
definitions and facts from the theory of tensor algebras needed in the following.
The GNS representation yielding a Krein space as the space of state vectors and the
concepts related to it are recalled and applied to E® in § 3. The relations between
cones of a-positivity and generalized a-positivity, alg-# cones and involutive cones
are discussed in detail in § 4. The aim of § 5 is to answer (Q). There is explicitely
constructed a functional 0 which yields a "non-trivial" Krein-space theory via
GNS representation using the methods developed in [1], [25], while on the other
hand the methods explained in [17], [18] do not apply to 0.

Physical interpretations of the theory reconstructed from 0 such as the
construction of the gauge group, the distinction of the vacuum sector and the
physical subspace of the space of virtual states will be discussed in a subsequent
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paper.

§ 2. On Tensor Algebras and Alg-# Cones

Let us recall some definitions and facts of the theory of tensor algebras needed
in the following. For the following let us be given a vector space E over the field
of complex numbers C, and let

stand for the «-fold (algebraic) tensor product of Is by itself, nEEN. The tensor
algebra E® over the basic space E is then defined by

E® = C © El ®E2 © • • • (direct sum) ,

i.e., the elements f£=E® are of the form

/=(/o,/i, ~.,/*,0, 0, ...),

where /„£=!£„, and all but finitely many /„ = (), E0 = C, E\=E. Further, /„ will be
called the n-th homogeneous component off.

Defining algebraic operations componentwise by putting

r®g,, (/0®g»=gn®/0=/0g»)

for/, g^E®, fi^C (/z— 0, 1, 2, ...), ^® becomes an (associative) algebra with
unity 1= (1, 0, 0, ...). If an involution " * " is given on E, then E® becomes a *-
algebra by setting

forfn=hw® ••• ®hM^En («eN),/0*=/o, and using antilinearity of *.

Let us be given some/= (0, ... , O,/^, ... ,7^,0,0, ...)£EE® ,
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, JVi,#2eN*(:={0, 1,2, ...}). Then put

Grad (/) = N2 , grad (/) =Ni for

Grad(O) = - °o5 grad(O) = oof

where 0=(0, 0, ...)
For the following let Qn ; E® - >(©-E«) = : E" denote the canonical

projections, where En is considered as a subspace ofE®, i. e., for/= (/0, ... ,/#, 0,
0, ...)e£<s> it follows

fi»(/) = (/o, - -.,/», 0,0, ...)•

(For further considerations and some applications of Qn the reader is refered to
[12].)
Furthermore, let

/B=(0, ..., 0,/n, 0, 0, ...

/„££„, and Fn={/n;/n

Let us now be given an operator ^4 : E® - >E<g> . Then, y4 will be called graded,
if ̂ 4(£m)c£m, m=0, 1, 2, ... . In the case that A is linear (resp. antilinear) and
graded there are linear (resp. antilinear) operators An : En - >En («=0, 1, 2, ...)
such that

/= (/o , /i , . . .) £=E® . In the following, A = (A0 , A i , . . .) will be written. There is
the following characterization of gradedness.

Lemma 2. 1. Let us be given a linear or antilinear operator A. Then A is
graded, if and only if

AQn=QnA, (1)

n=0, 1, 2, ... , are satisfied.

Proof. (<=) : Let us be given/= (/<, , . . . , fN , 0, 0, . . . ) &E® . Then, Afn ^En (n
= 0, 1, 2, ...) due to (1). Hence, for each/n there are h^E, (i=0, 1, ... , n} such
that

Afn=(hQ,hly ...,hn, 0, 0, ...).
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Noticing

Qn-iAfn=(ho,hl9 ...,hn-i, 0, 0,

and using (1), hj = 0 (y =0, 1, ... , n — 1) follow. Hence Afn^En , and A is graded.
(=>) : Assume that there is an «0^N* such thatAQnQ¥^QnQA. So there is an

/=(/o, ..- ,/N, 0, 0, ...)GE£0 with ̂ en0/^e«04/; Grad(/)=^. i) Let n0>N.
Then9Af^QnQAf. Hence Grad(Af) >n0, and A is not graded. ii)Letn0<N. Using
the linearity (resp. antilinearity) of A,

0, ...,/BQ, 0, 0, ...)^C»0^(/o, -..,/»o,0, 0, ...)

.. , o,/+i, ... ,/AT, o, o, ...)

and

Qno^(05 ... , 0,/.0+lf ... 9 f N , 0, 0, ...)^0 (2)

or

follow. (2) and (2X), respectively, imply that ^4 is not graded. The proof is
completed.

