
Publ. RIMS, Kyoto Univ.
30 (1994), 799-850

A von Neumann Algebra Framework for
the Duality of the Quantum Groups

Dedicated to Professor Masamichi Takesaki on his 60th birthday

By

Tetsuya MASUDA* and Yoshiomi NAKAGAMI**

§0. Introduction

Classical Lie groups are important examples in the category of locally compact
groups. The general theory of unitary representations is developed for these objects as
harmonic analysis, which provides us a good theoretical framework for the detailed
study of the unitary representations of the classical Lie groups. This is regarded as an
extension of the Fourier analysis to a general context. For a locally compact group, its
dual i.e. the set of all the equivalence classes of irreducible unitary representations
plays an important role, and the duality established by Pontrjagin for Abelian groups,
Tannaka and Krein for compact groups, Steinspring for unimodular groups, Eymard
and Tatsuuma for locally compact groups is an important theoretical basis for the
harmonic analysis. On the other hand, at the formal level in the framework of pure
algebras, we use the notion of Hopf algebras to deal with the algebraic groups, discrete
groups, or the dual of those objects at the same time. Then functional analysis is
necessarily combined with the algebraic framework of Hopf algebras to have a good
control with the infinite dimensional unitary representations. This theory, especially
the argument utilized by Steinspring, suggests us to introduce the notion of Kac
algebras in the language of von Neumann algebras. The first take off from the group or
the group algebra to the Kac algebra was considered by Kac [7] and performed by
Takesaki [23] by introducing the, so-called, Kac-Takesaki operator or the fundamental
operator for the semifinite i.e. the unimodular case, and then completed by Enock and
Schwartz [4, 20, 5] for the general case, in which the above mentioned duality was
established by Takesaki, Enock and Schwartz, and others [24, 21].
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In the recent study of the quantum inverse scattering method, non-commutative
and non-cocommutative Hopf algebras were introduced in [6, 3], as a natural "q-
deformation" or "^-analogue" of the universal enveloping algebra of simisimple Lie
algebras and called by name "quantum groups". Around the same time, Woronowicz
[26] also discovered independently an object as a C* -algebra which looks like a non-
commutative deformation of the Hopf algebra of complex valued continuous functions
on the compact Lie group SU(2). It then turned out that these objects were essentially
the same. (See [18], for example.)

At the present stage, the "quantum groups" are known by these explicitly given
examples for which the finite dimensional representation theory is developed. As an
object of pure algebra, "quantum group" makes sense as a Hopf algebra with no
assumptions on its commutativity or co-commutativity. However, if we take the
complex number field C as the coefficient field of these particular Hopf algebras as the
coordinate rings of corresponding "quantum groups", we are able to specify the *-
structures and the unitarity of the representations make sense with which we are
allowed to manage the infinite dimensional representations in some explicit cases.

Those success in the representation theory are considered to be still formal.
However, these are the good evidences to believe the existence of a suitable category
which naturally contains not only group duals but also "quantum groups". Up to the
present stage, nobody seemed to have already defined some good frameworks to deal
with the infinite dimensional representations of these "quantum groups" in a rigorous
way. The purpose of this paper is to develop an abstract framework of harmonic
analysis which works also for these "quantum groups" including the non-compact
cases (see [17] for example). In this paper, we use the language of von Neumann
algebras to formulate the category in which we are able to deal with the "quantum
groups" and prove that the duality holds.

We now describe the arrangements of this paper as follows. In Section 1, we define
a Woronowicz algebra (M,8,R, r,/z) by introducing a deformation automorphism {Tt}
into a Kac algebra, where Mis a von Neumann algebra, 8 is a coassociative coproduct,
R is a unitary antipode and h is a left invariant Haar weight. When the Woronowicz
algebra is commutative or finite dimensional, it goes back to a Kac algebra. According
to the succeeding discussion, this concept will be recognized as a natural object of the
von Neumann algebra version of quantum groups. In Section 2 we construct a left
Hilbert algebra coming from the predual M% of the Woronowicz algebra. We also
show the unitarity of the Kac-Takesaki operator W, whose adjoint will play the role of
the left regular representation. The unitarity is also equivalent to the density of the
linear span of quadratic elements of the Hilbert algebra. In our subsequent argument,
the commutativity of four positive self adjoint operators, the modular operator A with
respect to the Haar weight, the deformation operator H implementing the deformation
automorphism and the module operators p, JpJ of the Haar weight is extensively used.
Utilizing the Fourier transform £(0) = (0 ® id)(W*) for 0 e M^ , we construct the
dual Woronowicz algebra in Section 3. Our Section 4 is devoted to the proof of the
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general duality theorem. Finally, in Section 5, we discuss, as an example, a
Woronowicz algebra which corresponds to the quantum group SUq(ri).

We have to remark that the complex number field C is not the only possible
choice for the coefficient field of the coordinate rings of the "quantum groups".
However, the global geometrical nature of the Lie groups are very well described by
the unitarity of the representations which play important roles in the theory of locally
compact groups. This is why we are more or less obliged to use the language of
operator algebras which is not apriori automatic. It also has to be mentioned that, for
the purpose of obtaining a reasonable framework in this direction, the language of
C*-algebras should be used to formulate the category which corresponds to the
category of locally compact topological groups. Indeed, Woronowicz had also studied
the same type of problem for compact quantum groups by using the "polar
decomposition" of the antipode mapping as we will discuss in terms of the unitary
antipode and the deformation automorphism. However, for the purpose of avoiding
some technicalities in the full algebraic generality, we use the language of von
Neumann algebras in the present publication. It is desirable to discuss the framework
using the language of C*-algebras, which will be our future subject.

The primitive ideas of this publication were already presented in [9]. This
publication is a detailed version of our previous talk [11]. The crossed product in our
context was also developed in [16].

§1. General Framework

We start by clarifying our situation in which we deal with the unitary
representations of "quantum groups" using the language of von Neumann algebras.
Since our motivation comes from the "quantum groups", we have an essential difficulty
which is the unboundedness of the antipode mapping of our "involutive Hopf algebra".
This is a difficulty which is apparent even in the "simplest case" SUq(2). Algebraically,
this corresponds to the non-triviality of the automorphism of the Hopf algebra obtained
by the square of the antipode mapping. This difficulty is not particular for the
framework using von Neumann algebras which still exists even in the C*-algebraic
framework. Therefore, this point is considered to be one of the essential features of the
new category in which we are able to deal with the "quantum groups". So, for the
purpose of formulating our category in terms of operator algebras, we introduce an
auxiliary structure i.e. one parameter family of ^-automorphisms which we call
deformation automorphism. It is also remarked that, in the classical situation, the unit
element is negligible with respect to the Haar measure. (This is one of the
disadvantages to use the language of von Neumann algebras.) Therefore we have to
give up using the counit of our "involutive Hopf algebra" in our framework. The
axioms for the counit and the left invariant Haar measure (Haar weight) are combined
and replaced by a condition which we call the strong left in variance. This condition
technically simplifies our formulation as in the case for the framework of Kac algebra.
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First of all, we remark on our basic notational convention of this paper that all the
tensor products of the von Neumann algebras are the spacial tensor products which we
denote simply by ®. Then, all the tensor products of the Hilbert spaces are also
denoted by the same symbol ® with which we have no danger of confusions. The set
of all bounded operators on the Hilbert space Jg is denoted by ^f(^) . We also give an
obvious remark that we use the usual notions of Tomita-Takesaki theory. For example,

nh = {x e M:/Z(JC*JC) < 00} .

We also use the notation x e nh — > rjh(x)e $h which identifies an element of nh with
the element of the Hilbert space lgh which is given by the GNS construction using h.
For x E M , we denote by Kh (x) the corresponding left multiplication operator acting
on the Hilbert space $h given by

for y e n -
Furthermore, the left involution operator obtained as the closure of the conjugate linear
mapping : r\h(x) — > r\h(x*) and its polar decomposition are denoted by S and JAl/2 ,
where the modular conjugation operator J(= Jh) is conjugate unitary and involutive,
and the modular operator A(= Ah) is positive and self-adjoint. The adjoint F of S is
the right involution operator and the polar decomposition is given by JA~l/2 = Al/2J .
The modular automorphism group {erf} is given by of (*) = AtfjcA~lY forxeM. For
these notations, we refer to the standard reference [22] of Takesaki.

Now, our basic definition which we introduce in this section is given by the
following.

Definition 1,1. The family (Af,5,/?,T,/i) with the following conditions is called
a Woronowicz algebra:

(i) M is a von Neumann algebra with a comultiplication 8 : M — > M ® M which is
a normal ^-isomorphism with the coassociativity (8 ® id) o 3 = (id ® 5) o 8 .

(ii) Unitary antipode is a *-antiautomorphism R:M -» M such that R2 = id and
a°(R®R)°8 = 8°R, where (7:M®M->M®M, x®y-*y®x is the flip
mapping.

(lii) Deformation automorphism is a continuous one parameter group {rt} of *-
automorphisms r:R— >Aut(M) such that the mappings 8 and R are invariant
i.e.(T, ® Tt)o8 = SoTt and it oR = Ro rt for r e R .

(iv) (left invariant) Haar weight his a {rt} -invariant semifinite faithful normal

weight on the von Neumann algebra M such that the following conditions hold :
a) Left invar iance: For any positive 0 e M^ , the weight (0 ® h) o S coincides

with the weight (j>(l)h.
b) Strong left invariance: For any x,yenh, and ^eM^ which is entire

analytic with respect to the action of the deformation automorphism {rt} on
the predual M^ , the following equality holds :
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c) Commutativity: The two weights h and h°R commute (i.e. the
corresponding modular automorphisms commute).

We remark that for any positive 0 e M^ satisfying 0(1) = 1 , the mapping
0®id:M(8>M-»M defined by x ® 3; -» (/)(x)y is a conditional expectation
under the identification M-$M®M by jc-»l®jc . Therefore we have
(0®id)(5U))*(0®id)(5U))<(0®id)(5U*^)) for xeM. This inequality
combined with the left invariance of the Haar weight implies (0 ® id)(S(nh )) c nh for
any 0 e M^ . This inclusion relation guarantees that the both sides of the equality in
the above strong left invariance are finite.

By the commutativity of the weights h and h o R , there exists a positive self-
adjoint element p affiliated with M such that the Radon-Nikodym cocycle satisfies
(DhoR: Dh)t = p~lt for t e R . Since R = R~l, it satisfies

(1.1) R(plt ) = R((Dh o R: Dh)_t ) = (Dh: Dh o K)_t = p-« .

Remark 1.2. An involutive Hopf algebra (A, JUA, SA, eA, KA) is a Hopf algebra

with the following additional conditions: (i) A is an involutive unital algebra with
respect to the multiplication /LiA:a®beA®A-*abEA ; (ii) the comultiplication 8A

and the counit £A preserve the involution. Then it is known that the antipode KA

satisfies the Woronowicz condition KA(a*) = KA~l(a)* for a e A and

(1.2) ao(KA<B>KA)o8A=8A°KA.

Further, if the involutive Hopf algebra has a Haar state h, i.e. if h e A* is a positive
linear functional which satisfies the normalization condition h(l) = 1 and the left
invariance (id ® h)(8A (a)) = h(d)\ , then the strong left invariance

automatically holds. Moreover, h = hoKA, because h<>KA is right invariant by (1 .2)
and hence ho KA(d)h(l) = (ho KA ® h)(8A(d)) = h(Y)h(d). The left and the right
invariance of the Haar state yields the uniqueness of a Haar state: h{(d)h(\)
= (h} ®h)(8A (a)) = h} (l)h(a) if fy is another Haar state.

Remark 1 .3. a) It should be mentioned that the antipode mapping of the involutive
Hopf algebra associated with the "quantum group" corresponds to the formal ex-
pression R o r_l/2 = T_[/2 o R . Furthermore, if T is trivial, our situation reduces to that of
Kac algebras.

b) When the Haar weight h is bounded i.e. it satisfies h(l) < °° , the strong left
invariance implies the left invariance of h by putting v = 1 . The normalized bounded
Haar weight is sometimes called the Haar state.

c) The weight h o R is right invariant : (h°R® 0)(5(z)) = h ° #(z)0(l) for 0 e M*
by the property of the unitary antipode. If h is bounded, then h = h o R (or p = 1) and
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the uniqueness of the Haar weight up to scalar is deduced from its bi-invariance
property as above. The uniqueness for an unbounded case is also proved in Remark 4.7.

d) If the von Neumann algebra for a Woronowicz algebra is finite dimensional or
commutative, then the deformation automorphism turns out to be trivial and hence the
Woronowicz algebra reduces to a Kac algebra as shown in Remark 3.18. In addition, in
the finite dimensional case, the concepts of a Woronowicz algebra, a Kac algebra and
an involutive Hopf algebra are the same as shown in Proposition 4.6. Furthermore, a
commutative Woronowicz algebra is nothing but a Kac algebra defined by a locally
compact group by [23].

