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On the Irregularity of Special Non-Canonical Surfaces
By

Kazuhiro KONNO *

Abstract

We consider minimal surfaces of general type whose canonical map is “special” meaning that it is
composed of a pencil or its degree is high. We characterize, to some extent, Beauville’s examples of
irregularity 2 in the pencil case, and show that the irregularity is at most 12 when the canonical degree
is 5.

Introduction

Let S be a minimal surface of general type defined over C, and let K=Kj
denote a canonical divisor. If p,>1, we can consider the rational map associated
with | K | , the canonical map @ : S—P%~!. We put 2= (S) and let ¢¢ : S—%
be the induced rational map. When ¢, is not birational, some important results
were obtained by Beauville and Xiao :

(1) Suppose that X' is a curve, that is, | K | is composed of a pencil. We get
a relatively minimal fibration f : X—B after blowing up the base points and taking
the Stein factorization if necessary. Put b=g(B) and let g be the genus of a general
fibre of £ Beauville [1] showed that g<5 when p, is large. Later, Xiao [12]
showed that either b=¢=1 or b=0, ¢ <2.

(2) Suppose that X is a surface. It is well-known that Y is a ruled surface
when its degree is small (cf. [1], [14] or [10]). Hence, if d.., : =deggx is large,
Miyaoka-Yau’s inequality implies that ' is ruled and, as in the previous case, S has
a pencil of curves of genus g induced by the ruling of 2. Beauville [1] showed that
dn <9 when p, is large enough. Xiao showed that d.,, =9 is actually impossible for
pe>132 ([14]), and that ¢ <3 when d..,>7, p,>115 ([14] and [16]). He also
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proved that there is a bound on g, g when d..,=35, 6. After that, Sun [11] has
shown ¢ <5 when d..,=6 and p, >55, along an analogous line.

The purpose of this article is to give a slight refinement of the above results.
Our main interest is in the cases g=2 in (1) and d..,=5 in (2). We show that a
surface with ¢ =2 whose canonical map is composed of a pencil is essentially an
example of Beauville [1, 2.5] when the Albanese map is not surjective (Theo-
rem 3.6), and that ¢ <12 if the canonical map is of degree 5 onto the image
(Theorem 4.5). As one may learn from (1) and (2), we are naturally led to
studying fibred surfaces f: X—>B. We use the powerful methods due to Xiao in
order to analize f«xwy. Hence the paper should be regarded as an appendix to his
remarkable papers, especially to [14].

8 1. Irregularity of Fibred Surfaces

In this and the next sections, we recast Xiao’s method in [14] and prepare
some results for the later use. See also [12], [15], [16], [1], [3] and [9].

1.1. Let & be a locally free sheaf on a non-singular projective curve B. We put
*=Hom (&, wp) and u(&)=deg(&)/rk(&). According to [4], we have a
filtration of & by locally free subsheaves & :

OzéuoCéalC"'Céﬂ[:é"

which satisfies

Q)  &,/6&:—. is semi-stable,

() w(€) >u+1(8), where 1 (€) :=u(&:/6:-1).
As usual, we call such a filtration the Harder-Narashimhan filtration of &. Note
that we have

(1.1 k(&) — D (&) + (&) = deg(8).

Let 7 : P(&)—B be the associated projective bundle. We denote by H(&) and F a
(relatively ample) tautological divisor and a fibre of 7, respectively. The locally
free sheaf & is called nef if and only if H (&) is nef. By [9], the Q-divisors H (&)
—1;(&)F and H(&) —1,(&)F are respectively nef and pseudo-effective.

1.2. Let f: X—B be a relatively minimal fibration of non-singular projective
surface X onto a non-singular projective curve B of genus b. We assume that X is
of general type and p, >0. We let g denote the genus of a general fibre D of £/ Then
g=>2. By Arakelov’s theorem [2], the relative dualizing sheaf wy,5 is nef. By [3],
fxwyx is a direct sum of a locally free sheaf and g —b copies of wg, and fyxwx/p=
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frwx®@wg' is nef.

From now on, we let & be the locally free subsheaf of fiwyx generically
generated by elements in H°( fxwy) ; the quotient &' =fxwx/& is also locally free.
Put r=rk(&) and let 0C &, C ---C &= & be the Harder-Narashimhan filtration for
é.

For each i, the natural sheaf homomorphism f*&—f *fxwx—>wx induces a
rational map ¢; : X—>P(&,). Let o; : X=X be the elimination of the indeterminacy
of ¢, and let @, : X,—~P(&,) be the induced holomorphic map. We denote by M; the
pull-back to X; of H(&,) via ¢;. Then M;—u;(&)p*D is nef, since so is H(&,) —
w.(&)F. Put M(&)=C(0,)+M,. Then M(&)—u:(&)D is nef. Note that Ky=
M(&)+Z (&) with an effective divisor Z(&,), where = denotes the numerical
equivalence.

