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Division Theorems in Spaces of Entire Functions with
Growth Conditions and their Applications to PDE of

Infinite Order*

By

Carlos A. BERENSTEIN**, Roger GAY *** and Alekos VIDRAS ****

Abstract
It is shown that every entire function /eExp0(C") , /(0)*0 is "slowly decreasing". As an

application of this property, a theorem on analytic continuation of solutions of infinite order differential
equations with constant coefficients is proven.

§0. Introduction

In 1969 C. O. Kiselman [12] proved the following theorem: Given an open,
convex set U a C" , any holomorphic solution u in U of the linear partial differential
equation with constant coefficients P(D)u = £ aaD

au = 0, can be analytically con-
\a\<m

tinued to an maximal open convex set V, which is independent of u but which depends
on the zero set of the principal part Pm of P(z) :

The method used was a division theorem of certain entire functions by the polynomial
P and the following fundamental property:

The distance of any point z e C" such that \P(z)\< 1
to the set Zp = [z e C" : P(z) = 0} is bounded. ( £ )

A. Sebbar [15] proved the same type of analytic continuation theorem in the case of
infinite order differential operators with constant coefficients. He considered operators of
the form f(D) = £ a

aD
a so tnat f ( z ) = 1L aaz

a £ Exp0 , the space of entire
aeN" aeN"
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functions of exponential type zero (that is, for \/£ > 0 there exists a positive constant
C£ so that |/(z)|< Cee

e|z|). In this case, again, the crucial step was a division theorem

in the "correct" space of entire functions. However, since there is no analogue of ( €}
in this case, he restricted himself to the class of operators satisfying the following
condition:

f ( z ) = Z aaz
a is of exponential type zero and Ve > 0 exists Re > 0

aeN"

so that V|z| > R£ and \f(z) | < 1 we have d(z, Zf) < £\z\. (&)

An example, due to C.O. Kiselman, shows that not all functions in Exp0 have this
property. Very recently, T. Aoki [3] using very deep tools from microlocal analysis, in
particular the theory of hyperbolic microdifrerential operators of Kashiwara-Shapira
[10], proved A. Sebbar' s analytic continuation theorem without the assumption ( ^).
More precisely, T. Aoki proves a more general local continuation theorem for the vari-
able coefficient case and then as a corollary obtains the stronger version of the Sebbar's
result. One of the important ingredients of the symbol calculus of microdif ferential
operators used in Aoki's work is a lemma of T. Kawai [11], that allows to define the
characteristic set of these operators. This lemma depends on the minimum modulus
theorem for holomorphic functions.

In the present work, we give an elementary complex analytic proof of the Aoki-
Sebbar theorem. Our approach is in the spirit of Kiselman-Sebbar, through a division
theorem in the space of entire functions with growth conditions. By constructing a tube
around the set Zf = {z e C":/(z) = 0}, whose size changes asymptotically, we show
that the property (J3) is redundant. Our proof of the division theorem has two main
ingredients: the minimum modulus principle and interpolation (inspired by [5], see also
[11] for similar approach). Furthermore, as an application of the same technique we are
able to get the division formula even for the case where the symbols of the infinite
order differential operators have coefficients holo morphically dependent on a parameter.

We recall some notation and basic definitions. By C'\n > I, we will denote the
n 1

space of n-tuples z = (zl,...,zn),zl e C, equipped with the norm |z| = (£ z t^)2 .The
1=1

bracket { , ) will denote the bilinear product of two elements in Cn given by

Definition 0.1. An entire function f:Cn — > C given by f ( z ) = S aaz
a is of

aeN"

exponential type zero (infraexponential type) if and only if for every £ > 0 there exists
Ce such that for every z e C" we have |/(z)|< Ce exp(e|z|).