In this paper, we will introduce several kinds of left Hilbert algebras as listed
below:

1) left Hilbert algebras associated with (M, h)
lih = rjh (ah); the achieved left Hilbert algebra
310 = T]h(aQ); a0 is the entire analytic part of a/7 with respect to four

continuous transformations {df}, {crf0/?}, {rr} and {Lt} (seethe
beginning of Section 2 for the definition of [Lt})

2) left Hilbert algebras associated with (M, h)
X = Tj . (a-) ; the achieved left Hilbert algebra

h h h

31 = 7?(b); see Definition 2.3

7t0 = 7].(a0); S0 is the entire analytic part of a^ with respect to the

corresponding four continuous transformations

3) left Hilbert algebras associated with (M, h)
31. = TJ.(a.); the achieved left Hilbert algebra

h h h

31 = f)(b); see Definition 2.3
4) left Hilbert algebras associated with the co-opposite Woronowicz algebra

It/j0 = r\h, (aho); the achieved left Hilbert algebra

<2C° = r j°(b°); see Definition 2.3
5) left Hilbert algebras associated with the commutant Woronowicz algebra

31,,, = r\h,(ah.)\ the achieved left Hilbert algebra

§2, Left Hilbert Algebra and Kac-Takesaki Operator

In this section, we discuss some properties of the Kac-Takesaki operator to
construct a left Hilbert algebra which we use in the subsequent section. If we deal with
the purely algebraic Hopf algebra A over C, the dual Hopf algebra is constructed
inside the linear dual Hom(A, C) of A under some technical conditions. However,
since we deal with a framework which involves functional analysis, we need an
appropriate framework for the construction of the dual.
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For the purpose of constructing the dual object, we take a nice subspace of the
predual M% of the original Woronowicz algebra to start with. Our discussion is based
on the standard representation Hilbert space $g of M associated with the Haar weight h
which is a semifinite faithful normal weight on M. Therefore {M, §} is identified with
[nh(M\ $h}. The construction of our dual Woronowicz algebra (M, 8, R, T, h) is
such that the Hilbert space ^ is also the standard representation Hilbert space of M
associated with the dual Haar weight (Plancherel weight) h which is a semifinite
faithful normal weight on M.

The predual M^ is endowed with a multiplication structure dual to the coproduct
defined on M. Namely, the product 0 * iff e M* f or 0, \/f in M% is defined by

X xeM.

This product is associative due to the coassociativity of the coproduct. Thus M^ is a
Banach algebra. We denote by (M^)T the set of all entire analytic elements in M^

with respect to the action 0 -> 0 o rt of the deformation automorphism [rt] on the

predual M^ . Then for 0 e (M^)T , the involution 0# e (M^)^. is defined by 0#(*) =

0*(T_ / /2 o R(x)) , x e M, where 0* denotes the linear functional on M with 0*(v) =

0(};*) and 0* o T- = (0 o Ta)* for a e C . This involution, combined with the above

associative product, makes the set (M^)T an involutive algebra.
We next define the L2 -boundedness for an element in the predual M^ .

Definition 2.1. An element QeM* is said to be L2 -bounded if there exists a

constant A > 0 such that

\<Ky*)\<l\\rih(y)\\ for yen , .

We denote by r)(0) the unique element in Jg> satisfying 0(y*) = (7](0)l77 /7(v)) for

The mapping f) is linear and injective. Since 0 is the standard representation
Hilbert space of the von Neumann algebra M, any element in M^ is of the form

In addition to this standard notational convention, we also use the same type of
notations. Namely, in this paper, for the purpose of the notational simplification, we
adapt the convention of writing x or 0 instead of r\h(x) or rj(0) , respectively only in
the case that these elements are put as the subscripts of co . For example we write
0)^ e M^ for L2 -bounded 0 e M* and x e nh to express a linear functional defined by

Due to the conditions described in the axioms for the Woronowicz algebra, the one
parameter group of unitaries [p":t e R} in M are invariant under the actions of the
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modular automorphisms {erf}, {of0*} as well as the deformation automorphisms {rt} .
We also introduce a one parameter family of linear transformations [Lt } on M defined
by Lt(x) = xplt, t e R and x e M. Then pltxp~lt = a? (CT*;*(JC)) for t e R, jc e M and
hence the four weakly continuous linear transformations {erf}, {of0*}, {T,} and [Lt]
are commutative with each other, and the set ah = {jc e n^:;c* e nh} is invariant under
these four transformations. We denote by a0 the set of all entire analytic elements in
ah with respect to these four transformations. Then a0 is also invariant under the
actions of the unitary antipode R as well as these four linear transformations. The
analytic continuations of these four transformations preserve not only the *-algebra
structure of a0 but also the additive group structure of C on a0 . For example, for each
jc, y 6 a0 and a, al , a2 e C ,

(AeC) ,

and

However La(x*) = (Lg ° cr£0* o <j^_ (jc))* for jc e a0 . If 0 e M* is entire analytic with

respect to {rt} , then (0° Ta)(jt) = 0(T0(jt)) for a e C and jc e a0 by the unicity of the

analytic continuation.
We see that the linear functional coxy & M% for x, y e c0 is L2 -bounded and the

vector f](coxy ) is given by J]h (xa1^ (y* )) . This, in particular, implies that the set of all
L2 -bounded elements is dense in M^ . It is also seen by the same reason that the set
{ f}(0) : 0 G M^ is L2 -bounded} is dense in $ .

Now, the following lemma is easily obtained.

Lemma 2.2. (i) The functional 0)xy for x, y e a0 w entire analytic with respect

to four transformations in the above.
(ii) If z e a0, £/ze« the vector r]h(z) belongs to the domain of the operator Jp~lJ

and Jp~fJrih (z) = r\h (Litz) for t e R .
(iii)// zeoo.fte/i R(Lt(z*)) = (Lt(R(z)))*for teR.
( i v ) I f x ' = Ll/2(R(Tl/2(x*)))for xeaQand y' = Ll/2(R(r_l/2(y*») for y earthen

x', y' e a0 and co#y = (Ox, y, .

(v) In addition, if jc" = Lf(*(Tl/2 (**))) anJ v" = /?(r_l/2(y*)) , rten ^/7, v'' e a
and cox,y,=(0x,,y,,.

Definition 2.3. Let b be the involutive subalgebra of (M^)T generated by the set
{fi)r>y : z, j e c0} . Let 71 = 7)(b) be the involutive algebra with respect to the product

y/0 and the involution f)(0)# =
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The purpose of this section is to show that 31 is a left Hilbert algebra. Let

710 = Tjh(aQ) . Then it is a left Hilbert algebra dense in § with respect to the usual
operation. Hence the algebra b is dense in the predual space M^ . This fact will be

used in the proof of Theorem 2.17. We also use the fact that the predual M^ is an M-

bimodule. This bimodule structure is given by ((/>x)(y) = Q(xy), (x$)(y) = <l>(yx) for
0 e M^ and x, yeM. The set of L2 -bounded elements in M% is a left M- module by
xfj( y/0 = f](x\i/) for x e M .

Throughout the whole discussion of this paper, the mapping <P:M® M — > M ® M
defined by

(2.1) <P(x ® v) = d(y)(x ® 1)

plays an important role.

Lemma 2.4. (i) If x, y e n^ , then <&(x ®y)e n/?(g)/7 . The operator W on 0 ® 0

defined by

(2.2) Wrj^h(x® y) = rihm <f>(*® y)), x,yenh,

gives an isometry W on $® 0, where i]hmin (2.2) is the GNS-mapping for the

weight h®h on M ® M .
(ii) The operator W defined by (2.2) satisfies S(z)W = W(l ® z) for z e M .
(iii) The operator W satisfies the pentagonal relation:

(2.3) WnW2, = W23W13W12 ,

where Wfj is the tensor product of the operator W acting on the i-th and the j-th spaces
and the identity operator on the remaining space of .$ ® Jp ® 0 .

Proof. For jc, y e n/7 , since (id ® h)(S(y*y)) = h(y*y)\ by the left invariance of

the Haar weight /z, we have

* 1))

This proves assertion (i). Assertion (ii) is immediate by replacing 3; by zy in (2.2).
Assertion (iii) is a consequence of the coassociativity of the comultiplication 5. QED

Definition 2.5. The operator W:$ ® $ -> $ ® $ defined by (2.2) is called the
Kac-Takesaki operator.

One of the main problems in our argument is to show the unitarity of the Kac-

Takesaki operator. Using this property, we will show that It is a left Hilbert algebra in
Theorem 2.1 7.
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Remark 2.6. Let (A, HA,SA,£A,KA) be an involutive Hopf algebra with a faithful
Haar state h. By the GNS construction we have a representation {TCh->^h, Tjh] such that
(7th(a)rjh(b)\rih(c)) = h(c*ab).Then nh(a*)c:nh(a)* and hence nh(a) is closable.

Now we define two operators V and W on ^ ® $ by

where &v and 0W are the mappings of A ® A into itself:

0V = (KA
l® id) o (JLLA ® id) o ( KA ® id (8) id) o (id ® <5A

Due to the existence of the counit, it is shown that <PW = 0 and VW = WV = 1 , where
0 is defined by the same formula as (2.1). The unitarity of the Kac-Takesaki operator
for this case is then an immediate consequence deduced from the existence of a
faithful Haar state on an involutive Hopf algebra contrary to the case of Woronowicz
algebras as discussed below.

Lemma 2.7 „ The isometric operator W acting on the Hilbert space
belongs to the von Neumann algebra

Proof. For *7,y; €a f c ,y = 1,2,

= (J® J)(y} ® y2 )(/ ® /) T]hm (S(x2 )(Xl ® 1))

= 8(x2)(xl®l)(J®J)7lh@h(yl®y2)

= S ( x 2 ) ( J y ] J ® l ) ( r i h ( x l ) ® J r i h ( y 2 ) ) ,

where we used the fact that JyJrjh(x) = xJr\h(y), x,yeah for the second and the third
equalities. Therefore, the existence of the strong net y} — > 1 implies

Due to the density of Hh = r\h (a.h ) in 0 , r]h (x, ) can be replaced by z'% for z' e M'

and § e ^ and hence we obtain

Therefore the existence of the strong net y2 — > 1 and the density of Tjh(ah) in ^
implies W(z' ®l) = (zf ® \)W for z' e Mf and proves the assertion. QED

Lemma 2.8e Let q>, \j/be the elements in M ^ . I f ty is L2 -bounded, then the

product (/)*\f/ is L2 -bounded with its L2 -norm satisfying ||TJ(0* VOI
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Proof. Let cp.iffeM^ be L2 -bounded elements and x,y e ah . We define a linear

functional co¥x on &($$) by fi)VfiJC(z) = (zT7(V^)I^W)» ze^(^). It is easy to see
that (py* — 6)9 y . Then by using W e M ® =§^(0) which was proved in Lemma 2.7, we
have

® l)<5(jc* )) - ((py*

The existence of the strong net j* — > 1 combined with the density of L2 -bounded ele-
ments in the predual M^. , (py* in the both sides of the above equality can be replaced
by an'arbitrary element 0eM* Therefore \(</>®\if)(8(x*))\ = \(<l>®G)^)(W*)\<

(^)1- This proves the assertion. QED

Definition 2.9. We denote by n(Q) for 0eM* the element in
determined by 7c((j))f](\i/) = 77(0* y/0 for all L2 -bounded elements i/^ in Af^, and by
M the von Neumann algebra generated by the set {;r(0): 0 e M^ }

The mapping h\M% — > M is called the Fourier transform. By Lemma 2.8, it is
bounded : ||7r(0)|| < ||0|| for 0 e M# .

Lemma 2.10. (i) n((()^\i/) = n(^)n(n/} for

(ii) (§®^IW(T7®i7 / ) )
identified with an element in

(iii)

(iv)

Proof, (i) It is clear from Definition 2.9.
(ii) Due to the proof of Lemma 2.8,

for L2 -bounded elements q>, if/in M^ and x,y e a/7 . Therefore, using <pjt* = fi)Vil , we
have

Then the density argument combined with the inequality \n(O)f1 )|| <||cy, || <||
we obtain the assertion.

Assertion (iii) is clear from assertion (ii). Since W e M ® ^'(0) by Lemma 2.7,
assertion (iv) follows from assertion (ii) by replacing £' by y'^ with y' e M' . QED
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Lemma 2.11. For 0e(Af s | c)T ,^(0#) = £(0)* .

Proof. Let Xj , j; € a0 and put Zj = *j oh_{ (y* ) for j =1,2. Then, for 0 e (M# )T ,

Here we use the KMS condition for the weight h. Then the right hand side is equal to

= (0 ®

where the first equality follows from the strong left invariance and the second equality
follows from 0* o r//2 o R = 0* . Therefore the density argument proves the assertion.

QED

By Lemmas 2.10 and 2.11, the Fourier transform n is a *-homomorphism of
(M5ic)T to M. To show the unitarity of the Kac-Takesaki operator we need the
following lemma giving a relation between the Fourier transform with the left
involution operator 5, the right involution operator F, or the modular operator A for
the left Hilbert algebra lih = r]h(ah) . In what follows, the domain of an unbounded
operator Twill be denoted by Dom(r) .