Let us now define the class of alg-# cones which fits the algebraic structure of
E® very well. Let us be given a subspace

F=@Fn (3)
n=0

of E® , where FndEn. Further, let us consider an antilinear mapping # : E® - >E®
which satisfies

/**=/, (4)

(Q»/)*=e»(/*) (4')
for all /HE®, »=0, 1, 2, ... . Notice that # is bijective. Let us put
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{F, #} =

It is immediate that {F, #} is a convex cone (containing its apex 0). In the
following such cones {F, #} will be called alg-# cones. If # additionally satisfies

(/*)*=**/* (5)

for all/, g&E® , then {F, #} will be called involutive cone. Notice also that

is the well-known cone of positive elements of E®.

Further, a linear functional T on F® is called {F, #} -positive if !T(fc) >0 for all
k£E {F, #}. Among others, the {F, #}-positivity of T implies that the Cauchy-
Schwarz inequality

/, gGF, is satisfied (see [8 ; Lemma 2. 1]). Using T=(T0, TI, ...), (3) and (6)
imply

I r.+m(/» ®/m) I2 < r2,(/*®/-)r2m (/«®/m), /.,/MeF, «,meN*. (6')

In order to construct {F, #}- positive linear functionals the following is of
interest. Let us be given a linear functional T1 and a sequence (con)"=o, &>« >0, such
that (6X) is satisfied in the modified version

I rB+M(/*®/w) 2 < wBa)mr2a(/*®/B)r2m(/* ®/m), r2n(/*(8)/J)>o, (6")

/— (/o,/i, ...)£F. Now the following question arises. Is it always possible to
relate an {F, #} -positive linear functional StoTl With this in mind let us define the
following.

Definition 2. 2. A sequence (^8n)~=0, /3«>0, is called to be of positive type
(with respect to T and {F, #}), if the functional

is {F, #} -positive.
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The following example shows that (6*) implies that there are always sequences
of positive type.

Example 2. 3. Let us recursively define a sequence G8m)m=o by ftn-i = 0, @0 =
ft = 2,

(7)

1 = 1,2, ....

Lemma 2. 4. r/ze sequence (&)r=o w of positive type.

Proof. Setting 0nm = Tn +m (/* <8>/m) , /= (/<> , /i , . . . ) &F, (6" ) implies

l(jOnann)(ca)mamm)y/2 < c~la)nann+c(jt)mamm (8)

for every constant c>0, n, m^N*. Putting cr=2mo)2n-2m/34n-2m (resp. c =

2mco2n-2m+i£4n-2m+2), (8) implies

-w), 2n

mfl2(n_m)>2(n_m)+2mCL)2n-2mCL)2n(^4n-2m)2a2n)2n (9)

(resp.

P4n-2m+2 O-2(.n-rn) + I, 2n + 1 ' #2n + 1, 2(«— m)

<2 mfl2(n_m) + 1) 2(n_m) + 1 + 2mO)2(n

= l, 2, ... , H. Then,

r = 0 m+/=r

•%-—i Q -^-—i Q f^"* i "\
2_l PlrQrr 2_lP2nv2_l Qn+m, n-m ~TQn-m, n+m )
r = 0 n = l m = l
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rr — 2 2 (2~Wfl2(n-m)f 2(n-m) + 2mC02n-2m&>2« C^4n-2m)2 ^2*, 2n

~Sa2r,2r— 5] 2m6J2(r-m)^2r (^4r-2 r, 2r

l, 2r+l

l(^4r-2m+2)2 fl2r+l,2r+l)

(7) °°

r=0
," 1 - C84,- D)fl2,. 2r+ (^4r+2- 1 ~ (ArTZ~ D)O2,+ |, 2 r + l =0,

oo

where 2 . =0, and the sums 2 . actually are finite ones due to Grad(/) < °°. The
proof is completed.

In order to construct positive linear functionals explicitely, the following is
more suitable. Let B\= {Z?(5) ; 5£ A] be an (algebraic) basis of E, where A is a set
of indices. Then,

0=1, 2,

is a basis of En, n GN. Setting

assume now that there is a sequence (con)r=o, co«>0, such that

Lemma 2. 5. //"fl linear functional T satisfies (6X//), rten T(^ z's
where (^8B)"=o w taken from (7).

Proo/ Let us be given /= (/o , /i , . . . )
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Then,

7 = 1 r = l r=0 m+l=

(Notice that S . , X . , 2 . are finite sums!) Setting

it follows as in the proof of Lemma 2. 4 that

I]

for each pair of indices (7, f). Hence, r(^(/#/) ^0 completing the proof.

§ 3. On GNS Representations of Tensor Algebras in Krein Spaces

The aim of this section is to recall some concepts from the theory of GNS
representations in a Krein space and to discuss their applications to tensor algebras.

Let us be given a Hilbert space jf, a symmetry J on Jf (i. e.? J=J* =/~1E=
, and a sesquilinear form

f, r^^T, where (. , .) denotes the scalar product of Jf . Then, Jf equipped with
[.,.]/ is called Krein space (or /-space).