Let 0 eC" and & = U*>, //(£(0,l/fc)) be the space of germs of holomorphic

functions near the origin. We know that every operator L: & -> & is continuous if and
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only if L\H(B(Q,l/ k)) is continuous for every k. We will be interested in a special
class of continuous operators. Assume that we have a function
a e N", £ e C" , of exponential type zero. Then we can define

a continuous operator (homomorphism), which in turn gives an element of the dual

:/ € 0 ^ Iaa/
a(0) e C,

space 0 *

or, more formally,

for z close enough to the origin. O(D) is an infinite order differential operator with
constant coefficients and the function O is called the symbol of infinite order differen -
tial operator. Such an infinite order differential operator L acts from H(£l) into itself
(£1 open subset of C'1). The problem is to study ker L , i.e., to determine which holo-
morphic functions satisfy an infinite order differential equation. This type of problem of
considered originally by Ehrenpreis and Martineau in one variable.

Let ^(C") be the set of all convex domains in C" and for any domain Urn C" let
J^(£7) be the set of all nonempty, compact convex subsets of U. If A is any nonempty
subset of C" , then for any K e <^(C" ) and for any domain U e 3/(Cn ) we consider
the closed sets

7A(K)= fl {ze
^A

where HK(^) = sup7EA: Re{z, £). Then we set

r,(to= U
Ke*(U)

We recall that by cone we mean subset of C" which remains stable under the multipli -
cation by positive constants. Let A be a closed cone in C" , and let AT be a convex com-
pact set in an open convex set Q c C" . Then the set TA (Q) is called the polar enve-
lope of Q with respect to A.

Definition 0.2. Let A be an unbounded subset of C", the an asymptotic cone
of A, denoted by a(A) , is the closed real cone generated by the origin in C" and by

f f 1the accumulation points of all the sequences \ -p- > , f e A and lim |£ I = +°o.
U^IJy>i
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Example 03. Consider <l>:C-> C defined by cD(z) = f|| l_4-| . Then the set
1=1 \ n )

of zeroes Z0 of O , is an unbounded set and a(Z0) = R+. If £/ = {z:|z|<l} we

deduce that

= U ( n {zeCRe<z, 0* #,(

We will need some further notation: for L a differential operator of infinite order with
constant coefficients, whose symbol is <I> , the characteristic set Ch(L) of L, is

If A is any, non empty subset of C" , we define for any K e ^(Cn ) and for any
r>0 :

For ^(C") we set

We will also be using the following

Proposition 33 ([12]). If A is an unbounded subset of C" then for any open
convex subset of C" :

We want to give here a simple proof of the following

Theorem (A. Sebbar-Te Aoki)0 Let L be a differential operator of infinite order
with constant coefficients. Let O be an open convex set in C" and Q' be the polar
envelope of O with respect to the characteristic setCh(L) of L. Suppose that u is
holomorphic in O and Lu has an analytic continuation to O' . Then u has analytic
continuation to O7 .

Example 0-4. Let Q = U = {z e C;|z| < 1} and <!>(£>) be as in the above Example
0.3. Then the theorem claims that any holomorphic solution u of O(D)w = 0 on U can
be continued to the half-plane {z e C: Rez < 1} .

§1. Division Theorem

Theorem 1.1. Let f be an entire function C" — > C of exponential type zero. Let
K d L be two compact convex subsets of C" satisfying the following condition :
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(1.1) H L ( z ) £ H K ( z ) + blog(2+]$ whenever /(z) = 0,

for some b > 0. Assume also that /(0) = 1. Then, for every entire function /,
satisfying:

log \f,(z)\< HL(z) + a{ log(2 + |zD,z e C"

and for every £ > 0 , there exist two entire functions /2,/3 , depending on 8 , such that
/! = / /2 + /3 flfld *w>0 positive constants a2 (£) and a3 (£) such that for every z e C" :

log If 3 (z) | < HK(e) (z) + *3 (e) log(2 + |zD

where L(e\K(£) are £ -neighborhoods of L, K. The constants a2(£) and 03(£)
depend on £ ,/, K and L, a{ and b, respectively but not on /, .

