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On H°° Well-Posed Cauchy Problems
for Some Weakly Hyperbolic
Pseudo-differential Equations

by

Yasutoshi S HIOZAKI *

§1. Introduction

We start with the initial value problems for a class of nonlinear equations
which W. Craig [1] mentioned. He treated the following problem

(1.1) dfu
(1.2)

where the initial time tQ is a constant in [0, T], and the operator H is the Hilbert
transform, that is,

(1.3) Hu(x) = -v.p. l^-dy.
n J x-y

Note that H = -i sgn(D), where sgn(D) is a Fourier multiplier operator which is

(1.4)

(L5>

so we have

(1.6)

He says that the above equation is non-strictly hyperbolic since the lin-
earized equation
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r r f
( 1 .7) dfv + -,- dxHv + -373-7- dtv + -3- v = g1 d(dxHu) x d(dtu) l du

has double characteristics (Observe that only the first term of the left-hand side
is second order and the rest is smaller order.) and showed that the initial value
problem is well-posed (locally in time) for Sobolev initial data under the
condition that

(1.8) if? (5) > g > 0 (S. constant)
d(oxHu)

for all values of s = (dxHu,dtu,u\x,t) under consideration. (This type equation
appears in a theory of fluid dynamics, for example, H. Yosihara [11]. See also T.
Nishida[9].)

In order to see the essence of Craig's argument, we consider here the
following linear equation

( 1 .9) (df + a(t, jc)|D| + b(t, x)dt + c(t, x))u(t, x) = f(t, x),

where a, b and c are C°° functions whose derivatives up to arbitrary order are
bounded in [O^JxR1 . (Recall that if we replace the term a(t,x)\D\ in the above
equation by a ( t , x ) d K , then the equation would be not H°° well-posed unless
a(t,x) = 0 , by Levi's condition. See in detail S. Mizohata and Y. Ohya [8].)

If we assume

(1.10) 0( f , jc )>5>0, 5: constant, f e fO .T] , J teR 1 ,

(This assumption corresponds to (1.8).) then we can lead an energy-inequality
for the following energy-norm

(1.11) Rz(a(t,x)\D\u(t,x\u(t,x))s+C\\u(t,x)\l +||<9X/,*)||2V,

where ( , \ and | ||s are //'-inner product and norm with respect to x e R1

respectively, and that this energy-norm is equivalent to

(1-12) \\D\*u(t9x)\\ +C||i«(r>jc)K +\dtu(t9x)\\.

These results give H~ well-posedness for (1.9) and (1.2). The form of (1.12)
suggests that (1.9) should be H°° well-posed even if the term which includes

is added to the left-hand side, and it is not difficult to verify this.
Moreover Y. Hattori and Y. Ohya [2] treated an example in which merely

0(r , j t )>0 is satisfied -instead of (1.10). The case they analyzed is that the initial
time is fixed on tQ = 0 and that the equation has the following form

(1.13)
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(1.14) tt(0,Jc)

where k,l are non-negative integers and a is a real constant. They derived that
H°° well-posedness of (1.13) and (1.14) is equivalent to the condition that either
a<0 and l + \>k or a>0 and kj are arbitrary. (This result is similar to the
one for the following differential equation

(1.15) (df-t2kd2
x+atldx)u(t,x) = ^ te [0,7], j teR 1 .

The necessary and sufficient condition of H°° (or C°°) well-posedness for (1.15)
and (1.14) is that either a & 0 and / + 1 > £ or a = 0 and kj are arbitrary. See in
detail Mizohata [5] p. 13, Theorem 4.)

In this paper we consider at first the following initial value problem

(1.16) (d2 + a(t, x)\D\m + b(t, x)\D\n )u(t, x) = f ( t , ;c), t e [0, T], x<=Rd,

(1.17) u(tQ9x) = uQ(x),

with arbitrary initial time f0e[0,7]. Here m, n are real constants such that
2>m>n>0 and a(t,x), b(t,x) are as before except for being complex valued.
(Our argument shall be independent of the number of the space variables. And
every term that includes dtu or u is omitted since it is not essential.)

