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Presentations of AF Algebras
Associated to T-Graphs

By

David E. EVANS and Jeremy D. GOULD*

§1. Introduction

An AF algebra is an inductive limit of finite dimensional C* -algebras Fn, and an
embedding of Fn in Fn+l is represented by a graph whose edges are the (multiplicity of
the) embeddings of the simple factors of Fn in those of Fn+l (see [1,3]). Thus from a
graph F, with distinguished vertex *5 we can build up a unital AF algebra A(F), by
iteration of embeddings represented by F, but starting with the complex number C at *.
The space of semi-infinite paths F in F beginning at * will be the graph of a Bratteli
diagram for A(F).

Suppose Fis locally finite, and let F(0) and F(1) denote the vertices and edges
respectively of F, and A the incidence matrix of F. We write ||F|| = ||̂ ||. A Markov
trace Tr on A(F) is given by a solution (0v: v e F(0)) > 0, y- > 0 to

y(f)v= £ A(v,w)<t)w. (1.1)
wer<°>

Using a solution to (1.1) projections [ef:i e N} in A(F) can be defined which
satisfy the relations:

enen±ien = ™n » en€m = ^nfn ' \™ ~ H\ > l (l «2)

Tr(aem)=TTr(a), aeCXUp...,*,,.,) d-3)

where T = y~2, [15,12,11,13]. Let A(T) be the C*-algebra generated by projections
[e.:i e N} satisfying relations (1.2) and (1.3) for some TE R, and trace Tr on A(T).
Then we have a pair of AF algebras A(r) c A(F). Moreover we know by [10] that

l /Te{4cos 2 ( t f /0 : / = 3,4,...}u[4,oo) (1.4)
= A(AM) if l/r = 4cos2(^//), / = 3,4,5,... (1.5)

if 1 / T > 4 , (1.6)
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where Am, 3 < m < oo denote the usual Dynkin diagrams (see Figure 4).

In this paper we give an algebraic characterisation of A(Tp<2r) for 1 < r < °° (see
Figure 1, 2, 3 for these graphs). Let e-,e{,e2,... be a sequence of projections
satisfying relations (1.2) and additionally:

epen=enep n = l,2,...,p-l,p + l9p + 2,... (and e-e, = 0, if p = 2) (1.7)

e-epe- = Te- (1.8)
epe-P

ep = *(1 - *i v . . . v ep_2 )ep. (1 .9)

Then we show in Theorem 3 . 1 that A( T, /?) = C* (1, e- , ̂  , e2 , . . . ) is non-trival only when

j8 = l/VTe{||rpAr|:r^l}u[|rpAo.|,oo). (1.10)

In which case there exists a surjective *-homomorphism

A(Tp^)®C(l-elv...vep+r_2ve-)->A(T,p), when 0 = F^J, r<oo. (l.H)

), when j8 > F^ J. (1.12)

If r < oo 5 i.e. /3 < 1^2 - 1 > then this map (1.1 1) is automatically an isomorphism as
A(Tp2r) is simple. If there exists a Markov trace on A(T, p) (cf . (1 .3), or see §2 and the
statement of Theorem 3.1 for a precise definition) then in all cases (1.11) and (1 .12) we
have an isomorphism between A(Tp2tr), 1 < r < oo and A(T, p) ; moreover in the case
r < oo, j8 = IT^ 2 r || , we have

l = elv...vep+r_2ve-. (1.13)

We give a constructive proof of the existence of the above homomorphisms (1.11)-
(1.12) constructing matrix units in A(T, p) labelled by paths in the graph Tp2r . Thus
even in the case of p = 1 , our proof does not reduce to that of Jones for the An -series.
Indeed we prove a stronger result in that the existence of the homomorphism in (1 .1 1)
and (1.12) does not depend on the existance of a Markov trace. Moreover we show that
the homomorphism in (1 .1 1) is an isomorphism even without the assumption of a
Markov trace. It is also striking to note that by throwing in the extra relations (1.7)-
(1 .9) to those of Temperley-Lieb and Jones (1 .2), we find a rigidity above index four.
Note also that our construction of matrix units is different from that proposed by [14] in
the An-case. This result was announced in [4].

0 1 2 p_\ p p+i

• p
Figure 1: Tp
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Thus T2loo=A00, r2 2 o o=Do o , T32oo = E^, as in Figure 2.

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4£- |~
Figure 2

0 1 2 p_i p p+i p+r-2

" " " ^ j * * "
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P

p + q-3

! p+q-2

FigureS: Tp^,

n - 3 n - 2 n - 1

n - 3 n - 2

0 1 2 3 4 n - 3 n - 2

Figure 4

§2. Preliminaries

Let Fbe a graph with distinguished vertex *. We assume throughout that Fis
unoriented, connected and locally finite i.e. the number of edges adjacent to a vertex is
finite. We say that 7 € F(0) is even (respectively odd) if it can be joined to * by an
even (respectively odd) number of vertices. On the Cantor set F of sequences (xv )~=0 ,
with

(*„,*„,) en1' (2.1)

*o =* (2-2)

consider the equivalence relation ~ with countable orbits given by ( x v ) ~ (yv) if and
only if xv = yv except for finitely many \). Let A = Ar = A(F) be the corresponding



770 DAVID E. EVANS AND JEREMY D. GOULD

C* -algebra, with Bratteli diagram identified with F. For each finite subset A of N, let
A(A) = Ar(A) be the C* -algebra [2,6,7] generated by the following partial isometrics
fY y, : Both 7 and 7' are elements of

(2.3)

where A' = (i:d(i,A) < 1} , and 7(7) = y'Q') if j <£ A . The partial isometry f y y , has
as initial domain the cylinder set Z7 = {(xv): xv = /„, V G A'} , and it replaces any
such (xv) in Zy , by (yv) in the cylinder set Zy, , where v^ = xv , u £ A , y^ = yj, ,
UG A. Then we let A(Jr)II = Ar[0,w], denote the algebra at the nth level of the
Bratteli diagram F. Let A be the incidence matrix of the graph. Note that A is
symmetric. If v G F(0) , let t(v) = {we r(0): (w,v) G F(1)}. Let (0v: v 6 F(0)) > 0 be a
solution to

M,= I 4(v,w)^, (2.4)

for some positive number v. Then X(v) = (V(0W /0V)) : w e ^(v)) defines a unit vector
in /2 (r( v)) . If k < I e N9 5, r G F(0) , let ^ ={76 &[k>l] : y^ = 5, y/+1 = ?} . Then for
each n G N , let

(yJX(v)(^)/ i , (2.5)

where the summation is over all v G r(0) , and 7, 7' G ^{
v"

} . Then en is a projection,
being identified with a sum of the rank one projections on X(v) in End(/2(f(v))) . The
family {en : n = 0, 1, 2, . . . } satisfy the relations

*n*n±ie* = Ten ' V» = «»^ , |m - rt| £ 2 (2.6)

where T = v ~ 2 [11,13].
We define a trace Tr, called a Markov trace, on a A(/) to be the unique state on

A(F) such that

Tr/y r=0 if 7*7' (2-7)
(2.8)

Then

Tr (aem ) = j-2Tr(a) a e A[0, m - 1] (2.9)
Tr(O = r2, Tr(l) = l. (2.10)

Note that if the graph Fis finite and connected, then by the Perron Frobenius
theory there is an unique normalised strictly positive solution to (2.5) and y = \\A\\ .

