# On the Irregularity of Special Non-Canonical Surfaces

Ву

#### Kazuhiro Konno \*

#### Abstract

We consider minimal surfaces of general type whose canonical map is "special" meaning that it is composed of a pencil or its degree is high. We characterize, to some extent, Beauville's examples of irregularity 2 in the pencil case, and show that the irregularity is at most 12 when the canonical degree is 5.

#### Introduction

Let S be a minimal surface of general type defined over C, and let  $K = K_S$  denote a canonical divisor. If  $p_g > 1$ , we can consider the rational map associated with |K|, the canonical map  $\Phi_K : S \to P^{p_g-1}$ . We put  $\Sigma = \Phi_K(S)$  and let  $\phi_K : S \to \Sigma$  be the induced rational map. When  $\phi_K$  is not birational, some important results were obtained by Beauville and Xiao:

- (1) Suppose that  $\Sigma$  is a curve, that is, |K| is composed of a pencil. We get a relatively minimal fibration  $f: X \rightarrow B$  after blowing up the base points and taking the Stein factorization if necessary. Put b = g(B) and let g be the genus of a general fibre of f. Beauville [1] showed that  $g \le 5$  when  $p_g$  is large. Later, Xiao [12] showed that either b = q = 1 or b = 0,  $q \le 2$ .
- (2) Suppose that  $\Sigma$  is a surface. It is well-known that  $\Sigma$  is a ruled surface when its degree is small (cf. [1], [14] or [10]). Hence, if  $d_{can} := \deg \phi_K$  is large, Miyaoka-Yau's inequality implies that  $\Sigma$  is ruled and, as in the previous case, S has a pencil of curves of genus g induced by the ruling of  $\Sigma$ . Beauville [1] showed that  $d_{can} \le 9$  when  $p_g$  is large enough. Xiao showed that  $d_{can} = 9$  is actually impossible for  $p_g > 132$  ([14]), and that  $q \le 3$  when  $d_{can} \ge 7$ ,  $p_g > 115$  ([14] and [16]). He also

Communicated by S. Mori, July 21, 1993.

Supported in part by a Grant under The Monbusho International Scientific Research Program: 04044081

<sup>1991</sup> Mathematics Subject Classification: 14J29

<sup>\*</sup> Department of Mathematics, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan.

proved that there is a bound on q, g when  $d_{can} = 5$ , g. After that, Sun [11] has shown  $q \le 5$  when  $d_{can} = 6$  and  $p_g > 55$ , along an analogous line.

The purpose of this article is to give a slight refinement of the above results. Our main interest is in the cases q=2 in (1) and  $d_{can}=5$  in (2). We show that a surface with q=2 whose canonical map is composed of a pencil is essentially an example of Beauville [1, 2.5] when the Albanese map is not surjective (Theorem 3.6), and that  $q \le 12$  if the canonical map is of degree 5 onto the image (Theorem 4.5). As one may learn from (1) and (2), we are naturally led to studying fibred surfaces  $f: X \rightarrow B$ . We use the powerful methods due to Xiao in order to analize  $f_*\omega_X$ . Hence the paper should be regarded as an appendix to his remarkable papers, especially to [14].

## § 1. Irregularity of Fibred Surfaces

In this and the next sections, we recast Xiao's method in [14] and prepare some results for the later use. See also [12], [15], [16], [1], [3] and [9].

1.1. Let  $\mathscr E$  be a locally free sheaf on a non-singular projective curve B. We put  $\mathscr E^* = Hom(\mathscr E, \ \omega_B)$  and  $\mu(\mathscr E) = \deg(\mathscr E)/\operatorname{rk}(\mathscr E)$ . According to [4], we have a filtration of  $\mathscr E$  by locally free subsheaves  $\mathscr E_i$ :

$$0 = \mathscr{E}_0 \subset \mathscr{E}_1 \subset \cdots \subset \mathscr{E}_l = \mathscr{E}$$

which satisfies

- (i)  $\mathscr{E}_i/\mathscr{E}_{i-1}$  is semi-stable,
- (ii)  $\mu_i(\mathscr{E}) > \mu_{i+1}(\mathscr{E})$ , where  $\mu_i(\mathscr{E}) := \mu(\mathscr{E}_i/\mathscr{E}_{i-1})$ .

As usual, we call such a filtration the Harder-Narashimhan filtration of  $\mathscr{E}$ . Note that we have

$$(1.1) (\operatorname{rk}(\mathscr{E}) - 1)\mu_1(\mathscr{E}) + \mu_l(\mathscr{E}) \ge \operatorname{deg}(\mathscr{E}).$$

Let  $\pi: P(\mathscr{E}) \to B$  be the associated projective bundle. We denote by  $H(\mathscr{E})$  and F a (relatively ample) tautological divisor and a fibre of  $\pi$ , respectively. The locally free sheaf  $\mathscr{E}$  is called nef if and only if  $H(\mathscr{E})$  is nef. By [9], the Q-divisors  $H(\mathscr{E}) - \mu_1(\mathscr{E})F$  and  $H(\mathscr{E}) - \mu_1(\mathscr{E})F$  are respectively nef and pseudo-effective.

1.2. Let  $f: X \rightarrow B$  be a relatively minimal fibration of non-singular projective surface X onto a non-singular projective curve B of genus b. We assume that X is of general type and  $p_g > 0$ . We let g denote the genus of a general fibre D of f. Then  $g \ge 2$ . By Arakelov's theorem [2], the relative dualizing sheaf  $\omega_{X/B}$  is nef. By [3],  $f_*\omega_X$  is a direct sum of a locally free sheaf and q-b copies of  $\omega_B$ , and  $f_*\omega_{X/B} = 0$ 

 $f_*\omega_X\otimes\omega_B^{-1}$  is nef.

From now on, we let  $\mathscr E$  be the locally free subsheaf of  $f_*\omega_X$  generically generated by elements in  $H^0(f_*\omega_X)$ ; the quotient  $\mathscr E'=f_*\omega_X/\mathscr E$  is also locally free. Put  $r=\mathrm{rk}(\mathscr E)$  and let  $0\subseteq\mathscr E_1\subseteq\cdots\subseteq\mathscr E_l=\mathscr E$  be the Harder-Narashimhan filtration for  $\mathscr E$ 

For each i, the natural sheaf homomorphism  $f^*\mathcal{E}_i \to f^*f_*\omega_X \to \omega_X$  induces a rational map  $\phi_i: X \to P(\mathcal{E}_i)$ . Let  $\rho_i: X_i \to X$  be the elimination of the indeterminacy of  $\phi_i$ , and let  $\widetilde{\phi}_i: X_i \to P(\mathcal{E}_i)$  be the induced holomorphic map. We denote by  $\widetilde{M}_i$  the pull-back to  $X_i$  of  $H(\mathcal{E}_i)$  via  $\widetilde{\phi}_i$ . Then  $\widetilde{M}_i - \mu_i(\mathcal{E})\rho_i^*D$  is nef, since so is  $H(\mathcal{E}_i) - \mu_i(\mathcal{E})F$ . Put  $M(\mathcal{E}_i) = (\rho_i)_*\widetilde{M}_i$ . Then  $M(\mathcal{E}_i) - \mu_i(\mathcal{E})D$  is nef. Note that  $K_X \equiv M(\mathcal{E}_i) + Z(\mathcal{E}_i)$  with an effective divisor  $Z(\mathcal{E}_i)$ , where  $\equiv$  denotes the numerical equivalence.