Let j/, J1 be * -algebras with unity 1 such that lej^Cj/, and suppose that $
is a *-subalgebra of s& . A linear mapping P of j/ onto ^ is called abstract
conditional expectation ( [26] ) , if

i) P(l)=l, (10)
ii) P(ax&) =0 P(JC) 6 for all a,
iii) P(x*)=P(;c)* fora
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Following [1], an Hermitean and linear functional 0 on s£ is said to be a
P-functional if it satisfies

i) 0(PGO)=0Gc), (11)
II)

III)

for all jc^ja/, where a GO = 2P(x) — x is a linear involution on s/. Further, the
cone

will be refered to as the cone of generalized a-positivity.
For Cs/, J^, P) and 0 as above, the GNS representation for 0 consists of

(possibly unbounded) operators acting on a Krein space. Let us briefly recall the
main steps of this construction. For details and explicite example the reader is
refered to [1 ; p. 270] and [14], respectively.

Setting

)=0 for

and considering the residue classes 770 (x), 770 (j;) in the quotient space
define

0(aG>*)*). (11')

Noticing that definition (11') is correct and using (11, II), it follows that (llx)
defines a positive definite inner product on stf / Jf® . Let Jf = (j^/Jfo) ~
(completion with respect to || . || = (. , .)1/2). Define then a representation 7T0 of s£
on JT with domain

n^(^}j\^y} =7?0 (xy),

and strongly cyclic vector 770(0 for ^0- Furthermore, there is also a bounded and
continuous sesquilinear form

[770 (x), 770 GO ] =

defined on D(n^) and by continuous extension also on Jf\ Note that Jf , [. ,]
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becomes a Krein space.

The concept of *-representation ([27]) is generalized to the one of
J^-representation ( [25]). Along these lines it is implied that n<f> is a /-representation
of j/.

Let us now apply the concepts given above to tensor algebras. More precicely,
let us first give characterizations for a graded conditional expectation P on a tensor
algebra E®. Using Lemma 2. 1,

P=(P0,P,,P2, .-)

Pn : En >En («=0, 1, 2, ...), is implied. Let us introduce the subspaces

Fn=range (ft),

Gn = range (Jn-Pj

of En, where /„ denotes the identity mapping on En, n=09 1, 2, ... . For any
subspace XndEn let

JfCn vCncn^Lra y Xn Xn }

denote the Hermitean part of Xn.

Proposition 3.1. Let P be a graded and linear operator on E®. The following
are satisfied for P.

a) P satisfies (10, i), if and only ifP0=IQ.
b) The following are equivalent :

i) P satisfies (10, ii),
ii) Pn(z^ = (Pn(znyrforallzn^En,n=Q, 1, 2, ... (z0*=z0),
iii) xn ^Fn, if and only if x * eF«,

jReGn, z/fl«^ on/j; ifyn
f^Gn9n=Q9 1, 2, ... ,

iv) Fn=Fn
h@iFn

h, Gn = Ghn@iGh
n, n=0, 1, 2, ... ,

v) ft: £1-^*^=0, 1,2, ....
c) r/ze following are equivalent:

i) (10, iii) fs satisfied,
ii) Pr+s+,(PrGcr) (8)j;s(x)Pf(Zf) =Pr(xr) ®Ps(js) ^Prfe) /or a/

ys^Es, zt^Et, and r, s, f£N*,
iii) for an^Fn, bm^Fm, it follows an®bm^Fn+m ;

n then yn®xm^Gn+m9 xm®yn^Gn+mfor all xm^Fm (n,
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Proof. Using Lemma 2. 1, the proof is straightforward.

In order to decide whether or not the representation obtained by the
construction given above is the direct sum of two independent Hilbert space
representations (and thus the indefinite metric is irrelevant), S. Ota introduced the
concept of invariant dual pairs, see [1 ; Definition 4], [25 ; Definition 4. 1].

For a given subspace JtdD(n<^)9 let us define

Recall that if {^, Jf} is a /^-invariant dual pair, then

i) Ea = EC40+EC>fO, (12)
ii) E(JT), E { J f } are left-ideals in E® ,
iii) 0 Gc * jc) > 0 for all x GE C^f ) with x $ Jf 0

iv) 0(j>* x) -0 for all x!EE(J£\
see [1 ; Lemma 6].

In the case of tensor algebras there is the following criterion which is easy to
handle and will be used to show the absence of ^-invariant dual pairs in the
example given in § 5.

Proposition 3. 2. Let us be given e\=e*^Ei with 02(ei®ei) >0. If there is
some xn^En (n£N*) such that

a) 0n+2(/i®*n®ei)^0 (13)
for some fi =ff GEi with 02 (/i ®/i) < 0,
or if

b) 02»+2(ei®x*®*i,®ei)<0 (13X)
then there are no n ̂ -invariant dual pairs.