The proof of the theorem consists of two steps. The first one is to construct a fixed
"tube" T around the set

with the property for any £ > 0 there exists Re such that

Vz e T with |z| > R£ d(z, Zf ) < 2e|z| .

The second step is the actual proof of the theorem.

Construction of the tube

Let 3* be the family of all complex lines through the origin of C" . If L belongs
to ^ , we can choose z e C" , |z| = 1 satisfying L = L_ = { Az, A e C} . Then A -> /( Az)
is an entire function of single complex variable A and of exponential type zero. In that
manner we reduce the problem from /: C" — > C to a problem of a family of entire
functions /.(A) = /(Az):C — > C , of exponential type zero. The constants associated to
the family are uniform and depend only on e. That is |/,(A)|< C£e

£l^ and the
constants C£ are independent of z.

The following lemma is immediate from the usual minimum modulus theorem
[14].

Lemma 1.2. Let (f j] J€j be family of entire functions of growth (p,0) satisfying
the following conditions:
(i) /J(0) = lV/-e/
(ii) Ve > 0 3 Cc such that \f} (z)| < Ce exp(e|jf ) for all z e C and all}.
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Let £ and T] be any given positive numbers with rj < -^ e . Let R<0, then, inside

the disk \z\<R, but outside a finite family of disks (depending on j) the sum of
whose radii is not greater than 4r]R (this is uniform), we have:

where

We will be using the result only in the case p = 1 . Note that the size of the excep -
tional sets is independent of £ . As a consequence of Lemma 1 .2 we can prove the fol-
lowing result, that we take from ([4], Lemma 7.4.7).

Lemma 1.3. Let {/7};ey be a family of entire functions of exponential type

zero, satisfying the condition (i),(ii) of the previous lemma, and let 0 < £ < — . There

exists Re such that for any j £ J and any z, \z\ ^ Re, there are 0 < a, A satisfying

-|<A<|-,exp(-2£|z|)<<j<l so that for any f such that A|z|- a<|f -z\ < A|z| + a

one has

(1.2) |/;(0l>e-^.

Corollary 1.4. Let {fj }J&J be as in the previous lemma, 0 < e < y , and let &aj

be the connected components of the open sets

S(/,, e): = {z eC: |/, (z)| <«-«<}.

There is RE>Q such that if \z\ ^ RE and zt&aj, then the diameter of &aj can be
estimated by

(13) diam^<||z|.

Let us now denote by Zj - {z e C:/y(z) = 0} Assume that a point zeC satisfies

|z| > R£ and dist (z, Z] ) > ̂ \z\ and |/y (z)\ < exp(-e|z|) . We conclude that if ^ is the

corresponding component of S(/y,£) then &aj r\S(fr£) = 0 . Thus, the function

log \fj (Q[ is harmonic in the bounded open set &a 7 and

(1.4)
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From (1 .3) we conclude that for £ e d#aj , |f| < (1 + )kl ̂  kl • Hence we haye

From the minimum modulus principle for harmonic functions we conclude that

This estimate is the main result we need to construct the tube mentioned above.
We state it as a proposition with the obvious change of notation.

Proposition 1.5. Let {fj}jej be as in Lemma 1.2, ZJ = {z e C:/7(z) = 0}, and

0 < £ < » . There is R£>0 such that

if |z| > Re > 0 and dist (z, ZJ ) > e\z\

then (z)>e-e |z |.

Corollary 1.6. Let f be an entire function of exponential type zero in Cn such

2
that /(O) = l . / /Z= {zeC":/(z) = 0} then for any Q<£<±- there is R£>0 such

(1.5) \z\ > R£ and dist (z, Z) > e|z| imply \f(z)\ > e~£lzl.