Let #’ be the locally free subsheaf of &* generated by H°(£*), and put & =
(#’)*. Then & and # * are both nef. We have p,=h°( fxwx) =h°(&) and h'(&)
=h'(F)=h"°(F*) by the choice of & and Z.

Proposition 1.3. With the above notation,
gX)<b+1k(F)—(b—1)(g—r).

If the equality holds here, then deg(&’)=2(b—1)(g—r) and F is a direct sum of
rk(F) copies of ws.

Proof. The following inequalities were shown in [14, p. 477] :

(1.2) h‘(é")=h‘(ﬂ/7)£brk(97)—%deg(f),
(1.3) deg(&')=>2(—1)(g—r).
(1.4) deg(F) +deg(&’ )=>2(b—1)(g—r+1k(F)),

We have an exact sequence
O—>é°—>f*a)x—>é"/ —0

and h°(&) =h°(fxwx) =p;. Since we have h'(fxwx) =q(X)—b by [3, Theo-
rem (3.1)], we get g—b=h'(&) —x(&’). By the Riemann-Roch theorem and
(1.3), we have x (&) =deg(&’ )—(b—1)(g—r)>deg(&’ )/2. Applying (1.2),
we get q—b<brk(F)— (deg(#) +deg(&’))/2. Hence the inequality follows
from (1.4). If the equality holds there, then the equalities hold in (1.2), (1.3) and
(1.4). Hence we have deg(&’ ) =2(b—1)(g—r), deg(F)=2(b—1)rk(F) and
h'(F)=r1k(#F). Since F and F* are both nef, we see that & * is semi-stable of
degree 0 and h°(F *) =1rk(#). Since & * is generated by its global sections, it is
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a direct sum of Op. Q.E.D.

Corollary 1.4. Assume that tk(¥) =r. Then p,<br. Furthermore, f: X—B is
locally trivial if (and only if) the equality holds in (1.4). In particular, when q=b
+r—(b—1)(g—r), fis locally trivial and & =w¥"

Proof. Since tk(#) =7, we have # =&. Hence &* is also nef and deg(&£™) =
—deg(&)+2(—1)r>0. By Clifford’s theorem, p,=h°(&) <deg(&)/2+r<br.
By (1.4), we have

deg(frwyx) =deg(&) +deg(&’)>2(b—1)g.

If deg ( fxwx) =2(b—1)g, then we have deg( fxwyx,s) =deg(frwx) —2(b—1)g=0.
Hence f is locally trivial. The rest may be clear from Proposition 1.3. Q. E. D.

Lemma 1.5. If b=0, then ¢(X) <r-+1.

Proof. Assume that g>r+2. Let S be the minimal model of X and let o : S—
Alb(S) be the Albanese map. Since g >r-+ 1, it follows from [16, Theorem 2] that
a(S) cannot be a surface. Hence C=a(S) is a non-singular irreducible curve of
genus g. Let 8: X—C be the fibration induced by @. We denote by 4 the genus of
a general fibre D, of 8. Since b=0, we have deg(&) =p,—r and 1,(&) >p,/r—1.
Hence Kx— ( p,/r—1)D is pseudo-effective, and we have (Kx— (p,/r—1)D)D;>0.
Since X is non-ruled, we have DD,>2. It follows that 24 —2>DD;(p,/r—1)>
2(pg/r—1). On the other hand, we have deg Bxwx,c=x(Ox) —(h—1)(g—1) >0.
Since g >r+2, we get

r+1
r

102 h-D - D2 (2" G+D)

which is impossible. Q.E.D.
Now we can show the following :

Theorem 1.6. Let f: X—B be a relatively minimal fibration of genus g>2, b=
g(B), and assume that X is of general type. Assume that the global sections of fxwx
generically generate a locally free subsheaf of rank r.

(1) Ifb=0, then ¢(X) <min{g—r, r+1}.

(2) Ifb=1, then q(X) <r.

(3) Ifb>1and g>r, then q(X) <r and g<r+r/(b—1).

(4) Ifb>1and g=r, then q(X) <b-+g—1 unless X is a product of B and a
curve of genus g.
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Proof. Assume that b=0. Then # =0 and we have g <g —r by Proposition 1.3.
Hence we get (1) by Lemma 1.5.
Assume that b >0 and g >r. Then the inequality in Proposition 1.3 says that

g<b+1k(F)—b—-1)(g—r)<b+1k(F)—b—1)<rk(F)+1<r+1.

We assume that q(X)=r+1, and show that this eventually leads us to a
contradiction. We have tk(#) =r, g=r+1 (orb=1). Corollary 1.4 shows that f
is locally trivial and & ~w§”. This cannot happen for b=1, since X is of general
type. Hence we can assume that b>1. Since f is locally trivial, we have an exact
sequence

0 _>f *(A)B_>Q,1\'_)Cl)x/3_)0.