Proof, a) Assume that {Ji, Jf} represents a ^-invariant dual pair. Because
of <f>(e? ci)=02(ei*®ei)>0 and (12), e^.E(JT) and (x/J-2^i)veE(e^) are
implied. Noticing that /i &E C^T) , (13) is a contradiction to (12 ; iv)).
b) Assuming again that {Jt.Jf} is a ^-invariant dual pair, e

follow. Now, (130 is a contradiction to (12, iii).

An other method to construct a Krein space theory was introduced by L.
Jakobczyk ([17]). There is started with a linear involution

(«i=/i) satisfying



654 GERALD HOFMANN

ai(/?) = (ai/i)* (14)

for all /i ££. Setting

an=a\® •" <8>«i (n factors), (14')

let us introduce

a(/) = (/0,ai(/i),a2(/2), -), (14")

Then,

will be called the cowe of a-positivity. It is shown in [17] that every linear functional
0 which is jT(a)-positive and a -invariant (0 ° a = <f)^ yields a representation of E® ,
where the field operators act on a Krein space.

Concerning the Hermiticity of 0 there is the following.

Lemma 3. 3* Every Jf^-positive and a-invariant functional 0 is Hermiten.

Proof. Recall that the a-positivity of 0 implies 0 (a (x * )j;) = 0 (a (y * )x) for all
y^E®, see [1 ; Lemma 2. lc)]. Using now the a-invariance of 0,

00c*a(j;))=0(aG;*);c)

follows. Setting j = l and using a(l) =a(l*) =1, the assertion to be shown is
implied.

In the following it will be shown that to every ̂ -positive P-functional 0 on E®
there is a whole class of generalized a-positive but not a-positive P-functionals 0
yielding the same GNS-respesentation.

Let us be given two tensor algebras E®, E®, where

S=£i =Ei ®Fi, Fi =£ {0} (linear space),

{) © O^i ®£i) © (Fi®^)]

(15)
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n = 3, 4, ... , and all of the summands in [•••] of (15) only contain factors E\ , F\ ,
but there is at least one factor F\ in each summand. Let us abbreviate

En=En®Fn, (150

where Fn= [•••] is taken from (15). Setting F=Fl@F2® ••• ,

(15")

follows. Furthermore, let 0 be a Jf (a) -positive linear functional on E®. Let us
consider the liner extension $ of 0 from E® onto E® given by

[000 for
000 = 1

[ 0 for

This extension $ is called the trivial one. (For a further discussion of such an
extension, the reader is refered to [32] .)

Proposition 3. 4. Let us be given a P-functional 0 on E® such that 0 is
tf^ -positive. Then, every trivial extension $ onto E® is a P-functional not being

Proof. Using Pn(xJ =y(an(xn) +*„), *„££„ (/i = l, 2, ...), let us define
projections

A0c,) = , Q

P=(I0,Pi,P2, ...). Define further

It is straightforward to show that 0(^(fl!)) ^0 and 0(P/) = <f> (f) , f^£ ® . Hence,
is a P-functional on E® . Consider 0 ̂ y\^F\ . Then,

imply that a2^ai®a\ • Hence, ^(a) is not any cone of a-positivity.
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Corollary 3. 5. The GNS-representations obtained from (f> and $ are unitarily
equivalent.

Proof. Consider

)=0 for

c)=0 for

Using that F denned beforehand of (15") is a two-sided ideal in E® and that
= 0 for all/£F, it follows that

where y=yjrg, x=x+f, y^E®, x^J^t, g, /EE-F. Hence, Jf$ = Jf$+F. The
assertion under consideration is now obvious.

Remark 3. 6. a) Sometimes the following minor generalization of the concept
of a-positivity, which is also refered to as a-positivity in some notes, is considered
(see [18 ; Definition III. 3]). For distinction, let us write respectively, a-positivity
for this concept and cone of a-positivity for the corresponding cone Jf (a).
Generalizing (14), ... , (14*), here it is started with a * -automorphism a : E® - >
E®. Noting that a represents a * -automorphism on E® , if and only if

for all/ g^E® , where P=—(&+I\ P+Q=I, it follows straightforwardly that P
is an abstract conditional expectation. Hence, every functional satisfying [18 ; Def.
III. 2] is a P- functional, and thus yields a GNS representation of E® by operators
acting on a Krein space.
b) Obviously, the concept of 5-positivity is between the one of a-positivity and of
generalized a-positivity, i.e. every functional being a-positive is a-positive, and
further, every a -positive functional is generalized a -positive.
c) A further discussion on this concept is given in Corollary 4. 6, and it will be
shown there that the concepts of a-positivity and <$-positivity coincide in the most
interesting cases.