Let  $\mathscr{F}'$  be the locally free subsheaf of  $\mathscr{E}^*$  generated by  $H^0(\mathscr{E}^*)$ , and put  $\mathscr{F} = (\mathscr{F}')^*$ . Then  $\mathscr{F}$  and  $\mathscr{F}^*$  are both nef. We have  $p_g = h^0(f_*\omega_X) = h^0(\mathscr{E})$  and  $h^1(\mathscr{E}) = h^1(\mathscr{F}) = h^0(\mathscr{F}^*)$  by the choice of  $\mathscr{E}$  and  $\mathscr{F}$ .

Proposition 1.3. With the above notation,

$$q(X) \leq b + \operatorname{rk}(\mathscr{F}) - (b-1)(g-r).$$

If the equality holds here, then  $\deg(\mathscr{E}') = 2(b-1)(g-r)$  and  $\mathscr{F}$  is a direct sum of  $\operatorname{rk}(\mathscr{F})$  copies of  $\omega_B$ .

*Proof.* The following inequalities were shown in [14, p. 477]:

$$(1.2) h^{1}(\mathscr{E}) = h^{1}(\mathscr{F}) \leq brk(\mathscr{F}) - \frac{1}{2}deg(\mathscr{F}),$$

$$(1.3) \qquad \deg(\mathscr{E}') \geq 2(b-1)(g-r).$$

(1.4) 
$$\deg(\mathscr{F}) + \deg(\mathscr{E}') \geq 2(b-1)(g-r+rk(\mathscr{F})),$$

We have an exact sequence

$$0 \rightarrow \mathscr{E} \rightarrow f_* \omega_x \rightarrow \mathscr{E}' \rightarrow 0$$

and  $h^0(\mathscr{E}) = h^0(f_*\omega_X) = p_g$ . Since we have  $h^1(f_*\omega_X) = q(X) - b$  by [3, Theorem (3.1)], we get  $q - b = h^1(\mathscr{E}) - \chi(\mathscr{E}')$ . By the Riemann-Roch theorem and (1.3), we have  $\chi(\mathscr{E}') = \deg(\mathscr{E}') - (b-1)(g-r) \ge \deg(\mathscr{E}')/2$ . Applying (1.2), we get  $q - b \le b \operatorname{rk}(\mathscr{F}) - (\deg(\mathscr{F}) + \deg(\mathscr{E}'))/2$ . Hence the inequality follows from (1.4). If the equality holds there, then the equalities hold in (1.2), (1.3) and (1.4). Hence we have  $\deg(\mathscr{E}') = 2(b-1)(g-r)$ ,  $\deg(\mathscr{F}) = 2(b-1)\operatorname{rk}(\mathscr{F})$  and  $h^1(\mathscr{F}) = \operatorname{rk}(\mathscr{F})$ . Since  $\mathscr{F}$  are both nef, we see that  $\mathscr{F}^*$  is semi-stable of degree 0 and  $h^0(\mathscr{F}^*) = \operatorname{rk}(\mathscr{F})$ . Since  $\mathscr{F}^*$  is generated by its global sections, it is

a direct sum of  $\mathcal{O}_B$ . Q. E. D.

Corollary 1.4. Assume that  $\operatorname{rk}(\mathscr{F})=r$ . Then  $p_g \leq br$ . Furthermore,  $f: X \to B$  is locally trivial if (and only if) the equality holds in (1.4). In particular, when q=b+r-(b-1)(g-r), f is locally trivial and  $\mathscr{E}\simeq \omega_B^{\oplus r}$ .

*Proof.* Since  $\operatorname{rk}(\mathscr{F})=r$ , we have  $\mathscr{F}=\mathscr{E}$ . Hence  $\mathscr{E}^*$  is also nef and  $\operatorname{deg}(\mathscr{E}^*)=-\operatorname{deg}(\mathscr{E})+2(b-1)r\geq 0$ . By Clifford's theorem,  $p_g=h^0(\mathscr{E})\leq \operatorname{deg}(\mathscr{E})/2+r\leq br$ . By (1.4), we have

$$\deg(f_*\omega_X) = \deg(\mathscr{E}) + \deg(\mathscr{E}') \geq 2(b-1)g.$$

If  $\deg(f_*\omega_X) = 2(b-1)g$ , then we have  $\deg(f_*\omega_{X/B}) = \deg(f_*\omega_X) - 2(b-1)g = 0$ . Hence f is locally trivial. The rest may be clear from Proposition 1.3. Q. E. D.

**Lemma 1.5.** If b = 0, then  $q(X) \le r + 1$ .

*Proof.* Assume that  $q \ge r+2$ . Let S be the minimal model of X and let  $\alpha: S \to \operatorname{Alb}(S)$  be the Albanese map. Since q > r+1, it follows from [16, Theorem 2] that  $\alpha(S)$  cannot be a surface. Hence  $C = \alpha(S)$  is a non-singular irreducible curve of genus q. Let  $\beta: X \to C$  be the fibration induced by  $\alpha$ . We denote by h the genus of a general fibre  $D_1$  of  $\beta$ . Since b = 0, we have  $\deg(\mathscr{E}) = p_g - r$  and  $\mu_1(\mathscr{E}) \ge p_g / r - 1$ . Hence  $K_X - (p_g / r - 1)D$  is pseudo-effective, and we have  $(K_X - (p_g / r - 1)D)D_1 \ge 0$ . Since X is non-ruled, we have  $DD_1 \ge 2$ . It follows that  $2h - 2 \ge DD_1(p_g / r - 1) \ge 2(p_g / r - 1)$ . On the other hand, we have  $\deg \beta_* \omega_{X/C} = \chi(\mathscr{O}_X) - (h-1)(q-1) \ge 0$ . Since  $q \ge r+2$ , we get

$$\chi(\mathcal{O}_{\chi}) \ge (h-1)(q-1) \ge \frac{q-1}{r}(p_g-r) \ge \frac{r+1}{r}(\chi+1)$$

which is impossible.

Q. E. D.

Now we can show the following:

**Theorem 1.6.** Let  $f: X \rightarrow B$  be a relatively minimal fibration of genus  $g \ge 2$ , b = g(B), and assume that X is of general type. Assume that the global sections of  $f_*\omega_X$  generically generate a locally free subsheaf of rank r.

- (1) If b=0, then  $q(X) \le \min\{g-r, r+1\}$ .
- (2) If b=1, then  $q(X) \le r$ .
- (3) If b > 1 and g > r, then  $q(X) \le r$  and  $g \le r + r/(b-1)$ .
- (4) If b > 1 and g = r, then  $q(X) \le b + g 1$  unless X is a product of B and a curve of genus g.

*Proof.* Assume that b=0. Then  $\mathscr{F}=0$  and we have  $q \le g-r$  by Proposition 1.3. Hence we get (1) by Lemma 1.5.

Assume that b>0 and g>r. Then the inequality in Proposition 1.3 says that

$$q \le b + \operatorname{rk}(\mathscr{F}) - (b-1)(g-r) \le b + \operatorname{rk}(\mathscr{F}) - (b-1) \le \operatorname{rk}(\mathscr{F}) + 1 \le r + 1.$$

We assume that q(X)=r+1, and show that this eventually leads us to a contradiction. We have  $\mathrm{rk}(\mathscr{F})=r$ , g=r+1 (or b=1). Corollary 1.4 shows that f is locally trivial and  $\mathscr{E}\simeq\omega_B^{\oplus r}$ . This cannot happen for b=1, since X is of general type. Hence we can assume that b>1. Since f is locally trivial, we have an exact sequence

$$0 \rightarrow f^*\omega_B \rightarrow \Omega_X^1 \rightarrow \omega_{X/B} \rightarrow 0.$$

Then, as in [12, § 1], one can see that this sequence splits. Recall that  $\mathscr{E} \otimes \omega_B^{-1} \simeq \mathscr{O}_B^{\oplus r}$  is a subsheaf of  $f_*\omega_{X/B}$ . Hence, we have

$$h^0(\Omega_X^1) = h^0(f^*\omega_B) + h^0(f_*\omega_{X/B})$$
  
 $\geq b + h^0(\mathscr{E} \otimes \omega_B^{-1})$   
 $= b + r.$ 

which is impossible, since  $r+1=q=h^0(\Omega_X^1)$  and b>1. Therefore,  $q(X) \le r$ . By  $q \ge b$ , we have  $(b-1)(g-r) \le \operatorname{rk}(\mathscr{F}) \le r$ . Hence  $g \le r+r/(b-1)$  when b>1 and g>r.