If Fcontains no cycle of odd length then there is a partition jT = JTj0 ) u Fi0) , with
rj.0) n r!0) = 0, such that there are no edges between two vertices in Ff }

(respectively Fi0)). Such a graph is called bipartite. Then it is more convenient to
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describe F as follows [11]. There is a distance function d: F(o) — > N , where d(v) is
the number of edges in a minimal path from * to v. Then we can identify

f(0) = {(v, d(v) + 2k): v E F(0) , k = 1, 2, . . . }

with distinguished vertex (*,0), and where there are p edges between vertices (v, ri) and
(w,m) in F(0) if and only if \n — m\ = 1 and there are p edges between v and w in F(0) .
We identify jTwith the subgraph of F, called the underlying graph, having vertices
{(v,d(v)): v G F(0)} and whose edges are those in F(0) connecting these vertices. The
distance function d on F extends to a distance function on F(0) also denoted by d,
where d(v, rri) = m.

To construct matrix units in A(T, p) we will need a certain family of rational
functions associated with the graphs Tp^ . Here we give some properties of these
functions that will be needed later (see [5] for more details).

If A is the incidence matrix of F, we will aim to find a family {0V: v e F(0)} of
rational functions in an indeterminate x satisfying

*0v= I 4(V,W)0W (2.11)
W6r(°>

0, = 1 . (2.12)

Consider the graph F= Tpqeo with p > q > 1 and * = 0 (see Figure 1). Then
functions {0V} satisfying (3.1) and (3.2) exist and are unique. They are

i / 5«-i ' if <^2, p<r<p+q-2

$r=X$r-l-4>r-2> r>P + l9 (2.13)

where Sn e Z[jc] are Chebyshev polynomials of the second kind satisfying

S^xS^-S^ S0=l, 5_1 =0. (2.14)

Let Fp F2, F3, ... be the sequence of subgraphs of Tp2oo given by: F} = Ap+l ,
consisting of vertices 0 , 1,2, ...,/?-!, p, and all edges of Tp 2 ̂  joining these vertices .
For r>2 , Fr = Tp 2 r , consisting of vertices 0, 1, 2, ..., p-1, p, p, ... , p + r-2 and all
edges of Tp2oo joining these vertices (see Figures 3,4).

Proposition 2.1 [5]. Let {(j)v} be the family of rational functions associated to the
graph rp2i00, p>2 given by (3.3). The roots of (j)v are real, and if /3r, yr denote the
largest, and second largest respectively, roots of 0p+r_! for r > 1 then:

(a) j8r=|rr|,
(b) tfie sequence {f}r} is strictly increasing and converges to \Tpl^\ ,

(c) Yf*<Pr<Pf+i, f°r all r>\,
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(d) if pr < P < pr+l, then ^ 03) / Wp+r_2 (p)<0,forallr>l,

(e) 0v(/3 r)>0 far all ver<0 ) , r>l .

Let {0V} be a family of rational functions associated to a graph F, satisfying (2.11)
and (2.12). Then we define, for v e r(0) :

Qv(t) = x-d^<t>v(x) (2.15)

where t = x~2. Then for T = Tp^, p>q>2

Qr = Pr 0<r<p-l

QP = P
P- tP

P-^-21p^ = P^-i Ip,-.
Q- = ̂ -pPp-fP^-r /P^,(ifq>2)p<r<p + q-2

Qr=Qr.l-tQr-2, r>P + l (2.16)

where Pr & Z[r], r = 0,1,2, are denned by

Pr(0 = *-rSr(*) (2.17)

£ = jc~2, and are the Jones' polynomials [10]:

Pr = Pr_! - tPr_2, F0 = 1, P_{ = 0 . (2.18)

Note that Qv (r) € Z[f ] for all v e r<J> i00, if and only if 0 = 2, or q \ p.
The vertices of the graph Tpqoo, are labelled as in Figure 5.

We associate to each vertex (v,«) of T , the polynomial
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where d is the distance function on Tpqoo . Thus our notation is consistent with the
embedding of Tp^ in fp^.

§3. An Algebraic Presentation and Matrix Units for A(Tpf2fr)

Consider the graph Tp j2 r as in Figures 1 and 3 where 2 < p<<*>, 2 < r < <*>. We
have already noted in Section 2 that A(T) c A(Tp2r) where 1 / r = ||7^2,r|| ^ r < °° >
and 1 / T > ||^,2,ooI otherwise. In the path algebra A(Tp2r), the projection en may be
described as follows. In the notation of Section 2,

Abi-l,n + l]^eEnd/20(v)) (3.1)
V

where the summation is over all even (respectively odd) vertices v e T(^r with
(v,n -1) e ffyr when n is odd (respectively even). Three situation arise:

End/2(r(v)) = C if v = 0, or v = p + r-2, when r<oo, or v = ~p. (3.2)
End/2(r(v)) = M3(C), if v = p-l. (3.3)

A
a • •

V
Figure 6

End/2 (r(v)) = M2 (C) othrewise. (3.4)

In the case (3.3) the matrix algebras End/2(f(v)) live on those portions of the Bratteli
diagram shown in Figure 6. In the identification of (3.3) and (3.4), we will order paths
with initial vertex (v,n-l), and final vertex (v,n+l) from left to right. In the first case
(3.2), en will be 1 on these components and in the second and third cases will be the
rank one projections in these components given by

(3.5)

(3.6)

respectively. We now introduce a new projection, e- e A[p -1, p +1] , which lives in
End/2 (t(/?-!)) and is given by the rank one operator corresponding to the middle
path,namely (p-l,p,p-l) in Tp2ror ((p-l,p-l),(p,p),(p-l,p + l))in fp,/.
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« «(p,p)«

(p-l./H-l)

Figure 7

i.e.

0 0 (

0 1 0 in End(/2 (/?-!)). We observe the following facts:

(0 0 0,

(3.7) The projection ele3e5 ...e2n+l (a projection by (1.2)) corresponds to the projection
fss given by the extreme left hand path 5as shown in Figure 8.

Figure 8

(3.8) The projection fn = 1 - e{ v... v en_{ corresponds to the projection /^ given by
the extreme right hand path r\ as shown in Figure 9, for n < p - 1.
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Figure 9

We know by Wenzl [16] see also [8] that if el,...,eN is a sequence of projections
satisfying (1 .2) and if s=(N+4)/2, then either

£ = 4cos2(;r/<7) (3.9)
for some integer q with 3 < q < s, or

/?>4cos2(;r/s). (3.10)
In which case

/o = / i = l ; (3-11)
f l + l = f l - ( ^ S l _ l I S l ) f l e l f l (3.12)

where Si = St(P), for i = 1, 2, ..., N-2, for details see below (3.30)-(3.31). We can
then easily verify (3.8) from (3.11)-(3.12). Moreover, we can then deduce the
following relations:

ene-=0, n = l ,2, . . . , />-l (3.13)

*nep=ep*n> n = p + l,p + 2, ..... (3.14)
e-epe- = Te- (3.15)

*peliep = T(l-elv...vep_2)ep. (3.16)

Conditions (3.13-3.16) together with the Temperley Lieb relation for el9 e2, ... in the
presence of a Markov trace serve to characterise A(Tp 2 r ) r = 2, 3, . . . , «> .