§ 4. On Cones of a-Positivity and Generalized a-Positivity in Tensor Algebras

For the following let us be given any tensor algebra E®. If a linear involution
a is given on E®, then let us define an antilinear bijection "#" by
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/*=(«(/))*, (16)

. The restriction of # to subspaces En (n^N*) will also be denoted by #.
The following proposition and example are concerned with relations between

a-positive (resp. generalized a-positive) cones, alg-# cones and involutive cones.

Proposition 4. 1. a) Every cone ^(a) of a-positivity is an involutive cone with
Jf^ ={£*,#}.
b) Let us be given a cone of generalized a-positivity ^a\
The following are equivalent.

i) ^(a) is an alg-# cone, (where # is given in (16)),

ii) PQn=QnP, n=Q, 1, 2, ... , where P=y(a+7),

iii) the projection P is graded,
iv) the involution a is graded.

Proof, a) Let us be given Jf (a). Using (14), (140, (14") and (10),

follow for all f£=E®. Hence, the mapping # is graded. Using Lemma 2. 1, (4')
follows. Noticing («„(/„))* =#„(/„*) and using a2=I, (4) is implied. Using now
the antilinearity of #, it is sufficient to prove (5) for monomials fn®gm, fn^En , gm

Consequently,

yield (5). Hence JT(a)= {E®, #} represents an involutive cone.
b) i)=>ii): Assuming i), inserting a — IP— I in (4X), and using

(Qnf)*, ii) follows straightforwardly.
ii)=>i): Noticing that (lOiii) implies «(/*) =

, follow. Assuming now ii), it follows that

, n^N*. Hence ^(a)= {E®, #} is an alg-# cone. The equivalences of ii
iii) and ii)<=>iv) are immediate consequences of Lemma 2. 1.
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The following example shows that there are also cones of generalized
a-positivity not being alg-# cones.

Example 4. 2. Consider the tensor algebra

C«=Q,©C,©C2©->

where Q = C 0 = 0, 1, 2, „..). Define an involution on C® by setting

and notice that a defines a projection P : C® - >C0, where

. It is straightforward to show that P is a conditional expectation, where
and & = C0 in the setting beforehand of (10). Hence,

represents a cone of generalized a-positivity. However noticing that

, ^(a} is no alg-# cone due to Proposition 4. Ib).
Let us now investigate the GNS-representation n<t> of C® for any P- functional

0, where a and P are given above. Recall that there is a * -isomorphism between C®
and C \t] (algebra of polynomials in one (real) variable t given by

where x^ = xnt\ Gc+jO ~ (0 =x(0+j(0, (xj;) ̂  (0=*(0^(0, (x*)' t(0 =
. Note that

Using (111, III), it follows that

The left kernel Jf® of 0 is then given by
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*x) =0 for

Thus, D(n^) =C®/jy<i> = C and dim(D(7T0)) = 1. Hence there is no chance to get
an indefinite metric on D (n^). Furthermore,

x<=C<s> , 7?0 ( • ) GDOfy). It holds further

Thut, [x, x] = (x, x) ^0 showing also that there is no indefinite metric in the theory
obtained in that way.

The following is concerned with relations between the cones of a-positivity and
those of generalized a-positivity. Let us start with some definitions and general
considerations needed in the proof of Proposition 4. 5.

For a linear involution a given on E® let us consider the fixed point set of a

and the following subspaces

^, = {/i

{e(1)(8) ••• (x)e
(n)

 ; e^ej^U^i, the number of e0) with

is 0 or even 0=1, 2, ...n)}

^n = span{e(1)® ••• (8)e(n) ; e^^J^jU^i , the number of e°} with

e00^! is odd 0=1, 2, . . . ,«)}

n= 2, 3, . . . . Set further &r
0 = C, ^0={0}. It is straightforward to show the

following.

Lemma 4. 3. If a is graded, then the (algebraic) direct decompositions Em = ^m

, m=0, 1, 2, ... .follow.
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Remark, i) Considering Example 4. 2, it follows that the involution a
constructed there is not graded. Further, ^\ = (§\= fO}. Hence, the assertion of
Lemma 4. 3 is not satisfied. The assumption of the gradedness of a is thus not
redundant, ii) If a is graded and a= (I0, a\,a2, ...), then <IFn is the fixed point set
of a f " = a i ® • • • ® a i (n factors) . Furthermore,

For all that follows now assume that a is graded. Let us relate projections to the
subspaces given above. Consider operators Pn> ̂  : En - >En defined by

+ ••• +7,® — ®/1®P1® — ®P lf (17)

where the sum on the right-hand side of (17) is over all the (J^ J summands of//

factors /i and n— // factors PI=— (ai+/i), //=0, 1, 2, ... , n. Set further

(S r-'d-iyp^t+in), (ir)

11=0, 1,2, ... .