Then, as in [12, § 1], one can see that this sequence splits. Recall that £ ®wz'=
0F" is a subsheaf of f«wx/s. Hence, we have

h0<Qi’> :ho(f*wB) +h0(f*wX/B)
>b+h(EQwz!)
=b+r,

which is impossible, since r+1=qg=h"(2%) and b >1. Therefore,g(X) <r. Byg>
b, we have (b—1)(g—r) <rk(%)<r. Henceg<r+r/(b—1) whenb>1 and g >
r.

Assume that b>1 and g=r. Then Proposition 1.3 gives us ¢ (X) <b+rk(%F)
<b-+g If gq=b-+g then fis globally trivial as is well-known. Q.E.D.

We close the section with the following :

Lemma 1.7. Assume that b=0, q=r+ 1 and that the Albanese image is a curve
C. Let S be the minimal model of X. Then the Albanese pencil of S is a locally trivial
hyperelliptic fibration of genus p,/r, K3=8x(0s), and & is the direct sum of r copies
of O(pg/r—1).

If g=2r+1, then X=S and S is a double covering of P=P' X C with branch
locus 2(p,/r+1) distinct fibers of p1 : P—>P'. If g>2r+1,then m=2r(g—2r—1)/
(pg+7) is an integer greater than 1 and K3 <K3—2m.

Proof. We use the same notation as in the proof of Lemma 1.5. Then the same
argument there easily gives us ¢,(&) =p,/r—1, DD,=2, h=p,/r and x=(h—1) (g
—1). The last equality shows that « : S—C is locally trivial. Since DD,=2, D, is
a double cover of P!. Hence it is a hyperelliptic curve. Since (&) =u,(&) and B
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=P!, we see that & =0p1 (p/r—1)?".

We have a holomorphic map ¢ : X—=P=P' X C putting ¢ =fXB. Since DD,=
2, ¢ is of degree 2. Put g=2r+k. It follows from Theorem 1.6 that k is a positive
integer. By the Riemann-Hurwitz formula, we see that the branch locus B, of ¢ is
linearly equivalent to 2, where E=p¥0p(h+1)+pF () and 7 is a divisor of
degree k—1 on C. Furthermore, X is birationally equivalent to a double covering
X, of P constructed in the total space of [£] with branch locus B,. Note that B is
free from multiple components. The dualizing sheaf of X, is induced by Kp+£&
Hence x((OXO) =x+ (k—1)h and wi, =8 +4(k—1) (h—1), where x =x (Us).

If k=1, then x (Ox,) =x. Furthermore, B, consists of fibers of p, and 27=0.
In particular, since By is smooth, X, is isomorphic to X. Note that 7#0, since,
otherwise, X is a product of C and a curve of genus 4 contradicting ¢(X) =r+1=
g(C). Therefore, 7 is a 2-torsion element. Note further that X=S§ in this case.
Conversely, if we take a 2-torsion element 7&Pic’(C) and construct a double
covering X, of P in [pf@(p,/r+1) +p5n] with branch locus consisting of 2( p,/
r+1) distinct fibres of p;, then an easy calculation shows that X, satisfies our
requirements.

Assume that k >1. We take the canonical resolution X* of X, (see, [5]). Let
m, denote the multiplicity of the singular point of B, appearing in the process of the
canonical resolution. The difference of the invariants of X, and X* can be measured
by the formula in [5]. Since x (Ox*) =y, we have

(15) = GG -1)=2G=Dn

Since K%=8y and K%+ <K% <8y, we have

(1.6) = (G- =2k-DG-0.

Since k > 1, we can assume that [m,/2] >1. It follows from (1.5) and (1.6) that
2(k—1)>X([m,/2] —1). Then, from (1.5), we get > ([[m,/2] —h) ([m,/2] —1)
>0. This allows us to assume {m;/2] >h. Then the fibre I'; of p, : P—>C passing
through this singular point induces on X* a rational curve. Since @ : S—C is locally
trivial, this implies X* #S and, hence, the equality does not hold in (1.6). Then, as
above, we see that [m;/2] =h+1. Since every fibre of a is non-singular, the
singular point must be a 2(h + 1) -ple point which becomes an ordinary 2 (h+1)-ple
point after, say, k;-times of blowing-ups (k,>0), and [, is not a component of B.
Hence, on X*, the inverse image of I"; consists of a non-singular curve of genus 4,
two (—1)-curves coming from the proper transform of /'y and 2k; (—2)-curves
which are “infinitely near” (—1)-curves. These (—1)-curves must remain on X,
since we have the holomorphic map f: X—P'. Hence Ky <K3;—2(k,+1)=
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8y—2(ki+ 1), my= -+ =my 1 =2h+2.
As in (1.5), (1.6), we get

and

Y ([5H-12 k-1~ G+ DG+ D} G —1).