Thoerem 3.1. Let p > 2, 1 > 0 , and let el , e2 , . . . , e- be a sequence of projections
satisfying

en*m=*m*n> W.fl = 1, 2, . ... |lfl - ll| > 2 (3.17)

i^ = 0 (f P = 2) (3.18)

e-epe- = Te- (3.20)-p- -
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A(T, p) = C (I, ei,e2,. ..,e-). (3.22)

Then A(r,/?) is non-trivial if and only if

13 = 1 / ̂  e {\\Tp2J: r > 1} u QT^ ,J, °°) (3.23a)

Tp2l = Ap^ . Moreover there exists surjective *-homomorphisms

A(Tp2r)@ C(l - e, v ... v ep+r_2 v e-) ̂  A(T,p) wfen /? = \\TpAr\\ , (3.23b)

(3.23c)

If r < oo , /.e. /? = |y^2/-|| < ||^2oo|» tnen (3.23b) is automatically an isomorphism.
Suppose there exists a trace tr on A(T, p) such that

(3.24)

(3.25)

(3.26a)

(3.26b)

We will give a constructive proof of (3.26), obtaining expressions for matrix units
in A(r,p)n under conditions (3.17)-(3.21). This yields a *-homomorphism from
A(Tp2r) into A(r,/?) for appropriate r<°o , depending on T. This will be a *-
isomorphism under the assumption of a Markov trace on A(T,p) (3.24).

To describe the matrix units in A(Tp2r), it is convenient to label paths in the
Bratteli diagram Tp2oo by certain sequences of half-integers as follows. In the first
place, if a,/3 E T(

p2oo , are on level m, respectively n, where m < n , let Path (v,w)
denote the paths of length n - m from v to w in Tp2oo. For a = (v, m) labelled as in
Figure 5, put n = (m- d(v)) 1 2. Then if

/ = {0,l,2,3,...,p-2,£,p-l,p,...} (3.27)

where e = p -2 + 1/2 define
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/„ = {i = (i,,.... i.) 6 /":*„ < d(v)-5v-p, in_, < in +1,..., i, < i^ +1}. (3.28)

Then we may identify the sets Path (*, a) and Ia as illustrated in Figure 10.

Figure 10

The numbers i{, i2,..., in correspond to the number of diamonds in the diagonal strip
where:

p-l

Figure 11

counts as half a diamond. For example when p = 3, a = (4, 10), / = (3/2, 2, 3/2) in Ia

corresponds to the path in Figure 12:
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A

X
a = (4,10)

Figure 12

On A(Tp2r) we have an endomorphism obtained, essentially by shifting each
vertex of a path down two levels, and then rejoining this path to (*,0) via (**,!). If
a = (v ,m)ef^ r ,and le Path(*,a), i.e. i = (ip /2 , . . . , /„) , where n = (m-d(v))/2,
then put i' = (0, /,,..., in) e Path(*,(v, m,+2)), as in Figure 13.

I a=(v,m)

Figure 13

Then there exists an induced *-endomorphism of A(Tp2r) such that

One can obtain a formula, inductively, for the projection gv corresponding to the
extreme right hand path in terms of I,el9e2,...9e-. First take g0 = 1, then suppose we
have gy for 1 < v < p -1. On level v +1 of Tp2r, gv splits into two paths, i.e. we have
gv = gv+\ + i, as shown in Figure 14.
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Figure 14

(0 0\
But the path i clearly corresponds to the projection in End /2(t(v-1)), and by

(3.4) and (3.8) we see that, since gv+lev = 0, we have

^v*,=(0,/^v-,)|-. (3.30)

It then follows that

8v+i = 8V ~ (PQv-i / 0v) 8vev8v - (3 -3!)

For v = p -1, note that the path gp_{ splits as a sum of three paths on level /?, as shown
in Figure 15, i.e. g^ = gp+g-+i

v.
Figure 15

(0 0}
where g- = e- . Again it is clear that / corresponds to the projection in

End(/2(r(/?-2))) .Hence

and so

8P = 8p-i ~ (P<l>P-2 1 0p-i ) 8p-i ep-i8P-i ~ 8-P • (332)

The situation for v > p is similar to that for v < p - 1 .
Consider, for v & 0, p — 1 , the operator ev+lgv+l (where gv = fv , for v = 0, ...,/?- 1)

contained in A[v, v + 2] . This is given by
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0

on End (/2(£(v))) , and is zero on the other components in the decomposition (8.1).
Defining

m fo\
we see from (3.33) that u\ = , i.e. uv flips the left hand path of End I

to the right hand path as shown in Figure 16.

Figure 16

When v = p -1, the operator epg-, epgp are both elements of A[p -!,/? + !], and
are only non-zero on the component End ( / 2 ( t ( p -1))). It is clear from (3.5) that, if
we define

where e = /?-2 + l / 2 , then ^

Figure 17.
0

, and un_

0 lo.

(3.35)

(3.36)

. This is illustrated in

Figure 17

Note also, that for v ̂  £, V(0v-i //^X *s a partial isometry with final projection,
*„+,/„, and initial projection, (j80v / 0v+1 )fv+lev+lfv+l. Also ^(^ l$$p_\}uE is a
partial isometry with final projection, ^g^ , and initial projection, e-.

Matrix units for A(Tp^r) are constructed as follows. Let a = (v,m) e T(^r, then if

n = (m-d(v))!2, put Ga = 7"(gv)> then by considering Figure 13, we see that Ga

corresponds to the path shown in Figure 18. To obtain an expression for the diagonal
matrix unit Gl

a in the component labelled by a corresponding to the path
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i = (il,i2,...,in) shown in Figure 10, one conjugates by the operator

/'-'(Ajy'-2^)... y(A l 2)A f i ,where Ak=u{u2...uk.

Thus, y"~1(AI )' Gay"~ l(A, ) corresponds to the path obtained from that in Figure 18

by flipping in diamonds in the rcth diagonal strip shown in Figure 10. Conjugating the
new path by y"~2(Az ), flips in_{ diamonds in the (rc-l) th strip etc. Off-diagonal

matrix units corresponding to pairs of distinct paths are constructed in a similar way.

Level

0

2n - 2 V

m = 2n + v .

Proof of Theorem 3.1.

Lemma 3.2. eme-=Q, m = 1, 2 , . . . , p-l.