Assume that b > 1 and g = r. Then Proposition 1.3 gives us  $q(X) \le b + rk(\mathscr{F})$  $\le b + g$ . If q = b + g, then f is globally trivial as is well-known. Q. E. D.

We close the section with the following:

**Lemma 1.7.** Assume that b=0, q=r+1 and that the Albanese image is a curve C. Let S be the minimal model of X. Then the Albanese pencil of S is a locally trivial hyperelliptic fibration of genus  $p_g/r$ ,  $K_S^2=8\chi(\mathcal{O}_S)$ , and  $\mathscr{E}$  is the direct sum of r copies of  $\mathcal{O}(p_g/r-1)$ .

If g=2r+1, then X=S and S is a double covering of  $P=P^1\times C$  with branch locus  $2(p_g/r+1)$  distinct fibers of  $p_1:P\to P^1$ . If g>2r+1, then  $m=2r(g-2r-1)/(p_g+r)$  is an integer greater than 1 and  $K_X^2\leq K_S^2-2m$ .

*Proof.* We use the same notation as in the proof of Lemma 1.5. Then the same argument there easily gives us  $\mu_1(\mathscr{E}) = p_g/r - 1$ ,  $DD_1 = 2$ ,  $h = p_g/r$  and  $\chi = (h-1)(q-1)$ . The last equality shows that  $\alpha : S \rightarrow C$  is locally trivial. Since  $DD_1 = 2$ ,  $D_1$  is a double cover of  $P^1$ . Hence it is a hyperelliptic curve. Since  $\mu(\mathscr{E}) = \mu_1(\mathscr{E})$  and P

 $=\mathbb{P}^1$ , we see that  $\mathscr{E} \simeq \mathscr{O}_{\mathbb{P}^1}(p_{\mathfrak{g}}/r-1)^{\oplus r}$ .

We have a holomorphic map  $\phi: X \rightarrow P = P^1 \times C$  putting  $\phi = f \times \beta$ . Since  $DD_1 = 2$ ,  $\phi$  is of degree 2. Put g = 2r + k. It follows from Theorem 1.6 that k is a positive integer. By the Riemann-Hurwitz formula, we see that the branch locus  $B_0$  of  $\phi$  is linearly equivalent to  $2\xi$ , where  $\xi = p_1^* \mathcal{O}_{P^1}(h+1) + p_2^*(\eta)$  and  $\eta$  is a divisor of degree k-1 on C. Furthermore, X is birationally equivalent to a double covering  $X_0$  of P constructed in the total space of  $[\xi]$  with branch locus  $B_0$ . Note that  $B_0$  is free from multiple components. The dualizing sheaf of  $X_0$  is induced by  $K_P + \xi$ . Hence  $\chi(\mathcal{O}_{X_0}) = \chi + (k-1)h$  and  $\omega_{X_0}^2 = 8\chi + 4(k-1)(h-1)$ , where  $\chi = \chi(\mathcal{O}_S)$ .

If k=1, then  $\chi(\mathcal{O}_{X_0})=\chi$ . Furthermore,  $B_0$  consists of fibers of  $p_1$  and  $2\eta=0$ . In particular, since  $B_0$  is smooth,  $X_0$  is isomorphic to X. Note that  $\eta\neq 0$ , since, otherwise, X is a product of C and a curve of genus h contradicting q(X)=r+1=g(C). Therefore,  $\eta$  is a 2-torsion element. Note further that X=S in this case. Conversely, if we take a 2-torsion element  $\eta\in \operatorname{Pic}^0(C)$  and construct a double covering  $X_0$  of P in  $[p_1^*\mathcal{O}(p_g/r+1)+p_2^*\eta]$  with branch locus consisting of  $2(p_g/r+1)$  distinct fibres of  $p_1$ , then an easy calculation shows that  $X_0$  satisfies our requirements.

Assume that k > 1. We take the canonical resolution  $X^*$  of  $X_0$  (see, [5]). Let  $m_i$  denote the multiplicity of the singular point of  $B_0$  appearing in the process of the canonical resolution. The difference of the invariants of  $X_0$  and  $X^*$  can be measured by the formula in [5]. Since  $\chi(\mathcal{O}_X^*) = \chi$ , we have

(1.5) 
$$\sum_{i} \left[ \frac{m_i}{2} \right] \left( \left[ \frac{m_i}{2} \right] - 1 \right) = 2(k-1)h.$$

Since  $K_S^2 = 8\chi$  and  $K_X^2 * \le K_X^2 \le 8\chi$ , we have

$$(1.6) \qquad \qquad \sum_{i} \left( \left[ \frac{m_i}{2} \right] - 1 \right)^2 \ge 2(k-1)(h-1).$$

Since k > 1, we can assume that  $\lfloor m_1/2 \rfloor > 1$ . It follows from (1.5) and (1.6) that  $2(k-1) \ge \mathcal{L}(\lfloor m_1/2 \rfloor - 1)$ . Then, from (1.5), we get  $\sum (\lfloor \lfloor m_1/2 \rfloor - h)(\lfloor m_1/2 \rfloor - 1) \ge 0$ . This allows us to assume  $\lfloor m_1/2 \rfloor \ge h$ . Then the fibre  $\Gamma_1$  of  $p_2 : P \to C$  passing through this singular point induces on  $X^*$  a rational curve. Since  $\alpha : S \to C$  is locally trivial, this implies  $X^* \ne S$  and, hence, the equality does not hold in (1.6). Then, as above, we see that  $\lfloor m_1/2 \rfloor = h+1$ . Since every fibre of  $\alpha$  is non-singular, the singular point must be a 2(h+1)-ple point which becomes an ordinary 2(h+1)-ple point after, say,  $k_1$ -times of blowing-ups  $(k_1 \ge 0)$ , and  $\Gamma_1$  is not a component of  $\Gamma_1$ . Hence, on  $\Gamma_1$  and  $\Gamma_2$  curves which are "infinitely near"  $\Gamma_1$  consists of a non-singular curve of genus  $\Gamma_2$  which are "infinitely near"  $\Gamma_2$  curves. These  $\Gamma_2$  and  $\Gamma_3$  are treating on  $\Gamma_4$  and  $\Gamma_3$  and  $\Gamma_4$  are "infinitely near"  $\Gamma_4$  curves. These  $\Gamma_4$  are  $\Gamma_4$  and  $\Gamma_4$  is not a component of  $\Gamma_4$  in  $\Gamma_4$  in  $\Gamma_4$  in  $\Gamma_4$  in  $\Gamma_4$  in  $\Gamma_4$  in  $\Gamma_4$  in

$$8\chi - 2(k_1 + 1), m_1 = \dots = m_{k_1 + 1} = 2h + 2.$$
  
As in (1.5), (1.6), we get

$$\sum_{1 \ge k_1 + 2} \left[ \frac{m_i}{2} \right] \left( \left[ \frac{m_i}{2} \right] - 1 \right) = \left\{ 2 \left( k - 1 \right) - \left( k_1 + 1 \right) \left( h + 1 \right) \right\} h.$$

and

$$\sum_{i \ge k_1 + 2} \left( \left[ \frac{m_i}{2} \right] - 1 \right)^2 \ge \left\{ 2(k-1) - (k_1 + 1)(h+1) \right\} (h-1).$$

If  $2(k-1) > (k_1+1)(h+1)$ , then similarly as above, one can show that there is a singular point of  $B_0$  of multiplicity 2(h+1) which becomes an ordinary 2(h+1)-ple point after, say,  $k_2$ -times of blowing-ups. Let  $\Gamma_2$  be the fibre of  $p_2$  passing through this singular point. Then it creates two (-1)-curves and  $2k_2$  infinitely near (-1)-curves on X. Hence  $K_X^2 \le 8\chi - 2(k_1+1) - 2(k_2+1)$ .