12k +2 L 2

If 2(k—1) > (k;+1) (h+1), then similarly as above, one can show that there is a
singular point of B, of multiplicity 2(k -+ 1) which becomes an ordinary 2(h +1)-ple
point after, say, k,-times of blowing-ups. Let I", be the fibre of p, passing through
this singular point. Then it creates two (—1)-curves and 2k, infinitely near (—1)-
curves on X. Hence K3<8y—2(k,+1)—2(k,+1).

We can repeat such a procedure unless 2(k—1) is some multiple of A+1.
Hence m=2(k—1)/(h+1) is a positive integer and K3 <K*>—2m. If m=1, one
can easily see that the fibre of p, : P—>P' passing through the singular point of
multiplicity 24 +2 of By is a multiple component of B,, which is impossible.

Q.E.D.

§ 2. Inequalities

In this section, we give some inequalities generalizing one in [14, Lemma 3]
along an analogous line there. We freely use the notation in the previous section.
In particular, let 0C&,C -+ C&,=¢& be the Harder-Narashimhan filtration of &.
Put d,=M(&,)D and a,=2g—2—d, for 1<i<l. We putd=d,, a=a;,, M=M (&)
and Z=2Z (&) for the sake of simplicity. If there are no danger of confusion, we
also put r,=1k(&0), u.=1:;(&), M,=M(&,) and Z,=Z(&)).

Lemma 2.1. With the above notation, the following hold.
(1) 2n—2<d,<2g—2.
(2) Let Z,=XmG; be the irreducible decomposition and put
a,=max {m, | DG;>0}.
J

Then tKx;p+M,—uD+Z, is nef for any t>a,. In particular, (a,+1)Kx— (u,+
2a,(b—1))D is nef.

Proof. (1) : We clearly have d,<2g—2. Since d, equals to the degree of the
linear system | M, ||, which is of dimension r,—1, Clifford’s theorem shows d,>
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2r,i—2.
(2) : Recall that Ky,5 and M;—u.D are nef. Let C be any irreducible curve on
X. If C is not a component of Z;, then Z;C>0 and (a;Kx,5+M;,—;D+Z;)C>0.
Assume that C=G; for some j. If DG;=0, then (;Kxs+M,—u;D+Z)G;= (a;+
DKy5G,>0. If DG,>0, then (@Kys+M,—uD+Z)G= (a;i—m)KssG+
m;(Kx/3+G;)G;+ (Z;—m;G;)G;=>0. Hence a;Kxp+M;,—1;D+Z;=(a;+1)Kx—
(ui+2a;(b—1))D is nef. Sincea;=DZ;, we always have a;>a;. Therefore, (a;+1)
Kx— (i+2a:(b—1))D is nef. Q.E.D.

Lemma 2.2. If tk(#F) <r—1, then deg(&) >p,—r+b(r—1k(F)). If tk(F)
=r, then deg(&) >2(p,—7).

Proof. By the Riemann-Roch theorem and p,=h°(&), we get deg(&) =p,+
r(b—1)—h'(&). Since & is nef, we have deg(#)>0. Hence, by (1.2), we have
h'(&) <brk(F). If tk(F)=r, then # =& and Clifford’s theorem shows p,=
h°(&) <deg(&)/2+r. Hence deg(&)=>2(p,—r). Q.E.D.

Corollary 2.3. If r>1 and p,>min{(3r—2)b+r+1, 2(g—Db+g+q+1},
then the canonical map of X separates fibers of f.

Proof. Let L be a line bundle of degree 2b+1 on B. Then it is very ample.

Assume that p,> (3r —2)b+r+1. Since p, >br, we have rk(F) <r by Corol-
lary 1.4, and Lemma 2.2 shows that deg(&) >p,—r+b. We have deg(6(—L))
>p,—r+b—r(2b+1)>(r—1)(b—1) by assumption. Hence, by [8, Corollary],
L can be chosen so that H°(&(—L))+#0. Since | f*L| +Kx—f*L) is a
subsystem of | Ky | , the canonical map separates fibers of f.

Assume that p,>2(g—1)b+g+q+1. Since deg(fxwx) =x(0x)+(g+1) (b
—1), we have deg(fxwx(—L))>(g—1)(b—1). Hence, as above, the canonical

map can separate fibers also in this case. Q.E.D.
Lemma 2.4.
4g(g—1)—d} 2(2g—2—dy)’
Ki>z————u, (&) +—————0b—1).
LS L COR R v B Y
In particular,
4g(g—1) —di 2(2g—2—dy)’
Kiz————u(&)+————0b—1).
X 2g—d;—1 u (&) 2g—d;—1 ( )

Proof. For each i, we have
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.1 Ki=Kx(M,+Z;)
= (KX_,UID> (Mi'_,u'iD) + (28_’2—01')111 +2(g* l)ﬂi+KxZi
>Qg—2—a)u+2(g— D, +KxZ;

Since ((a;+1)Kx— (u;+2a(b—1))D)Z;>0, we have

(2.2) KyZ:> 2 (u+2a,(6—1)).
a;+1

Now, put i=1. It follows from (2.1) and (2.2) that

a}

2.3 K:>4(g—Du—
(2.3) X (g I a+1

—20G-D).

