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Rings of Fractions of B (ff)

By

Yoshinobu KATO *

§ 1. Introduction

In this paper we discuss the following question : What are rings of fractions of
B(H\ the algebra of all bounded linear operators on a separable, infinite
dimensional, Hilbert space H ? We recall the definition of a ring of fractions of a
(generally non-commutative) ring according to [4] .

Definition. A subset 5 of a ring A with a unit 1 is called a (right} denominator
set if S satisfies the following conditions :

(50) If s, t^S, thensreS, and
(51) If s^S and a^A, then there exist t^S and b^A such that sb=at.
(52) If sa = 0 with s ̂ S, then at = 0 for some t ^S.
(53) S does not contain 0. (to avoid triviality).

Definition. The ring A [S"1] of fractions of a ring A with respect to a (right)
denominator set S is defined by A [_S~l~] = (A XS)/~ , where ~ is the equivalence
relation on A X S defined as (a, 5) ~ (6, 0 if there exist c, d e^4 such that ac = bd and
sc=td^S. We define addition and multiplication of (a, s)~, (6,
in the obvious way :

(a, s)~+ (6, 0~= (ac+bd, w)~ for some c&4, w and d^S with u=sc=td,

(a, s)~ • (6, 0~= («c, ft/)~ for some c^A and w£5 with sc=bu.

Moreover if A has a scalar (complex number) multiple, then also does A [_S~ *].
Then <p(a) = (a, 1)^ defines a homomorphism <p : A->(A X5)/~ =^4 [51"1] .
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Our main theorem asserts that any ring of fractions B (JEf) [5"1] is isomorphic
to B(ff) or the quotient ring B(ff)/J of B(jf) by the ideal / of finite rank
operators. The next problem is the existence of such a denominator set S. It clear
that B(H) [S"1] =B(Jf) if we take S= {I}. We shall show that there exist at least
countably infinite many different denominator sets S such that I?(ff) [S~l] are
isomorphic to B (If)//.

§ 2. Mate Theorem

An operator x ^.B (ff) is a Fredholm operator if ran x is closed, dim ker x is
finite and dim ker x* is finite, where ran x is the range of x and ker x is the kernel
of x. The collection of Fredholm operators is denoted by F. The ind is the function
from F to the integers Z defined by ind x = dim ker x — dim ker x*. This function
enjoys the following property : For x, y G=F, ind xy = ind x H- ind y, ind x * = — ind x,
ind 1 = 0. Put Fo = {x ̂ F ind x = 0}. Then F and F0 satisfy (SO). Moreover F and
FO are invariant under compact perturbations ([!]). If x and y GE1? (if) satisfy xyx
=x, yxy =y, Gey) * =xy and (yjc) * =yx, then y is called a Moore-Penrose inverse of
x and y is denoted by jet, A Moore-Penrose inverse x* does not always exist but it
is unique if it exists. It is known that x1" exists if and only if ran x is closed ([3] ).
In particular if x is in F, then x has x\

We need the following Theorem in [2 ; Theorem 3. 6] :

Theorem F-W* Let S be in B (if). If ran s is not closed, then there exists a
unitary u £=iB (If) such that ran s D ran us = {0}.

We shall show that a denominator is automatically a Fredholm operator.

Theorem 1. If a subset SdB(H) is a denominator set of B(ff), then S is
contained in the set F of Fredholm operators.

Proof Let s£=S. Assume that ran s is not closed. Then by Theorem F-W,
there exists a unitary u such that ran s Pi ran us= {0}. The condition (SI) implies
that there exist t^S and b ̂ B (If) such that sb = (us)t. Then

ran ust=ran sb = ran sb D ran ust C ran s D ran us = {0}.

Therefore ust = Q. Then S contains st = Q. This contradicts to (S3). Hence ran s
is closed. Next assume that dim ker 5* = + °o. Then there exists a unitary u such
that ran u Dran us= {0}, since dim (ran s)±=dim ker s* = + 00. By the same
argument of the proceeding paragraph, S contains 0. This is a contradiction.
Therefore dim ker s * < + °o. Next we shall show that dim ker s < H- °o. Since ran s



RINGS OF FRACTIONS 691

is closed, / exists. Put a = 1 — s*s, then sa = 0. By (S2) there exists t^S such that
at = 0. Sincefl=a*, r*a=0, that is, ran flC kerf*. Then dim ran a < dim ker £*<
+ °°, because t^S. Thus dim ker s = dim ran a< + °o. Therefore s^S is a
Fredholm operator.