We can repeat such a procedure unless 2(k-1) is some multiple of h+1. Hence m=2(k-1)/(h+1) is a positive integer and  $K_x^2 \le K^2 - 2m$ . If m=1, one can easily see that the fibre of  $p_1: P \rightarrow P^1$  passing through the singular point of multiplicity 2h+2 of  $B_0$  is a multiple component of  $B_0$ , which is impossible.

Q. E. D.

## § 2. Inequalities

In this section, we give some inequalities generalizing one in [14, Lemma 3] along an analogous line there. We freely use the notation in the previous section. In particular, let  $0 \subset \mathscr{E}_1 \subset \cdots \subset \mathscr{E}_l = \mathscr{E}$  be the Harder-Narashimhan filtration of  $\mathscr{E}$ . Put  $d_i = M(\mathscr{E}_i)D$  and  $a_i = 2g - 2 - d_i$  for  $1 \le i \le l$ . We put  $d = d_i$ ,  $a = a_l$ ,  $M = M(\mathscr{E})$  and  $Z = Z(\mathscr{E})$  for the sake of simplicity. If there are no danger of confusion, we also put  $r_i = \operatorname{rk}(\mathscr{E}_i)$ ,  $\mu_i = \mu_i(\mathscr{E})$ ,  $M_i = M(\mathscr{E}_i)$  and  $Z_i = Z(\mathscr{E}_i)$ .

Lemma 2.1. With the above notation, the following hold.

- (1)  $2r_i-2 \leq d_i \leq 2g-2$ .
- (2) Let  $Z_i = \sum m_i G_i$  be the irreducible decomposition and put

$$\alpha_i = \max_{J} \{ m_J \mid DG_j > 0 \}.$$

Then  $tK_{X/B}+M_{\iota}-\mu_{\iota}D+Z_{\iota}$  is nef for any  $t\geq\alpha_{\iota}$ . In particular,  $(a_{\iota}+1)K_{X}-(\mu_{\iota}+2a_{\iota}(b-1))D$  is nef.

*Proof.* (1): We clearly have  $d_i \le 2g - 2$ . Since  $d_i$  equals to the degree of the linear system  $|M_i|_D$  which is of dimension  $r_i - 1$ , Clifford's theorem shows  $d_i \ge$ 

 $2r_i-2$ .

(2): Recall that  $K_{X/B}$  and  $M_i - \mu_i D$  are nef. Let C be any irreducible curve on X. If C is not a component of  $Z_i$ , then  $Z_i C \ge 0$  and  $(\alpha_i K_{X/B} + M_i - \mu_i D + Z_i) C \ge 0$ . Assume that  $C = G_j$  for some j. If  $DG_j = 0$ , then  $(\alpha_i K_{X/B} + M_i - \mu_i D + Z_i) G_j = (\alpha_i + 1)K_{X/B}G_j \ge 0$ . If  $DG_j \ge 0$ , then  $(\alpha_i K_{X/B} + M_i - \mu_i D + Z_i) G_j = (\alpha_i - m_j)K_{X/B}G_j + m_j(K_{X/B} + G_j)G_j + (Z_i - m_jG_j)G_j \ge 0$ . Hence  $\alpha_i K_{X/B} + M_i - \mu_i D + Z_i = (\alpha_i + 1)K_X - (\mu_i + 2\alpha_i(b-1))D$  is nef. Since  $a_i = DZ_i$ , we always have  $a_i \ge \alpha_i$ . Therefore,  $(a_i + 1)K_X - (\mu_i + 2a_i(b-1))D$  is nef. Q. E. D.

Lemma 2.2. If  $\operatorname{rk}(\mathscr{F}) \leq r-1$ , then  $\deg(\mathscr{E}) \geq p_g - r + b(r - \operatorname{rk}(\mathscr{F}))$ . If  $\operatorname{rk}(\mathscr{F}) = r$ , then  $\deg(\mathscr{E}) \geq 2(p_g - r)$ .

**Proof.** By the Riemann-Roch theorem and  $p_g = h^0(\mathscr{E})$ , we get  $\deg(\mathscr{E}) = p_g + r(b-1) - h^1(\mathscr{E})$ . Since  $\mathscr{F}$  is nef, we have  $\deg(\mathscr{F}) \geq 0$ . Hence, by (1.2), we have  $h^1(\mathscr{E}) \leq b \operatorname{rk}(\mathscr{F})$ . If  $\operatorname{rk}(\mathscr{F}) = r$ , then  $\mathscr{F} = \mathscr{E}$  and Clifford's theorem shows  $p_g = h^0(\mathscr{E}) \leq \deg(\mathscr{E})/2 + r$ . Hence  $\deg(\mathscr{E}) \geq 2(p_g - r)$ . Q. E. D.

Corollary 2.3. If r > 1 and  $p_g \ge \min\{(3r-2)b+r+1, 2(g-1)b+g+q+1\}$ , then the canonical map of X separates fibers of f.

*Proof.* Let L be a line bundle of degree 2b+1 on B. Then it is very ample. Assume that  $p_g \ge (3r-2)b+r+1$ . Since  $p_g > br$ , we have  $\operatorname{rk}(\mathscr{F}) < r$  by Corollary 1.4, and Lemma 2.2 shows that  $\deg(\mathscr{E}) \ge p_g - r + b$ . We have  $\deg(\mathscr{E}(-L)) \ge p_g - r + b - r(2b+1) \ge (r-1)(b-1)$  by assumption. Hence, by  $[8, \operatorname{Corollary}]$ , L can be chosen so that  $H^0(\mathscr{E}(-L)) \ne 0$ . Since  $|f^*L| + (K_X - f^*L)$  is a subsystem of  $|K_X|$ , the canonical map separates fibers of f.

Assume that  $p_g \ge 2(g-1)b+g+q+1$ . Since  $\deg(f_*\omega_X) = \chi(\mathcal{O}_X) + (g+1)(b-1)$ , we have  $\deg(f_*\omega_X(-L)) \ge (g-1)(b-1)$ . Hence, as above, the canonical map can separate fibers also in this case. Q. E. D.