Lemma 2.12. (i) // <j) G M* , then 7r(0)Dom(F) c Dom(F) and

' for Z'
(ii) // 0 e (MJT , then 7r(0)Dom(S) e Dom(S) and

^)4^ /or <^

. (i) Let It' be the right Hilbert algebra corresponding to the left Hilbert
algebra lih .If \j/ = CQ^,^, for £', rj7 e 71' , then rj( y/0 = ^'77^ where the superscript ^
indicates the right involution in 71' . Hence ^ and if/* are L2 -bounded. For any
0 E M^ and jc e a h , we see that
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Therefore n(fy)r](\ir) belongs to the domain of the right involution operator F and

. Since

(^?( ¥0 1 17* (*)) = (%(**) I ft V0)=

for any jc e a^ , we have a formula

(2.4)

Hence

Let |7 be an arbitrary element in the domain of the operator F. Since the linear

span (7l')2 °f elements of the form £'77' with £', T]' e 71' is a core for F, there exists a

sequence {£;} in (7T)2 such that £„' -> £' and F& -> F|'. Since rj(fi)§ ,n ,) = ^'rj'1'

for |',7]'e7l', it follows that £(0)fB' -» £(0)£' and F£(0)fn' = n(Q*)F£'n
-» ;r(0*)F£' . Consequently, n((j))%' belongs to the domain of F and F;r(0)£' =

(ii) If § e Dom(S) and ^ G Dom(F) , then

(0)^ = (£(0#)F^£)^^

Since 0#*# = 0* o T_, , it follows that n((/))£ belongs to the domain of the operator 5
and S*(0)^ = *(0*oT_ f)5^.

(iii) If % E Dom(^) , then S£ e Dom(F) and hence

by (i) and (ii). QED

Lemma 2.13. Let 71 = r)(b) . T/z^n the fallowings hold:

(i) A5 a linear space, 71 coincides with 71^ , twd /z^nc^ 7t w J^n^^ m .^ .

(ii) The left involution operator: 7](0) — > 7j(0#) /w 71 w closable as a conjugate

linear operator on 0.

Proof. Assertion (i) is a consequence of i](fi)x v ) = TJ/T (JCCT^ (37* )) for ;c, 3^ 6 a0 . We

have only to show assertion (ii). If 7J(07I) -> 0 and 7J(0*) — > ^ for 0;i e (Af#) r , then,

for each 77, (x) e 7t0 = 77, (<z0 ) ,

Since 0*(jc*) = (7?A(T_ l / 2o^(jc*))l?7(0J) converges to 0, ( ^ l r j ) = 0 for all r]€7l0.

Thus £ = 0 . QED

Let 5 denote the closed operator on .^ obtained as the closure of the conjugate

linear mapping: r](0) — > fj((/)#) and 5 = JAl/2 be the polar decomposition. Since 71 is

a core for 5 and S2 = 1 on it, the range of 5 is then contained in the domain of 5 and
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S2 c 1 . Indeed, if rj = S% for £ e Dom(S) , there exists a sequence {£,J in It such

that %n -> £ and S£n -> 7] . Since S(S£n) = %n -> £ and S is closable, 7] e Dom(S)

and Srj = < 5 ; . Therefore 41/2/^l1/2 = / on the domain of A112. Hence /Dom(^1/2)

cDom(A~1/2) and

(2.5) Al/2=JA-l/2J on Dom(41/2).

Let F be the adjoint operator of 5 . Then F = Al/2J .If 0 e b and x e a0 , then

(S7)(0)lrh(jO) = 0^T_I/2o^

Hence the set 7t0 is contained in the domain of the operator F and

(2.6) Fr\h (x)=rih( T_l/2 o £(** )) for * e a0 .

The {Tt } -in variance of the Haar weight h implies Tt (nh ) = nh and the existence

of a positive self-adjoint operator H with

(2.7) #" *7A (*)=%(

Hence SHlt rjh (x) = 7]h ( rt (x)* ) = r j h ( rt ( jc* )) = HaSr]h (x) for x e ah , where 5 is the left
involution operator for the left Hilbert algebra lih = rjh (ah ). Since the set lih is a core
for Am and satisfies HltT}h(nh)= r jA(T r(nJ)= r\h(nh) , we have SH" = HaS for any
r G R . As the one parameter automorphism groups {erf}, {af0/?} and {rf} are mutually
commutative and preserve the Haar weight h, the one parameter unitaries [Alt } , [Alt

hoR]
and {//"} which implement the above automorphism groups are mutually
commutative. This implies JHlt = HltJ and hence JHJ = H~] .

The family {/, A, p, //} in the following lemma will be crucial for the analysis of
Woronowicz algebras.

Lemma 2.14. (i) The four positive self-adjoint operators A, H, p and JpJ are
mutually commutative.

(ii) JHJ = H~] .
(iii) The operator A is the closure of the operator JpJH .

Proof. Assertions (i) and (ii) have already been discussed above except for the
commutativity of p and JpJ with A and H. Since p is affiliated with the fixed point
subalgebra of M with respect to the modular automorphism [ a f } , A commutes with p
and JpJ . Due to the { T; } -in variance of the Haar weight, we have

Thus H" commutes with p's . Hence H commutes with p as well as JpJ by (ii).

(iii) The left Hilbert algebra 710 is contained in the domain of F by (2.6). For any
x and y in a0 , we have

(4-"2 77, (x} \ A~m T]h (y)) = (Frih (y) \ Fry, (*))
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= ( ̂  (* ° *-,/2 (/ )) I r\h (R o T.l/2 (x* ))) (by (2.6))

= (Jp-l/2Jr]h ( Tl/2 (x)) I Jp~^Jr]h ( rI/2 ( v)))

= (Jp-^JH-^ r]h (x) I Jp-"2JH-»2 rjh (y)) ,

where the fourth equality is due to Lemma 2.2. Since 7t0 = 77A(a0) is a core for H~m

and for Jp-l/2JH~l/2 , it follows that Jp-ll2JH~112 c zl~1/2. The operators in the both
sides are self-adjoint. Hence the closure of Jp~l/2JH~l/2 coincides with A~l/2 . Thus the
commutativity of JpJ and H implies that the closure of JpJH is nothing but the
operator A . QED

Corollary 2.14.1. The deformation automorphism {rt} on M is implemented by

{Alt} as well as { H l t } . Namely, the equalities Tt(x) = AltxA~lt = HltxH-« hold for all

xeM and t e R .

Lemma 2.15. (i) The left Hilbert algebra 7t0 is a core for both involution

operators S and F .

(ii) S i ] f c ( jc )=Tj A (^o J RoT l / 2 U*)) for *ea 0 .

0*)°^°T l / 2) f o r 0 E b .

Proof, (i) Let x e a0 . Then, by Lemma 2.14 (iii),

4lfT?,(*) = Jp-"JH'fr]h(x) = Jp-"Jnh(Tt(x)) = Sp-«Srih(Tt(x))

Hence the vector rjh(x) is entire analytic for {A11} and 7i0 is a core for the operators
A112 and A~l/2. Thus the assertion is proved.

(ii) It is immediate from (2.6) that, for x, y e a0

(%(*°^

where the fourth equality is due to Lemma 2.2.
(iii) It is immediate from (ii). QED

Theorem 2.16. Let W be the Kac-Takesaki operator. Then

(i) W is a unitary in M®M;

(ii) W commutes with A ® A ; and
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Proof. Assertions (i) and (ii) will be proved simultaneously. Let 11' be the right
Hilbert algebra associated with 71A . Then, for jc, yea 0 , £'e71' and ^eTt^ ,
n(G)xv)£'£Dom(F) and Fn(G)xv)%' = n(G)yx)F%' by Lemma 2.12(i). Hence, by

Lemmas 2.2 and 2.10 (ii), we have

Hence, by Lemma 2.1 1 , the right hand side is equal to

where the first equality follows from Lemma 2.2 and the third from (2.6) and Lemma

2.15. Let S ® 5 , F ® F and A® A denote the closures of their algebraic tensor prod-

ucts. Then A® A is positive self-adjoint and F®F = (5® 5)* = (A ®A)l/2(J® /) .

By virtue of Lemma 2.15, 710 ®710 is a core for both operators S® 5 and F® F.

Thus

(2.8) ( l W r j ) = ( (S®S)7 j lW(F®F)) for eDom(F<x)F)and 77 e Dom(S ® S).

Replacing £7 e 71' and 7] e 71^ in the above argument by £ e 71A and 77' e 71' , respec-
tively, we obtain a similar equation

(2.9) ( l W r ) ) = ( ( f l ® F ) f / I W ( 5 ® 5 ) ) for ?7eDom(F® F) and

Next we will show that

(2.10) VK(F®F) = (F®F)W* and W*(F® F) = (F® F)W on Dom(F(g)F)

and

(2.11) W(5®S) = (5®S)W* on Dom(5®5).

By virtue of (2.8), the vector W(F ® F)| belongs to the domain of F ® F and

(2.12) W*=(F®F)W(F®F) on Dom(F®F).

Hence W*Dom(F ® F) is contained in the range of F ® F . Since F ® F is closed and
involutive on the core 71 0 ® 71 0 , the range is contained in its domain and (F ® F)2 = 1
on Dom(F® F) . Thus the first equality in (2.10) follows from (2.12). We also deduce
from (2.9) that the second equality in (2.10) holds. By considering the adjoint of the
first equality in (2.10), we obtain (2.1 1).

Finally we will show that W is unitary. Since (S®S)Dom(A ®A)

cDom(F®F), we have A ®A c(F® F)W*W(S®S). The equality
= (5 ® 5) W* holds on the domain of the operator A® A by (2.1 1). Hence
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(2.13) A®Aa(F®F)W*(S®S)W*

and

(5 ® S)W*Dom(A ® A) = W(5 ® S)Dom(^ ® 4) c WDom(F (8) F).

The right hand side of the second equality in (2.10) shows that the domain of F ® F is

invariant under Wand hence we have (5®5')W*Dom(i®^)cDom(F(8)F).
Therefore (2.13) together with the first equality in (2.10) implies

Since the range of the self-adjoint operator A ® A is dense in $ ® ̂  , so is the range

*of W. Thus W is unitary and A®A = W(A ®A)W*.
(ui) According to (2.10) and (2.11),

W = (J ® J)(A ® /I )1/2 W* Gd ® 4 r1/2 (/ ® 7) =

holds on the domain of S ® 5 . Since both sides are bounded, the assertion holds. QED

Theorem 2.17. (i) The involutive algebra 71 = r)(b) is a left Hilbert algebra.
/\

(ii) The representation nt of 71 coincides with the Fourier transform n in the

sense that ht(r\(Q}) = h($)for 0 e b .

(iii) The von Neumann algebra M is generated by {n((f))\ (f) e b} .

Proof. Assertion (ii) is immediate from

^(Tj(0))fj(y) = rj(0)r7(^) = f j(0*^) = *(0)7j(^) for 0, i /^eb.

The continuity of the representation ne(%): r\ — > ^r\ and the closability of the left
involution: £ — > £# were proved by Lemmas 2.8 and 2.13, respectively. Since

£(0)* = n(^) for 0 e b , the equality (£r j l f ) = (r?l£*0 follows from assertion (ii). It

remains to show the density of 7l2 in 71 (or in 0), where 7t2 is the linear span of

elements of the form £77 with £,77e7t . Suppose that £ e § is orthogonal to 7l2.

Then, for any 0, y ^ e b , (£(0)£ 1 7j(V^)) = (§ ' ̂ 7(0# * V/r)) = 0- Therefore the density of

71 in ^ implies 7T(0)£ = 0 . Hence for any x,y e c0 and r] e ^

by Lemma 2.10. Since W is unitary by Theorem 2.16, ?]^(A:)®^ = O for any ;cea0.
This implies ^ = 0 and hence assertion (i) is proved.

Assertion (iii) follows from the density of b in the predual space M^ . QED
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Due to this theorem, we are allowed to conclude that A and / are the modular

operator and the modular conjugation operator for the left Hilbert algebra 71 .

§3o Dual Woronowicz Algebra

In the previous section, we constructed a left Hilbert algebra 11 = fj(l>) from the
Woronowicz algebra (M, 5, R, T, h) and denoted the associated von Neumann algebra
by M. This section is devoted to construct the dual Woronowicz algebra
(M, 5, R, T,/z) which corresponds to the convolution algebra for the given "quantum
group".

Let W denote the unitary <j(W*) on ^®0 , where cris the flip automorphism on

£?(^®$) . Then the pentagonal relation for W

(3.1) W12W23 = W23W13W12

follows from that for W given by (2.3).

Proposition 3.1L Let 8(x) = W(l® x)W* for x e M . Then 8 is a coassociative

coproduct on M.

Proof. As WeM®M by Lemma 2.10, S(x) e M® &($) . The pentagonal
relation (3.1) for W guarantees the coassociativity of 8 . It remains to show that
<5(;c) e M (x> M . For the proof of this fact, it suffices to show that each element
W* (;r(0) ® 1) W for 0 e M* commutes with y ® I for y € M' , where n is the Fourier
transform of M* to M defined by Definition 2.9. For £, rj e ^ ® % and £', 77' e £ ,
we have

(3.2) ((y®l)W*(£(fi>§,^

)7])) (by Lemma 2.10)

Since Ad10w, (W* ®1) = W*2W*3 by the pentagonal relation (2.3), W*2Wf3 commutes

with 1 ® y ® 1 for y e M' . Hence

where the last equality follows from (3.2) by replacing y and £ by 1 and
(y ® 1)|, respectively. Since the set of finite linear combinations of co^, ̂  's is dense
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the predual space M* and {;r(0):0 eM^}" = M, we find that d(x) belongs to
M®M. QED

By means of this coproduct we define a product 0j*02 i*1 tne predual space
MX of M by

o < 5 f o r 0 5 0 e M

Thus the predual space M^ turns out to be an algebra which is associative due to
the coassociativity of d .