Hence we get the inequalities, if we note ¢, >u (&£). Q.E.D.

Corollary 2.5. If deg(&) >2r(b—1), then
4g(g—1) 1

Proof  Since a;=2g—2—d,<2g—2r;<2g—2, we have ai/(a;+1)<4(g
—1)%/(2g—1). Since 1, >u(&)=>2(b—1), (2.3) gives the inequality. Q. E. D.

When d is small enough, we can give a better bound.

Lemma 2.6. Assume that 0<d <min {2g —7r, 2g—3} and deg(&)>2(b—1)d/
(2g—1). Then

Kﬁzﬁ% (deg(&)+2(6—D(r— d;’)).

Proof. (a+1)Kx— (u;+2a(b—1))D is nef by Lemma 2.1. Since Ky—u,D is

pseudo-effective, we have (Ky—u,D) ((a+1)Kx— (u;+2a(b—1))D)>0. If fol-
lows from this and (1.1) that

24) @+ DKE=2(g— D@+ Duitw+2aG—1))
>2(g— 1) ((@a—r+2)u+deg(8) +2a(b—1)).

On the other hand, (2.1) and (2.2) for i =/ give us
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Ki>(Qg—2—a)u+2(g—Du+KxZ
z<2g—2—a>m+z<g—1>u,+a“T<u,+za<b—1>>.

Hence it follows from (1.1) that

2.5) @+DK:>—@(—1)Qg—1D+a+1)—2(g—1D(@—r+2))u
+((2g—1)a+2g—2)deg(&) +2a*(b—1).

Note that we have 2(g—1)(@—r+2)<(r—1)(2g—1) +a+1a.

Since a >0, the desired inequality follows from (2.4) when ((r—1)(2g—1) +
a+1))u,=>2g—1) deg(&) —2(b—1)(2g—2—a) and, otherwise, it follows from
2.5). Q.E.D.

By using the same method, one can also get a slight improvement of [15,
Corollary 3].

Lemma 2.7. Let f: X—B be a relatively minimal fibration of genus g=>2, b=
g(B), and put h=q(X) —b. If g—h >0, then

2 4g (g )
K> mdeg (frwx/).

When f is not locally trivial, the equality holds only if g—h=1.

Proof. By [3, Theorem 3.1], fxwxs=#DOF". Hence deg(#) =deg f«wx/s
and tk(#) =g—h. Since # is a direct factor of fxwx/s, it is nef.

Let 0C s#,C --- C # = A be the Harder-Narashimhan filtration for s#. The
natural sheaf homomorphism f * # —f *fxwx/s—>wx,s induces a rational map ¢ : X
—P(#1). Let M be the pull-back of a tautological divisor by ¢. Then Ky,z;=M +
Z with an effective divisor Z, and M —u,(#)D is nef, where D denotes a general
fibre of £ Puta=DZ. Since u,(#) >u () =degf«wx/s/(g—Hh), it is sufficient to
show

26 K> 8821000

Similarly as in Lemma 2.1, one can show that (@ + 1)Ky, —u;(#)D is nef. Hence
KxpZ >ay,(#)/(@a+1) and we get

K> ((@+1) (4g—4—a) ta)u(#)/(a+1)
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similarly as in (2.3). Since a <2g—2, we get (2.6) with equality holding only if a
=2g —2(hence tk(#;) =1 since 2g —2—a >2rk(#,) —2 by Clifford’s theorem).
Q.E.D.

Proposition 2.8. If f: X—B is a relatively minimal fibration of genus g=>2
which is not locally trivial. Then

. 8(g—2) _5g+1
10 —b<30, 1 <6

When f is of hyperelliptic type,

(5g°+g—1Dg fgi
Qg-1DGg+ D’ &1 everh
(5¢"—6g’+5g— g
(26— 1D (3g"—2g+2)’

g(X) —b<

if g is odd.

Proof. If f is not locally trivial, its slope A(f)=K%/deg(frwyx/s) is
well-defined and satisfies 2 (f) <12 by [15, Theorem 2]. If fis a hyperelliptic
fibration, then [7, Theorem 4.0.4] shows

4(g—1)(3g+1)
g2

4(3g°—2g+2)

B

, if g is even,
A<
if g is odd.

Since we have A(f)>4g(g—1)/(2g—1)(g—h) by Lemma 2.7, an easy cal-
culation shows the assertions. Q.E.D.