Proof. Consider the family {/,}J€/, where J = S2n~l = {fE Cn:\£\ = 1} and

/£.(Af),/l eC. The last proposition applies to this family. Let z e C", \z\> R£,

dist(z, Zj) > e\z\, and set f = -p-, A = |z|. It is clear that dist(z, Z^) > dist(z, Z) > e|A|,

thus

Let us now define a tube about the variety Z of zeroes of/, i.e., a closed set whose

interior contains Z as follows, for e = —, let Rm be the value from the Corollary 1.6.

We can assume that Rm+l > Rm +1.

(1.6) T: = U {z e C»: dist(z, Z) < |L and z| < ̂  j.
m=l Z

It is easy to see that Z c T° and T is closed.
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Furthermore, for any £>0 there is a value R'e so that \f(z)\>e~£lzl for any
z £ T,\z\ >R'e.In fact, choose m0 » I so that 2~m° < £ and let R'e = RtflQ . If |z| > R'e, let

m be such that Rm < \z\ < Rm+l .As z £ T it follows that distfe Z) > ~f so that by the

choice of Rm

Izl
2m+1 >e~£lzl

because m>m0 and thus 2~m-1 < e.
In the proof that follows we will also use a neighbourhood Tl of T defined as

follows. Let Rn=-l then

(1.7) 7>
m=l

§2o Proof of the Main Theorem 1.1

From the Whitney lemma [9] we conclude there is a function % &C00 (C" ) such
that % = 1 on r, and satisfying the estimate:

(2.1) \dx(z)\ <^eif Rm_{ < \z\

for some constant 3? and RQ = -1 as earlier.
Let us now define

for v e C°° (C" ) is to be determined. Let also

/3

We need to show that df2 = 0, that is

(2.2) dv =

on TI/T°
otherwise.

Denote by co the d -closed (0,1) form defined by the last bracket. Note that because
Z e T we have that <y is a smooth form. We proceed now to estimate \co\ . There are
three parts to this estimate. The estimate (2.1) takes care of d%. The denominator of
co,f , has been studied just after the definition of the tube T. Finally, we have to use
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the condition (1.1) to estimate fl on Tv. For that purpose observe that if
z e Tl , Rm_l < \z\ < Rm , then there is a point £ e T such that

_Jz|_

(2.3) ~

so that

(2.4) R^^R^-

Thus from the definition (1 .6) of T we have

(2.5)

Let 77 e Z realizing the distance inequality (2.5) and let p>0 be such that
L < £(0,p) . It follows that for any w e C"

(2.6) \HK(w)\<\HL(w)\<p\w\.

Since /f L , //^ are subadditive

HL(z) < H t(7j) + p|z- 77! < //L

and

Using (1.1) we have

(2.7) HL (z) < HK (z) + 2p' -^J- + 2p' + b' log(2 -

for some p ' , f r '>0. Therefore, there is a constant a' such that for
/?m_! < |z| < #,„ , one has

(2.8) log)/! (z)| < ̂  (Z) + 2p' - + a' log(2 + |z|)

As a consequence, for z e 7^ fl ^° , /^m_! < |z| ̂  Rm we obtain

ICI
(2.9) |fl)(z)| < ̂  exp(^ (z) + 2(p' + 1) + a' log(2
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where 3£ is the constant from (2.1). Let e > 0 , choose m0 such that for m>mQ

p' + l
we have £

T- < £ and let K£:= [z e C" : dist(z, K) < £} then

(2.10) HKe(w) = HK(w) + £\w\ Vw.

It follows from (2.9), (2.10), and the fact that supp co c Tl \ r° , that for |z| > /?mo_1

| < 3f exp(/^ (Z) + a' log(2 + |z|)).

By the smoothness of Q) we can conclude that there is a" = «"(£) > 0 so that we have
the global estimate

(2.11) \a>(z)\ < exp^ (Z) + ̂  log(2 + |z|)).

Now we are looking for a plurisubharmonic function 0 in C* with the property that
|6)(f )|2 exp(-0) is integrable in C" with respect to the Lebesgue measure. In other
words by using the last inequality one can deduce

"(e) log(2 + |f |) -

The idea is to set

exp(2/^£ (0 + 2fl"(e) log(2 + |f |) - 0(0) = (2 + 1 |̂)-^+1> .

