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Rings of Fractions of B(H)

By

Yoshinobu KATO *

§ 1. Introduction

In this paper we discuss the following question : What are rings of fractions of
B(H), the algebra of all bounded linear operators on a separable, infinite
dimensional, Hilbert space H ? We recall the definition of a ring of fractions of a
(generally non-commutative) ring according to [4].

Definition. A subset S of a ring A with a unit 1 is called a (right) denominator
set if § satisfies the following conditions :

(S0) 1Ifs, t<S, then st<S, and 1S,

(S1) IfsES and a4, then there exist t&S and bEA4 such that sb=at.
(S2) If sa=0 with s&S, then at=0 for some t<=S.

(S3) S does not contain 0. (to avoid triviality).

Definition. The ring A[S™"] of fractions of a ring A with respect to a (right)
denominator set S is defined by 4[S™'] = (4 XS)/~, where ~ is the equivalence
relation on 4 X S defined as (@, s)~ (b, t) if there exist ¢, d =4 such that ac =bd and
sc=td =S. We define addition and multiplication of (a, 5)~, (b, t)~"EUA XS)/~
in the obvious way :

(a, s)~+ (b, t)"=(ac+bd, u)~ for some cEA4, u and dES with u =sc=td,

(a, s)~ * (b, t)~=(ac, tu)~ for some cEA and uES with sc=bu.

Moreover if A has a scalar (complex number) multiple, then also does A[S™'].
Then ¢(a) = (a, 1)~ defines a homomorphism ¢ : A—(4 XS)/~=A[S7'].
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Our main theorem asserts that any ring of fractions B (H) [S™'] is isomorphic
to B(H) or the quotient ring B(H)/J of B(H) by the ideal J of finite rank
operators. The next problem is the existence of such a denominator set S. It clear
that B(H) [S™']=B(H) if we take S= {1}. We shall show that there exist at least
countably infinite many different denominator sets S such that B(H)[S™'] are
isomorphic to B(H)/J.

§ 2. Main Theorem

An operator x B (H) is a Fredholm operator if ran x is closed, dim ker x is
finite and dim ker x* is finite, where ran x is the range of x and ker x is the kernel
of x. The collection of Fredholm operators is denoted by F. The ind is the function
from F to the integers Z defined by ind x =dim ker x —dim ker x*. This function
enjoys the following property : For x, y&F, ind xy =ind x +ind y, ind x* = —ind x,
ind 1=0. Put F;= {x&F | ind x=0}. Then F and F, satisfy (S0). Moreover F and
F, are invariant under compact perturbations ([1]). If x and y&B(H) satisfy xyx
=x, yxy =y, (xy)* =xy and (yx) * =yx, then y is called a Moore-Penrose inverse of
x and y is denoted by x. A Moore-Penrose inverse x' does not always exist but it
is unique if it exists. It is known that x' exists if and only if ran x is closed ([3]).
In particular if x is in F, then x has x.

We need the following Theorem in [2 ; Theorem 3. 6] :

Theorem F-W. Let S be in B(H). If ran s is not closed, then there exists a
unitary u B (H) such that ran sMNran us= {0}.

We shall show that a denominator is automatically a Fredholm operator.

Theorem 1. If a subset SCB(H) is a denominator set of B(H), then S is
contained in the set F of Fredholm operators.

Proof. Let s&S. Assume that ran s is not closed. Then by Theorem F-W,
there exists a unitary u such that ran sNran us= {0}. The condition (S1) implies
that there exist t&S and b=B(H) such that sb= (us)t. Then

ran ust =ran sb=ran sb Nran ust Cran sNran us = {0}.

Therefore ust =0. Then S contains st=0. This contradicts to (S3). Hence ran s
is closed. Next assume that dim ker s* =+ co. Then there exists a unitary u such
that ran uMNran us= {0}, since dim (ran s)~=dim ker s* =+ 0. By the same
argument of the proceeding paragraph, S contains 0. This is a contradiction.
Therefore dim ker s* < + co. Next we shall show that dim ker s < + . Since rans
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is closed, s' exists. Put a=1—s'"s, then sa=0. By (S2) there exists &S such that
at=0. Sincea=a*, t*a=0, that is, ran a Cker t*. Then dim ran a <dim ker t* <
+ oo, because t&S. Thus dim ker s=dim ran a< + . Therefore s&S is a
Fredholm operator.