Corollary 2.9. Let the situation be as in Theorem 1.6, and assume that b>0, g
=r>2. If q(X)=b-+g—1, then one of the following holds :

(1) p,=gb—1,g<3, fis locally trivial and K= 8 (Ox).

(2) py,>gb, g<6, and

4(g—1
K> ”%fll (g1 (00— (g~ 35 +2) (b —1)) if g =3,
4p,—4 ifg=2.

Proof. We have deg( fxwx/s) =p,—gb+ 1. Since it is a non-negative integer,
we get p,>gb—1.

Assume that p,=gb—1. Then fis locally trivial, and we get g—b<(g+1)/2
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by the proof of [15, Corollary 3]. Since g—b=g—1, we get g<3.

Assume that p,>gb. Since f is not locally trivial and ¢ —b=g—1, it follows
from Lemma 2.7 and Proposition 2.8 that K%,3> (4g(g—1)/(2g—1))degfxwx/s
and g<6, respectively. We also have K%,3>4degf+«wx/; by [15, Theorem 1].
Hence we get (2). Q.E.D.

§ 3. Surfaces whose Canonical Map Is a Pencil

From now on, we let S be a minimal surface of general type with p, >2. In this
section, we assume that the canonical image is a curve 2. Let 0: X—S be the
elimination of the base points of the variable part of | K | . Then taking the Stein
factorization, we get a relatively minimal fibration f : X—B of genus g, b=g(B). In
this case, & is a line bundle and M (&) =deg(&)D. Hence d=M (&£)D=0.

Theorem 3.1. Assume that the canonical map of S is composed of a pencil. Then
b=q=1o0r b=0,¢9<2. If q=2, then g>3. Furthermore,

G0 ©2K>BED (1 p-(3-2)

Proof. The statement for b, g follows from Theorem 1.6. Then, since b <1 and
since & is a line bundle with A°(&) =p, > 1, we have deg(&) =p,—1+b. Hence we
get (3.1) by Lemma 2.4 putting d =d; =0, r=1. Q.E.D.

Remark 3.2. The statement for b, ¢ in Theorem 3.1 already can be found in
[12]. Unfortunately, (3.1) may not be sharp : When g=2 and p, >3, we can find
the following bound in [13] :

4p,—6, if (b, ¢)=(0,0)
K> 14p,—4, if (b, ¢)=(0, 1)
4p,, if (b, ¢)=01, 1).

When b=0, we can write | K | = | (p,—1)Dy | +Z,, where Dy=0+D and Z,=
U*Z.

Lemma 3.3. Let the notation be as above and assume that b=0.

(1) Ifq=1, then K*>4p,—4 with equality holding only if the Albanese pencil
is hyperelliptic.

(2) IfD3=0, then K*>2(g—1)(p,—1).

(3) IfD§>0,then K*>max{D3(p,—1)?, (2g—2—D3)(p,—1)}. In particu-
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lar, K*>2(g—1)(1—1/p,) (p,— 1).

Proof. (1) : Let a : S—>AIb(S) be the Albanese map, and let D, be a general
fibre of a. Since K — (p,— 1)D, is pseudo-effective, we have 0< (K — (p,— 1)Do) D,
=2h—2—DoD(p,—1)<2h—2—2(p,—1), where h=g(D;). Hence h>p, with
equality holding only if D, is a hyperelliptic curve. On the other hand, we have
K?>(4—4/h)y by [15, Theorem 2]. Hence K*> (4—4/p,)p,=4p,—4.

(2) : Since K is nef, we have K>*= (p,— 1)KDo+KZ,=2(g—1) (p,— 1) +KZ,
>2(g—1)(p,— D).

(3): We have Z=0*Zy+>X ((p;—1)m;+1)E;, where m; denotes the
multiplicity of a base point of | D, | appearing in g, and E; is the inverse image of
the base point. Hence 2g—2—>m;=KDo= (p,— 1)Dj+DoZ,. K*=(2g—2—
Ym) (pe—1) +KZo=(p,— 1) D+ K+ (ps—1)Do)Zo> (p,—1)*D§. We also
note that D§>>m;. Hence K*>(2g—2—D3) (p,—1). Q.E.D.

Corollary 3.4. Let S be a minimal surface of general type whose canonical map
is composed of a pencil. Then K*>4p,—.

Proof. By Remark 3.2, we can assume that g=>3. By Lemma 3.3, we only have
to consider the case that b=0, D3>0 and p,<4. If p,=4, then Lemma 3.3, (3)
implies that K>*>3(p,—1) =4p,—7. Assume that p,=3. If Dj>2, then we are
done. If D3=1, then KDy=2-+DoZ,. Since KDy+ D} is even, Dy Z, is a positive odd
integer. It follows K>*>(3—1)*+(3—1)=6=4p,—6. Assume that p,=2. Then
K*>1=4p,— 1. Q.E.D.

Corollary 3.5. Let the notation and assumption be as above. Assume that the
variable part of | K | is free from base points, when b=0. Then the following hold.

