Publ. RIMS, Kyoto Univ. 30 (1994), 689–693

Rings of Fractions of B(H)

By

Yoshinobu KATO *

§1. Introduction

In this paper we discuss the following question : What are rings of fractions of B(H), the algebra of all bounded linear operators on a separable, infinite dimensional, Hilbert space H? We recall the definition of a ring of fractions of a (generally non-commutative) ring according to [4].

Definition. A subset S of a ring A with a unit 1 is called a (right) denominator set if S satisfies the following conditions :

- (S0) If s, $t \in S$, then $st \in S$, and $1 \in S$.
- (S1) If $s \in S$ and $a \in A$, then there exist $t \in S$ and $b \in A$ such that sb = at.
- (S2) If sa = 0 with $s \in S$, then at = 0 for some $t \in S$.
- (S3) S does not contain 0. (to avoid triviality).

Definition. The ring $A[S^{-1}]$ of fractions of a ring A with respect to a (right) denominator set S is defined by $A[S^{-1}] = (A \times S)/\sim$, where \sim is the equivalence relation on $A \times S$ defined as $(a, s) \sim (b, t)$ if there exist c, $d \in A$ such that ac = bd and $sc = td \in S$. We define addition and multiplication of $(a, s)^{\sim}$, $(b, t)^{\sim} \in (A \times S)/\sim$ in the obvious way :

 $(a, s)^{\sim} + (b, t)^{\sim} = (ac+bd, u)^{\sim}$ for some $c \in A$, u and $d \in S$ with u = sc = td, $(a, s)^{\sim} \cdot (b, t)^{\sim} = (ac, tu)^{\sim}$ for some $c \in A$ and $u \in S$ with sc = bu.

Moreover if A has a scalar (complex number) multiple, then also does $A[S^{-1}]$. Then $\varphi(a) = (a, 1)^{\sim}$ defines a homomorphism $\varphi: A \rightarrow (A \times S) / \sim = A[S^{-1}]$.

Communicated by H. Araki, September 30, 1993.

¹⁹⁹¹ Mathematics Subject Classifications : 47 D 25

^{*} Nagaikeso Institute, 1983, Kanaoka-cho, Sakai city, Osaka 591 Japan.

Our main theorem asserts that any ring of fractions $B(H)[S^{-1}]$ is isomorphic to B(H) or the quotient ring B(H)/J of B(H) by the ideal J of finite rank operators. The next problem is the existence of such a denominator set S. It clear that $B(H)[S^{-1}] = B(H)$ if we take $S = \{1\}$. We shall show that there exist at least countably infinite many different denominator sets S such that $B(H)[S^{-1}]$ are isomorphic to B(H)/J.

§2. Main Theorem

An operator $x \in B(H)$ is a Fredholm operator if ran x is closed, dim ker x is finite and dim ker x^* is finite, where ran x is the range of x and ker x is the kernel of x. The collection of Fredholm operators is denoted by F. The ind is the function from F to the integers Z defined by ind $x = \dim \ker x - \dim \ker x^*$. This function enjoys the following property : For x, $y \in F$, ind $xy = \operatorname{ind} x + \operatorname{ind} y$, ind $x^* = -\operatorname{ind} x$, ind 1=0. Put $F_0 = \{x \in F \mid \operatorname{ind} x=0\}$. Then F and F_0 satisfy (SO). Moreover F and F_0 are invariant under compact perturbations ([1]). If x and $y \in B(H)$ satisfy xyx $=x, yxy = y, (xy)^* = xy$ and $(yx)^* = yx$, then y is called a Moore-Penrose inverse of x and y is denoted by x^{\dagger} . A Moore-Penrose inverse x^{\dagger} does not always exist but it is unique if it exists. It is known that x^{\dagger} exists if and only if ran x is closed ([3]). In particular if x is in F, then x has x^{\dagger} .

We need the following Theorem in [2; Theorem 3.6]:

Theorem F-W. Let S be in B(H). If ran s is not closed, then there exists a unitary $u \in B(H)$ such that ran $s \cap \operatorname{ran} us = \{0\}$.