Under the assumption (1.10) we can study (1.16) using the energy-norm

(1.18) Re(afrx)|D|^*)Xf,*)

or some variations. It can be seen that the above norm is equivalent to
m

(1.19) I|Dpii(f,*)fi + C\\u(t,x)\\] +tdtu(t,xyi],

and that (1.16) is H°° well-posed in the case m/2>n. Moreover even if
n>m/2 and b(t,x) is real-valued, then we can find such a variation of the
energy-norm (1.18) that follows H°° well-posedness. (See Theorem 2.2.) On the
other hand, we would expect that the Cauchy problem is not H°° well-posed
when n>m/2 and b(t,x) is non-real. At the end of §2 we will consider the
constant-coefficient case, where it is not difficult to prove the above assertion.
This type restriction never appears in the case of hyperbolic differential op-
erators.

Moreover we analyze the following equation

(1.20) (d?+t2k\D\m+at'\D\")u(t,x) = Q re [0,7], xeRd

with the initial data at 1 0 = 0 . (Here kj are as before and a is a complex
constant.) We shall give the necessary and sufficient condition of H°° well-
posedness for the above equation. (See Theorem 3.2.)

Finally the author would like to thank Professors Y. Ohya and S. Tarama for
their many interesting suggestions on these problems.
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§2, H°° Well-posedeess of the Weakly Hyperbolic Equation (1.16)

As mentioned in the preceding section, we consider here H°° well-posedness
of the Cauchy problem (1.16) and (1.17). In the equations the initial time tQ is a
constant in [0,71 a(t,x), b(t,x) are in C~([0,r];^~(RO)(^°°(Rrf) denotes the
set of C°° functions whose derivatives up to arbitrary order are bounded in Rd .)
and the operator \D\m with respect to x is defined by

(2.1)

for m>0 and u(x) e C0°°(R^). Note that |D|m can be extended to a continuous
linear mapping from H*+m(Rd) to fT(R r f) for every s e R .

Moreover we assume

(2.2) 2 > m > n > 0 .

Before analyzing the equation (1.16) we must define the precise meaning of
H°° well-posedness.

Definition 201L The Cauchy problem for (1.16) is called uniformly H°° well-
posed when if any t0e[QJTluQ(x),ul(x)EH'H'(Rd) and f(t,x) e C°°([0,r]);
//°°(Rd)) be given, then there is a unique solution u(t,x) e C°°([0,r]);H00(R^)) of
(1.16) and (1.17).

In this section we consider uniformly H°° well-posedness of (1.16) in the
case where a(t, x) > 8 > 0 .

Theorem 22. Let a^^b^x^eC^^T^SS00^)) be a real-valued and a
complex-valued function, respectively. Assume (2.2) and that there is 8>0 such
that

(2.3) a(t,x)>8>0, for any (r,jc) e [0,r]xRJ.

Then (i) if ml 2 > n then the Cauchy problem (1.16) is uniformly H°° well-posed.
(ii) if n > m/2 and b(t,x) is real-valued, then the Cauchy problem (1.16) is
uniformly H°° well-posed.

The proof of Theorem 2.2 is not difficult but needs much description, so we
only sketch it here.

Case (i): For any s e R we define the following norm and energy.

(2.4) E^t)^\\u(t,x)\\2^+\\dtu(t,x)\\^

(2.5) E^(t)
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where C is an appropriate positive constant, and ( , )s and || \\s denote Hs-
inner product and norm with respect to x E Rrf , respectively. By (2.2) and (2.3) it
is obvious that there are CPC2 > 0 such that

m

for any £ e [0, T] and u(t,x) e C!([0, T]\H5 2), using the ordinary Carding
inequality. (\D\m is not exactly a pseudo-differential operator since its symbol
\D\m has a singularity on £ = 0 , but we can treat \D\m similarly as a pseudo-
differential operator after modifying its symbol in a neighborhood of the origin.
This modification gives no serious influence to our argument.)

The following inequality will be derived from (1.16), (2.2), (2.5), (2.6), and
that m/2>n.