Then, it is natural to choose

(2.12)

By Hormander's theorem ( [9], Theor. 4.4.2) there exists function v e C°°(C") such
that dv= 0) and

(2.13) M = " ^ < 1/2

We obtain an estimate for v by means of the following lemma:

Lemma 2.1 ([9]). Let£l be an domain in Cn, Q be a compact subset of O .
Then exists a constant c so that for any function u 6 Cl(£l):

SUD M S

where the integration is with respect to Lebesgue measure.

We apply this lemma taking as £1 = J5(0,l), Q = {0} and as u the function
z -> v(f + z) with f e C" fixed. We thus have
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i

On the other hand

|v(f)\2dh < ——pTKT" dA, xsup{(l + |z|2)2exp(0(z))}
Jl2 Jcn (1 + IZI ) ze

that is,

( |v(Q|2dA)< VMsup(l + |z|2)exp(— <p(z))
Jr2 ze" 2

and

(0 + «w(£)log(2 + |Cl)

for a new constant a'" = a'"(e). Therefore, using (2.12), we obtain some constant
C, (e) > 0 such that

(2.14) log|v(Ol<HJ,£(0 + C1(£)log(2 + |Cl),CeC".

The last step is to show that /2 and /3 satisfy the inequalities in the statement of the
Theorem 1.1.

1/2 (01 = A
/

On Tc we have

/"

(0 + IV(C)I» otherwise.

Combining the above we have

Also

f|/v|, on r,c ;
* '
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Hence for any f E C" we have

£\ + HKe (0 + Ci(£)log(2

/^ (0 + C3(£)log(2 + |f|)).

On r, we have the following estimate

|/, (01 < exp[//L (0 + a, log(2 + |f|)] < expfH^ + (a, + Ke)) log(2

Combining the above

This completes the proof of the division theorem.

Actually we can modify slightly the proof using a lemma from [4] (see Lemma 3.4
below) and obtain a decomposition independent of e , with the same estimates.

§3. Division Theorem with Holomorphic Parameter

Here we will show that we can derive the same formula for the symbols of infinite
order differential operators with coefficients dependent holomorphically on a parameter
teCn.

Let X be an open set in C" . An operator F, whose coefficients depend holomor-
phically on a parameter t can be written in the form

(Rl)

with D = (Dl9...,Dn) = l -5 — , . . . , -^ — where aa are holomorphic functions on X satis-
V °^l ^Xn )

fying the following estimates: For each compact set K cc X and for each h > 0 , there
exists a constant C > 0 such that

mp\aa(t)\<Chlala\-1 (R2)

for any multi-index a = (al,...an). Here we set \a\ = al+...+an,a\ = all..an\.If
there is m>0 such that aa = 0 for every a satisfying \a\ > m , we say that P is of fi -
nite order less or equal to m. Otherwise P is said to be of infinite order. If we replace D
by ^ = (<^ , . . . , %n ) e C" in (R 1), we have a holomorphic function in (t, £) e X x C" :
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By (R2), P(t, |) is an entire function of exponential type zero in £ , namely, an entire
function satisfying the following estimate: For every compact set K cc X and for
every h > 0, there is a positive constant C such that

(R3)
teK

We call the function P(t,£) the symbol of P. Note that C = C(h,K). Note that these
definitions make sense in a complex manifold X.
Assume that P(t , D), Pl (t, D) are infinite order differential operators whose coeffi cients
depend holomorphically on a parameter. Let /(^,^),/1(^,^) be their symbols. Fix
tQ 6 X , then f(tQ9%) = ft (£) is of exponential type zero in the variable £ . Now we
can state and prove the following:

Theorem 3.1. Let / ( f0»£)»/ i(*>£) be as above and fl is analytic in t. Assume
that there exist K d L , two compact convex subsets of Cn satisfying the following
condition:

HL(Z)<HK(t) + o(Z) whenever /,„(£) = 0. (&)

Assume also that ft (0) = f(tQ , 0) = 1 . Then for every entire function f{ (t, £) = fl t (£) ,
satisfying the following uniformity condition for any t eX:

and for every £ > 0 , there exist two entire functions /2r(£)
/3, (<^) = /3 (?, ^) , which are analytic in t, such that

such that for every % E C" :

where L(e),K(e) are £ -neighbourhoods of L, K respectively.