Proof. We see from (3.21) that emepe-ep=Q, m = l ,2, . . . ,p-2. Thus
(e

m
epep)(epepe

m) = 0> shows that emepe-=Q. Then using [em,e-] = Q, and
e-epe- = Te-g we see that eme- = 0 for m = 1, 2,..., p- 2 . In particular ep_2e- = 0.
Consequently rep_{e- = ep_,ep_2ep_{e- = 0,as [ep_{,e-] = 0.

Lemma 3.3. Let p>2, r > 0 , such that e-, ex, e2,... w a sequence of projections
satisfying (3.ll)-(321). Define

YnW = T~("-\e2 ... enxen ...e2e{, x € A(T,p). (3.37)

/5^5 an unique *-endomorphism j of A(T,p) such that
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y(je) = lim /„(*), xeA(*,p) (3.38)
n->«>

)„-, (3.39)

(3-40)

7(O = ̂ m+2 (3-41)
7(e-) = T-<V2 ... ViV?ei»iVj-i -«2«i • (3-42)

Proof. Let A0 denote the set of y e A(r, p) such that lim 7 (y) exists. For y e Ag ,
/]—><>«

let y(.x) = lim fn(y) . Then elementary computations show that 1, e-, e,, e2, ... e A,, ,
rt-»°°

(3.40) - (3.42) hold, and indeed

7. (!) = «„ »*1 (3-43)
7, (O = «i«»«. «>m + l (3.44)

7. (e? ) = T-'«i«2 • • • Vie
P Vie?eP Vi • • • «2«i ' » > P- (3-45)

Then if x, y e AQ ,

en...e2e,e2...en = T"en, (3.46)

cf. (3 .43), and so:

e*xe,ye* • • •« ! • (3-47)

But [e,,,j:] -» 0 as n -» °° , for any ^ e A(r,/?), as [<?„, ev] = 0 for n large, v £ T^,--
Thus xy € A0 and 7(xy) = 7(j:) 700 . Thus A0 is a dense *-subalgebra of A(r,p) and
(3.39) holds. Now

2. ..enXen...el\\<r-"\\e1...en

by (3.46).

Hence yn is a contraction, and so A0 is closed. Thus A0 = A(t,p) and the Lemma
follows.

Definition. Suppose e-, e,, e2, ..., is a sequence of projections satisfying (3.17)-
(3.21) where l / V r = / J is such that 0,,(/3)*0 for all veT1^,, and some r > 2 ,
where {^X-^)-' v e ^2,-} 's t*16 family of rational functions associated with the graph
Tp2«, as in Section 2. Then we can define a sequence of operators gv e A(i,p)dM for

(3-48)
(3.49)
(3.50)
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gv+l =gv~ 08^i / <l>v }gvevgv p<v<p+r-3 (3.52)

where 0. = 0,03).

Lemma 3.4. Under the preceeding conditions, the family
{ek1gv,k,veT^r_^k^p} satisfy

(a) ekgv=gvek v = 0,1,..., p +r-2, &>v + l
(b) (i) epg-ep=($-/p$p_l)epgp_l

(ii) evgvev = ( 0V //?0V_!Kgv_! v = l,2,...,p + r-2
(c) ^g v =0 v = 2,3,...,p + r-2, t = 1, 2,..., v-1

(d) ft2=ft=ft ve

(e) (0 Sp£v=£p v =

(ii) gpgv=Q v =

(iii) gkgv=gv v =

Proof. For v = 0, 1, 2, ...,/?- 1 , the relevant parts of the lemma are clear. Next
note that 0- =j8~10/7_1, and so (b)(i) follows immediately from (3.21). To see
(e)(i), note that gv = l-el v. . .vev_j , for v = 2, 3,...,p-l, and so g-gv =
^-(1-gj v....v^v_1) = e- =g- by (8.5). Moreover, to show (e)(ii):

gpgp = gp(gp-i ~ (PQp-2 l <t>p-i)8p-iep-i8p-i ~ gp)

= g-p- (P<t>P-2 / 0p-i )gpep-igp-i -g-P=0

since gpgp_{ = g p , and g-^e^ —e-e^ =0 by Lemma 3.2. It follows inductively on
v = /?, /? + !, ...,/? + r-3 using (3.15) that gpgv=Q for such v, i.e. (e)(ii) holds.

We now prove the properties listed for gp . It is clear from (3.48-50) that gp is in
the algebra generated by 1, el , e2 , . . . , e^ and e- . Thus (a) holds for v = p . Next, since
ep and gp_{ commute, we have

= epgp-l ~ (P<l>P-2 / 0p-l ) gp-iep ep-iepgp-l ~ epgpep

= epgp-i ~ (<l>P-2 1 PQp-i )gp-^pgp-i ~ (0p / Ptp-i ^pgp-i using (b)(i)

But (j)p = j80p_i - 0p_2 - 0- , and so we obtain (b)(ii) for v = p .
We know that (c) holds for v < p - 1 by definition of gi (3.12), and ekg- = 0 by

Lemma 3.2 for k = 1, 2, ...,/?-!. Thus ^gp =0 by Lemma 3.4(c), for jfe = 1, 2, ...,
p-2 . Also we have, using (b)(ii) for v = p - 1 , and noting that e^gp = 0 that

ep-l8p = ep-lgp-l -(PQp-2 l </>p-l)ep-lgp-iep-lgp-l ~ep-lgp
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But gp-2gp-i = gp-i by (e)(iii) for v = p-l, k = p~2, and so ep_lgp=Q. Thus (c)
holds for v = p .

Next note that by (b)(ii) for v = /?-!, one easily shows that

2 / 0p-i)Vi ViSp-i is a Pr°Jection- Consequently,

= gp-i ~ (P<l>p-2 / </>P-i )gp-iep-igp-i ~ 28p + gp=gp-

Here we have used Lemma 3.2 and the fact that gp_}gp = gp by (e)(i). This gives (d) for
v = p, and (e) for v = p is clear.

Now suppose, for some v, p<v<p + r-2, that gv has the properties listed. Then
we show that gv+l also satisfies these properties. In the first place, (a) follows from the
definition of gv+l . Then since 0V+1 = /30V - 0V-1 , for v > p , we have

= -

Next, by the inductive hypothesis, we have Cjgv =0 for 1 < j < v - 1 , and so e;.gv+1 = 0
for 1 < j < v - 1 . Moreover, by b(ii), and e(iii) for v,

I </)v )evgvevgv = evgv - evgv_{gv = evgv - evgv = 0 .

Thus (c) holds for v + 1 . For (d), one has, using g* = gv and (b)(ii) for v that

/ 0v )2 Svevgvevgv
= g — (2Bd) _, / d) )g c g + (/30 _i / 0 )g & 8 -]8 = 8 •

Finally (e) for v + 1 is clear.
It follows from (c) and e(ii) that l-gv is an upper bound for el9e29...9 ev_{ ,e-.To

show that it is the least upper bound note that 1 - gv is a linear combination of
monomials in el9e29...9 £„_,, e-.