Lemma 4. 4. The operators Pn : En >En are the projections onto 3Fn with
respect to the decomposition En = 3Fn ©^, n = l9 2, ... .

Proof. Using a\ =2Pl -II, it follows that

a?-=(2P,-/!)® •- ®(2P!-/!) = !] 2n-^-lYPn,, = 2Pn-In. (18)
^=0

Recalling ii) of the remark to Lemma 4. 3, (18) implies the assertion to be shown.

Proposition 4* 5* a) Every cone of a-positivity is also a cone of generalized
a-positivity.
b) Let us be given a cone ^^ of generalized a-positivity.
The following are then equivalent.

i) ^(a) is a cone of a-positivity,
ii) ^(a) is an involutive cone,

iii) the involution a is graded and there is a projector PI : E\ >E\ such that
an = 2Pn—In, where Pn is given in (17X), n — l, 2... ,

iv) the fixed point set of a satisfies ^ — ® 3Fn, where 3Fn, 3F are given
beforehand of Lemma 4. 3.
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Proof, a) Let us be given a cone jT(a) of a-positivity. Then, a= (a0, «i , «z,

. . . ) with a« = a f " (n = 1 , 2, . . . ) , a0 =/o • Recalling that a projector Pn = — (an +/„)

belongs to every involution an, (10, i, iii) are satisfied for P=(/0, PI, PI, • ••)
because of Proposition 3. la) and (14), (14')- Using the linearity of P, it is
sufficient to show (10, ii) for monomials an<8)jc/®&m , where anGrange(Pn), bm^
range(Pm), */££/, m, n, /eN*. Noticing that an(an}=an and am(fcm)=fcm, (10,
ii) follows from

b) i)=>iv)=Mii) are immediate consequences of the remark ii) to Lemma 4. 3
and of Lemma 4. 4. iii)=>ii) : Using (18),

n = l, 2, ... , are implied. Analogously to the proof of Proposition 4. Ib), it is now
shown that #(a) is an involutive cone. ii)=>i) : Assuming ii), Proposition 4. Ib)
implies that a = (/0 , ct\ , a2 , . . .) is graded. The further proof is given by induction.
Assume that an =afn for some n £N. Recalling that (10, iii) implies an + i (/n*+i) =

i, it follows that

for all gi^Ei, fn^En. Hence, an + i=af (n + l\ Consequently, ^Ca) is a cone of
a-positivity.

Recalling Remark 3. 6, the following holds.

Corollary 4. 6. Let us be given a cone Jf(a:) of a-positivity. Then, ^(a) is a cone
of a-positivity, if and only if Jf (a) is an alg-# cone.

Proof. (=>) : Assuming that Jf (Q° is a cone of a-positivity, Proposition 4. la)
implies that Jf (a) is an involutive cone, and thus an alg-# cone. (<=) : Assume now
that JJT(a:) is an alg-# cone. Remark 3. 6b) and Proposition 4. Ib) imply that & is
graded. Using that a is a * -automorphism, it follows that Jf (a) is an involutive
cone, and hence a cone of a-positivity due to Proposition 4. 5b).
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Remark. Noticing that the cone ^(a) constructed in Example 4. 2 is a cone of
a-positivity too, it follows that there are cones of a-positivity not being alg-# cones.

The following example shows that there are cones #(a) of generalized
a-positivity which are alg-# cones but not involutive ones. Applying Proposition
4. 5b) , it follows that these cones are not any cones of a-positivity .

Example 4. 7. Let us be given a tensor algebra E® with dimCE) ^2, and a
projection

P=(I0,P19P2, ...)

onE®, where Pi (x*)=P(xi)*,xie£, O^Pi^/i, and

Pn=Pi® ... ®P! (n factors),

n = l, 2, ... . Obviously, (10, i, ii, iii) and PQn=QnP («eN*) are satisfied.
Applying now Proposition 4. Ib), #(a)={E®, #} is an alg-# cone, where /# =
«(/*), a = 2P-I,f^E®.

Considering a2 = 2Pi®Pi—I2, it follows that

(19)

/i , giELEi . Assuming now that ^(a) were an involutive cone,

(190

would be implied. If /i , gi ̂ E\ with gi ̂  0, PI ( gi) = 0, 0 ̂ /i ^Pl (/i) are inserted
in (19) and (19X) ; then the contradiction

follows. Hence, ^(a) is not any involutive cone.

The following lemma shows however that the projection P introduced above
cannot be used to construct a nontrivial Krein-space theory by the GNS
representation recalled in § 3.

Lemma. Let $ be some P-functional, where P is taken from Example 4. 7.
Constructing the GNS representation, the inner product [/70GO, TfaGO] =z:0(^*^X
x, y£=.E®, is positive definite (i.e., the Krein space ffl=D(n<^)~ is a Hilbert space}.