Lemma 3.2. (i) The linear mapping :rj^(;c)elt0 — > r/h(Ro T_l/2(x))eli0 is
closable. The closure K satisfies p~lAKa K* .

(ii) Let K = U\K\ be the polar decomposition. Then the fallowings hold:
a) K2 = H and \K\2 is the closure of p~lAH.
b) U = JJ and JUr\(^)=f](^^ah_ll2)for any {erf} entire analytic I2 -

bounded (/) e M^ .
c) JHJ = H~l .

Proof, (i) For any x and y in a0 we find that

(x) Ip-'/M1/2 r]h (R( r_l/2 (y)))

Since p~lt Alt r\h(y) = 7?,(of *(>0), the mapping: r\h(x) -> r\h(R° r_t/2(x)) is
closable. Denote the closure by K. Then rjh(y)<=Dom(K*) and K*r]h(y)
= p-lArjh(RoT _i/2(y)) for yeaQ. Since 710 is a core for K,p~lAKc: K* .

(ii) a) Let A' = £71^1 be the polar decomposition. Since K is invertible, U is
unitary. It is easy to verify that K2 is positive symmetric and K2r\h(x) =
inh(^-l(xy) = Hrih(x) for jcea 0 . Since 7t0 is a core for K2 and //, it follows that
K2 = H . Hence (p~lAH)~ <^\K\2 . Since both sides are self-adjoint, the closure of
p~lAH is\K\2.

b) Let x be any element in a0 . Then

Ur\h(x) =
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Since

R ° *-,/2 (L-i,2 ( TW o <T£2 (X)* )* ) = * o T,2 (L.,/2 ( Ti/2 o (7?/2 (*)* ))*

= R o L_,/2 (o^ (*)* )* = Li/2 o /?(<r*2 (*)), (by Lemma 2.2)

it follows that

Since Jp~lJ is the closure of A'1H by Lemma 2.14, we find that

1/77, (*) = A-WH^n^Ro o^Oc)) = 4-^77^^ o JKof/jW)).

Applying the operator / to both sides, we have

Jl/ThW = Fr7,(T_i/2 o /?(CT^(JC))) = ^(ok (*)*) = 54-v2^ U) = 7r/fc

Thus 717 = / and so C/ = //.

Let 0 be any {erf} entire analytic L2 -bounded element in M*. Then

which implies that JUr\((j)) = Jf]((j)) = rj(0* o cr^/2).

c) Since KH = K3 = HK , we see that \K\H = U*KH = U*HK = U*HU\K\.
Since Itf l commutes with /f by a), H = U*HU on I^IDom(^3). Since

is a core for U*HU, it follows that U*HUaH and hence that
= H . Since C7 = // by b), we have JHJ = JHJ = H~l . QED

Let h% denote the inverse Fourier transform, i.e. the mapping of the predual
space M^ to M obtained as the restriction of the dual mapping of the Fourier
transform n of M* to M . Let il7 be the right Hilbert algebra associated with
the left Hilbert algebra it constructed in Section 2.

Lemma 3.3. (i) ^(0) = (id®0)(Wr*) = (0®id)(W r).

(ii) *J|B(01*02) = AJ|8(02)As|B(01)/or ei902eM*.

Proof, (i) For any 0 e M^ we have

0(£*(0)) = 0(£(0)) = 0((0®id)^

(ii) Due to the pentagonal relation, we have
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(id <8> S)(W* ) = W23 W* W* = W* W* .

Applying id ® fy ® 02 to both sides, we get the proof of our assertion. QED

Proposition 3.4. Let R(x) = Jx*J for x e M . Then

(i) R(h(Q)) = £(0 o R) for all 0 e M* ; and

(ii) R is a unitary antipode on (M,5), i.e. R is a *-antiautomorphism of M

with R2 =id and aoRo 8 = (R®R)o 8 .

Proof, (i) Let 0 be any element in M^. First we consider the case where
0 e (Af#)T. If tyf is L2 -bounded and entire analytic with respect to {of} , then

(3.3)

The Kac-Takesaki operator W commutes with 2! ® zi by Theorem 2.16 and the

deformation automorphism {rt} of M is implemented by {Alt} by Corollary
2.14.1. Hence the modular automorphism {erf} satisfies a formula

(3.4) (T,®a,*)oS = 5o(T,*, r e R .

Therefore, by (3.3), we have

fl^

*= n(<l>) Jfi(y) . (by Lemma 3.2 (ii).b))

Thus

For a general element 0 in M^ we approximate 0 by a sequence {0J in
(Af!|e)T. Since ||^(o))||<||fl)|| for cozM^ by Lemma 2.8, our assertion (i) is proved.

(ii) It is clear from (i) that R maps M onto itself. Hence it is a *-
antiautomorphism of M with R2 =id.

For any 9l,02E M* we have

(3.5) (

0I)As | t(02)) (by Lemma 3.3)

Since, for any OeM^ and
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we have a formula for the inverse Fourier transform:

(3.6) R(^(0)) = ̂ (9oR) for

Therefore, from (3.5), we have

(by Lemma 3. 3)

Thus R satisfies a°So R = (R® R)°8 . Consequently, R is a unitary antipode on

(M,5). QED

Lemma 3.5. (i) I f i / f t M ^ is L2 -bounded, then i/f^a^ is also L2 -bounded

and A" 7?( y) = *)( V ° oh_t ); and

(ii) zl"7F(0)zl-'r = n($ o T_, ) for all (j> e M* .

Proof, (i) For each jc e % we have of (nA ) = % and

(A*r\(v)\r\h(x)) = (v(v)\r\h(a^^

(ii) Let 0 be any element in M% . Then

zl''£(0)zi-'rTKyO = ^(^

Since (rr ®cr* )°5 = 5ocrf by (3.4), it follows that (0*(^°a* ))OCT* ;

= (0 o T_, )* y and hence that

QED

Proposition 3»6. L^/ T, (x) = HltxH~lt for xeM and t E R . Then

(i) T,(£(0)) = n((/) ° T_t) for all 0E M^; flnfi?

(ii) {Tr} /5 a deformation automorphism of (M,S,R), i.e. it is a one

parameter ^-automorphism group with 6 ° tt =(Tt®tt)°8 and Tt o R = R o rr for

f e R .

Proof, (i) Let if/eM* be any L2 -bounded element which is entire analytic

with respect to {a1}} . Then for any xenh we have

(ff'rj(vOl7h(*)) = (^^

Hence H l t r ] ( y ) = TJ( v° T_,). Let 0 be any element in M^ . Then
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Since <?o rt = (rr ® T,)o<5 , we have (0*(y/-o r r))o T_, = ( 0 o r_t)*\ir and hence

(ii) Taking (i) together with Lemma 3.5 gives us Ad^,, = Adffl, on M . On the

other hand, Ad.f, = AdH,r on M by Lemma 2.14. Moreover, W e M ® M and W

commutes with A® A by Theorem 2.16. This implies that the operator W

commutes with (H ® H )" and hence 8 o T, = ( tt ® tt ) ° 8 for teR.

The commutativity of tt and the unitary antipode R follows immediately
from that of i and R:

T, o R(n(0» = 7C(d>oRoTt) = 7C(d>oT_toR) = R0Tt\

QED

Corollary 3.6.1. (i) The deformation automorphism {Tf} is implemented by

{Alt} as well as { H l t } .

(ii) The Kac-Takesaki operator W commutes with the operator H (8) H.

Combining the above argument with Lemmas 2.14 and 3.2, we have

Corollary 3.6.2. The following formulas hold:

(ii) A"
^ ( v\— ^i ( T ^ J?fv*\\ nviA TVi (v\— <n (**

-ill(iii) /Tj f c(jc)=77A(L l / 2o/?(jc*)) a n d J r j h ( x ) = r j h ( a _ l / 2 ( x * ) ) f o r xeaQ- and

(iv) // = JJ.

Here the notation p~1/20 =(0p~1/2) /or 0eb w/// Z?^ explained in Section 4.

For the proof of assertion (iv), we have to use the formula crf0/? o R = Ro<jh_t^
which is shown by using the KMS condition.

Let 71' denote the right Hilbert algebra associated with the left Hilbert
algebra It obtained in Section 2. Then nc(ll

2) and ftr((Tl')2) are cr-weakly
dense *-subalgebras of M and M', respectively, where 7l2 (resp. (ii/)2) is the
linear span of elements of the form £17 for £,rje7l (resp. 71')-

Lemma 3.7. (i) The set (Tt')2 is contained in Tlh(nh).

(ii) If (f) is the restriction of co^, |?/ to M for ^f,rjf elt', then 7T ; j c(0)*G% and
0)*) = 11'%'^, where the superscript ^ is the right involution of It'.
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Proof, (i) Let 71' be the right Hilbert algebra associated with lih . For any
, T] e 1C' and £', ?]' G 71' we have

)^

where the superscript |, in the fourth inner product is the right involution of 71 '
and where nr and ;rr are the representations of the right Hilbert algebras It' and
71', respectively. Hence \nr(i])r\'^\<\£'\\r\'\\Ti\ and TJ'^ is left bounded.
There exist then an operator xeM such that XT] = nr(r])rif^ for
Therefore x e nh and i\h(x) = TJ'^ .

(ii) From the above equalities it follows that

Let $ be the restriction of (O^lr], to M. Then ** = ;r#(0). Hence 7^(7^(0)*)
= 7j'£'" by (i). QED

Let h denote the canonical weight on M associated with the left Hilbert
algebra 11 :

(3.7,
otherwise,

where ni is the representation of the achieved left Hilbert algebra H" . Thus

£,(£) = £(0) and A(^(I)*^(5)) = II'7WII2 for ^ = ^7(0)ei. In what follows we
identify the underlying Hilbert space ^ of the GNS-construction {;r.,^,7)-}

for (M,/z) with the original Hilbert space 0 = $ - through the identification

77^(^(0))= ?7(0), where ;r is the Fourier transform of the algebra M% to M.

Hence 7U(n((f))) = ;r(0) . It is known that the weight h is faithful, semi-finite and
normal and that 71^ = ' and 7L =

« h

Proposition 3.8, (i) The operator W is the Kac-Takesaki operator, that is,
it satisfies

(3.8) Wri

(ii) The weight h is left invariant:

Proof, (i) Let (/) be any L2 -bounded element in M* and let £p fy, ^
be elements in the right Hilbert algebra 71' corresponding to 71. . Then
n^(co^ ^ )* en^ by Lemma 3.7 and
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)l 77, (8) 77,) = ( a ) i i 7 (8) fl)-i

(by Lemma 3.7)

77,)) (by Lemma 2.10.(ii))

where nr is the representation of the right Hilbert algebra 11- . Hence we have

Since W is dense in ^>, the element ^, can be replaced by nr(^)r]-(x) for
£ zli'- and ^ e n ^ . Since W &M® M , it commutes with £ r(£)®l . Thus

(3.9) {

Let y be any element in n-. Then the vector £ = rj.(^) is left bounded. There
exists then a sequence {f/(0n )}<=•& such that ||77(0n)-|||

2 + |4"2(77(0J-|)||2

-»0, |w(^n)|<||3'| and ;r(0n) converges strongly to ^(1) = ^. Therefore we can
replace fj(</)) and £(0) in (3.9) by TjrOO and^, respectively. Hence we have

Whence Wrj. ^(jc®.y) is left bounded and we obtain
h®h

Consequently, Wrj^(x®y) = r]^(S(y)(x®l)) for x,yen..

(ii) By virtue of (i) we find that

) for x,yen..

Hence ( id®)(5(z) ) = (z)l for z e m / , where m- is the set of all finite linear
h h

combinations of 3; jc's for j c , j e n . If z e M+ and z £ m - , then there exists an
increasing net {z, } c: m^+ such that z,^ z. Hence

- sup(id ® h)(S(zt )) = sup A(Z| )1 ,
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which is divergent. Hence (id ® £)($(*)) = h(z)l for all zeM+. QED

The following two lemmas will be used to show that the intersection
is the set of scalar multiples of the identity in Proposition 3.11. This fact will be
needed for the analysis of the automorphism group {7,} which will be defined in
Lemma 3.12.

Lemma 3.9. For xeM, R(x) = /**/.

Proof. Recall that Frjh(x) = T]h(R°T_l/2(x*)) for ;tea0 by (2.6). For any x
and y in a0 we have

(3 . 10) R o r_i/2 (x) rih(y)=7ih({Ro r_i/2 (x)}y) = Fr]h (x*R o r_i/2 (/ )) = Fx*F7]h (y) .