(2.7) -j JLS^VJ < const -(E

for any t e [0,T] and u(t,x) e C([0, T])\H^).

In particular, the assumption (2.2) is important in order to estimate the
commutators of some operators, and the assumption that m/2>n is used so as
to estimate the term b(t,x)\D\n.

From (2.6) and (2.7) we get the following energy-inequality

(2.8) Es(t) < const •(£,(())+ |V(T,-)II^T) for every t e [0, T],
Jo

and this proves the assertion (i) by applying Riesz's representation theorem on
the Sobolev spaces.

Case (ii): We must modify the energy-norm as follows.

(2.9) E^ (t) = Re({0(f, x)\D\m + b(t, x)\D\n }u(t, x\ u(t, ;c))s

We can lead the inequality which be gotten by replacing £ l s ( f ) by £2s(0 in
(2.6), from (2.2) and (2.3). And an energy-inequality corresponding to (2.8) also
follows since we have the assumption that b(t,x) is real. The rest is the same as
Case (i).

Thus Theorem 2.2 follows.
We can prove the same result even in adding the terms which include

dtu(t,x) or u(t,x) to the left-hand side of (1.16). Such terms request no serious
modification to the proof of H°° well-posedness. (Hence we may regard the
above result as an extension of the one for (1.9).) On the other hand, the term
b(t,x)\D\" can be treated as a 'harmless lower order term' only if m/2>n or
b(t,x) is real.

If n>rn/2 and b(t,x) is not real, then is not the Cauchy problem for (1.16)
H°° well-posed? Here we consider the constant-coefficient case, where the
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Fourier image of the equation is important. The full symbol of the operator in the
left-hand side of (1.16) is

(2.10) -T2+a\%\m + b\%\n

and the zeros with respect to r can be written as follows.

b II S in—m \ 2
fl'^'

n_m_
So the imaginary part of the zeros are near ±(lmb I (2Va))|£| 2 for large |£|, and
they grow as a positive power of \E\ under the assumption that a > 0, Imb & 0 and
n-m/2>0. Therefore we can show that the Cauchy problem is not H°° well-
posed under this condition by the same method as that for usual constant-
coefficient differential equations, (c.f. S. Mizohata [6], Theorem 4.6 and 5.2.)

§3. H°° Well-posedness of the Weakly Hyperbolic Equation (1-20)

In this section we consider the Cauchy problem for (1.16) under the
assumption that a(r,;c)>0 for any (r,;t)e[0,T]xR^ , instead of (2.3).

Here we are interested in the case where a(t,x\ b(t,x) degenerate in a finite
order at some point (tQ,x0). One of the most essential examples in this situation
is the following Cauchy problem mentioned at the end of §1.

(3.1) (d?+tu\D\m+atl\D\n)u(t,x) = Q, te[Q,Tl xeRd,

(3.2) u(Q,x) = u0(x\ dtu(Q,x) = u}(x), xeRd.

Here kj are non-negative integers, m,n are real constants such that m > / t > 0 ,
and a is a complex constant. This equation is an extension of (1.13). For the
simplicity we consider only homogeneous case (i.e. /(f,jc) = 0) and restrict the
initial time to tQ = 0 . So here we define H°° well-posedness as follows.

Definition 3.1. The Cauchy problem for (3.1) is called H°° well-posed when
if every HO(JC),H,(.*) e H°°(Rd) be given, then there is a unique solution u(t,x)
eC°°([(),r];#~(Rrf)) o/(3.1) and (3.2).

As we suggested in §1, the situation when m/2>n is different from that
when n>m/2. The necessary and sufficient condition of H°° well-posedness for
(3.1) is as follows.

Theorem 3.2. Under the above assumption, the following is valid.
I. If a > 0, then the Cauchy problem (3.1) is always H°° well-posed.
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II. // a < 0, then H°° well-posedness of (3.1) is equivalent to that
m k + l

~ ~

HI . If Im a & 0 (i.e. a is non-real) and m 1 2 > n, then H°° well-posedness of

(3.1) is equivalent to that y- > j— -y .