Definition. Let p, r>2 be fixed, / J>0 with Qv(p)>0 for veT^. Put
e = /7 — 2 + 1/2. Then we define operators u { 9 u 2 9 . . . 9 t4p+r_3 ,ue,u~e as follows:

k = l,29...9p + r-3 (3.53)

id/V(^2^)Kft (3-54>

Note that M(I e A(r,p) t+2, w£ e A(T,/;)p+1 and

ueu^ = u_l (3.56)
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for Lemma 3.1 (b)(i) and (e)(iii). For £=1,2, . . . , p + r - 3 put

Ak = ulu2 ...uk, (3.57)
Ae = ulu2 ...up_2ue. (3.58)

Lemma 3.5. Let p, r>2 be fixed, and el,e2,...,e- , a sequence of projections
satisfying (3.17)-(3.21) where T = /?~2 > 0, and 0V(/J) > 0 for all v e T(£r. Then we
have:

(a) AkA\ = Qfork,v

(b) AkgvA\=AkA\,

AEg-A\=AeA*e, k = e,

(c) elAkA"kel = Y(gk), k = 1,..., p + r-3

*A4X = 7(*jM)
(d) ukY(x) = 09 jceA(T,/?), J t > l .

(e) utgv=0, v

u£gv=Q,

(f) A:7(gv)Av

(g) 4r(£p-iMe=£p-

Froo/. (a) For v * £,

"X = /fy,-l d

since if v < p - 2 , gpgv+l=gp and ^^v + 1=0, whereas if v>/?-! , we have
&p£v+i = 0. Similarly for v, k ^ £, we have, assuming that k < v:

d
since g,+1gv+1 = gv+1 , and ek+lgv+l = 0 .

(b) For v ̂  p , one has ukgvul = ukuk for A: < v + 1 , since gkgv+l = gv+l for 1 < v < k + 1 .
For l<k<p-l, one has ukg-uk=0, since ft+1^=^, and g-pek+l=Q for
1 < A: < p - 2 , and gk+lg- = 0 for k = p - 1 . Moreover weg-i4 = w£w^ as g± = g- .
(c) For Jk = l,2, ..., p + r-3:

Zi,4 =ulu2...ukuk...u2ul

k "-8382*^1*3*2
= T]ke2e3 ...ek+lgk+lek+l ...e2 (3.59)

where we have used Lemma 3.1 (a) and (e), and

J]k=(^)2 ..-030, )2 / (0o02 -0*-i0*+i)- (3-6°)

Then from (3.23) and Lemma 3.1(b)(ii) we obtain
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and so by Lemma 3.2 we have

)^*3 ...ekeMfkeMek ...e2 =

But

>2 ...0,2) 7(000^03 -0*-i0*+i)X0*+i /j30*Xl//32*) = l, (3.61)

which establishes (c) for A: * £ .
Similarly, one uses epg-ep =(0^ /j80p_1)^p_, and Lemma 3.2 to show that

<vMX = 7(^-1)-
(d) This follows because 7(Jt) = e1y(;c) by (3.16), and gk+iei=® = gp

e\ for

(e) This follows immediately from Lemma 3.4(c), and (e).
(f) We have by Lemma 3.2, and Lemma 3.1 (a) and (e) that for v as stated:

= P2vrivgv+lev+l ...

= P2v'nvgv+i8v •••82e
v+i "-*2eie2 ••-e

v+i8vev+i •••e2ele2 ...ev+lg2 ...gv+l

= P ^v^v+l^v+l "-e2e\e2 '"ev+l8v
ev+l -"e2e\e2 "'^^+1^2 ' ' ' ̂ v+1

where r]v =[}2v(p(/)v 1 0v+1) by (3.61). But using (3.46) and Lemma 3.4(a) and (e)(iii)
we have

(g) Similarly, we have

.e2e,e2 ...epgp_{ep ...e2e,e2 ...epg2 ...gp_{g-p

But (/)p_{ =P<S>-p, and by Lemma 3.4 we have g-pe pg ̂ e pg- =g-pepg- =ft~2g-p and the
result follows.

Assumption. Let /?, r, and 1 = fi~2 be fixed, where /?>2, 2 < r < o o , and suppose
that

0V (j8) > 0 for all v e r<°>.r • (3 .62)

Recall from Proposition 2.1 , that if r < <*> , and j8 = |rpi2J , or if r = <*> , and j8 > ||rpi2i00| ,
then (3 .62) is true.
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Definition. Let a = (v, m) e f<g >r , and put n = (m- d(v)) 1 2 . Then define

G« = r(*v) (3.63)

and for zj e Ia = Path(*, a) define

G* = A\ 7(\ r ... r~l(\ )* r(8v)r*-l(Ajm ) - r(*J2 )^-, - (3.64)
Note that G ™ = G a , and (G*)*=G*. Put G< = G«, and v t t i =Gar«"1(An ) -

7(A2)4-,-

Lemma 3.6. For a = (v,m), j8 = (w,m)ef^ r , 1,7 e Path(*,a), We Path(*,j3)
W£ /ZflVe

G«G*=VVG«- (3.65)

Froo/. ( a )G«G^=G«.
It is clear that Gl

a—Ga. Now suppose that n > 1 , and i ̂  0 . We prove by induction on
wthat

*i*a ...^17-1(4.)-A14;1 ... r-l(\Ye2n-i -W = 7 n ( g z ) (3-66)

where z = [in] . If n = 1 , this follows immediately from Lemma 3.5(c) since z\ ̂  0 .
Now suppose that (3.66) is true for n > I . Then by the induction hypothesis, and
Lemma 3.5(c) we have

= ^i 7" (4,,+1 )[^i^3 • • • *2«-, 7-1 ( A- , ) • • • A, 4; - - - 7-1 (4, )* ̂ _! • • • e3e{ ] 7" (4,,+1 )* ^,,

= e*»ir(A^ )r (ft)r(<+1 K+, = 7'^,Aw+lsA,+1*i) •
But z < in+l + 1 , and so by Lemma 3.5(b) and (c) we have

where z' = [in+l ] . Hence (3.66) is true for all n. Now it follows from (3.66), noting that

Ga = T (8V ) = eft • • • *2*-i 7" (ft, ) , that

since z<d(y). This gives (a).

(b) G J G ^ O . f b r y ^ t .

We may assume that n > 1 . We show that for / ^ j, vaiv*aj = 0 . If / ^ j , then there
exists a A: < n such that f , = jl , . . . , ̂  = jfc , and ik+l * jk+l . Then by (3 .66) we have

va,,v;,, = Gar-'(A. ) -7*(4(+, )7*(*z)r*(4;w r ... r-l(\, YG, .
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But z ^ ik+i + 1 , and so At gz = At . It follows from Lemma 3.5(a) that

7k(\+] )7k(gz)7
k(Ah+l )' = 7k(\+]g^h+l ) = r*(\+A+, ) = °

since iM*jM.

(c) G*GlpJ' =0, for v * w .