Note. The uniformity assumption on |/J is not unnatural, it holds for every L
compact, convex set which contains the origin in the interior. Hence, when this does
not occur, we get more refined estimate on the growth of f} , and eventually of /2 , /3 .
Furthermore, the assumption that K c L is not essential, since otherwise we can set as
L the convex hull cv(K\jL) c X if X is convex. Now we are ready to proceed with
the rough sketch of the proof

Proof of the Theorem 3.1. /(/0,<f;) = ft (<f;) is of exponential type zero in the
variable £. Construct a tube, as in Theorem 1.1, around the set Z ={(f0 ,£)

•''n
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n:/(r0,§) = 0}. Then for any teU, we will divide the function /;(*,£)
= /,(£) by the same function /(r0, £) as in the previous division theorem, only here
we are interested in a estimates of the different type. Define:

a i.
JtQ

where % is independent of £ and it is the Whitney function corresponding to r0 in the
construction of the tube, and vt e C°°(C") is to be determined.

A, =/i,,z ~4 n-
We want to show that f2jt(^) = f2(t^)9f^(^ = f 3 ( t 9 ^ ) have the "appropriate
growth" in £ and are holomorphic in ?. In the same way as before we obtain

otherwise.

Next, repeating the argument of the Theorem 1 .1 , we have the following estimate:

Again, repeating the argument of the previous theorem we extend the condition
to any £ e 7*, . Therefore

where aK = supreAr \t\ and aL = supreL |f| . Finally, we deduce the following:

where m = [ a K + a L ] + 2 and b(e) is chosen so that to take into account those £ G 7\

and |^| < /?e . We can see that the same estimate hold for the sequence en= — ,n=l9

2,... and as £ i 0 the constants <%?(£) t +<» . Therefore applying the Lemma 3.2 below
we can obtain a weight p(\£\) so that

\cot(&\ < eH*G»*®, where lim - = 0.

Lemma 3.2 ([4], Lemma 3.5.9 or [7], Proposition 1.7). Let (Bn}n>Q be an
increasing sequence of real positive numbers converging to +00 so that the
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values tn =(/i + l) Iog2 + log(£n+1 -Bn) are also increasing and tn^>tn

Consider the function:

Then there exists a function f positive , convex, increasing over [0, +°°)so that:

Hence

As in Theorem 1 .1 we choose a weight 0 by

l)log(2 + 15|).

Again, repeating the steps of the Theorem 1.1, we deduce that there exist a functions
vt e C°°(C") such that dvt = cot and

Furthermore, we obtain the following upper bound for log| v,| , by using the same type

of the argument:

log | v, < HK(£) + 0(1^1) + const, where lim - = 0.
l̂ oo |£|

We can always assume 0 e C°° by convolution with multiplier, if necessary. The last
inequality allows us to deduce, by exactly the same argument that /2t/(5) = /2( r '£)>
/3r(5) = /3(^5) satisfy the claimed growth conditions in the variable 5 • Therefore
the only property which remains to verify is that of analyticity in the variable t . The
argument is simple, but for the sake of completeness, will be given here. The basic tool
for that will be elementary Hilbert space theory. Our space will be the completion of
C°°(Cn,0), where the weight 0 was determined above, equipped with the inner
product