We shall show that a denominator is automatically a Fredholm operator.

Theorem 1. If a subset $S \subseteq B(H)$ is a denominator set of B(H), then S is contained in the set F of Fredholm operators.

Proof. Let $s \in S$. Assume that ran s is not closed. Then by Theorem F-W, there exists a unitary u such that ran $s \cap \operatorname{ran} us = \{0\}$. The condition (S1) implies that there exist $t \in S$ and $b \in B(H)$ such that sb = (us)t. Then

ran $ust = ran \ sb = ran \ sb \cap ran \ ust \subset ran \ s \cap ran \ us = \{0\}$.

Therefore ust=0. Then S contains st=0. This contradicts to (S3). Hence ran s is closed. Next assume that dim ker $s^* = +\infty$. Then there exists a unitary u such that ran $u \cap ran us = \{0\}$, since dim $(ran s)^{\perp} = \dim ker s^* = +\infty$. By the same argument of the proceeding paragraph, S contains 0. This is a contradiction. Therefore dim ker $s^* < +\infty$. Next we shall show that dim ker $s < +\infty$. Since ran s

is closed, s^{\dagger} exists. Put $a=1-s^{\dagger}s$, then sa=0. By (S2) there exists $t \in S$ such that at=0. Since $a=a^*$, $t^*a=0$, that is, ran $a \subset \ker t^*$. Then dim ran $a \leq \dim \ker t^* < +\infty$, because $t \in S$. Thus dim ker $s=\dim$ ran $a < +\infty$. Therefore $s \in S$ is a Fredholm operator.

Consider the canonical homomorphism $\varphi : B(H) \rightarrow B(H)[S^{-1}]$ defined by $\varphi(\mathbf{x}) = (\mathbf{x}, 1)^{\sim}$.

Lemma 2. The canonical map $\varphi : B(H) \rightarrow B(H)[S^{-1}]$ is onto.

Proof. Take $(a, s)^{\sim} \in B(H)[S^{-1}]$. Then s^{\dagger} exists by Theorem 1. Put $z=1-s^{\dagger}s$. Since sz=0, there exists $c \in S$ such that zc=0 by (S2). Then $c=s^{\dagger}sc$. Put $x=as^{\dagger}$ and d=sc. Then

$$ac = as^{\dagger}sc = as^{\dagger}d \in B(H)$$
 and $sc = ld \in S$.

This shows that $(a, s) \sim (as^{\dagger}, 1)$. Then $\varphi(x) = (as^{\dagger}, 1)^{\sim} = (a, s)^{\sim}$. Thus φ is onto.

The following main theorem gives the possible rings of fractions of B(H) completely:

Theorem 3. Let S be a denominator set of B(H). If S contains a non-invertible operator, then the ring $B(H)[S^{-1}]$ of fractions is isomorphic to the quotient ring B(H)/J of B(H) by the ideal J of finite rank operators. If S does not, then B(H) $[S^{-1}]$ is isomorphic to B(H).

Proof. By Lemma 2, $B(H)[S^{-1}]$ is isomorphic to $B(H)/\ker\varphi$. We note that

(*) ker
$$\varphi = \{x \in B(H) \mid xc = 0 \text{ for some } c \in S\}.$$

If S does not contain non-invertible elements, then ker $\varphi = \{0\}$, so $B(H)[S^{-1}]$ is isomorphic to B(H). Now suppose that S contains a non-invertible operator s. Then $s^{\dagger}s \neq 1$ or $ss^{\dagger} \neq 1$. If $ss^{\dagger} \neq 1$, then $x = 1 - ss^{\dagger} \neq 0$ and $x \in \ker \varphi$, because $xs = s - ss^{\dagger}s = 0$ and $s \in S$. If $s^{\dagger}s \neq 1$, put $x = 1 - st^{\dagger}s$. Since sx = 0, xt = 0 for some $t \in S$ by (S2). Thus $x \neq 0$ and $x \in \ker \varphi$. In any case we have that ker $\varphi \neq \{0\}$. Next we shall show that ker $\varphi \subset J$. Let $x \in \ker \varphi$. By (*) there exists $c \in S$ such that xc =0. Since $c^*x^* = 0$, ran $x^* \subset \ker c^*$. By Theorem 1, c is a Fredholm operator and dim ker $c^* < +\infty$. Hence x^* is a finite rank operator, so $x \in J$. Since J is a non-trivial minimal two-sided ideal of B(H), ker $\varphi = J$. Therefore if S contains a non-invertible element, then $B(H)[S^{-1}]$ is isomorphic to B(H)/J.