Lemma 2.4.

$$K_{X}^{2} \geq \frac{4g(g-1)-d_{1}^{2}}{2g-d_{1}-1} \mu_{1}(\mathcal{E}) + \frac{2(2g-2-d_{1})^{2}}{2g-d_{1}-1}(b-1).$$

In particular,

$$K_{x}^{2} \geq \frac{4g(g-1)-d_{1}^{2}}{2g-d_{1}-1}\mu(\mathcal{E}) + \frac{2(2g-2-d_{1})^{2}}{2g-d_{1}-1}(b-1).$$

Proof. For each i, we have

(2.1) 
$$K_{X}^{2} = K_{X}(M_{i} + Z_{i})$$

$$= (K_{X} - \mu_{1}D)(M_{i} - \mu_{i}D) + (2g - 2 - a_{i})\mu_{1} + 2(g - 1)\mu_{i} + K_{X}Z_{i}$$

$$\geq (2g - 2 - a_{i})\mu_{1} + 2(g - 1)\mu_{i} + K_{Y}Z_{i}$$

Since  $((a_i+1)K_X-(\mu_i+2a(b-1))D)Z_i \ge 0$ , we have

$$(2.2) K_{\mathsf{X}} \mathbf{Z}_i \geq \frac{a_i}{a_i+1} (\mu_i + 2a_i(b-1)).$$

Now, put i=1. It follows from (2.1) and (2.2) that

(2.3) 
$$K_X^2 \ge 4(g-1)\mu_1 - \frac{a_1^2}{a_1+1}(\mu_1 - 2(b-1)).$$

Hence we get the inequalities, if we note  $\mu_1 \ge \mu(\mathscr{E})$ .

Q. E. D.

Corollary 2.5. If  $deg(\mathscr{E}) \ge 2r(b-1)$ , then

$$K_X^2 \ge \frac{4g(g-1)}{2g-1} \left( \mu(\mathscr{E}) + 2\left(1 - \frac{1}{g}\right)(b-1) \right).$$

*Proof.* Since  $a_1 = 2g - 2 - d_1 \le 2g - 2r_1 \le 2g - 2$ , we have  $a_1^2/(a_1 + 1) \le 4(g - 1)^2/(2g - 1)$ . Since  $\mu_1 \ge \mu(\mathscr{E}) \ge 2(b - 1)$ , (2.3) gives the inequality. Q. E. D.

When d is small enough, we can give a better bound.

**Lemma 2.6.** Assume that  $0 \le d \le \min\{2g - r, 2g - 3\}$  and  $\deg(\mathscr{E}) \ge 2(b - 1)d/(2g - 1)$ . Then

$$K_X^2 \ge \frac{4g(g-1)}{(2g-1)r-d} \left( \operatorname{deg}(\mathscr{E}) + 2(b-1)\left(r - \frac{d+r}{g}\right) \right).$$

*Proof.*  $(a+1)K_X-(\mu_l+2a(b-1))D$  is nef by Lemma 2.1. Since  $K_X-\mu_1D$  is pseudo-effective, we have  $(K_X-\mu_1D)((a+1)K_X-(\mu_l+2a(b-1))D)\geq 0$ . If follows from this and (1.1) that

$$(2.4) (a+1)K_X^2 \ge 2(g-1)((a+1)\mu_1 + \mu_1 + 2a(b-1))$$
  
 
$$\ge 2(g-1)((a-r+2)\mu_1 + \deg(\mathscr{E}) + 2a(b-1)).$$

On the other hand, (2.1) and (2.2) for i=l give us

$$K_X^2 \ge (2g-2-a)\mu_1 + 2(g-1)\mu_l + K_X Z$$
  
 
$$\ge (2g-2-a)\mu_1 + 2(g-1)\mu_l + \frac{a}{a+1}(\mu_l + 2a(b-1)).$$

Hence it follows from (1.1) that

$$(2.5) (a+1)K_X^2 \ge -(a((r-1)(2g-1)+a+1)-2(g-1)(a-r+2))\mu_1$$

$$+((2g-1)a+2g-2)\deg(\mathscr{E})+2a^2(b-1).$$

Note that we have  $2(g-1)(a-r+2) \le ((r-1)(2g-1)+a+1)a$ .

Since a > 0, the desired inequality follows from (2.4) when  $((r-1)(2g-1) + a+1))\mu_1 \ge (2g-1) \deg(\mathscr{E}) - 2(b-1)(2g-2-a)$  and, otherwise, it follows from (2.5). Q. E. D.

By using the same method, one can also get a slight improvement of [15, Corollary 3].

**Lemma 2.7.** Let  $f: X \rightarrow B$  be a relatively minimal fibration of genus  $g \ge 2$ , b = g(B), and put h = q(X) - b. If g - h > 0, then

$$K_{X/B}^2 \ge \frac{4g(g-1)}{(2g-1)(g-h)} \deg(f_*\omega_{X/B}).$$

When f is not locally trivial, the equality holds only if g-h=1.

*Proof.* By [3, Theorem 3.1],  $f_*\omega_{X/B} = \mathcal{H} \oplus \mathcal{O}_B^{\oplus h}$ . Hence  $\deg(\mathcal{H}) = \deg f_*\omega_{X/B}$  and  $\operatorname{rk}(\mathcal{H}) = g - h$ . Since  $\mathcal{H}$  is a direct factor of  $f_*\omega_{X/B}$ , it is nef.

Let  $0 \subset \mathcal{H}_1 \subset \cdots \subset \mathcal{H}_k = \mathcal{H}$  be the Harder-Narashimhan filtration for  $\mathcal{H}$ . The natural sheaf homomorphism  $f^*\mathcal{H}_1 \rightarrow f^*f_*\omega_{X/B} \rightarrow \omega_{X/B}$  induces a rational map  $\phi: X \rightarrow P(\mathcal{H}_1)$ . Let M be the pull-back of a tautological divisor by  $\phi$ . Then  $K_{X/B} \equiv M + Z$  with an effective divisor Z, and  $M - \mu_1(\mathcal{H})D$  is nef, where D denotes a general fibre of f. Put a = DZ. Since  $\mu_1(\mathcal{H}) \geq \mu(\mathcal{H}) = \deg f_*\omega_{X/B}/(g-h)$ , it is sufficient to show

(2.6) 
$$K_{X/B}^2 \ge \frac{4g(g-1)}{2g-1} \mu_1(\mathcal{H}).$$

Similarly as in Lemma 2.1, one can show that  $(a+1)K_{X/B} - \mu_1(\mathcal{H})D$  is nef. Hence  $K_{X/B}Z \ge a\mu_1(\mathcal{H})/(a+1)$  and we get

$$K_{X/B}^2 \ge ((a+1)(4g-4-a)+a)\mu_1(\mathcal{H})/(a+1)$$

similarly as in (2.3). Since  $a \le 2g-2$ , we get (2.6) with equality holding only if a = 2g-2 (hence  $rk(\mathcal{H}_1) = 1$  since  $2g-2-a \ge 2rk(\mathcal{H}_1) - 2$  by Clifford's theorem). Q. E. D.

**Proposition 2.8.** If  $f: X \rightarrow B$  is a relatively minimal fibration of genus  $g \ge 2$  which is not locally trivial. Then

$$q(X)-b \leq \frac{g(5g-2)}{3(2g-1)} < \frac{5g+1}{6}$$

When f is of hyperelliptic type,

$$q(X)-b \leq \begin{cases} \frac{(5g^2+g-1)g}{(2g-1)(3g+1)}, & \text{if } g \text{ is even,} \\ \frac{(5g^3-6g^2+5g-1)g}{(2g-1)(3g^2-2g+2)}, & \text{if } g \text{ is odd.} \end{cases}$$

*Proof.* If f is not locally trivial, its slope  $\lambda(f) = K_{X/B}^2/\deg(f_*\omega_{X/B})$  is well-defined and satisfies  $\lambda(f) \le 12$  by [15, Theorem 2]. If f is a hyperelliptic fibration, then [7, Theorem 4.0.4] shows

$$\lambda(f) \le \begin{cases} \frac{4(g-1)(3g+1)}{g^2}, & \text{if } g \text{ is even,} \\ \frac{4(3g^2-2g+2)}{g^2+1}, & \text{if } g \text{ is odd.} \end{cases}$$

Since we have  $\lambda(f) \ge 4g(g-1)/(2g-1)(g-h)$  by Lemma 2.7, an easy calculation shows the assertions. Q. E. D.