("
- J

JC" (1-

Let

i) = {(O.l)-forms with C°° coefficients, g:dg = 0,# e L2(C", 0)}.
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Observe that if v, e C°°(Cn,(/)) is a solution of dvt = cot then / + vt is also a solution
of <? v, = 6)tVf E jr(0'0) so that <9/ = 0 . Then by Hormander's a priori estimates for <9 ,
the operator d is onto from ^(0'0) to ^(0>1) . This allows us to define a mapping

This is done as follows, to any element GO in the space ^(ai) we make correspond the
solution v from the space ^(0'0) so that ||v|| has the minimum norm. We will show
that the mapping P is linear. It is a standard argument then that the analyticity of cot in
t will imply the analyticity of v, in t and, therefore, that of f2(t, £),/3(f, £) in the pa-
rameter t. For reasons of simplicity we will prove the linearity for cot , the general ar-
gument being exactly the same.

1) Homogeneity: Let aeC and dvt = Q)t. Then, we want to show that

P(acot) = aP(cot). By the definition of P there exists u so that dut = acot , but also

d(avt) = acot . Therefore avt = ut + ht , where ht is holomorphic. Therefore, by the

minimality of w,,||0vj| > \\ut\\ . But — ut is a solution of d( vt) = cot . Thus, by minimality

1 — ut\\ > || vj| . Hence, a vt - ut . So P is homogeneous.

2) Additivity: Consider the following

We want to show that VM + v, 2 = v, . Since ^(0'0) is a closed subspace of L2 (C" ,
for any v, so that, <9 vt = 0)l , we have that

|v, - /v f l= inf |v, -/|| = dist(v,,^0-°)), for a unique /
/"e//

Assume that v, , + v, 2 - v, = /„_ e JF"'0-0' and that

Therefore,

IIv, -gv,l = IIv f i l + v,2 -}Vi =gVt\\ = dist(vf,^
(0'0))

>dist(v / t l + v/i2,^(0-0)) = ||vfil + v/<2 -/Vf i+v /J|. (a)

On the other hand:

II VM + Vr,2 - /v / 1 +v,2U = dist( VM + Vr,2
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= l |V f+ / -/v^vj|>dist(v,,;r((XO)). (j8)
Thus (a) and (/?) imply that VM + v,i2 and v, are equidistant from ^F(a0).Next,
taking into account that vr is in the orthogonal complement of ^(0'0), we deduce:

i i v j i 2 = i i v f - / V f i i 2 + r V f i i 2 = i i v f i l + v r , 2+/V f i
2 ,

Combining these, we deduce that ||VM + vrJ
2 + ||/vJ|

2 = dist + ||/vJ|
2 and

ll/vjl2 -ll/vjl2 =«/v,,1 +v,2»2- Therefore ||/VJ|2 >||/Vn+Vf2 | |2. Similarly,

Therefore |/v,i+v,2||
2 >||/VJ|2. Hence ||/V,|+VJ|2 =||/v,|

2. Therefore, we have

/v,(£) = c/,,1+v,2 (£),(£) eC' ' ,c€C,|c | = l.

But
II v - f II2 = II V - cf II2
II vt J v , l l II vt ^-J v,, + v , 2 l l

= »/v,l2+l/v,1+vJ|2

= l|v,-/v,. l+v,2f.

Thus, fv = fv +v . This shows that ||/v |2 = 0 . Hence |/v |2 = 0 a.e which implies

7V =0. Hence we obtain the required identity vt { + vt 2 = vf . This completes the proof

of the theorem.

As an application of this theorem we get the following corollary:

Corollary 3.3. Let f ( t , <;),/, (t, ̂ ) be as above. Assume that there exist K c L ,
two compact convex subsets of C" satisfying the following condition'.