Proof. Noticing that P(/*g) =P(/*)P(g),/, g^E® , it follows from (11, I,
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II) that

* POO)

for all x&E®. This completes the proof.

§ 5. Construction of a P-Functional not Being a-Positive

Examples 4. 2 and 4. 7 provide P- functional which are not a -positive.
However, it is explained there that these examples cannot be used to construct non-
trivial Krein-space theories by GNS representation. The aim of this § is to
construct an example of a P- functional which is not a -positive and gives a Krein-
space theory with indefinite metric via the GNS representation recalled in § 3. This
is an answer to question (Q) formulated in § 1.

Let us consider the tensor algebra (C2) ® over the basic space C2. Further, let

eOO— e(0* (/= 1, 2) be a basis of C2. Recall that a basis of Em is given by

2?m=fe°i )® - ® < ? & m > ; i , E E { l , 2 } 0=1,2, . . . ,m)},

m = l, 2, ... .
In order to define an abstract conditional expectation on (C2) ® , let us

introduce sets XnCLEn (nGN*) by setting

Xn= {e°'i}(x) ••• ®e^ ; (,£ {1, 2} 0=1» 2» ••• » nX e(2) occurs only in

pairs of two neighboring elements e(2)} . (20)

(Notice that, e.g., X2= {e(1)(x)e(1),

The sets JTn satisfy the following properties that are the key for the construction
of the P- functional given in this § .

Lemma 5. 1. a) If xm^Xm, xn^Xnf then xm®xn^Xn+m ; and ifyn^Bn\Xn,
then yn®zm^Bn+m\Xn+m, zm®yn^Bn+m\Xn+mfor all zm^Xm (n, m£N*).

b) Ifa*®an^Xm+nfor am^Bm, an^Bn, then a*®am^X2m and a*®an^
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The proof follows straightforwardly.
Let us define

\bm if bm^Xm

'-*H if ^B,\X,,

m = l, 2, ... .

Proposition 5. 2. P=(I09Pi,P2, ...) is an abstract conditional expectation.

Proof. (10, i) follows from P0
=/o and Proposition 3. la). Noticing

\ (22)

*, (21) implies (10, iii). Using Lemma 5. la) and range(P/)=X/
Proposition 3. Ic) yields (10, ii).

Lemma 5. 3. ^(a) = {Z a (x0)) V° ; x0) e (C2) ® , MeN} w not anj; cone o/a-1=1
positivity, where a — 2P—I.

Proof. Notice that

ft, if *„£*„ , ,, tffcs«.T. <23)

follows from (21). Then,

are implied. Hence,

and ^(a) is not any involutive cone. Proposition 4. 5b) yields now the assertion to
be shown.

Remark. Noticing that ^(a) is an alg-# cone and using Corollary 4. 6, it follows
that ^(a) is also not any cone of a -positivity.

The aim of the following is to define a P- functional 0 on (C2)® . Let us start
with the definition of a linear functional T that will be used to define 0. Let us put
TO— lj T2n-i

= 0. For defining T2n let us consider subspaces
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»-l,i,e{l,2} (s=l, 2, ...,2n)}.

Let us define

1 if g2«eZ2n ande(Wi)(g)

-1 if g2neZ2n ande0"+i}(x) ••• ®e('2«)<£xn (24)

0 if g2n^B2n\Z2n,

n = l, 2, ••• . Notice that, e.g.,

L (24')

Setting $Tm=span(Zm), ^m = span(5m\^r
m), the (algebraic) direct decomposions

m=Q, 1, 2, ... , are implied.

Lemma 5.4. The following hold for the linear functional T=(T0, 0, T2, 0,
r4f ...).

0 r2n(3;2n)=0
ii) T2n(an(!bn)*
iii) I rn+m(«n(gJ*(8)/ZJ!2^r2n(an(gJ*(8)gJr2m(am(/iJ*(x)O, /or gn

Proo/ i) follows immediately from (24). ii) Notice that bn^Bn implies 6* (2)

2n . Let us now distinguish the following : a) b * 06n £J52n\ Z2n , b) 6 * ®bn £
Z2n and bn^Xn , c) 6* ®bn^Z2n and 6n$Xn. In the case of a), ii) holds because
of T2n(an(bn) * ®fe») =0, where (23) was used. For b), ii) follows from

where (23), (24) were applied. In the case of c), ii) is analogously implied by

iii) I fn+m is oddorn+m=2/ is even andg*<S>/zm$Z2/, then r2/(aB(gB)*<8>Am)
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= 0. iii) is now a consequence of ii). Assume for the following that g* ®/
Then,

! T2l(an(gnr®hJ | =1 (25)

and /z*®/zmeZ2m, g* ' ®gn^Z2n follow. Arguing as in the proof of ii, b), c), it
follows that

T2m(am(hJ*®hJ=T2n(an(gnr®gn) = l. (250

iii) is now a consequence of (25) and (25' )•

Let us consider the functional

0=yr<0 (26)

where QSj^o is taken from (7) with (Oi=l, i=0, 1, 2, .... The following
Proposition answers question (Q) given in § 1.