Corollary 2.9. Let the situation be as in Theorem 1.6, and assume that b>0,  $g=r\geq 2$ . If q(X)=b+g-1, then one of the following holds:

- (1)  $p_g = gb 1$ ,  $g \le 3$ , f is locally trivial and  $K_X^2 = 8\chi(\mathcal{O}_X)$ .
- (2)  $p_g \ge gb$ ,  $g \le 6$ , and

$$K_{X}^{2} \ge \begin{cases} \frac{4(g-1)}{2g-1} \left( g\chi(\mathcal{O}_{X}) - (g^{2}-5g+2)(b-1) \right) & \text{if } g \ge 3, \\ 4p_{g}-4 & \text{if } g = 2. \end{cases}$$

*Proof.* We have  $\deg(f_*\omega_{X/B}) = p_g - gb + 1$ . Since it is a non-negative integer, we get  $p_g \ge gb - 1$ .

Assume that  $p_g = gb - 1$ . Then f is locally trivial, and we get  $q - b \le (g + 1)/2$ 

by the proof of [15, Corollary 3]. Since q-b=g-1, we get  $g \le 3$ .

Assume that  $p_g \ge gb$ . Since f is not locally trivial and q-b=g-1, it follows from Lemma 2.7 and Proposition 2.8 that  $K_{X/B}^2 \ge (4g(g-1)/(2g-1))\deg f_*\omega_{X/B}$  and  $g \le 6$ , respectively. We also have  $K_{X/B}^2 \ge 4\deg f_*\omega_{X/B}$  by [15, Theorem 1]. Hence we get (2). Q. E. D.

# § 3. Surfaces whose Canonical Map Is a Pencil

From now on, we let S be a minimal surface of general type with  $p_g \ge 2$ . In this section, we assume that the canonical image is a curve  $\Sigma$ . Let  $\sigma: X \to S$  be the elimination of the base points of the variable part of |K|. Then taking the Stein factorization, we get a relatively minimal fibration  $f: X \to B$  of genus g, b = g(B). In this case,  $\mathscr E$  is a line bundle and  $M(\mathscr E) \equiv \deg(\mathscr E)D$ . Hence  $d = M(\mathscr E)D = 0$ .

**Theorem 3.1.** Assume that the canonical map of S is composed of a pencil. Then b=q=1 or b=0,  $q\leq 2$ . If q=2, then  $g\geq 3$ . Furthermore,

(3.1) 
$$K^{2} \ge K_{X}^{2} \ge \frac{4g(g-1)}{2g-1} \left( p_{g} + (b-1) \left( 3 - \frac{2}{g} \right) \right).$$

*Proof.* The statement for b, q follows from Theorem 1.6. Then, since  $b \le 1$  and since  $\mathscr{E}$  is a line bundle with  $h^0(\mathscr{E}) = p_g > 1$ , we have  $\deg(\mathscr{E}) = p_g - 1 + b$ . Hence we get (3.1) by Lemma 2.4 putting  $d = d_1 = 0$ , r = 1. Q. E. D.

Remark 3.2. The statement for b, q in Theorem 3.1 already can be found in [12]. Unfortunately, (3.1) may not be sharp: When g=2 and  $p_g \ge 3$ , we can find the following bound in [13]:

$$K^{2} \ge \begin{cases} 4p_{g} - 6, & \text{if } (b, q) = (0, 0) \\ 4p_{g} - 4, & \text{if } (b, q) = (0, 1) \\ 4p_{g}, & \text{if } (b, q) = (1, 1). \end{cases}$$

When b=0, we can write  $|K| = |(p_g-1)D_0| + Z_0$ , where  $D_0 = \sigma_* D$  and  $Z_0 = \sigma_* Z$ .

**Lemma 3.3.** Let the notation be as above and assume that b=0.

- (1) If q = 1, then  $K^2 \ge 4p_g 4$  with equality holding only if the Albanese pencil is hyperelliptic.
  - (2) If  $D_0^2 = 0$ , then  $K^2 \ge 2(g-1)(p_g-1)$ .
  - (3) If  $D_0^2 > 0$ , then  $K^2 \ge \max\{D_0^2(p_g-1)^2, (2g-2-D_0^2)(p_g-1)\}$ . In particu-

lar,  $K^2 \ge 2(g-1)(1-1/p_g)(p_g-1)$ .

- *Proof.* (1): Let  $\alpha: S \rightarrow \text{Alb}(S)$  be the Albanese map, and let  $D_1$  be a general fibre of  $\alpha$ . Since  $K (p_g 1)D_0$  is pseudo-effective, we have  $0 \le (K (p_g 1)D_0)D_1 = 2h 2 D_0D_1(p_g 1) \le 2h 2 2(p_g 1)$ , where  $h = g(D_1)$ . Hence  $h \ge p_g$  with equality holding only if  $D_1$  is a hyperelliptic curve. On the other hand, we have  $K^2 \ge (4 4/h)\chi$  by [15, Theorem 2]. Hence  $K^2 \ge (4 4/p_g)p_g = 4p_g 4$ .
- (2): Since K is nef, we have  $K^2 = (p_g 1)KD_0 + KZ_0 = 2(g 1)(p_g 1) + KZ_0 \ge 2(g 1)(p_g 1)$ .
- (3): We have  $Z = \sigma^* Z_0 + \sum ((p_g 1)m_i + 1)E_i$ , where  $m_i$  denotes the multiplicity of a base point of  $|D_0|$  appearing in  $\sigma$ , and  $E_i$  is the inverse image of the base point. Hence  $2g 2 \sum m_i = KD_0 = (p_g 1)D_0^2 + D_0Z_0$ .  $K^2 = (2g 2 \sum m_i)(p_g 1) + KZ_0 = (p_g 1)^2D_0^2 + (K + (p_g 1)D_0)Z_0 \ge (p_g 1)^2D_0^2$ . We also note that  $D_0^2 \ge \sum m_i$ . Hence  $K^2 \ge (2g 2 D_0^2)(p_g 1)$ . Q. E. D.

**Corollary 3.4.** Let S be a minimal surface of general type whose canonical map is composed of a pencil. Then  $K^2 \ge 4p_g - 7$ .

*Proof.* By Remark 3.2, we can assume that  $g \ge 3$ . By Lemma 3.3, we only have to consider the case that b=0,  $D_0^2>0$  and  $p_g\le 4$ . If  $p_g=4$ , then Lemma 3.3, (3) implies that  $K^2\ge 3$  ( $p_g-1$ ) =  $4p_g-7$ . Assume that  $p_g=3$ . If  $D_0^2\ge 2$ , then we are done. If  $D_0^2=1$ , then  $KD_0=2+D_0Z_0$ . Since  $KD_0+D_0^2$  is even,  $D_0Z_0$  is a positive odd integer. It follows  $K^2\ge (3-1)^2+(3-1)=6=4p_g-6$ . Assume that  $p_g=2$ . Then  $K^2\ge 1=4p_g-7$ .

**Corollary 3.5.** Let the notation and assumption be as above. Assume that the variable part of |K| is free from base points, when b=0. Then the following hold.

- (1) If b=q=1, then  $g \leq 5$ .
- (2) If b=0 and  $p_g \ge 20-9q$ , then  $g \le 5$ .

*Proof.* By Miyaoka-Yau's inequality, we have  $K^2 \le 9\chi$ . Hence (1) and (2) follow from (3.1) and Lemma 3.3. Q. E. D.