HL($) <HK(£) + o(Z) whenever ftQ (^) = 0. (^)

Then for every entire function f l ( t , ^ ) = f l t ( % ) , satisfying the following uniformity
condition for any t e U :
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and for every £ > 0 , there exist two entire functions /2/(£) = /2 (*»£)»
= /3(f,£) such that

f2 satisfies

tf(|) + 0(£), V e C"

£ remainder /3 contains two terms : 7/z£ term /3 dominated by the support
function of a E -neighborhood K and a term dominated by \t - tQ\ , where L(£), K(s)
are e -neighborhoods ofL, K respectively.

Proof. For t0 fixed, then by previous theorem we have

S e t /3(r,^) = [(/(f0^)-/(f^))/2(?^) + /3(r^)]. Then 3 i ( e )

+ 0(£) by the previous theorem. And in addition we observe directly (f(t0,%)
- /(* , £))/2 (^ 5)) is dominated by \t - 10\ .

§4. The Theorem of A. Sebbar-T. Aoki

The following two theorems are generalizations of the original theorems of
A. Sebbar. Since the weakening of a hypothesis is a direct consequence only of the
previous division theorem, the proofs remain basically the same, but for the complete-
ness of the argument they will be given here together with the new statements.

Theorem 4.1. Let f be an entire function C" — > C of exponential type zero an d
let Zf be the set of its zeroes. I f U i s an open convex subset of C", then any solution u

of f(D)u = 0 holomorphic in U can be continued to a solution v of f(D)u = 0 holo-
morphic in Ya(Zf , (U) = ®Zf (U).

Proof. Let %"f(D)(U) be the space of the solutions u of f(D)u = 0 holomorphic in
U, equipped with the topology induced by the ^(U) .Put V = 0Z (U) , then we are

going to show that the restriction map
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is surjective. Since the exponential polynomial solutions are dense in both spaces, ImR
is dense. Therefore the surjectivity is equivalent to

is surjective, because 1R is already injective. Let T{ e^D)(V), which can be
considered as an analytic functional on V. By the theorem of Ehrenpreis-
Martineau there exists a compact convex subset L of V so that:

where c^ is a positive constant and T{ is the Fourier-Borel transform of T{ :

Since L is contained in V = (JKE/s(U)(®w (K)) , there exists K a compact, convex

subset of U so that

and we have therefore, for some r > 0, L c 0Z (K) . HenceZ

where we may assume that K c L , otherwise we replace L by cv(K\J L) , the convex
hull of K\J L . By the division theorem proved above, for any £ > 0 , in particular for
£0 > 0 small enough so that Ke a U and Le d V there exist entire functions /2 and
/3 so that Tl = f /2 + /3 , where

Again by the theorem of Martineau-Ehrenpreis there exist T2 e ^f'(D)(U) and

T3 e &/(D) ( V) so that: f2=T2,f3=T3. For every v e ^(D) ( V) we then have:

Let 5 G &f(D)(U) be the restriction of T3 to the Wf(D)(U). For every u e ^-(D)(V) we

deduce

which implies the desire surjectivity.
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Theorem 402 (A. Sebbar-T. Aoki), Let Lbea differential operator of infinite or-
der with constant coefficients. Let U be an open convex set in C" and Uf be the polar
envelope of U with respect to the characteristic set a(Ch(L)) of L. Suppose that u is
holomorphic in U and Lu has an analytic continuation to U'. Then u has analytic con -
tinuation to U'.

Proof. We have L = f(D), where/ is an entire function of exponential type zero

and V = U' = Bz/ ( U ) . We want to show that if u e ^(U) and v e ̂ (V\Lu =v\u,

then u can be analytically continued to a solution «0 of LuQ = v holomorphic in V.
Actually, since the operator L:^(V) h-> ^(V) is surjective there exists VQ e ^(V)

so that LvQ = v which shows that u - VQ \ v is a holomorphic solution in U of Lu = 0.

By the Theorem 4.1 there exists u, holomorphic solution of Lu = 0 in V, so that
u\U = U-VQ. The function u + V0 is holomorphic in V, it is the analytic continuation

of u and satisfies:

L(u + VQ ) = Lu + LvQ = Lv0 = v.
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