Consider the canonical homomorphism ¢ : B(H)—B(H)[S™'] defined by
p(x)=0, D~

Lemma 2. The canonical map ¢ : B(H)—B(H) [S™'] is onto.

Proof. Take (a, s)"=B(H)[S™']. Then s' exists by Theorem 1. Putz=1—
s's. Since sz=0, there exists c =S such that zc=0 by (S2). Then c=s'sc. Putx=
as' and d=sc. Then

ac=as'sc=as'dEB(H) and sc=IdES.
This shows that (g, s) ~ (as', 1). Then ¢ (x)=(as’, 1)~ =(g, s)~. Thus ¢ is onto.

The following main theorem gives the possible rings of fractions of B(H)
completely :

Theorem 3. Let S be a denominator set of B(H). If S contains a non-invertible
operator, then the ring B(H) [S™'] of fractions is isomorphic to the quotient ring
B(H)/J of B(H) by the ideal J of finite rank operators. If S does not, then B(H)
[S™1] is isomorphic to B(H).

Proof. By Lemma 2, B(H) [S™"] is isomorphic to B(H)/kerp. We note that
(%) ker o= {xEB(H) | xc=0 for some c=S}.

If S does not contain non-invertible elements, then ker ¢ = {0}, so B(H) [S™!] is
isomorphic to B(H). Now suppose that S contains a non-invertible operator s.
Then s's>1 orss™> 1. Ifss'=1, then x=1—ss'*0 and x Eker ¢, because xs =5 —
ss's=0 and sES. If s's>1, put x=1—s% Since sx =0, xt=0 for some tES by
(S2). Thus x>0 and xEker ¢. In any case we have that ker ¢ = {0}. Next we
shall show that ker ¢ CJ. Let xEker ¢. By (%) there exists c =S such that xc=
0. Since c*x* =0, ran x* Cker ¢*. By Theorem 1, ¢ is a Fredholm operator and
dim ker ¢*< -+oo. Hence x* is a finite rank operator, so x&J. Since J is a
non-trivial minimal two-sided ideal of B(H), ker ¢ =J. Therefore if S contains a
non-invertible element, then B (H) [S™!] is isomorphic to B(H)/J.
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§ 3. Examples of Denominator Sets

In this section we shall give some examples of a denominator set S such that
B(H)[S™'] is ismorphic to B(H)/J. In fact there exist at least countably infinite
many denominator sets with this property, although we have not yet determined all
of them.

Theorem 4. If'S is a semigroup such that FoCSCF, then S is a denominator set.
In particular F; and F are denominator sets.

Proof. Tt is clear that S satisfies (SO) and (S3). We shall show that S satisfies
(S1). Take s=S and a=B(H). Since sCF, s' exists. Then 1—ss'EJ, because
dim ran (1 —ss") =dim kers* < +oo. Putc= (1—ssNa. Thenc is also inJ, so ranc
is closed and c' exists. Then c'c is in J. Put t=1—c'c. Since ¢ is a compact
perturbation of 1, tEF,CS. Put b=s'at. Then

at—sb=1—ssNat=1—ssNa(1—c'e) =c(1—c'c) =0.

So sb=at. Thus S satisfies (S1). Next we shall show that S satisfies (S2). Take s
&S and s&B(H) such that sa=0. Since ran aCkers, a is in J. Consider a polar
decomposition a =u |a|. We may assume that u is a unitary. Putt=u*s*s. Then
indt=ind u* —ind s+ind s=0. Hence tEF,CS. Andat=ulalu*s*s=ua*s*s=
u(sa)*s=0. Thus S satisfies (S2).

Finally we shall give two kinds of examples of denominator sets of B (H) which
do not contain Fy. Let K be a separable, infinite dimensional, Hilbert space and n
be a positive integer. Put H=K® --- @K (n times). Then B(H) can be identified
with the set M, (B(K)) of n Xn matrices whose entries are in B(K). Let S be a
denominator set of B(K). Define S, and S"CB(H) by

.0

s=1| °. |eB@ ses

St = . EBH) |5y, -, s, ES

0 7

By [4; page 61, Exercises 4], S, is a denominator set of B(H). Similarly we can
show that S" is also a denominator set of B(H). Therefore we get the following :
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Theorem 5. There exist countably infinite many denominator sets S of B(H)
such that B(H) [S™'] are isomorphic to B(H)/J.
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