IV. // Ima^O and m/2<n, then the Cauchy problem for (3.1) is not H°°

well-posed.

The most interesting difference from (1.13) or the differential equation
(1.15) is the result in the case IV, which corresponds to the fact that we
mentioned at the end of the preceding section.

The remainder of this paper is devoted to the proof of Theorem 3.2. We
consider the Fourier image of (3.1) with respect to x, that is,

(3.3) (d?+t2k\£\m + atl\£\n)v(t9£) = Q on re [0,7*] and %<=Rd.

The above is an ordinary differential equation with respect to t with a parameter
| , so the solution v(J,|) exists for every initial data v(0,£) and (9rv(0,£). Now
the following lemma is valid.

Lemma 3.3. H°° well-posedness for (3.1) is equivalent to that there exist
positive constants C and p such that the following inequality is satisfied; for
every solution v(£,£) of (33),

(3.4) EQ(t,£)<C\£\pEQ(Q,£) for any t G [0, T] and large |£|.

Here we define

The above lemma is due to I. G. Petrowsky.

Lemma 3.4. Let CQ be an arbitrary positive constant. Then

(3.6) EQ(t',£) < const- E0(t,£) for any t,tf G [0,f0(£)] and large

where

and the constant in (3.6) is independent of t,£ and v( - , - ) -

Proof. We rewrite (3.3) as follows.
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0

r-tt'lSl" 0

All elements of the matrix in the right-hand side is bounded by const -\^\'". Thus

This implies (3.6).

Lemma 3.5* Assume that 2k>l. Let C15C2 be arbitrary constants and
define

(3-9)

the following estimate is valid for the solution v(t,%) of (3.3).

(3.10)

(3.11)

both for any t e [0,min(r1(^),?2(^))] ^md /arg^ |^|, where pQ is some positive
constant independent of t, % and v(-, •) .

Proof. Rewrite (3.3) as follows.

(3.12)
" 1 «. "

. d,v _

r 0 I l l s .

_-a-t^r» 0 f ^V

+ 2 rLO Oj
"f"

~tWv

. d,v _

for t e (0, T]

Now that 2k > I and (3.9) imply that

t1k-l^n-n < ̂  ̂ 2k-l^m-n = Q2

This and (3.12) lead the following inequality,

(3.13) !<?,£,(*,£)!< const- (fW H-r1)^^^ for re

where

(3.14) ^(r.^

And
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+rl <rl(t2(^
+l\^ +1)<const-r1 when* <f 2 (£) ,

so

where 7 is a suitable positive constant. This follows

) , ) ) ] with

and this leads

(3.15) ^(^^

where a is a positive constant larger than o^G2 and m. Noting that

(3.16) E^£)^ const .|£|>'£0(f,£), E0(t,&< const- l^E^Z)
for any t e [\£\-ff, T] and large \£\,

we obtain

£oa^)<const-|^r°^o(l^r^) for fetl^.min^^Xr^^))] and large |5|,

and this proves (3.10) with Lemma 3.4. (3.11) is also derived by the same
argument.

§4. The Proof of Theorem 3.2: the Case I, II and III

In the following argument we divide the results of Theorem 3.2 into several
lemmas and prove them all.

Lemma 4.1. Assume that either a < 0 or a is non-real. Moreover, if

m k + l
2n 1 + 2

is satisfied, then the Cauchy problem for (3.1) is not H°° well-posed.

Proof. Note that \<mln and m I n < (2k + 2) / (/ + 2) imply 2k>l. Let us
consider (3.12). We can take tn~l\^\m~n as small as we please when t < t { ( ^ ) ,
taking C, sufficiently small. Then the most important part of (3.12) is the matrix

0 11 _
. The eigenvalues of this matrix are ±V-a , the real parts of which are

-a Oj
non-zero when either a < 0 or a is non-real. We choose such a branch of the
square roots that Re V-a > 0 .
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Multiplying (3.12) by a costant non-singular matrix which diagonalizes the
above matrix, we have the following form

*
where P0 is some constant matrix and £-(£,£)(*, 7 = 1,2) is as small as we please
when t < ̂  (£) , by choosing Ct . Defining

(4.2) ^^5) = l^o^§)

we obtain for some positive constant 8l ,

(4.3) ^(^^^^^^(
for any t e (0, ̂ (^)] and large |||.