When q=2, we can say more:

**Theorem 3.6.** Let S be a minimal surface of general type with q=2 whose canonical map is composed of a pencil of genus g. Assume that the Albanese map is not surjective. Then  $K^2=8\chi$  and the Albanese pencil is a locally trivial hyperelliptic fibration of genus  $p_g$ . Furthermore, g=3 and S is an example of Beauville [1, 2.5] except possibly when  $(p_g, g)=(2, 6), (2, 9)$  or (3, 7).

Proof. Except for the last sentence, this is clear from Lemma 1.7. Assume that

g>3 and put  $m=2(g-3)/(p_g+1)$ . Then  $D_0^2\geq 2m$  as we saw in the proof of Lemma 1.7. Since  $K^2=8\chi=8(p_g-1)$ , Lemma 3.3 gives us  $8\geq D_0^2(p_g-1)\geq 2m(p_g-1)$ . Since  $m\geq 2$ , we have  $2(p_g+1)\geq (g-3)(p_g-1)\geq (p_g+1)(p_g-1)$ . Since m is an integer, we obtain the list of the exceptions. Q. E. D.

# § 4. Surfaces with High Canonical Degree

In this section, we assume that the canonical map of S induces a rational map  $\phi_K: S \rightarrow \Sigma \subset P^{p_g-1}$  of degree  $d_{can} > 1$  onto the image  $\Sigma$ .

The following lemma due to Xiao [14, Lemma 1] guarantees that  $\Sigma$  is ruled by rational curves of small degree when  $d_{can}$  is large. See also [10].

**Lemma 4.1.** If there exists a positive integer  $\delta$  such that

$$\deg \Sigma < \frac{2(\delta+1)}{\delta+2} \left( p_{g} - 1 - \frac{9}{8} (\delta+1) \right),$$

then  $\Sigma$  has a pencil of rational curves of degree  $\leq \delta$ . Furthermore, when  $\delta = 1$ , the above inequality can be weakened to

$$\deg \Sigma < \frac{4}{3}(p_g - 3)$$

except if  $p_g = 10$  and  $(\Sigma, \mathcal{O}(1)) \simeq (\mathbb{P}^2, \mathcal{O}(3))$ .

Assume that  $\Sigma$  is ruled by rational curves of degree  $\delta$ . Let  $\Lambda$  be a pencil of curves on S induced by the ruling of  $\Sigma$  via  $\phi_K$ . Let  $\sigma: X \rightarrow S$  be the composite of blowing-ups which eliminates Bs  $\Lambda$ . Then, taking the Stein factorization if necessary, we get a relatively minimal fibration  $f: X \rightarrow B$ . As before, we denote by g the genus of a general fibre D of f and put b = g(B).

Let  $\mathscr E$  be the locally free subsheaf of  $f_*\omega_X$  generically generated by its global sections. Since D is mapped onto a rational curves of degree  $\delta$ , the restriction map  $H^0(K_X) \to H^0(K_D)$  is of rank  $\leq \delta + 1$ . Hence  $r = \operatorname{rk}(\mathscr E) \leq \delta + 1$ . Put  $d = M(\mathscr E)D$  as before. Let  $\phi: X \to P(\mathscr E)$  be, as in 1.2, the rational map associated with  $f^*\mathscr E \to \omega_X$ . Then, by the choice of  $\mathscr E$ , the canonical map  $\Phi_{K_X}$  is a composite of  $\phi$  and the rational map of  $P(\mathscr E)$  induced by  $H(\mathscr E)$  which we denote by  $\Phi_H$ .

**Lemma 4.2.** Assume that the canonical image is ruled by rational curves of degree  $\delta$ .

(1)  $d_{can}$  is a multiple of  $d/\delta$ . If  $\Phi_H$  separates fibers of  $\mathbb{P}(\mathscr{E}) \rightarrow B$ , then  $d = d_{can}\delta$ . If  $d_{can}$  is a prime number, then  $d = d_{can}\delta$ .

- (2) If g = r, then f is of hyperelliptic type,  $d = 2\delta$  and  $d_{can}$  is even.
- *Proof.* (1): Since the image of D under the canonical map is a rational curve of degree  $\delta$ , d is a multiple of  $\delta$ , and  $d/\delta$  equals the degree of  $\Phi_{K_X} \mid_{D}$ , hence,  $\phi$  is of degree  $d/\delta$  onto its image.
- (2): Since  $\operatorname{rk}(\mathscr{E}) = g$ , the restriction map  $H^0(K_X) \to H^0(K_D)$  is surjective. By the assumption, it follows that D is mapped onto a rational curve via its canonical map. Hence D is a hyperelliptic curve. By what we saw above,  $\phi$  is of degree 2 onto the image. Hence  $d_{can}$  must be even.

  Q. E. D.

Note that S has no pencil of hyperelliptic curves if  $d_{can}$  is odd. Hence Theorem 1.6, Lemma 1.7 and Lemma 4.2 give us the following generalization of [16, Theorem 3].

**Theorem 4.3.** Assume that  $\Sigma$  is ruled by rational curves of degree  $\delta$ . Assume further that  $g > \delta + 1$  or  $d_{can}$  is odd. Then  $q \le \delta + 2$ . If  $q = \delta + 2$ , then b = 0 and  $g \ge 2\delta + 3$ . If  $d_{can}$  is odd and  $q = \delta + 2$ , the Albanese image of S is a surface.

## **Lemma 4.4.** Suppose that b > 1 and $g = \delta + 1$ .

- (1) Assume that  $\delta = 1$ . Then  $d_{can}$  is an even integer not exceeding 10. If  $d_{can} = 10$ , then b = q = 2,  $p_g = 3$ . If  $d_{can} = 8$ , then  $(b, q, p_g) = (2, 2, 3)$ , (2, 3, 3) or (3, 3, 4). If  $d_{can} = 6$ , then  $(b, q, p_g) = (2, 2, 3)$ , (2, 2, 4), (2, 3, 3), (3, 3, 4), (3, 3, 5) or (4, 4, 6).
- (2) If  $\delta = 2$  and  $d_{can} = 6$ , then  $(b, q, p_g) = (2, 2, 4), (2, 2, 6), (3, 3, 6)$  or (4, 4, 9).

*Proof.* We can assume that  $\mathscr{E} = f_*\omega_X$ . Put  $H = H(f_*\omega_X)$ . Since  $\deg f_*\omega_{X/B} \ge 0$ , we have

$$(4.1) p_{\mathfrak{g}} \geq q + \delta(b-1) - 1$$

(1): Though this is essentially contained in [13, p. 74], we give a proof for the sake of completeness. Put  $d_{can} = 2m$ . Then  $\Phi_H$  is a map of degree m onto the image  $\Sigma$ . Hence  $H^2 \ge m$  deg  $\Sigma$ . Since  $H^2 = \deg f_* \omega_X = \chi + 3(b-1)$  and deg  $\Sigma \ge p_g - 2$ , we get

$$(4.2) (m-1)p_g \leq 3b-q+2m-2.$$

From (4.1) and (4.2), we get  $mq + (m-3)b \le 4m-4$ . If  $q \ge 3$ , then we have  $m \le 4$ , since  $b \ge 2$ . Assume that q = b = 2. Since  $p_g \ge 3$ , it follows from (4.2) that  $4 = 3b - q \ge m - 1$ . Hence we get  $m \le 5$ . The rest follow from an easy calculation.