Put k = (m- d(w)) 1 2 . Suppose that n = k , then v = p, w = /? , or v = p, and w = p .
We must show that

v;,, = Gay-I(4.)-4A -y1^.)"0*
vanishes. First suppose that there exists t < n such that i, = jl,..., i, = jt , and i(+1 * j,+1 .
Then as in the proof of (a) we have

v,v;,, - Gar~l(\ ) ...y'(4,tl )y (*,, )y'(4,+, r ... r-'(4. )*G/>
if i( ^ e , otherwise we replace 7' (g,( ) by 7' (g^ ) . Then since i, < i,+1 + 1 , we see that

4,+1S, =4,+1>andso

v,-^ = oar (4. ) -r'(4,+14L ) -r (4. )"G^-
But it+l *jt+l, and so ^£ A* =0 by Lemma 3.5(a). Similarly, if it =£ then

At ^ gp_{ = At . If no such t exists, then ij = jl , . . . , zn = jn and so

v«llvj;j=GB7"(gz)G/, = 7»(ft)y l l(gz)7»(^)=7"(gvg l^)

where z = zn if in^ £, and z = p - 1 , if in = e . But in < d(v) , and so gvgz = gv , and by
Lemma3.4(e) gvgw =0.

Now suppose that n * k , with n > k . Note that d(w) = d(v) + 2(n - k) . If there is
a t < k , such that /, = jl , . . . , it = jt , and it+l & jt+l then as before we have

v^,,^ = G0r-
1(4. )-7'(4ttl )r'tez)7'(^7,+1 r ...y*-1^, )'c/s

where z = i. if i.^e, z = p-l otherwise. But z < L , + 1 , and so A, P = A, , theni * x '"ri £ r+ i ~ ' f+i
by Lemma 3.5(a) vajv. ; = 0 , since it+1 ̂  jt+l . Finally if ^ = jl, ..., ik = jk , then we

have

where z = [/,]. But z<d(w), and so ^z^w =gw- Note also that by definition of
z = (/! , . . . , ^ ) , we have ^+1 <^(v) + n-A:- l , and so

ik+l + 1 < d(v) + n-k< d(v) + 2(n -k) = d(w).

But this implies that ul + gw=Q by Lemma 3.5(e). Hence Al gw=0, and so
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Lemma 3.7. (a) G('0 m) = G(', m+1) i e 7(0, m) c 7(1 ,m+1) .

(b) G('v. „, = G<-'> +1) + G('v+1, m+1) , i e /,„_ m) , v e f*^, . v * 0, p - 1, p .
(c\ rii — /7(i,e) ; c /
^ ' (P, m) ~~ ̂ (p-1, m+1) ' f fc A(p, m) '

(fft (7' - G(l" v4) + f?1 4- Gl
W °(p-l, m) ~" ̂ (p-2, m+1) ̂  ^(p.m+l) ^ ^(p, m+1) •

(e) Wfc« j8 = |rpAf|f a«J r < o o , G(/3+r_2jp+r_2) = G^tU-i) +

m>p + r-2, G'(p+v_2^ = G^XVi) > z' e Vr-2.»,) • V there exists a faithful trace sat-

isfying (3.24), then g^ = 0 .

Proof. For (a) note that g0 = g, , and if a = (0, m) e T^ r then m is even. Thus

G(olW) = 7^2(ft)=7l"/2(ft)G(1^1)

and so (a) follows.
For (b) note that when v ̂  0, p - 1, ]?, (p + r - 2 if r < <*>) , then by Lemma 3 .5(f)

#v = #v+l + (/tyy-l /0v )^,ev^v = ^v+1 + AVl 7(^v-l ) Av-l '

Then since G(v m) = jn (gv ) where n = (m — v)/2 , we have

G(,m) = r(gv+1)+ r(4,,_1)*y-'(gv_1)r(4v_1),
and so

^ = A • • • r-1 (A )* r" ( )r-1 (A ). . . Af i

But 7" (gv+1 ) - G(v+1 M+1) , and r"+1 (gv_} ) = G(^ m+1) , and so (b) follows.

By Lemma 3.5(g), we have g- = A*e7(g/3_1 )Ae , and so if n = (m- p)/2 , we have

G(p. /n) = 7" (gp ) = 7" (4e / 7"+1 ( Vi >7B (4e ) ,

but 7/z+1 (g^, ) = G(/7_, m+1) , and so (c) follows.

For (d) we use Lemma 3.5(f) to obtain

Hence if n = (m-(p- 1))/2 , we have

G(^-I. »o = 7" ( vi ) = 7" (gp ) + r (^-2 )* 7/i+1 (g,-2 ) r (*P-2 ) + r (g-P )
= G(p,m+l) + 7"( V2 V G(,-2,m+l)7"(^,_2)^ + % m+1)

and (d) follows.
(e) If ft = 117̂  J , then 0^^, (j3) = 0 . Then putting t = p + r - 1 , it follows by Lemma
3.4(b) that etgt (etgt )* = etgtet = (0f /jS^., )^g/_] = 0 , and so etgt = 0 . But then we have
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and by induction ekgt = 0 for all k > t , and thus for all k.
It follows that 7"(g,) = 0 for all n > 1 . Then from (3.16) and Lemma 3.5 we have

gt_{ = gt + A*_2 Y(gt-2 ) Ar-2 ' from which we obtain (e) by applying 7 .
If a faithful trace, tr satisfying (3.24) exists, then since 0r (/J) = 0 ,

_ - ) = 0 .

Hence £^=0.

Lemma 3.8. Suppose that (3.62) holds for r = <*> , z7zerc we have for each m > 0

(3-67>

where the summation is over all vertices (v, m) on level m of T^ r and all i e /(v m) . If
(3.62) holds for some r < < * > , then (3.67) is true for m<p + r-2, and for each
m> p + r — 2 we have

Proof. We use the splitting rules for G[v >m) in Lemma 3.7.

Definition. Let m > l , / ?>2 , and re{2,3,. ..,«>}. Let a = (v,
with J (v)<m + l. Put n = (m + l-d(v))/2. Note that for such a, we have
a' = (v,m-OGf$, r . Let 7a ={i€/B ;( ip^> . . . , i l l_1)e/ a ,}. For example, if
v ^ 0, p - 1, p, and if r<oo ,v^ / ? + r-2, then Ia consists of all / e Ia with /n = v - 1 ,
or in = v and in_{ < v .

Lemma 3.9. (a) Let t e {1,2, . . . , p-2, £ ,p - l , . . . } ,

(b) Let i = (zp..., z 'n)E/ a , r/zen we /zave ^ < fn_, +(«-/:-?) /or r = 0,1, ...,n-l,

(c) For v &Q,p, and if r <°°, v ^ p + r-2, we have 7(gv)Avev+1 = -

(d) F(?r v ?t 0, 1, /? , wg/zavg 7(gy )4V_1^V+1 = ( p } f t v e { e 2 . . . ev+1^v , 0m/ w/zen v= 1
w^ have ( )e

(e) For v ̂  0 , an^/ if r <<*> , v&p + r-2,we have 7(Ay )A v+1ev+3 = 0 .

(f) y(^)^e^+i=/?p^2---^+i<?p-
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(h) Gaem=0.