(1) Ifb=q=1, then g<5.

(2) Ifb=0and p,>20—9q, then g<5.

Proof. By Miyaoka-Yau’s inequality, we have K?’<9y. Hence (1) and (2)
follow from (3.1) and Lemma 3.3. Q.E.D.

When g=2, we can say more :

Theorem 3.6. Let S be a minimal surface of general type with q=2 whose
canonical map is composed of a pencil of genus g. Assume that the Albanese map is
not surjective. Then K*=8y and the Albanese pencil is a locally trivial hyperelliptic
fibration of genus p,. Furthermore, g=3 and S is an example of Beawville [1, 2.5]
except possibly when (p,, g)=(2,6), (2,9) or (3, 7).

Proof. Except for the last sentence, this is clear from Lemma 1.7. Assume that
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g>3 and put m=2(g—3)/(p,+1). Then D}>2m as we saw in the proof of
Lemma 1.7. Since K*=8y=8(p,—1), Lemma 3.3 gives us 8>D}(p,—1) >2m (p,
—1). Since m>2, we have 2(p,+1)>(g—3)(p,—1) > (p,+1)(p,—1). Since
m is an integer, we obtain the list of the exceptions. Q. E.D.

§ 4. Surfaces with High Canonical Degree

In this section, we assume that the canonical map of S induces a rational map
@k : S—>X CPPs! of degree d.., > 1 onto the image 3.

The following lemma due to Xiao [14, Lemma 1] guarantees that X’ is ruled by
rational curves of small degree when d.,, is large. See also [10].

Lemma 4.1. If there exists a positive integer O such that

2(6+1) 9
deg2<—6_fz— (pg_1_§(5+ 1)>,

then X has a pencil of rational curves of degree <J. Furthermore, when 0=1, the
above inequality can be weakened to

deg2<%(pg—3)

except if p,=10 and (2, 0(1)) = (P? 0(3)).

Assume that ' is ruled by rational curves of degree 0. Let /1 be a pencil of
curves on S induced by the ruling of X' via ¢x. Let 0 : X—S be the composite of
blowing-ups which eliminates Bs/l. Then, taking the Stein factorization if
necessary, we get a relatively minimal fibration f: X—>B. As before, we denote by
g the genus of a general fibre D of f and put b=g (B).

Let & be the locally free subsheaf of fxwyx generically generated by its global
sections. Since D is mapped onto a rational curves of degree 0, the restriction map
H°(Ky)—H°(Kp) is of rank <5+1. Hence r=rk(&)<5+1. Putd=M(&)D as
before. Let ¢ : X—P(&) be, as in 1.2, the rational map associated with f *&—>wy.
Then, by the choice of &, the canonical map @, is a composite of ¢ and the rational
map of P(&) induced by H(&) which we denote by Py.

Lemma 4.2. Assume that the canonical image is ruled by rational curves of
degree 0.

(1)  dewis a multiple of /6. If @y separates fibers of P(§)—B, then d =d..0.
If d oy is a prime number, then d =d,,0.
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(2) If g=r, then fis of hyperelliptic type, d =26 and d.., is even.

Proof. (1) : Since the image of D under the canonical map is a rational curve
of degree 0, d is a multiple of J, and d/0 equals the degree of @k, | p, hence, ¢ is
of degree d/J onto its image.

(2) : Since k(&) =g, the restriction map H°(Kyx)—H°(Kp) is surjective. By
the assumption, it follows that D is mapped onto a rational curve via its canonical
map. Hence D is a hyperelliptic curve. By what we saw above, ¢ is of degree 2 onto
the image. Hence d,.,, must be even. Q.E.D.

Note that S has no pencil of hyperelliptic curves if d., is odd. Hence
Theorem 1.6, Lemma 1.7 and Lemma 4.2 give us the following generalization of
{16, Theorem 3].

Theorem 4.3. Assume that X is ruled by rational curves of degree 0. Assume
further that g >0+ 1 or d., is odd. Then q<6+2. If q=06+2, then b=0and g>
20+3. If d.u is odd and q=030+2, the Albanese image of S is a surface.

Lemma 4.4. Suppose that b>1 and g=06+1.

(1) Assume that 6=1. Then d.., is an even integer not exceeding 10. If du
=10, then b=q=2,p,=3. If doen=38, then (b, ¢, p,) = (2,2, 3), (2,3,3) or (3, 3,
4). If d.;n="6, then (b, g, pg) =(2,2,3),2,2,4),(,3,3), (3,3,4), (3,3,5 or
(4, 4, 6).

(2) Ifé6=2and d,.=6,then (b, ¢, p) =(2,2,4), (2,2,6), (3,3,6) or (4,
4,9).