Hence Ror_i/2(x) is the closure of Fx*F for any jcea0 . Since A is the closure
of JpJH by Lemma 2.14, it follows from (3.10) that, for any £ elt0 = 7j f c(a0),

Jx*j£ = Jx*A-l/2F% = JA-l/2Al/2x*A~]/2F% = FT_l/2(x*)F% = R(x)£

Thus R(x) = Jx*J for any ^:ea0. Since a0 is cr-weakly dense in M, R(x)= Jx*J

for all x e M . QED

/s

Lemma 3.10. IfxeMnM is an entire analytic element for both the

modular automorphism {erf} and the deformation automorphism {tt} , then

^r_l/2(x)ca. and rj. CyT_lV2 (*)) = ̂ W^(y) for

Proof. Let ^c be an entire analytic element in M n M for the modular auto-

morphism {erf} as well as the deformation automorphism {rr}. It is known that

a. is a (M) . -bimodule, where (M) - is the set of all entire analytic elements in
h o" A a"

M with respect to {erf}. Since T_//2(;c) is entire analytic for {erf}, c-T_ l /2(jc)c:
«.• . Notice that/i

af(x) = AltxArlt = HltxH-« = rt(x),

where we use the fact that x is an element of M for the second equality by
Corollary 2.14.1. Since x is entire analytic for {of '} and {T,}, CT*(JC)= Ta(x) for
aeC by analytic continuation. Since df (**)= T /(^)*,CJ^(JC*)= T-(JC)* by
analytic continuation. Thus, for any y e a ^ , we see that O"*l/2(T_l/2(jc)*)
= cr*l/2 ( rl/2 ( Jt* )) = jc* and hence
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= ST_,/2 (*)* STJ . (y) - M/2 ( ̂ /2 (*)* )^ (30

QED

Proposition 3.11. MnM = Cl.

Proof. Let ;c be an element in M n M . Then R(x) = Jx*J is an element in
MnM'. Therefore 5(#(jt)) = Ad w( l® /?(*)) = !»/?(*), for WeM(8)M by
Theorem 2.16. Since <J° 5o R = (R®R)o S , we find that 5(.x) = ;c ® 1 or

= ( jc®l)W. Since AdJ@j(W) = W* by Theorem 2.16, it follows that

W(R(x) ® 1) = (1 ® R(x))W, W(R(x) ® 1) = (1 ® R(x))W.

First we consider the case where J c e M n M is entire analytic for the
modular automorphism {of} and the deformation automorphism {rt} . Then
R(x)r]-(y)= Tj^(yr_l/2(x)) for y e a - by Lemma 3.10. Therefore, for any y 9 z e a ~ ,

we see that

(by Proposition 3.8)

= (l®/?(jc))rj. .(5(z)(y®l)) (by Proposition 3. 8)

The set a- is o -weakly dense in M. Thus R(x)y®l = y® %_,/-, (x) and so
R(x)®l = l® T_[/2(x) . Hence jt e C 1 . Since each element in MnM can be
approximated by entire analytic elements in MnM for {erf} and {T,} , MnM

must be Cl . QED

Corollary 3.11.1. MflM' - M'RM = M'flM' = Cl .

Let G be the set of all comultiplicative elements {jc e M: S(x) = x ® x, x ^ 0} .
Owing to the discussion in [20, 23], it can be shown that G is a subgroup of the
unitary group of M and R(x) = x~l for x e G by the above corollary. Since the
set {;te M:S(x) = x®x] is cr-weakly closed, the subgroup G is locally compact.
When the Woronowicz algebra is commutative, the dual Woronowicz algebra is
cocommutative. Hence the predual M^ is a commutative Banach algebra with
the spectrum G.
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Now we define the automorphisms {7,} and {yt} for a Woronowicz algebra

and its dual Woronowicz algebra, respectively.

Lemma 3.12. Let yt and jt be the restrictions of Ad aj ,tj to M and M,
respectively. Then

(i) {7,} is a one parameter *-automorphism group of M and {Ad „},
{Ady l f y } and {yt} are one parameter *-automorphism group of M\

(ii) S(plt) = pil ®plt and

(3.11) (;

(iii) 7r (n(0)) = fc(0 o j_t) for all 0 G M^ and r G R.

Proof, (i) It is clear that {7,} is a one parameter *-automorphism group of M.
Since A is the closure of JpJH by Lemma 2.14, Ady ,,y = T, °(7^ is a * -
automorphism of M. Since R(x) = Jx* / for ;c G M , Ad ,t = R° Ady lfy ° ̂  is also
a *-automorphism group of M. Thus {7,} is a one parameter *-automorphism
group of M.

(ii) The left hand side of the equality

belongs to M®M and the right hand side belongs to M®M by (i), for
W^M®M . Hence it belongs to M®C1 by Proposition 3.11. Therefore, for
any fixed f s R , (l®plt)8(p~lt) = v*®l for some unitary v in M; hence
8(plt ) = v ® plt . Replacing plt by R(plt) in the above argument, we see that

S(R(p«)) = w®R(plt) for some unitary w in M. Since (Jo<5o /? = (/?® R)08 , we
find that #(w)®p" =p;/ ® v and hence R(w)p~lt ®l = l®vp~lt . Thus v = /L(f)p"
for some A(r )eC, i.e. 8(pn) = A(r)p/r <8>p". It is easy to see from the
multiplicativity of the function A that A(f) = ^" for some constant ]Li>Q. Since

= p-rf by (1.1), S(plt) = 8(R(p-'t)) = ao(R®R)oS(p-it) = k-itpit®plt. Hence

Since 7, = Ad „ on M, formula (3.1 1) is immediate from the above.

(iii) For any L2 -bounded i^ and jc e n^ , we have

(pltJpltJr,( if/) \r\h (x)) = ( f]( y)\p-ltJp-ltJr]h

Hence we have a formula;

(3.12) pitJ

Let 0 be any element in M^. Then {^*(V^° 7,)}° 7_, = (0°7_ ? )*V^ obtained by
(3.11) in (ii) implies that



DUALITY OF THE QUANTUM GROUPS 827

r)*^)= ^(007^)77(1^).

QED

Proposition 3.13. Let h be the Haar weight on (M,6,R,r). Then it is {rr}-
invariant as well as {jt} -invariant.

Proof. The proof is the same for both automorphisms. We have only
consider the [Tt] -in variance of the Haar weight. Let s be an arbitrarily fixed real
number. Then ho TS is a faithful, semi-finite, normal weight on M . For any
in 71 we have

^

Therefore h° Ts = h on a a -weakly dense subalgebra TT^Tl2) of M, where 31 2 is
the set of all finite linear combinations of ^r\ for ^ r jET t . Since
of (7Tj(3t2)) = 7rj(2l2), if we can show the {erf }-invariance of ft°T9, then
ho TS =h, namely, h is {ts} -in variant. However, the {erf } -in variance of ho Ts is
clear from the commutativity of A and H . QED

For the proof of the commutativity of the weights h and h°R, we will
utilize the previous proposition.

Proposition 3.14. The Haar weight h commutes with the weight h°R.

Proof. Since R(plt) = p~lt by (1.1), it follows that Royt = ytoR, Since
/?(£(0)) = Jz((/)°R) by Proposition 3.4 and Yt(n((/))) = ft((j)o y_t} by Lemma 3.12,
it follows that fl° y, = yt oR. Since R(n((/))) = h(Q°R) and T,(^(0)) = ^(0°T_ f )
by Proposition 3.6, it follows that Rott = t{oR. Since trf = Ady _ l f j ° T, by
Lemma 2.14 and h is {Tf} -in variant by Proposition 3.13, it follows that h is
{Ady ltj] -invariant. Since yt = Ad „ o Ady ltj and h is {7,} -invariant by
Proposition 3.13, it follows that h is {Ad „ } -invariant. Since

Roaf =RoAdJp_nj o rt = Adp_lt oRort= Adp_,, o T( o R

and h is {Ad _„ o Tr} -in variant, we find that h° Roo>* =ho R, which means that h
commutes with h o R . QED

Remark. The Haar weight h is invariant under {Ad „ } as well as {Ady HJ} .



828 TETSUYA MASUDA AND YOSHIOMI NAKAGAMI

The L2 -boundedness for elements in M^. is defined similarly as that for M^. ;
i.e. the element coeM^. is said to be L2 -bounded if there exists a positive
constant A>0 such that \co(x*)\<A,\\7]-(x)\\ for all xen-. Let fj be the linear
mapping from L2 -bounded elements in M% to ^ with G)(x*) = (fi(co)\r]^(x)) for
coeM* and jcen . . By using the boundedness of the Kac-Takesaki operator W,
it is shown that, if OeM^., then, for any L2 -bounded coeM^., the product
9* ODE MJ. is L2 -bounded and the bounded operator n(Q) on 0 is defined by
7c(9}f]((o}= r}(9*(Q) similarly as Definition 2.8. The mapping rc:M^ -> 3*($) is
called the Fourier transform. The relation of the Fourier transform with the Kac-
Takesaki operator is given by the same formula as in Lemma 2.10 :

(3.13) (^®^W(^®^)) = (kco^)^4).

Let a0 be the entire analytic part of c^ with respect to four transformations {of},
{a?

/7°*}, {rt} and {Lr}, where Ltx = xp'{ for x&M and p is the Radon-Nikodym
derivative of h with respect to h o R.

Lemma 3e158 (i) The Fourier transform n of M^. to <$?(%) is linear and
multiplicative.

( i i ) // 0 E M^ is entire analytic with respect to {rr}, then
and k(0* ) = fi(0f , where 0* = 0* oRo £_,/2 .

Proof, (i) It is clear from the definition of the Fourier transform n .
(ii) Let jc e a0 and let 0' e M^. be L2 -bounded and entire analytic with respect

to [Tt } . If % and rj are elements in 0, then

r\. W)) (by (3.13))

Since each element OzM* is written in terms of c^ 's, we replace 6)^ in the
above equality by 9 E M^ . If 0 e M% , then , by Proposition 3 .6(i) ,

Hence we obtain Hllri~(x)= ri~(tt(x)). If y e n . , then
h h h

Hence we obtain H"f](Q)= fj(0° T_,). Therefore we have
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and hence the functional CO- eM* is entire analytic with respect to {T,}.
7?(0'),njj(*) * r

Furthermore, since (0°T_J(£(0)) = 0(£(0or,)) = 0(r,(£:,c(0))) for fleM*, if 0

is entire analytic with respect to {T,}, then 7r*(0) is entire analytic with respect

to {rf}.Thus

Ro T_/2)) = (Ro T_,/2 o

As the image of S0 by the GNS-mapping r^ as well as the image of entire
analytic and L2 -bounded elements in M^ by the mapping f] are dense in 0, we
see that n(9) = Ro r_i/2 0^(0) for any entire analytic element 9 6 M^ for {£,} .

Finally we will show that £(0*) = n(0f . By Propositions 3.4 and 3.6, if

(/) e(Af # )T , we have

= 0(7C((t>* oRo T_i/2)) = 0* o t f o T_ / /2(7

= 0(^(0)*),

and hence we obtain n(6#) = h(0)* . QED

Proposition 3.16. TTze Haar weight h satisfies the strong left invariance.

Proof. Let 0 be any element in M% . Let x and y be any elements in n - .

If 6 is of the form co. for £ = 77. (a) and 77 = Tj.(6) with a, b e n . , then
b'" rz /I /?

(3.14) (0®A)((l®T,(y))*«(T f(jc))) = (A®A)(

))(« ® 1)) I T J - - (fr ® T,

(by (3.13))

and hence we obtain
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(3.15)

= dl^rt(y))\rc(eoR)r1.(rl(x))) (by (3.14))

In the above formulas (3.14) and (3.15) we may assume that 9 is a finite linear
combinations of ft^'s. Since such elements form a dense subspace of M^, we
may assume that 6 is an arbitrary element in M% .

For any x andy in a 0 we define two entire functions Fxy0 and Gxy0 by

(3.16) ^.v.»(a

(3.17) G^(a)

Of course, the function Fxy0 is bounded on R and R + ( / /2 ) ; hence it is
bounded continuous function on D = {a eC:0< Ima< 1/2} . Similarly, the
function Gx y e is bounded continuous function on (a e C : -1 / 2 < Im a < 0} . Since
*t(n*(0'» = n*(0'°T_t) and R(n*(0')) = ̂ (9'oR) for any 9'eM*, if B is

entire analytic with respect to {tt} , then for any t e R

By the unicity theorem we find that Gxye(a} = fxye(a + (i 1 2)), aeC for any
{tt} -entire analytic elements 0eM^. Thus the strong left invariance holds for
jc , jea o by (3. 14) and (3. 15).

Next, we consider the case where x e n~ and y e S0 . Let {xn} be a sequence
in a0 such that ri~(xn) — > T]^(^) . Denote the entire functions /^ V0 by Fn , which
are entire analytic even if x is not entire analytic with respect to {rf} , since 0 is
entire analytic with respect to {rr} . Then the sequence {Fn} converges uniformly
on R and R + ( i /2) to functions (3.16) and (3.17), respectively. Thus the
Phragmen-Lindelof theorem tells us that {FJ converges to a bounded
continuous function F o n D = f a e C : 0 < I m a < l / 2 } which is analytic in D and
satisfies the strong left invariance:
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Furthermore, the case where x and y are arbitrary elements inn- , is treated
similarly by approximating y by elements in a0 in addition to the above
argument. QED

Summarizing the above propositions, we have the following theorem.