Proof, (a) First note that emt^r = Arem for ra>r + 3,and r*£. Also emAe =
Aeem , for m > p + 2 , i.e. m > £ + 3 . Then since m = k + 2s, with fc > £ + 3 , we have

emf(^ = 7s(ek)f(^t) = 7S(*A) = 7s(\ek) = f(&t)em .

(b) This is clear from the definition of la .
(c) By Lemma 3.4(a), (b) we have

^Hence by Lemma 3.3 we have

and so (c) follows using Lemma 3.4.
(d) Using Lemma 3.3, and Lemma 3.4(a), (e) and (3.46) we have

i0v_,/^

But jS1"1 V080v-i/0v) =^V(0v-i/)80v)' and ev+i^^+i^ = ev+ i^v' and so we nave the

first part of (d). Also

(e) First note that 7(Av) = jS2^"1"2^!^---^^^,,^^...^^ , and so, using Lemma 3.4(a),
(e) and (3 .46) we have

7( Av ) Av+1£?v+3 - &, . . . ev+3A^^3 . . . ̂ ,^^^3^3 . . . ev+2gv+2ev+3

= &,... ^^3 Ay£?v+3 . . . g2g,g2 . . . £?lH.3ft+2

= ^l-^34v^3^2

where 5,5' are scalars. But Av = u{u2...uv,and

v+\ v+l v-t-2

where A is a scalar, by Lemma 3.4(a), (c) and (e), and so 7(Ai,)Av,+1ev+3 = 0 .
(f) As in (d), we have
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• ep+lg-pep+l... e}e2g2e3g3... epg-ep+l

But 0p_, //3(j>- , and so (f) follows.

(g) Since e^g-e,, = (0- //typ_, )epg^,, we have

(h) Since m = 2n + v - l ,we have by Lemma 3 .4(c) that

Proposition 3e106 // a = (v,m + l) G $r, 1,7 e/0; r/icn 0X^ = 7^, if
i, j E 7a we

IS, , ...<5, , v = 0,/?, and if r < oo y = n +
L 'I Jl '»!-].7n-l ' '^ ' J ^

fl^J //"/, 6>r y ^ Ia, i/zew 7^ = 0. //ere we /zave

\v-\if in=v-\

and

p-2 ifin=p-2

Moreover if ft = (w, m + 1) e (^r , with w*v, then G'aemGJ
ft = 0 for all

Finally we have G(m+l,m+1)em - 0.
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Proof. First suppose that v ̂  0, p, p -1, or if r < <*>, v ^ p + r - 2, . Let * E 7a,
then /„_! < v, and so by Lemma 3.9(b) we have ^ < v + n + k-l, for & = 1,2,...,«-!.
Then since i^+2( fc - l ) + 3< v + 2/i-l = m, for k = 1,2, . . . ,/i-l, it follows from
Lemma 3.9(a) that

"„,*„ = ̂ "-'(A,,)... V* = Cay"-1 (A. M^CA,,,)...A, •

But e;n = Yn~l(^v+i), and so by Lemma 3.9(c) or (d) we have

Now, it follows from the proof of Lemma 3.6(b) that for j E Ia

va,,<, - Gar"-'(A,n )em7-2(\i_l)... A,, A'y< ... 7"-2(A;,,_,)' ̂ r'-'CA^

vanishes if (il,i2,...,in_l)^ (j\,j2, •••,jn.l), otherwise using (3.66) we have

But g^ ,£„ = gv, and so by Lemma 3.3

?v)) = ySy"(gv) =
Hence G'ttemG^ = r'^.

Now suppose that z £ Ia , then either in < v - 1 , or in_^ = v + 1 . If /„ < v - 1 , then
by Lemma 3.9(b), ik<v + n-k-2, for k = l,2,...,n. Then since ik +

l = mjor k = l,...,n we have

but this vanishes by Lemma 3.9(h). If in_l =v + l, then ik +2(k- l) + 3 < m for

k = 1, 2, . . . , n - 2 , and so

va,«w - ^/"-'(^ )7"-2(^,,_, )^yn-3(4 l j i_2 ) ...A, •

Now if in_{ = v + 1 , then z'n = v , thus since em = y"'2 (ev+3 ) we have

and so it follows from Lemma 3.9(e) that vajem = 0 .
The proof that Gl

aemGJ
a = faG

lJ
a, for a = (v,m + l), with v = 0,p-l ,p, or

p + r-2 when r < oo 5 is similar, using Lemma 3.9 (f) and (g) for example.
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The proof that G(
aemGl = 0 for a ^ j8 , is essentially a combination of the above

proof, and that of Lemma 3 .6(c) . Thus if / € Ia , then Gi
aem = 0 , otherwise we proceed

as above to get

and then either y*~2 (A, ) . . . A, . A", ... f~2 ( A , )* = 0 , or more detailed arguments
' V '*-! ' l\ J\ ' ^ J i - l ' °

are necessary as in the proof of Lemma 3.6(c).
Finally we have G(m^m+l)em = gm+lem = 0 .

Lemma 3.11. For m>l,we have em=^ YJ
aG^ where the summation is over all

vertices a on level m + 1 of Tp2r, and all ij e Ia, and the coefficients y.. e C are
given in Proposition 3.10.

Proof. By Lemma 3.8 we have 1 = ^ Gl
a + u , where we can take u = 0, if r = <*> ,

or if m < / ? + r-3, otherwise note that uek = 0 for all k, and the summation is over all
vertices a on level m + 1 of Tp^r , and i e Ia . It follows using Proposition 3.10 that

Remark 3.12. It follows immediately that Gl
a is a minimal idempotent in

A( r, p)m+l for each a = ( v, m + 1) , on level m + 1 of Tp2r , and / e Ia .

Lemma 3.13. Let p>2, T > 0 , and e},e2,...,e- a sequence of projections
satisfying the relations (3.1 7)-(3 .2 1 ) . // T = HA^JI"2 , then A( T, p) = A( T) , the Jones
algebra with parameter T, otherwise A(r,/?) is trivial unless

ft = 1 / V^ e {||7;2J; r > 2} u [||rp,2,J|, «.).

Proof. We can clearly assume that if j3 < 2, then /? = 2cos(nl m) for some
/n>3 . We first show that /?</?, is not allowed. Suppose that /?=/?,, then using
Proposition 2 . 1 (c) we have (gpep ) * ( g p e p ) = epgpep =(<j>p/ B$f_, )epgp_l = 0 . Hence
gpfp-0. Next, from (3.12) and (3.50) we have fp=Sp+e-, where
fp=\-elv...vep_]. Then since P=\\ApJ, and 5p+](^) = 0, we have fiS^p)

It follows that e- = fp - /p4., is in the C* -algebra generated by 1, e, , e2 , . . . , ep .
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The only other cases we need to consider for /3<j315 are when )8 = ||A |̂|
= 2cos(7T/ (& + !)), £ = 3,. ..,/?. Then, if fk =l-elv...vek_l, since Sk(fl) = 0, we have
etfkek = (Sk I AVi )fk-iek = 0 , and hence fkel = 0 = ekfk . Then we have

0 = ek+ifkekek+i = fkek+iekek+i = P~2fkPk+i

and by induction fkek = 0 for all / > k . It then follows that

and by induction that \ — f l — \ — fk for all l>k. In particular f p = f p + i - But
epfp=

ep> and so e p ^ f p = f p + i - II then follows that (e]iep)*e-ep=epe-ep

^ e
pfp+iep = ° and so epe

P = ° • Thus ep = P2epepep = ° •
Now suppose that /3r < /J < j8r+1 , for r > 1 , then since 0p+r_1 / P<t>p+r-2 < 0 , by

Proposition 2.1(d) we have, putting t = p + r - 1 ,

0 < (gtetgt )
2 = (0, / 00M )g,etgt = (0, / 00,., )(*,*, ) * (*,*, ) < 0 ,

and so e,g, = 0 . Then using Proposition 2 .l(d) again gives 0 = etgtet = (0, / /?0M )et8t-i »
and so e,^ = 0 .