YOSHINOBU KATO

§ 3. Examples of Denominator Sets

In this section we shall give some examples of a denominator set S such that $B(H)[S^{-1}]$ is ismorphic to B(H)/J. In fact there exist at least countably infinite many denominator sets with this property, although we have not yet determined all of them.

Theorem 4. If S is a semigroup such that $F_0 \subseteq S \subseteq F$, then S is a denominator set. In particular F_0 and F are denominator sets.

Proof. It is clear that S satisfies (S0) and (S3). We shall show that S satisfies (S1). Take $s \in S$ and $a \in B(H)$. Since $s \in F$, s^{\dagger} exists. Then $1-ss^{\dagger} \in J$, because dim ran $(1-ss^{\dagger}) = \dim \ker s^{\ast} < +\infty$. Put $c = (1-ss^{\dagger})a$. Then c is also in J, so ran c is closed and c^{\dagger} exists. Then $c^{\dagger}c$ is in J. Put $t=1-c^{\dagger}c$. Since t is a compact perturbation of 1, $t \in F_0 \subset S$. Put $b=s^{\dagger}at$. Then

$$at-sb = (1-ss^{\dagger})at = (1-ss^{\dagger})a(1-c^{\dagger}c) = c(1-c^{\dagger}c) = 0.$$

So sb = at. Thus S satisfies (S1). Next we shall show that S satisfies (S2). Take $s \in S$ and $s \in B(H)$ such that sa = 0. Since ran $a \subset \ker s$, a is in J. Consider a polar decomposition a = u |a|. We may assume that u is a unitary. Put $t = u^*s^*s$. Then ind $t = \operatorname{ind} u^* - \operatorname{ind} s + \operatorname{ind} s = 0$. Hence $t \in F_0 \subset S$. And $at = u |a| u^*s^*s = ua^*s^*s = u(sa)^*s = 0$. Thus S satisfies (S2).

Finally we shall give two kinds of examples of denominator sets of B(H) which do not contain F_0 . Let K be a separable, infinite dimensional, Hilbert space and n be a positive integer. Put $H = K \oplus \cdots \oplus K$ (n times). Then B(H) can be identified with the set $M_n(B(K))$ of $n \times n$ matrices whose entries are in B(K). Let S be a denominator set of B(K). Define S_n and $S^n \subset B(H)$ by

$$S_{n} = \left\{ \begin{pmatrix} s & 0 \\ s & 0 \\ 0 & s \end{pmatrix} \in B(H) \middle| s \in S \right\}$$
$$S^{n} = \left\{ \begin{pmatrix} s_{1} & 0 \\ s_{2} & 0 \\ 0 & s_{n} \end{pmatrix} \in B(H) \middle| s_{1}, \dots, s_{n} \in S \right\}$$

By [4; page 61, Exercises 4], S_n is a denominator set of B(H). Similarly we can show that S^n is also a denominator set of B(H). Therefore we get the following :

Theorem 5. There exist countably infinite many denominator sets S of B(H) such that $B(H)[S^{-1}]$ are isomorphic to B(H)/J.

Acknowledgement

The author would like to thank Prof. Y. Watatani for his help.

References

- [1] Douglas, R. G., Banach Algebra Technique in Operator Theory, Academic Press, New York, 1972.
- [2] Fillmore, P. A. and Williams, J. On operator ranges, Adv. Math., 7 (1971), 254–281.
- [3] Groetch, C. W., Generalized Inverses of Linear Operators : Representation and Application, Dekker, New York, 1977.
- [4] Stenström, B., Rings of Quotients, Springer-Verlag, Berlin Heidelberg New York, 1975.