(2): Let V be the image of  $\phi: X \rightarrow P(f_*\omega_X)$ . Then V is numerically equivalent to 2H - vF with an integer v. Since V is a relative hyperquadric of rank 3, one can

easily show  $3\nu \le 2\deg(f_*\omega_X)$  (see, e. g., [6]). Since H induces a map of degree 3, we have  $H^2(2H-\nu F) \ge 3\deg \Sigma$ , that is,  $2\deg(f_*\omega_X)-\nu \ge 3\deg \Sigma$ . Hence  $\deg(f_*\omega_X) \ge (9/4)\deg \Sigma$ . On the other hand, since  $\Sigma$  is not ruled by straight lines, Lemma 4.1 gives us  $\deg \Sigma \ge (4/3)(p_g-1-9/4)$ . Therefore,  $\deg(f_*\omega_X) \ge 3p_g-9$ . Since  $\deg(f_*\omega_X) = \chi + 4(b-1)$ , we have

$$(4.3) 2p_{g} \leq 4b - q + 6.$$

It follows from (4.1) and (4.3) that  $q \le 4$ . Furthermore, since  $p_g \ge 4$ , we get

$$(b, q) = (2, 2) : 4 \le p_g \le 6$$
  
 $(b, q) = (2, 3) : p_g = 4, 5$   
 $(b, q) = (2, 4) : p_g = 5$   
 $(b, q) = (3, 3) : p_g = 6, 7$   
 $(b, q) = (3, 4) : p_g = 7$   
 $(b, q) = (4, 4) : p_g = 9$ 

It is known that surfaces with degree  $p_g-2$  in  $P^{p_g-1}$  is ruled by straight lines unless it is the Veronese surface,  $p_g=6$ . Hence, if  $p_g \neq 6$ , we can assume that deg  $\Sigma \geq p_g-1$ . Since deg  $f_*\omega_{\chi} \geq (9/4)(p_g-1)$ , we have

$$\deg f_*\omega_X \ge \begin{cases} 7, & \text{if } p_g = 4, \\ 9, & \text{if } p_g = 5, \\ 14, & \text{if } p_g = 7. \end{cases}$$

Hence we can exclude several cases and get (2).

Q. E. D.

In [14, Theorem 5], it is shown that there is a bound of q, g when  $d_{can} \ge 5$ . Now we can give a bound on q.

**Theorem 4.5.** Let S be a surface of general type whose canonical map is a rational map of degree  $d_{can} > 4$  onto its image.

- (1) If  $d_{can} \ge 7$ , then  $q \le 3$  except possibly when  $d_{can} = 7$ ,  $p_g = 10$ , q = 4,  $K^2 = 63$  and  $\Sigma$  is  $P^2$  embedded into  $P^9$  by  $|\mathcal{O}(3)|$ .
  - (2) If  $d_{can}=6$ , then  $q \leq 5$ .
  - (3) If  $d_{can} = 5$ , then  $q \le 12$ , and  $q \ne 12$  when  $p_g > 136$ .

*Proof.* (1): Assume that  $q \ge 4$ . Miyaoka-Yau's inequality gives us

$$\deg \Sigma \leq K^2/d_{can} \leq 9\chi/d_{can} \leq (9/d_{can})(p_g-3).$$

Hence Lemma 4.1 implies that  $\Sigma$  is ruled by lines unless we are in the case excepted

- in (1). But then, Theorem 4.3 and Lemma 4.4 give us  $q \le 3$ , a contradiction.
- (2): Assume that  $q \ge 6$ . By the same reasoning as above, Lemma 4.1 implies that  $\Sigma$  is ruled by rational curves of degree  $\delta \le 2$ . In this case, however, Theorem 4.3 and Lemma 4.4 give us  $q \le 4$ , a contradiction.
- (3): Assume that  $q \ge 13$ . By the same reasoning as above, Lemma 4.1 implies that  $\Sigma$  is ruled by rational curves of degree  $\delta \le 8$ . But, Theorem 4.3 shows  $q \le 10$  contradicting our initial assumption. Quite similarly, assuming q = 12 and  $p_g > 136$ , we can show that  $\Sigma$  is ruled by rational curves of degree  $\delta \le 9$ . But Theorem 4.3 tells us  $q \le 11$ .

Remark 4.6. In the above theorem, (1) and (2) respectively can weaken the assumption on  $p_g$  in [16, p. 602, Corollary] and [11, Theorem 3].

As for g, we can show, for example, the following:

Proposition 4.7. Let the notation and assumption be as above.

- (1) If  $d_{can} = 6$  and  $p_g > 190$ , then  $g \le 16$ .
- (2) If  $d_{can} = 5$  and  $p_g > 1324$ , then  $g \le 44$ .

*Proof.* We show only (2), because (1) can be treated similarly if we note that  $d=6\delta$  holds when  $p_g$  is large enough by Corollary 2.3 and Lemma 4.2.

If  $p_g > 1324$ , then

$$\deg \Sigma \leq \frac{9}{5} (p_g+1) < \frac{2(9+1)}{9+2} (p_g-1-\frac{9}{8}(9+1)).$$

Hence, by Lemma 4.1,  $\Sigma$  is ruled by rational curves of degree  $\delta \leq 9$ . We assume  $g \geq 45$  and show that this leads us to a contradiction. By Theorem 1.6, we can suppose  $b \leq 1$ . By Lemma 4.2, we have  $d = 5\delta$ . Since  $5\delta \leq 45 < 2g - 10 \leq 2g - \delta - 1$ , it follows from Lemma 2.6 (and Lemma 2.4 when  $\mathscr E$  is semi-stable) that  $K^2 \geq (1584/169)(p_g - 28)$ . However, since  $p_g > 728$ , this contradicts Miyaoka-Yau's inequality  $K^2 \leq 9(p_g + 1)$ . Hence  $g \leq 44$ . Q. E. D.

## References

- [1] Beauville, A., L'application canonique pour les surfaces de type général, *Invent. Math.*, 55 (1979), 121-140.
- [2] ——, L'inegalite  $p_g \ge 2q 4$  pour les surfaces de type général, Bull. Soc. Math. France, 110 (1982), 343-346.
- [3] Fujita, T., On Kähler fiber spaces over curves, J. Math. Soc. Japan, 30 (1978), 779-794.
- [4] Harder, G. and Narashimhan, M. S., On the cohomology groups of moduli spaces of vector bundles on curves, *Math. Ann.*, 212 (1975), 215-248.
- [5] Horikawa, E., On deformations of quintic surfaces, Invent. Math., 31 (1975), 43-85.

- [6] Konno, K., Non-hyperelliptic fibrations of small genus and certain irregular canonical surfaces, Ann. Sc. Norm. Sup. Pisa. Ser. N, XX (1993), 575-595.
- [7] Matsusaka, S., Some numerical invariants of hyperelliptic fibrations, J. Math. Kyoto Univ., 30 (1990), 33-57.
- [8] Mukai, S. and Sakai, F., Maximal subbundles of vector bundles on a curve, Manuscripta Math., 52 (1985), 251-256.
- [9] Nakayama, N., Zariski-decomposition problem for pseudo-effective divisors, In: Proceedings of the Meeting and the workshop "Algebraic Geometry and Hodge Theory", vol. I, Hokkaido Univ. Technical report series in Math. no. 16 (1990), 189-217.
- [10] Reid, M., Surfaces of small degree, Math. Ann., 275 (1986), 71-80.
- [11] Sun, X. T., Algebraic surfaces whose canonical image has a pencil of rational curves of degree two, *Math. Z.*, **209** (1992), 67-74.
- [12] Xiao, G., L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math., 56 (1985), 251-257.
- [13] ———, Surfaces fibrées en courbes de genre deux, Lec. Notes in Math. 1137, Berlin, Heidelberg, New York, Springer, 1985.
- [14] ——, Algebraic surfaces with high canonical degree, Math. Ann., 274 (1986), 473-483.
- [15] ——, Fibred algebraic surfaces with low slope, Math. Ann., 276 (1987), 449-466.
- [16] —, Irregularity of surfaces with a linear pencil, Duke Math. J., 55 (1987), 597-602.