Theorem 3.17. The family (M, 5, R, T, h) is a Woronowicz algebra and W

is the Kac-Takesaki operator.

The family (M, <5, R, t, h) is called the dual Woronowicz algebra for the
Woronowicz algebra (M, 5, /?, T, /i) . A Haar weight on the dual Woronowicz
algebra is sometimes called the Plancherel weight for (M, 5, R, T, h).

Remark 3.18. A Woronowicz algebra is said to compact (resp. discrete), if
the Haar weight (resp. Plancherel weight) is bounded. If a Woronowicz algebra
is compact, then the dual Woronowicz algebra has the counit £:7r(<p)— > <p(l) as
in Remark 3.19 below. If a Woronowicz algebra (M, <5, R, T,h) is compact and
discrete, then it is automatically finite dimensional by a similar discussion as in
[23]. Hence the modular automorphism {of} is inner, i.e. there exists an
invertible positive operator d in the fixed point subalgebra M°h with respect to
{of} such that of (;c) = dltxd~lt for x e M and f e C . Therefore the mapping:
x e M — > h(d~lx) G C is a faithful normal trace on M, which we denote by tr. On
the other hand, the Radon-Nikodym derivatives in this case satisfy p = l and
p = l by Remark 1.3, and so A=H = A by Lemma 2.14. Since p = l and
R(p) = p~l, we see that tr o R(x) = tr( d2x) for x e M . Since troR is also a
faithful normal trace on M, the Radon-Nikodym derivative d2 of tr°R with
respect to tr belongs to the center of M. Hence the modular automorphism {of}
turns out to be trivial, i.e. A = 1 , and hence H = A=l. Therefore the
deformation automorphisms in the Woronowicz algebra (M, 5, R, T, h) and its
dual are trivial. Consequently, (M, 5, R, tr) is a Kac algebra. In other words, the
Woronowicz algebra (M, 5, /?, T, h) and its dual are Kac algebras.

Remark 3.19. If the Haar weight is bounded, then it is L2 -bounded and
satisfies W(% (8> fi(h)) = % ® f\(h) for all £ e ^> as shown in [1]. Indeed, for any
L2 -bounded cp G M^ and x,y e nh we find

By the uniqueness of a bounded Haar weight up to scalar shown as in Remark
1.2, the subspace {rj e 0: W(£ ® rj) = % ® 77, £ e $} is one dimensional. The state
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0)^ for a normalized vector rj in this subspace gives us a normalized Haar
weight h on M as well as the counit £ on M:

for xeM

and

for >e

Therefore we obtain h* (£) = 1 for £ = co^ | ̂  , and (e ® id) o 5 = id = (id (8) £) o 5.

§4. Duality Theorem
Let (M, 5, /?, T, h) be a Woronowicz algebra and (M, 5, jR, T, h) its dual

Woronowicz algebra:

and

otherwise.

Then W = &(W*) is the Kac-Takesaki operator for the dual Woronowicz algebra.

The bidual Woronowicz algebra (M, 5, R, T, h) is defined to be the dual

Woronowicz algebra of (M, 5, J?, T, A) constructed in the same manner as in

Section 3. The Kac-Takesaki operator W is then given by^a unitary cr(W*).

Thus W = W. If M is shown to be a subalgebra of M, then <5, R, t and h agree

with 5, R, T and h on M.
Our main assertion is the following duality theorem for a Woronowicz

algebra.

Theorem 401. A Woronow/cz algebra is isomorphic to the bidual
Woronowicz algebra'.

(M, 5, #, T, /i) = (M, <5, ^, T, ^).

We have already used the notation It, S, fj and n for the bidual Woronowicz

algebra corresponding to those for the dual Woronowicz algebra, i.e. (It, S) is a

pair of the left Hilbert algebra and the left involution operator corresponding to

(7t, 5); f] is the linear mapping of the set of L2-bounded elements in M^ to 4p

corresponding to r); and n is the Fourier transform from M^ to M

corresponding to n.
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Lemma 4.2. The left Hilbert algebra it is a subalgebra of the achieved left

Hilbert algebra lih and 5 c S .

Proof. Let f](Q) be any element in It = 7j(b) . For any £', 77' in the right
Hilbert algebra 3T associated with Tlh, we denote by (/) the restriction of ft)^,
to M. Since 77(0) = £'77'^ , we have

(4.1) (nr(

where ;rr is the representation of the right Hilbert algebra 31'. Thus

nr(ri')fi(0) = n(9)ri' for all 77' ell'. Hence r\(Q) is left bounded. On the other

hand,

Therefore 77(6*) belongs to the domain of operator 5 and 5 = 5 on 71. Hence

77(0)611^. Thus 71 is identified with a vector subspace of lih together with

their left involution operators.

To show the coincidence of multiplication structures, it remains to show that

nf(fl(0)) = £(0)> where nt is the representation of the left Hilbert algebra lih.

Let ^' and 77' be any elements in It' . Then we have

\ 770

by (4.1). QED

Denote by W the Woronowicz algebra (M, 5, /?, T, /z). We will consider the
co-opposite Woronowicz algebra W° and the commutant Woronowicz algebra
W by using the mappings: x — > R(x) = Jx*J and x -> Jx*J , respectively.

Proposition 4.3. (i) 7/5° = cro<5, R° = R, T; = T_, , an^f h°=h°R, then
W° = (M, 5°, /?°, r°, h°) is a Woronowicz algebra and the Kac-Takesaki operator
W° is of the form VW, where V e -§*(£ ® $) Z5 ^/ze ̂ //? operator. % ® 77 -> 77 ® | .

(ii) // 5' = Ady 0 /o«5oAdy , /?' = Ady o/?o Ady, T; = Ady o r_f o Ady a/xJ
^'(jc) = h(JxJ) for xeM'+, then W = (M', 5', /?', T', h') is a Woronowicz, algebra
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and the Kac-Takesaki operator W is of the form AdJ0J(W) = AdU9l(W*), where
U = JJ.

Proof, (i) It is easy to see that 5° is coproduct, R° is a unitary antipode,
{T°} is a deformation automorphism and h° is a {T°} -invariant faithful semi-
finite normal weight on M such that h° is left invariant and commutes with the
weight h° o R° . It remains to show that the weight h° satisfies the strong left
invariance. If jc, y e ah c\ahoR and 0 e (M^)T then, by the strong left invariance of
the Woronowicz algebra W , there exists a bounded continuous function Fxy(j) on
the strip D = { z e C : 0 < I m z < l / 2 } such that Fx^ is analytic in D and satisfies
the boundary condition:

Let FR(y)\RM\^ = F^(-z + (i/2»- Then Fw\^)\0
 is a bounded continuous

function on D such that it is analytic in D and satisfies the boundary condition:

(4 .2) ' ' W = W °

Here notice that /?(a^ n a /zo/? ) = ^ ̂  na^o/?- F°r anY -^ » y ^n n
h°

 tnere exist
sequences [xn] and {vn} in a^na f c o / ? such that riho(xn)^> rjho(x) and
^. (?„)-> ^.(30- The sequence {F^^^^^} is Cauchy on R and R + ( i /2) in
the uniform topology. Hence, by the Phragmen-Lindelof Theorem, there exists a
function F on D such that F * ^converges uniformly to F. Thus F is a
bounded continuous function on D such that it is analytic in D and satisfies the
same boundary condition (4.2).

(ii) The proof is accomplished in the same manner as in (i). QED

The entire analytic part (M^)T, of the predual is the same as (Af#)T as a set.
The product 0, y— > (0® \//)o8° in the former coincides with ^*0 in the latter.
Since the entire analytic part c0 for W coincides with that for W° , the involutive
algebra b° for W° corresponding to b in Definition 2.3 is the same as b as a set.
Therefore the involutive algebra 71° = fj°(b°) is *-antiisomorphic to it = f)(b) .

By means of the correspondence: 7]h.(x)-> Jp~l/2Jrjh(x)= r]h(Ll/2x) for

*ea 0 , the standard representation Hilbert space for (M\h°) is identified with
the Hilbert space ^ for (M, h). Similarly, by the correspondence: T]h,(x)— >
Jrjh(JxJ) the standard representation Hilbert space for (M',/z') is identified with
the Hilbert space $ for (M,A). The left Hilbert algebra 11^ is then identified
with the right Hilbert algebra 71' associated with 71^. Hence
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Indeed,

= Jrih(JxyJ)

= Jne(rih(JxJ))Jrih,(y).

Let {J0,A°,p°,H°} and {/', 4',p', H'} be families of operators which appear in
W° and W respectively, corresponding to the family {/, A,p,H] for W . Then

(4.3) / '=/, 4'=4M, p'=p-', H°=H-*

and

(4.4) /' = /, A' = A~l, p'

If x,yenh, then pifx, p~ify £ nh and hence

Since <5(p*) = p" ®plY implies p'v(0* y/r) = (P"0)*(P"V/r) and ((j)*\i/)plt =
(<f>plt)*(yplt) for 0, y^eM^, if 0, y f e f c , then these functions in £ can be
extended to the whole complex plane by their analytic continuation. We
sometimes use the formal notation such as 0p±1/2 or 0p±! for them.

Proposition 4.4 Let WA denote the dual Woronowicz algebra of W.
(i) ( W ° ) A = ( W A ) ' .
(ii) ( W ' ) A = ( W A ) ° .

Proof, (i) Let it0 = 77° (&°) be a left Hilbert algebra constructed from W° in
the same way as in Definition 2.3. Let n° and f]° denote the mappings
corresponding to n and fj . Then for any 0 in b , we have

TT (0) = Jp]KJflW = fl«t>P1'2), S-fi'(4» =

and

where S° is the left involution operator for 71 h. and nr is the representation of
the right Hilbert algebra associated with it. Indeed, Fr)(^) = fj((p~l if* ) ° R° Tl/2)
for iff in b by Lemma 2.15 and hence

for 0 in b. By means of this identification, it is straightforward to verify that
assertion (i) holds.
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(ii) The predual (M')* of AP coincides with the set {0'e(M')#: 0'(*) =
$(Jx*J), 0 eM^}. Since, for xeah, and an L2 -bounded 0'E(M')# with 0'(jc) =

the vector r)(0) belongs to the domain of A~l/2 and fj'(0') = ^~1/2?)(0). For any
0, ^ E b we see that

= T (0* V) =
It is straightforward to verify that (0 ® y/y = 0' ® y' . Hence

^0)T(VO = ^1/2^'((0P1/2)^
Hence £'((0p1/2)0 = ^~1/2£X0M1/2 for 0eM,. Since £°(0) = /f(£(0)) = £(0ofl),

we have

zi-1/2;r(0M1/2 = ^~1/2£(0 o ̂ M1/2 = h($ o R o r_i/2 ) .

Using these fact in mind, we get the proof of ( W'Y = (W* )° . QED

Corollary 404eL (i) Let {J,A,p,H} be the family of operators which appear

in W*. Then {J,A~l jpJ,H~1} is the family of operators for (W°)A =(W*)' and

{J,A^p-l,H-l}for(W'r=(W*Y.

(ii) Let A°* and A'A be the modular operators for W° and W
corresponding to A for W. Then A°* is the closure of Jp~lJH~l and A'A is the
closure of pH~l .

Proof. It is clear from (4.3) and (4.4). QED

Proof of Theorem 4.1 . By virtue of Lemma 4.2, S cz S . If A commute with
A , then 5 = S. Hence 11 h is the achieved left Hilbert algebra associated with It .
It remains to show the commutativity of the modular operators A and A . By
Corollaries 2.14.1 and 3.6.1, Ad- = Ad..,, and Ad,,,, = Ad..,, on M, which prove

A* * H A ^ H

Ad; =Ad , on M. Recall that A commutes with p by Lemma 2.14. Since
«. •*• * *. A
pls E M for s E R , it follows that Ad4,, (p" ) = pls . Hence A commutes with p .

We repeat the same argument for the co-opposite Woronowicz algebra W° .

Then we find that A° = AhoR commutes with JpJ by Corollary 4.4.1.

Since o^(pls) = pls for £ , s e R , pls commutes with A" =Jp~ltJHn as well as

JpaJ. The equality p" = R(p~ls) = JplsJ implies that pls commutes with plt and

JpltJ . Thus p commutes with p and JpJ . Hence JpJ commutes with JpJ = p~l
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and JJpJJ. Since Aif = JAltJ = JJp~ltJJHlt, it follows that JpltJ = JJpltJJ and

hence JJpJJ = Jp~lJ. Thus JpJ commutes with pJp~lJ. On the other hand,
Alt =pltJpltJAlt

hoR and AhoR = A° by (4.3). Therefore the modular operator A is

given by the closure of pJp~lJA° . Hence A commutes with JpJ and H as well.