Proposition 50 5» a) $ is a P-functional on (C2) ® , where the abstract
conditional expectation is taken from Lemma 5. 1.

b) There are no ^-invariant dual pairs.
c) 0 is not the trivial extension of some a-positive linear functional
d) The Krein-space reconstructed from 0 by GNS representation carries an

indefinite metric [x, y] =0(j>**), x, j;E:(C2)® .
e) There is not any involution r\ - C2 - >C2 such that j\ (/*) =r\ (/i) *, /i e

C2, T(7(/*)/) ^0, T(Tf) =T(f) for all f^(C2^9 where r=(/o, 7i, 72, ...), 7« =
" (71 = 1,2,...).

Proo/ a), i) Noticing that 00=1, (11, HI) is implied.
ii) Using Lemma 5. 4 ii), iii), Lemma 2. 5 implies that

/H(C2)®. Hence, 0 satisfies (11, II).
iii) Notice that (J-P)xe^ for each xe(C2)®, where <&=®<3fm. Applying
Lemma 5. 4i), <f)(x— P(x)) =0 follows. Hence (11, II) is implied.
iv) Consider /2m = S%-6££, b^^B2m, <#<EC. Recalling (22) and (24), it
follows that r
Hence,
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r2m (/2*J = S 0,T2m 0>2
J2 *) = S 0,T2m G>££) = r2m (/2m)

implying the Hermiticity of 0.
b) is a consequence of Proposition 3. 2 and (24' )•
c) Assume that 0 is the trivial extension of some functional W. Because of dim
(Ei) = dim(C2) =2 and (15), ... , (15"), it follows that ^is denned on C® . Hence,
0GtjO=0G>x) for all x, j;<E(C2)<g. Considering x=e(1), j;=e(2)(g)e(:2)(x)e^, a
contradiction follows from

d) is obvious due to (24r).
e) Assume that there is an involution j\ satisfying the conditions stated in e).
Write

where

a 11^22 -a 12^21^0, (27)

and ojnGRO, A:G {1, 2}) due to /,(/,*) =n(/t)*, /i^C2. Then,

0 = r2(r,(e
(2)) ®n(e(2)) -r2

o<r2(r1(e
(1)®e

(1))=a11,

and (27) imply a2i = 0, fln>0, a22=^0. Now,

0< r6(r, (e
(2)) ® (n (

=an (a22)
2T6(e

(

yield a contradiction.

Remark 5. 6. a) Proposition 5. 4c), e) shows that there is not any cone of a-
positivity in (C2)® such that 0 is invariant and also positive with respect to that
cone. Hence, it is not possible to apply the method of a-positivity for constructing
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a Krein space theory.
b) The proof of Proposition 5. 2 shows that every sequence {Xn} "=0 of sets Xn

dEn defines an abstract conditional expectation P on a tensor algebra E® if
0 X0={1}9

ii) Xm=X*,n = l,2,...,
iii) Lemma 5. la) applies

are satisfied. Along these lines, there is the following straightforward
generalization of the definitions given in (20) . Let us be given a vector space E with
dim(E) = oo and an involution " * ". Choose then a sequence (e0))^i of linearly
independent elements e®=e®*E:E. Analogously to (20) define set&XnC.En by

Xn= {eQi>® — ®e0'»)
 ; i^N (7 = 1, 2, ... , n), each eG)

occurs only in a cluster of i neighboring elements e^}.

Substitute (e00)," i to a basis BI = {e™}e<=A with e^ =e(<5)* ££, d^A (A is a set of
indices) . Noticing that

BH={eW® - ®*0»);,}e^ (7=1,2 , . . . , « ) }

is a basis of !£„ define projections Pn analogously to (21). It follows now that P=
(/o, PI, P2, . . .) represents an abstract conditional expectation on E®.

c) Analyzing the construction of the functional 0, it follows that every
sequence {Xn}™=0, Xn^En, defines a P- functional by (24), and (26), if {Xn}™=0

satisfies bi), ... , biii) and Lemma 5. Ib) applies in addition. Thus a further
example of a P- functional $ on (C2) ® is given in the following way. Let Xn be the
set of all the elements ga=e°i )® ... ®e°»)e£ll, //£ {1, 2} (7 = !, 2, ... , n), such
that zs(gn) is even or 0 for s= 1, 2, where zs(g«) stands for the number of factors
ef^ occuring ingn. It follows straightforwardly that an analogous statement as the
one of Proposition 5. 5e) also applies to $.
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