Note that the assumption m / 2n < (A: + 1) / (/ + 2) implies oi < CJ2 and
for large |£|. Taking C2 sufficiently large, (4.3) leads

t,$) > S2ti\ffSw(t,& for any t e [^,(5X^(5)].

By integrating this, we have for some positive 8t (i = 1,2) and p ,

[ 52|̂

Now we shall show that (4.4) contradicts H°° well-posedness. Solve (3.3) giving
the following initial data,

(4.5) W0(f2 (£),£) = !, W{(t2(^) = 0

at t = t 2 ( £ ) . Then Ew(t2(£),£) = Sw(t2(l;),l;) = l. Suppose that the Cauchy
problem is H°° well-posed. Then (3.4) is valid, so

(4.6) Ew(t{(^^< const -\^EQ(t{(^^)< const -\^+^EQ(0^).

On the other hand, Lemma 3.5 says

(4.7) £0(0,^)<constH^0^o(^(^)^)^constH^r+^^a2(^)^).

Taking |£| — » oo? (4.4)_(4.7) imply a contradiction.

Lemma 4.2. If m/2>n and m/2n>(k + !)/(/ + 2), r/ien f/ze Cauchy
problem (3.1) Z5 /f°° well-posed.

Proof. Rewrite (3.3) as follows.



(4.8)

Letting

d
dt

m

i:» i] m
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I 5 l y v + | ° . °w'la""2 o

it follows from (4.8) that

ri 01 m ri i
(4.9) t , _ i ,

Now ^-^""z^r'+^-r1 for large |£| because n-m/2<Q. Thus it is
bounded by const • ?-1 if / + 1 - k > 0 . In this case we obtain

(4.10) \dtEv(t, 5)1 ^ const • rlEu(t, 5) for any f e (0, T] and large |£|,

where £^(^1)= |(70(r,^)|2 + IC/,^,^)!2- (4.10) derives (3.4) by the same argument
that treated E^t, 5) in the proof of Lemma 3.5.

Next we consider the case where / + l - f c < 0 , which implies m/2>n. (If
m/2 = n, then that m/2/ i = !>(£ + !)/(/ + 2) leads Z + l - Jk>0 . ) Giving an
arbitrary positive constant C3 , define

Then
„ m „ m

t'-^\n~2 < t3($r«-l-» HI 2 . ri = c3-^-/-1) - r1

for any r e [r3(|), T] and large |||,

so we can find the energy-inequality on this interval by the previous argument.
Finally we consider the interval [0,f3(£)]. That fc-/-l>0 implies that 2 & > / ,
so f ,(£) in (3.9) is well-defined. Moreover m/2 / i >(* + !)/(/ + 2) implies
C73 >CJ j >cr2 , so f 3 ( | )<f j ( | )<f 2 ( | ) is satisfied. Thus the interval [0,min(r,(5),

= [0,r,(5)] includes [0,f3(£)]. Therefore (3.4) follows from Lemma 3.5.

Lemma 4.3. // a is real and m/2n>(k + i ) / ( l + 2), then the Cauchy
problem for (3 . 1) is H°° well-posed.

Proof. Defining
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we rewrite (3.3) as follows.

^rA v i_r ° i]( } ^UJ L-I oJA

Multiplying (4.13) by a constant non-singular matrix, we get the following form,

(4.14) ^

° A v

0 -ip-^lv.r"/^''

where P{ is a suitable constant matrix.
Now we let

M^w.
l'o«) = C0|9-,i

and take C^ sufficiently large if 2k>l. Then

(4.16) ±t2k\%m>\a\tl\%\n fo rany /E^^

which leads that A(f,£) is real in this interval, and that

d,A MSI" - < const • r1.