Since A is the closure of JpJH by Lemma 2.14, A commutes with A . QED

Remark 4.5. When a Woronowicz algebra is commutative, the modular
operator A is trivial, i.e., A=l, and hence H = p by Lemma 2.14. since
JpJ = H~1,H is affiliated with the center of M and so the deformation
automorphism {tt} is trivial on M. By virtue of the duality, the deformation
automorphism {rj obtained as the dual of [rt] is also trivial. Thus the
commutative Woronowicz algebra turns out to be a commutative Kac algebra
(M, 8,R,h) and the dual Woronowicz algebra is the corresponding dual Kac
algebra.

Proposition 4.6. An involutive Hopf algebra, a Kac algebra and a
Woronowicz algebra are the same object whenever the algebras are finite
dimensional.

Proof. Throughout the proof of this statement, we assume that the algebras
are finite dimensional.

We first prove that an involutive Hopf algebra (M, <5, e, K) with a faithful
Haar state h is a Woronowicz algebra. Let {nh^h} be the GNS representation.
Then nh is faithful and ^ is identified with a finite dimensional left Hilbert
algebra. The linear operator H on ̂  defined by Hr]h(x) = T]h(K

2(x)) is positive

and invertible. It also satisfies

H(Sn) = (H$)(Hrfl, £ ,7 /6 &.

If A € C \ Sp(#) , then H - A is invertible and (H - A)~' iph = £,, . Therefore

= ̂  J

for any analytic function /on some neighbourhood of Sp(//) in C. Here we use
the same argument as in the Tomita-Takesaki theory [22] with the modular
operator replaced by H . We then find that

a E C, £, 77 E $h .

Thus the one parameter unitary group [Ha] implements a one parameter
*-automorphism group [rt] of M such that nh(it(x}) = Hltnh(x)H~lt for j t eM ,
which will play the role of the deformation automorphism. Using the entire
analytic extension of {Tt} , we define a mapping R on M by /CQ Tl/2. Let K be the
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linear operator : J]h (;c)-> r\h(K(x)). Then KH = HK. Hence K:ora = raoK for
aeC. Thus R is an involutive *-antiautomorphism on M, which will play the
role of the unitary antipode. Since <yo(K®K)o8 = 8°K, the Kac-Takesaki
operator W obtained in Remark 2.6 commutes with H ® Has well as Hl/2 (B) Hl/2 .
Thus (Jo (R ®R)oS = 8oR and (rr ® T r )o5 = 8° rt . The {rr}-invariance of the
Haar state h is clear. The strong left invariance is already verified in Remark 1.2.
Thus (M,8,R,T,h) is a Woronowicz algebra.

The fact that a finite dimensional Woronowicz algebra is a Kac algebra is
shown in Remark 3.18.

Finally we prove that a finite dimensional Kac algebra (M,8,R,h) is an
involutive Hopf algebra with a faithful Haar state. Since a finite dimensional Kac
algebra is discrete, the exists an element e in M* such that 0*£ = 0 = £*0 for
0 in M*. Thus e is the counit. It suffices to verify that R play the role of the
coin verse:

(4.5) VL o (R ® id) o 8(0) = // o (id (8) R) o 5(0) = £(a)l ,

where ILL is a product in M, i.e. a bilinear mapping of M®M to M with
= xy . First we notice that

(4-6)

where V is the flip operator on|>®|»:£(x)7j-»?7®£. Indeed, if 0{ and 02 are
elements in M^ , then

e2)) =

62 )(8(n(cp o R))) = (62

and hence

Since ./77(0) = 77(6*) and Jr\(d) = 77(6* o R) by Corollary 3.6.2, we see that

Using formula (4.6), we find that
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Similarly, we have jJi o(id® R)o 8(a) = £(0)1. Thus (4.5) holds. Hence (M, ^u, 5,
£, R) is an involutive Hopf algebra with a faithful Haar state h. QED

The results in [27; Appendix A2] are deduced from the above discussions.

Remark 4.7. (The uniqueness of Haar weights up to scalar) (i) Let (M, 8, R,
T, h) be a Woronowicz algebra and G = [x e M:8(x) = x® x,x ^ 0}. If u e G
satisfies T,(«) = «, then 5(crf(w)) = u® crf(w) by (3.4), and hence 8(v) = l®v for
V = M*O?(M). Since R(u) = u~l, we have fl(v)®v = 8(R(v)v) = 1®1. Thus v = 1,
which means that of (u) = u.

(ii) Let 0 be another Haar weight on (M, 8, R, T). Since the weight (f)° R is
right invariant, it is {of}-invariant by (3.4). Since R°af=a^°RoR

= A d l t o < 7 h _ t o R , the weight 0 is {df}-invariant by assertion (i) replaced h by (/).

Hence the weight h + (/) commutes with the Haar weight h. Repeating the same
argument as in [20] together with Corollary 3.11.1, we prove that 0 is a scalar
multiple of h.

§5. Examples

Quantum group SLq(2,C) (see [10] for example): Assume that q e C (q ^ 0,
1). Let A be the C-algebra generated by the four elements x, u, v, y satisfying the
condition of quantum matrix:

(5.1) xu = qux, xv — qvx, uy = qyu, vy = qyv, uv = vu, xy — yx = (q~ q~l )uv

and the normalization condition of the quantum determinant:

xy - quv = 1.

Let X be an element in Af (2, A) = M(2, C) ® A of the form

'x u^

^v

Then the family (A,8A,£A,KA) is a Hopf algebra with respect to the
comultiplication 8A , the counit £A and the coinverse (antipode) KA given by

•
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where id is the identity mapping in M(2,C) and ® is the contraction tensor
9

product given by (atj)®(btj) = (£Liaik ®bkj). The Hopf algebra is then interpreted

as the coordinate ring of SLq(2,C) denoted by A(SLg (2, C)).
Quantum group SLq(n,C) for n > 2: Assume that q e C (q & 0,1). Let A be

the C-algebra generated by n2 matrix elements xtj (i = 1, • • • , n\ j = 1, • •-, n) of the
quantum matrix X satisfying

i) the condition of quantum matrix: Each 2x2 minor matrix

'*.. xsl .
l<i<k<n\l<j<l<n,

satisfies condition (5.1); and
ii) the normalization condition of the quantum determinant:

(5.3) £ (-q}l(0) xla(l)x2a(2) - • - xna(n) = 1 ,
treS,,

where Sn is the symmetric group of order n and /(a) is the cardinality of the set
{ ( i J ) ' - i < j , e ( i ) > G ( J ) } - The left hand side is denoted by dztq(X). Then the
family ( A, SA , £A , KA ) with respect to 8A9eA,KA with (5.2) is a Hopf algebra
denoted by A(SLtj(n,C)) , which is interpreted as the coordinate ring of SLq(n,C).

Let R be the An_, type solution of the Yang-Baxter equation R12R13R23

= R23R13R12 on Cn ® C" given by

Then condition i) is equivalent to the equation RX}X2 = X2X^, where Xt is the
matrix X acting on the i-th space of C"®Cn . Let F be the flip operator
Z"J=i etj ® ejt on C" ® Cn and denote F/? by T. Then

(5-4) 7= t^^v ®e. +(q-q-^eu ®e}J ,
i,y=l «</

and condition i) is equivalent to the equation TX}X2 = X}X2T .

Let 5^,£^ and KA be the coproduct, the counit and the antipode of
Aq(SL(n,C)) given by the same formulae as (5.2):

where XJt is the (n-l)x(n-l) quantum matrix obtained from the quantum
matrix X by deleting thej-th row and the i-th column. We sometimes identify
the quantum matrix X in M(n,A) with an element S";=i^ ®*y in M(n,C)® A.
Then the nxn matrix (KA(XV)) is the inverse of X in M(n,A). Therefore the
family ( A, 8A , £A , ̂  ) is a Hopf algebra, which we denote by A(SLq (n, C)) .
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Quantum group SUq(ri)\ In what follows we restrict q to be real and consider
an involution in A(SLq(n,C)) = (A,SA,£A,KA) defined by

(5.5) x* = KA(xJt), ije[l,2,...,n}.

Then A is a * -algebra. The mappings 8A and £A are *-homomorphisms and KA is
the *-antiautomorphism which satisfies the Woronowicz condition:

Then the involutive Hopf algebra (A,8A,eA,KA) is interpreted as the coordinate
ring of the "quantum group SUq(n)". We denote the involutive Hopf algebra by

A(SUq(n».

Whenever we deal with the quantum group SUq(n), the quantum matrix is
denoted by U instead of X. L&tU = (xlJ). The adjoint and the transpose are
denoted by U*
more, we have
denoted by £/*=(**) and tU = ( x j l ) . Then U*U = UU* = I in M(n, A). Further-

,

\-l(a)

Lemma 5.1.
(i) det,(X) = 1^ (

— V f
ZwaeS,, \

(ii) Let H = X^,?2'-"-1^ in M(/i,C)(c M(/i, A)) . Then

tUHV U)*=H, (l Uf H~l (' U) = H~l .

Proof, (i) See [8] for example.
(ii) Let fU = (ytj) with yij=xjl. Then {U is a quantum matrix. Let

z,j =(-^) l~ l /det^(( 'C/)y i). Then the nxn matrix (zu) is the inverse of 'U by (i).
Since det^( rf/)7 / =fotq(UIJ) by (i), we have

ZtJ = (~qTJ det^ ((' U)Jt ) = (-q)«'-» (-qy-' det, ( t/f/ ) = (-^)2(^} < ,

which implies that

= \ and

Thus 'UHCUf = H and ('£/)* //-' ('(/) - H~l . QED

We will consider a representation of the * -algebra A(SUq(ri)). Let .$(2)

= /2(Z+)(8)/2(Z). A representation {^(2),J(5(2)} of A(SUq(2)) for ^e(0, l ) is given

by Woronowicz:

'1=0
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Proposition 5.2. Let U(n) =(jc? l )) be the nxn quantum matrix for SUq(ri).

Then the representation {n(n\$M} of A(SUq(n)) for n > 2 is given inductively

), tfk\U™) denotes the kxk matrix (n(k\xf)),
a

and ® zs f/ze contraction tensor product.

Proof. By direst computation, it is shown that each 2x2 minor matrix of
7r(n)([/(n)) satisfies the condition of the quantum matrix and the quantum
determinant detg(f/(n)) is equal to the identity 1. The unitarity of U(n} is clear
from the definition of the contraction tensor product. QED

The completion of the *-algebra A(SUq(n)) with respect to the norm

Ml = sup{||;r(a)|| : n e Rep(A(SUq (n)))} , a e A(SUq (n))

becomes a C*-algebra, which we denote by C(SUq(n)). This is nothing but a
compact matrix quantum group in the sense of Woronowicz.

Let hA be the Haar state on A(SUq(ri)), i.e. a normalized positive linear
functional on A(SUq(n)) with the left invariance (id®hA)(SA(a)) = hA(a)l. The
Haar state on the C* -algebra C(SUq(n)) is also defined by the same condition.
The existence and the uniqueness of the Haar state on a compact matrix quantum
group is shown by Woronowicz [27]. The same results for A(SUq(ri)) is given by
[14] explicitly. The faithfulness of the Haar state on C(SUq(n)) is shown by [12]
for n = 2 and [15] for general n > 2.

Proposition 5.3. (i) There exists a *-antiautomorphism RA on A(SUq(n))

with

(5.6) RA (xkl ) = (-!)*-' del, (t/tt).

It satisfies cr°(RA® RA)oSA= SA° RA and hA°RA=hA.
(ii) There exist one parameter * -automorphism groups {T/*} and [of] on

A(SUl/(n)) with

(5.7) T*(Xu) = q™-'»Xu

(5.8) ^(xk!) = q^k+'-"-^X/!l.

Then these automorphisms satisfy the formulas

(5.9) ( ^ (8^ )05^=5^0^ , T*oRA=RAor*, hA°r?=hA,

(5.10) ( T f ® a * ) o 6 A = 6 A ° a f , a? °RA= RA°a*,, hA<>a?=hA.
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Proof, (i) Let A be the * -algebra A(SUq(n)) and A° its opposite algebra.

Denote the right hand side of (5 .6) by xkl . Then

by the definition of the antipode and the adjoint. It is easy to see that x'u for k,

/e {1,2, ...,«} are the generators of A° and satisfy the same conditions as the

definition of the quantum matrix and its determinant for A". Thus there exists a
*-isomorphism RA of A to A° with RA (xkl ) = xkl . This means that RA is a

*-antiautomorphism of A. It suffices to verify the equality &o(RA® RA)o8A

= 8A o RA only for generators, which is easy to show.
(ii) We denote by x£ the right hand side of (5.7) or (5.8). Then x% for Jk,

/ e {1, 2, ..., n} satisfy the conditions in the definition of the quantum matrix and

its determinant. Thus there exists a * -automorphism if or of on A with

t?(xki) = xu or a*(xki) = xu> respectively. By direct computation, the first two

equalities of (5.9) or (5.10) are verified. For instance,

(xkl ) = ̂ «w--»< £ Xkj ® Xjl

j=i

1)rJC7/ = ( T;4 (8) df
A ) o <5A (xkl )

and

It is easy to see that hA ° T* and hA ° crf
A are also Haar states on A(SUq(n)) . The

uniqueness of the Haar state implies the invariance hA ° if = hA and hA ° of = hA .