Consider the canonical homomorphism cp : B(H^)^B(H^)[_S~1^ defined by

Lemma 2. I7ze canonical map <p : B(H}^B(H} [S~l~\ is onto.

Proof. Take (a, s) ~ ̂ B (JET) [5~ !] . Then sf exists by Theorem 1 . Put z = 1 -
sts. Since sz = 0, there exists c ̂ S such that zc = 0 by (S2) . Then c =s*sc. Put x =
as^ and d —sc. Then

ac = as tsc =as*d^B (#) and sc =l

This shows that (a, s)~(ast, 1). Then <p(;e) = (as1, 1)~ = (a, s)~. Thus #> is onto.

The following main theorem gives the possible rings of fractions of B GET)
completely :

Theorem 3. Let S be a denominator set ofB (/f). IfS contains a non-invertible
operator, then the ring B(H^)[_S~l~\ of fractions is isomorphic to the quotient ring
B(H}/J ofB(ff) by the ideal J of finite rank operators. IfS does not, then B(H)
[5"1] is isomorphic to B(jf).

Proof. By Lemma 2, B(fT) [S"1] is isomorphic to 5(H)/ker^. We note that

(*) ker <p={x^B(H} xc = Q for some

If S does not contain non-invertible elements, then ker <p= {0}, so B(fT) [S~l~\ is
isomorphic to B(fT). Now suppose that S contains a non-invertible operator s.
Then s*s \ 1 or ss^ \ 1 . If ss* ̂  1 , then x = l —ss^ ^ 0 and x £ ker <p, because xs =s —
ss^s = 0 and s GS. If sfs ̂  1 , put x = l — sfs. Since sx = 0, xt = 0 for some t ̂ S by
(S2). Thus x ^0 and x^ker (p. In any case we have that ker (p^ {0} . Next we
shall show that ker <pCLJ. Let xGker <p. By ( * ) there exists c^S such that xc =
0. Since c*x* =0, ran x* Cker c*. By Theorem 1, c is a Fredholm operator and
dim ker c * < -h °° . Hence x * is a finite rank operator, so x £ J. Since / is a
non-trivial minimal two-sided ideal of B (H\ ker <p = J. Therefore if 5 contains a
non-invertible element, then B(H) [_S~l~\ is isomorphic to B(ff)/J.
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§ 3. of Denominator Sets

In this section we shall give some examples of a denominator set S such that
B(ff) [S"1] is ismorphic toB(jf)/J- In fact there exist at least countably infinite
many denominator sets with this property, although we have not yet determined all
of them.

Theorem 4, IfS is a semigroup such that FoC&CjF, then S is a denominator set.
In particular FQ and F are denominator sets.

Proof. It is clear that S satisfies (SO) and (S3). We shall show that S satisfies
(Si). Take s £=& and a £=H (If). Since s^F, Sexists. Then 1— ss^&T, because
dim ran (1 —sst) = dim ker s * < + °o. Put c = (\ —ss^a. Then c is also in /, so ran c
is closed and c1" exists. Then c*c is in J. Put t=l—c*c. Since t is a compact
perturbation of 1, fGFoC/Sl Put b—s^at Then

So sb =at Thus S satisfies (SI). Next we shall show that *S satisfies (S2). Take s
^S and s ̂ B (U) such that sa = 0. Since ran a C ker s, a is in J. Consider a polar
decompositiona=u\a\ . We may assume that u is a unitary. Put t=u*s*s. Then
indf = indn*— ind s + ind s = 0. Hence t^F0^S. Andat=u a\u*s*s=ua*s*s =
u (so) *s = 0. Thus S satisfies (S2).

Finally we shall give two kinds of examples of denominator sets of B (//) which
do not contain F0. Let K be a separable, infinite dimensional, Hilbert space and n
be a positive integer. Put H =K® ••• ®K (n times). Then B (U) can be identified
with the set Mn(l?GO) of nXn matrices whose entries are in B(jC). Let 5 be a
denominator set of B (K}. Define Sn and S71 dB (If) by

f s
X

s^S

's 02

0
Si,

By [4 ; page 61, Exercises 4], Sn is a denominator set of B(fT). Similarly we can
show that Sn is also a denominator set of B (If). Therefore we get the following :
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Theorem 5. There exist countably infinite many denominator sets S of B(H}
such that B(fT) [S~l] are isomorphic to B(H}/J.
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