Proof. We can assume that & =fxwy. Put H=H(fxwyx). Since deg fxwx/p=>
0, we have

4.1 pe>g+o(b—1)—1

(1) : Though this is essentially contained in [13, p. 74], we give a proof for the sake
of completeness. Put d.,, =2m. Then @y is a map of degree m onto the image 2.
Hence H*>m degX. Since H>=degfxwx=x+3(b—1) and degX¥>p,—2, we get

(4.2) (m—1p,<3b—q+2m—2.

From (4.1) and (4.2), we get mq+ (m—3)b<4m—4. If ¢>3, then we have m <
4, since b>2. Assume that g=b=2. Since p,>3, it follows from (4.2) that 4=
3b—qg>m—1. Hence we get m<5. The rest follow from an easy calculation.
(2) : Let V be the image of ¢ : X—P( fxwyx). Then V is numerically equivalent
to 2H —vF with an integer v. Since V is a relative hyperquadric of rank 3, one can
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easily show 3v <2deg( fxwy) (see, €. g., [6]). Since H induces a map of degree 3,
we have H2(2H —vF) >3deg 2, that is, 2deg ( fxwx) —v=>3deg2. Hence deg( fxwx)
>(9/4)degX. On the other hand, since 2 is not ruled by straight lines, Lemma 4.1
gives us degX>(4/3)(p,—1—9/4). Therefore, deg(fsxwx)>3p,—9. Since
deg(fxwy) =x+4(b—1), we have

4.3) 2p, <4b—q+6.
It follows from (4.1) and (4.3) that ¢ <4. Furthermore, since p, >4, we get

b q)=02,2): 4<p,<6
(b, @)=, 3) :p;=4,5
b g)=02,4) :p;=5
(b, 9):(3, 3) 1pg=6,7
b, q)=@3,4) :p,=7
b, qg)=(4,4) :p,=9.

It is known that surfaces with degree p,—2 in P’z ™' is ruled by straight lines unless
it is the Veronese surface, p,=6. Hence, if p,# 6, we can assume that deg2'>p,—1.
Since deg fxwx>(9/4) (p,—1), we have

7, if p,=4,
deg fxwx=>19, if p,=S5,
14, ifp,=7.
Hence we can exclude several cases and get (2). Q.E.D.

In [14, Theorem 5], it is shown that there is a bound of g, g when d_,,>5.
Now we can give a bound on gq.

Theorem 4.5. Let S be a surface of general type whose canonical map is a
rational map of degree d.., >4 onto its image.

(1) Ifd.an>7, then q<3 except possibly when d..,=7, p,=10, g=4, K*=63
and X is P* embedded into P° by | 0(3) | .

(2) Ifd.,=6, then g<5.

(3) Ifdwn=5, then ¢<12, and q# 12 when p, > 136.

Proof. (1) : Assume that g>4. Miyaoka-Yau’s inequality gives us
degZSKz/dcan ng/dcan < (9/dcan> (pg - 3) .

Hence Lemma 4.1 implies that X' is ruled by lines unless we are in the case excepted
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in (1). But then, Theorem 4.3 and Lemma 4.4 give us ¢ <3, a contradiction.

(2) : Assume that ¢ >6. By the same reasoning as above, Lemma 4.1 implies
that X' is ruled by rational curves of degree 6 <2. In this case, however, Theorem 4.3
and Lemma 4.4 give us g <4, a contradiction.

(3) : Assume that g=>13. By the same reasoning as above, Lemma 4.1 implies
that X is ruled by rational curves of degree 6 <8. But, Theorem 4.3 shows ¢ <10
contradicting our initial assumption. Quite similarly, assuming ¢ =12 and p, > 136,
we can show that 2 is ruled by rational curves of degree 6 <9. But Theorem 4.3
tells us g <11. Q.E.D.

Remark 4.6. In the above theorem, (1) and (2) respectively can weaken the
assumption on p, in [16, p. 602, Corollary] and [11, Theorem 3].

As for g, we can show, for example, the following :

Proposition 4.7. Let the notation and assumption be as above.
(1) Ifden=6and p,>190, then g<16.
(2) Ifdwn=>5 and p,> 1324, then g <44.

Proof. We show only (2), because (1) can be treated similarly if we note that
d =60 holds when p, is large enough by Corollary 2.3 and Lemma 4.2.
If p, > 1324, then

209+1)

9
degE< (Pt D<o o (—1—~(9+1))

Hence, by Lemma 4.1, X is ruled by rational curves of degree 6<9. We assume g
>45 and show that this leads us to a contradiction. By Theorem 1.6, we can
suppose b<1. By Lemma 4.2, we have d =50. Since 50<45<2g—10<2g—0—1,
it follows from Lemma 2.6 (and Lemma 2.4 when & is semi-stable) that K?>
(1584/169) (p,—28). However, since p,>728, this contradicts Miyaoka-Yau’s
inequality K*<9(p,+1). Hence g<44. Q.E.D.
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