If r = 1, then we have by (3.51)

0 = epgp = ep (gp_{ - (/30^2 / 0p_1 )g^! ̂ 1 Vi " 8* ̂  = ~e
PZp = ~epep

and so e-=P2ep-epe-=Q.
For r > 2 , note first that e^g, = 0 for all k (see the proof of Proposition 3.7(e)),

and it is clear also that when m + 1 > t , we can write the identity as 1 = £ Gl
a + g( ,

where a runs over all vertices on level m + 1 of Tp2 r and / e Ia . We now show that if
m = 2t , then G; = 0 for all a on level m + 1 of f p 2 r , and all i e Ia . Note that for
a = (v, 2t + 1) e fp 2 r , d(v) is odd, and if n = (2t + 1 - d(v)) 1 2 , then we can assume
rc>2.If rc = 2,then d(v) = 2t-3 = 2(/? + r-l)-3> p + r-l , since p , r>2 , and so
we can take / = (^ , 12 ) e Ia , with /, = 0 , and i2=t-2. Next we show that if n > 2, then
we can choose / e / a , with /, =0, i2=t-2. First note that by Lemma 3.9(b),
i2 < in +(n-2), and that

Now if v^p, d(v) = v is odd, and so if we consider paths i 6 Ia , with /lf = v , then
in - d(v} / 2 - l / 2 = v / 2 - l / 2 > 0 , i.e. in + (n - 2) > r - 2 . It follows that a path with
/2 =t — 2 is allowed. If v = p , then ^/(p) = p is odd, and so p > 3 . Thus taking / G 7a ,
with / „= /> - ! , we have in -d(p)/ 2-1/2 = p-l-p/2-l/2 = (p-3)/2 >O.Then
since /fl + (n - 2) > t - 1 , we can choose / G Ia , with /2 = / - 2 .

Next note that 7(A /_2)y(gM)= y(A /_2g,_1)= y(A,_2). But g,e, =0, and so
7(&-i ) = 0 > which means y( A f_2 ) = 0 . But if i 6 7a , is chosen as above with i2 = t - 2 ,
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then it follows that G'a = 0 , and finally since G^ is equivalent to Gl
a for all j e Ia ,

that G^ = 0 for all j e Ia . It follows that 1 = gt , and so em = 0 for all m > 1 .

Lemma 3.14. Let ft = 1 1 Vr = \\Tpa J , for some r, 1 < r < °o . Suppose that there
exists a faithful trace tr, satisfying (3.24). Then we have

(a) tr(/(*))=Ttr(*)
(b) tT(gv) = Qv(TlforvET^r

(c) te(Ga) = Qa(T\foratf$r

where Qv,Qa are as defined in (2. 15) and (2.19).

Proof, (a) For x e A(T, p) , we have by Lemma 3.3 that

y(x)=T-'lele2...en+lxen+l...e2el,

and so by (3 .46), (3 .24)

tr(y(*))= T-" tr^'-^i^i---^!)
= T-"tr(^+1...^^2...en+1^)

= r» tr(rnen+lx) = tr(en+lx) = T tr(x).

(b) Now g0 = g} = I , and 20 = Q, = 1 , and so (b) is true for v = 0, 1 . For v = 2, ...,
p - 1 , we have

and so by (3.24), and noting that 0v = /?0v_, - (f)v_2 we see

tr (gv ) - tr (gv_{ ) - (p(j)v_2 1 0v_} ) tr (ev_lgv_{

It follows that for v = 2, ...,/?-!,

Next, by (3.20), (3.21) and (3.24), we have

e-) = tr(g-)= ^M(e-epe-)= Tltr(epe-ep}

l ) = iQ^(r) = Q-p(r).

Then by (3.14), (3.24), and the facts that 0- / 00^ = /?~2 , and /?^_, - 0p_2 - 0-
we have

^, ) tr (g/?_,Vl ) - tr (e- )
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Forv>/?,one shows that tr (gv) = (0v I fify^ ) tr (gv_{ ) , using (3. 15), and (b) follows.
(c) Let a = (v, m) , and n = (m - d( v)) / 2 , then Ga = jn (gv ) and by (a) we have

tr (7"(*v)) = r tr (gv) = r"<2v(T) = 2«(r) .

Proof of Theorem 3.1 continued. For r as in (3.23) choose the corresponding r,
2 < r < ° ° , and define a map tF:A(7*p2r)0 C(l-^v...v ep+r_2 v e_) -> A(r,p) as
follows. Put # = 1 - ^ v. . . v ep+r_2 v e- . For aeT°2r, and /, j e Ia= Path (* , a)

It is clear from Lemma 3.7 that this map is well defined. From Lemma 3.6 we see that
it defines a *-nomomorphism and by Lemmas 3.8, and 3.1 1 , it is surjective. It remains
only to show that the map is injective under the stated conditions.

When r<oo,A(Tp2r) is simple, and so *F is injective. Suppose there exists a
Markov trace. To show that *F is injective in this case, it is enough to show that
tr(GJ>0 for each aef° 2 r . But by Lemma 3.14(c) we have tr(Ga) = Ga(r),
which we know is positive if 1 / T > |rp2J| (see Proposition 2.1).

Remark 3.15. The method employed in the proof of Theorem 3.1 should also
work for infinite graph Fof the type indicated by Figure 19. Here F is a tree, with an
infinite branch which has attached to it a finite number of branches of length one, and a
distinguished vertex *.

r
Figure 19

In these cases a presentation of A(r) would be as follows. Let [ev ; v e F{0) } be a set of
projections indexed by the vertices of F, such that the following relations are satisfied:

evew=ewev,d(v,w)>2 (3.69)
evewev = rev, d(v, w) = 1, v, w € dF I {*}, or v e dT I {*} and w £ dr I {*} (3.70)
evewev = Tfvev, d(v, w) = 1, v, w £ dr I {*}, w£<9F/{*} (3.71)
ewev=0, v ,we^F/{*} (3.72)

where fw = 1 - V eu , and the join is over all u e F(0) such that d(* , u) < d(* , w) - 2 ,
and dr denotes the boundary of F This would include certain star shaped graphs
considered in [17].
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