Therefore we can obtain the energy estimate in the interval [?i(£),r] by the same
argument that treats El in the proof of Lemma 3.5. On the estimate in [0,^(^)1,
Lemma 3.4 can be applied when 2k < I (i.e. ?,(£) = *<,(£))• If 2k>l, then
recalling mf2n>(k + l ) / ( 1 + 2) implies ?1(^) = f 1 ( ^ ) < r 2 ( ^ ) , we can apply
Lemma 3.5.

Lemma 4.4- If a>Q, then the Cauchy problem for (3.1) LS H°° well-posed.

Proof. Under this assumption, A(f,£) in (4.12) is always real. Moreover

d.A const forany,E(0,r],J V ' J'
A

which immediately shows the estimate (3.4) by the previous argument.



ON H°° WELL-POSED CAUCHY PROBLEMS 741

§5. The Proof of Theorem 3.2: the Final Case

Finally we shall prove the result of the case IV. Note that we can omit the
case m I 2n < (k +1) / (/ + 2) since Lemma 4.1 is already proved.

Lemma 5.1. Assume 1 > m/2n >(k + 1)1(1 + 2). Moreover if Ima *0, then
the Cauchy problem for (3.1) is not H°° well-posed.

Proof. Step-l. We consider (4.14). Letting a = al+ia2(al and a2 are real
and a2 -•£ 0), we have

Then

l\a2\t
l~l\S\n

k\%\'n +alt'\%\n+ia2t
l\q\n

and

< const • rl ,

so |^A/A| is bounded by const -r1.

Step -2. Expanding the square root in (4.12), we get

(5-1) A(f,|) = ±r*|

where the sign depends on the choice of the square root in (4.12). And

(5.2) \

where e becomes as small as we please when tl~2k\£\n~m is sufficiently small.
Recalling the argument in the proof of Lemma 4.3, we can choose such a branch
of the square root in (4.12) that the following should be satisfied for some
positive constant <55 .

(5.3) -Im A(f,£) > 85t'-
k\ for any t e

Now letting

(5.4) Ev(t,t)=\V0(t,S)\+\Vi(t,&\, S^f.^slVo
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we can obtain

(5.5) dtSv(t^)>S6t
l~k\^Ev(t^)- const-

Here we use the result of Step-1 .

Step -3. Noting the assumption l>m/2n>(k + l)/ (1 + 2) implies l + l-k
> 0, we can define d3 > 0 by (4.11) again. Thus we obtain from (5.5),

n_m
(5.6) dtSv(t,t)>86t

l-*\t\-iSv(t,t)
for any t e [max(r0(£),r3(£)), T] and large |||,

taking C3 sufficiently large if necessary. Here we use the fact that if 2k > I then
m/2n> (k + 1)1(1 + 2) implies Oi><T 3 ) i . e . t{(^)<t^).

Denning f(|)smax(r0(|)J3(^)), the integration of (5.6) gives us

(5.7) Sv(r,£)

Now we shall show that the estimate (3.4) of Lemma 3.3 contradicts (5.7),
giving a suitable initial data of VQ and Vl on t = F(|) . (Recall the proof of
Lemma 4.1.) For that it is sufficient that the following estimate should be given.

(5.8) £0(0f§)<const-|^6£v(7(§),5) for large |£|.

If ?(£) = f 0 (£) , then the estimate (5.8) is reduced to Lemma 3.4. Therefore the
rest is the case f(%) = t3(%).

Step-4. We assume that F(£) = r3(<f;) . Here we may also assume t^)
<t3(%). Return to (5.1) and get

n-—

|Im A(r, ̂ )| < const -r'-* |^| "2 < const -r1

for any r e [F1(^),?3(^)] and large |£|.

This leads the following estimate with (4.14).

(5.9) £v/(f1(O^)^const.|^K7^a3(^)^) for large |£|.

If 2 A : < / , then ?1(<^) = t0(^) and the estimate (5.8) can be given by (5.9) and
Lemma 3.4. In the case where 2k>l , we have f1(^) = r 1 (^ )<r 2 (<^) which shows
(5.8) using (5.9) and Lemma 3.5.

Thus the proof of Theorem 3.2 is complete.
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