QED

It will be shown that the above fr/1} and {a;4} play the role of the
deformation automorphism and the modular automorphism on A(SUq(n)) ,

respectively. For each zeC we define automorphisms rf and a* by

(5.11) Tf (xkl ) = qW-KXu , Of (xkl ) = qW-"-KXu .

Then the antipode KA is written in the form KA = RA o r^I/2 = T^I/2 o /^ .

A unitary representation w on a finite dimensional Hilbert space ^ of a
quantum group Gq is a unitary in J?(^>)(8) A(Gq) with

w12 w13 = (id ® 5A )( w) , (id ® e)( w) = 1 .

When w = S^=i^ ® w
y f°r m ~ dim^> , these conditions are written in the form
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5A

For two unitary representations w and w' on $ and $', the operator
a e ^f ($$,$j$') which satisfies (0®l)w = w'(a® 1) is called an intertwining
operator between w and w'. If there exists a subjective isometry as an
intertwining operator, the unitary representation are said to be equivalent. Let
Gq be the family of the equivalence classes of irreducible unitary representations
of the quantum group Gq . When G is a complex simple Lie group, it is shown by
Rosso [19] that Gq=G. The dual object G of the Lie group SU(ri) is identified
with the set {(m1 ,---,mn_1)e(Z+)"~1 :m1 >--->mn_l >0}. Then the Peter- Weyl
theorem for SUq(n) holds [13]:

The irreducible unitary representation w(7o) corresponding to 70 =(1,0, • • - , 0 ) G G
is given by the fundamental unitary representation U(n\ i.e. C/ ( '°=w ( 7 o ) , and
A(/0) is the linear span of its matrix elements xtj for ij = l,~-,n.

Proposition 5.4e

(i) hA(x*xk,) = 8,k8jiq^l[n},

(u)hA(X,jX*) = SlkSjiq^/[n],
where [n] = (l-q2")/ (l-q2) .

Proof. By the right invariance of the Haar state hA ,

hA (X*xv )1 = (hA ® id)(8A (x*XlJ )) = t hA (xlx,, )x*jXlJ .

Since ^n
k=lx*jXkj = I , we see that

k,l=\

k=\ k#l

The set of elements x*nxln for ^ , /e {!,••-,«} is linearly independent by the
representation in Proposition 5.2. Hence

(5-12) hA(x*Xtl) = SuhA(X*xtJ), *,/ = !,•••,*.

Thus, the row vectors {rjh (xlk)\k = l,---,n} have the same norm and mutually
orthogonal. From the relation for the transpose of U in Lemma 5.1 , we have

n
\-2klj /r*r \ _ fi nn+\-2i

-
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Hence our assertion (i) holds by (5.12). Assertion (ii) is proved similarly. QED

Proposition 5.5. (i) // a,beA(SUq(n)), then hA(ab) = hA(ba*(a))
= hA(a?(b)a).

(ii) There exists a * -isomorphism nofA(SUq(ri)) onto a a-weakly dense *-
subalgebra of a von Neumann algebra M and a faithful normal state h on M such
that hon = hA and oh

t (n(d)) = n(of(d)) for azA(SUq(ri)), where {erf} is the
modular automorphism of h on M.

Proof. Let w and w' be irreducible unitary representations on $ and & .
For each ft e-S* ($,$'), the operators c = (id®/z)(w'*(ft® l)w) and c' = (id®/i)
(w'(ft ®l)w*) are intertwining operators between w> and w' . When b is a matrix
unit etj in 5? ($g,$g'} , the matrix elements of c and c' are given by

Ckl = kA «* ™jl K/ > C*/ = hA ( < W* )£?„ .

Thus, if w andw' are not equivalent, then hA(w'*wkl) = hA(w'jW*) = Q. Therefore

hA (x*a) = q«M-»-nhA (ax* ) = hA (aa^ (x* )), a e A(SUq (/i)) ,

and hence

(5.13) hA(ab) = hA(bo^(a)\ for a,b e A ( S U ( n ) ) ,g

which is (i). Let / be the analytic function on C defined by f(z) = hA(of(a)b)
for zeC.Then f(t + i) = hA(af+l(a)b) = h A ( b a f ( a ) ) . Thus {of} satisfies the KMS
condition for hA on A(SUq(n)).

Let {^,^,rj^} be the GNS representation of A(SUef(n)) with respect to
the Haar state hA :

(c)) = A^(c*flfe), a f fc ,c E A(SU(n)\q

Let M be the von Neumann algebra generated by nhA(A(SUq(n))) and h the nor-
mal state on M defined by h(x) = (xr\h (Y)\r\h (\)) for x^M. Then
h(KhA(a)) = hA(a) for a e A(SUq(ri)) . Since ^ is [of] -invariant, there exists a
positive self-adjoint operator A with Altr\h (a)=rjh (o*(a)) and it satisfies
AllnhA(d)A~a = n h A ( o f ( a ) ) for a E A ( S U q ( n ) ) . Therefore the one parameter uni-
tary group [Alt] implements a one parameter ^-automorphism group {of} on M
such that G?(x) = AltxA~lt for x E M . Since TT^ (A(5f/^(w))) is a-weakly dense in
M, by a standard approximation procedure, the automorphism group {erf} on M
is shown to satisfy the KMS condition on M. The uniqueness of the modular au-
tomorphism implies that it is the modular automorphism for h. Therefore
<rf (nhA (a)) = nh^ (a* (a)) for a e A(SUq(n)) and the normal state h is faithful on
M. Thus nh is the desired * -isomorphism. QED



846 TETSUYA MASUDA AND YOSHIOMI NAKAGAMI

For an involutive Hopf algebra, the Kac-Takesaki operator W:
(^ ®1lhA^(a®^^(rlhA ® ̂ X^OXtf®!)) is unitary as shown in Remark
2.6. Define the coproduct 5on M by the usual formula: S(x) = W(l®x)W*. Then
it is an extension of 8A, i.e., S(nhA(a))-(nhA ®nhA)(dA(a)) for atA(SUq(n))
and satisfies the coassociativity. The left invariance of the state h on M is
immediate form that of the Haar state hA.

Since the deformation automorphism {r;4} preserves the Haar state hA, there
exists a positive selfadjoint operator H with HifT]h (d)= T]h (rf(a)). Define the
deformation automorphism {rt} on M by Tt(x) = HltxH~lt. Then it is an extension
of {r;4}, i.e., Tt(nhA (a)) = nhA (if (a)). It is easy to see its commutativity with the
coproduct and its invariance of the state h by (5.9). By virtue of Proposition 5.3,
each element of A(SUq(n)) is entire analytic with respect to the deformation
automorphism {if}. Put RA = KA°T*2. Using the operator / defined by
jr\h (a) = rjhA (RA(a*)) for a E A(SUq(n)), we define the unitary antipode R on M
by R(x) = Jx*J. Then it is an extension of RA, i.e., R(nhA(a)) = nhA(RA(a)). It is
easy to see its commutativity with the deformation automorphism, its invariance
of the state h and ( Jo (R® R)o g = 8o R. As we have already seen in Remark 1.2
that an involutive Hopf algebra satisfies the strong left invariance, we find that
the family (M,8,R,T,h) is a Woronowicz algebra, which we denote by
L°°(SUq(n)). Thus we have the following:

Theorem 5.6. IfA(SUq(n)) = (A,SA,£A,KA) is an involutive Hopf algebra and
hA is the Haar state, then L°°(SUq(n)) = (M,5,R,T,h) is a Woronowicz algebra
which contains A(SUq(n)) as its o-weakly dense *-subalgebra under the above
notations.

Remark 5.7 Let W be the Kac-Takesaki operator of L°°(SUq(n)). For each
/EG with G = SU(n), we denote by w(7) = (vi/r))iye/ the corresponding

irreducible unitary representation with KA(W^) = w(J} . Then

where v(^rih(w
(
lj

))= r]h(w
(^}) for any j E 7y and v^ 7 )=0 on the orthogonal

complement of the subspace £;6/ CTJ^CW^).

Quantum Lie algebra slq(n,C} for ^ > 2 : Assume that q E C(q ^0,±1). The
quantum universal enveloping algebra W(slq(n,C)) is the Hopf algebra
(^,<5X/,£//,£•//) consisting of a C-algebra ^ generated by 4(n-l) elements
k + , k ~ , e r f j for j = 1,2,...,n- 1 satisfying the fundamental relations:
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k?ejk- = qes (i = j) ; = q-m
ej (|i - j\= 1) ; = £j (|i - j\> 1)

*,+//r = <?-'/, (i = j) ; qmf, (|i - y| = 1) ; = /, (|i - j\ > 1)

«,/; -/,«,= *„ (9 - 9~l )"' ((*,+ )2 - (*f )2 )

e,X - [2] W + e}e,2 = 0, /,2/, - [2]/,//, + //,2 = 0

and the coproduct <5X/ , the counit ef/ , the antipode Kf/ with

^ (fcf ) = k: , K, (e, ) = -qe, , K, (/, ) = -q~lf, .

Quantum Lie algebra suq(n) for n>2: Assume that q E R (q & 0,±1) . Let's

consider an involution : 0 — > 0# in ^(,s^(n,C)) = (^,5^,^, /cx/) satisfying

(**)*=**, *,*=/„ /,*=«,.
Then ^ is a *-algebra. The mappings 5X/ and £x/ are *-homomorphisms and the
mapping K^ is a *-antiautomorphism with the Woronowicz condition. The
involutive Hopf algebra (^, S / / 9 e / / 9 K#) is called the quantum universal

enveloping algebra %(suq(ri)) for the "quantum Lie algebra suq(ri)" .
The dual space of A(SUq(ri)) = (A,5A,£A,KA) becomes an involutive unital

algebra with respect to the product 0* y/ = (0(8) \is)°8A for 0, y^eA*, the

involution (j)#(a) = 0*(x' / / /(fl)) , where 0*(a) = 0(a*), and the identity £A. The

quantum universal enveloping algebra ^(^(n)) is identified with a *-

subalgebra of the dual space A(SUq(n))* under the initial conditions

i i + l

(k? (xlm )) = diag(l, •-.,!, q+-^ , q^ , 1, • • -, 1),

(g,(^)) = g,,+P (/,(*/,* )) = *,+i,i

for the quantum matrix f/ = (jc/lfl ) and the recurrence formulas

e, (ab) = et (a)k~ (b) + *f
+ (fl)^ (ft), /f (ab) = f, (d)k~ (b) + ^ (fl)/f (ft).

In what follows A(SUq(n))-(A,8A,eA,KA) together with the Haar state hA is
embedded into the Woronowicz algebra L°0(SUq(n)) = (M,8,R,T,h) as a a-

weakly dense *-subalgebra. The underlying space § is identified with the L2-
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space L2(A,hA) through the identification rjh(nh(a)) = 7]h (a) for a e A . For each

(/) e A* we define two linear operators A(0) and p(0) in ^ by

and

It is easy to see that these operators are closable. The restriction of elements in
the predual M% to A(SUq(n)) forms a weakly* dense subspace of A(SUq(n))* .

Proposition 5.8o If (/) e(M*)T, then p(0)~ = £(0ojc) and A(0)~ = Fh(<f)*)F .

Proof. By direct computation, we obtain the assertions. QED

The modular properties for representations of SUq(n) in the sense of

Woronowicz [27] are described by a family {/z:zeC} of multiplicative linear

functionals on A defined by p(/z)cpz /2, where p is the Radon-Nikodym

derivative (Dh° R:Dh)t for the dual Woronowicz algebra L°° (SUq (ri)Y -

Proposition 5o9«, Let %f(suq(n)) be the quantum universal enveloping

algebra.

(i) Let {ap • • • , (Xn_{} be the fundamental root system for the Lie algebra su(n)

and P+ the system of positive roots. For each a = mlocl H ----- \-mn_lan_l in P+ we

set ka=(kfT[ ' • • • (kn-iT"~l and k = Ha&P+ka . Then k = (k+ )n~l (k+ )2("~2) (k+ )3(n-3)

• • • ( k + \2^n~^(k+ V1"1
\K

n-2) \Kn~l)

(ii) The Radon-Nikodym derivative p = (DhoR:Dh)l for L°°(SUq(n))A is the

self-adjoint extension of the operator p(k)~4 .

Proof, (i) By direct computation, we obtain the assertion.

(ii) According to Lemma 2.14 together with the duality, we see that

p = JAJH . For any element a = jcy|/i • • • x} , in A we set j = j{ H ----- 1- jm and

l = l{ H ----- \-lm. Then Proposition 5 .3 implies that

P7]h (a) = JA JHr]h (a) = q^JA Jj]h (a) = q^JAr]h (R(af )

On the other hand,

P(k)r\h (a) = (k® id)(5(a)) = k(XjiJi • • • xjmjm )a - k ( x j i j t ) • • - k(xjm]m )a

and, by assertion (i),

k(XjiJi ) - q-<J-K»-J,+wqJ,<»-J,w = q-Vj,-*-W9 i = l,'.-,m.

Hence pr]h (a) = p(k)-4 r]h (a) for a e A . QED
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As for the dual Woronowicz algebra for SUq(ri), we will discuss in separate

publications.
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