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The Converse of Minlos' Theorem
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Abstract

Let ^ be the class of barrelled locally convex Hausdorff space E such that E'^ satisfies the
property B in the sense of Pietsch. It is shown that if Ee^and if each continuous cylinder set
measure on E' is <7(£', E) -Radon, then E is nuclear. There exists an example of non-nuclear Frechet
space E such that each continuous Gaussian cylinder set measure on £'is 0(E', E)-Radon. Let q be
2 < q < oo. Suppose that E e ^ and £ is a projective limit of Banach space {Ea} such that the dual
E'a is of cotype q for every ct,. Suppose also that each continuous Gaussian cylinder set measure on
E' is a(E',E) -Radon. Then E is nuclear.

§1. Introduction

Let £ be a nuclear locally convex Hausdorff space, then each continuous
cylinder set measure on E' is <r(£',E)-Radon (Minlos' theorem, see Badrikian
[2], Gelfand and Vilenkin [4], Minlos [11], Umemura [20] and Yamasaki [21]).
We consider the converse problem. Let £ be a locally convex Hausdorff space. If
each continuous cylinder set measure on £"' is o(E',E)-Radon, then is E
nuclear? The partial answers are known as follows.

(1) If E is a a-Hilbert space or a Frechet space, then the answer is
affirmative (see Badrikian [2], Gelfand and Vilenkin [4], Minlos, [11], Mushtari
[12], Umemura [20] and Yamasaki [21]).

(2) If E is barrelled and if E is a projective limit of L°-embeddable Banach
spaces, then the answer is affirmative (see Millington [10], Mushtari [12],
Okazaki and Takahashi [14]).
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In this paper, we shall extend the case (1) for more general locally convex
spaces. We introduce a class J£ in Section 4. ^ is the class of all barrelled
locally convex Hausdorff space E such that the strong dual E'b satisfies the

property B in the sense of Pietsch (Pietsch [15] 1.5.5). The class J£ contain LF-
spaces, barrelled DF-spaces and inductive limits of them. We prove the next
theorem.

Theorem. Let E^^£ . If each continuous discrete I -stable cylinder set
measure on E' is <j(E',E) -Radon, then E is nuclear.

For the Gaussian cylinder set measures, the following result is well-known.
(3) Let E be a <7-Hilbert space. If each continuous Gaussian cylinder set

measure on E' is a(E',E) -Radon, then E is nuclear (see Gelfand and Vilenkin
[4], Minlos [11], Umemura [20] and Yamasaki [21]).

In general, we can not conclude that E is nuclear even if each continuous
Gaussian cylinder set measure on E' is o(E',E)- Radon. We give a counter
example. In this case, we prove the next result.

Theorem. Let 2<q<°° be fixed and E e JP . Suppose that E is a projective
limit of Banach spaces {Ea} such that the dual E'a is of cotype q for every a.
Suppose also that each continuous Gaussian cylinder set measure onE' is
o(E', E) -Radon. Then E is nuclear.

§2. Preliminaries

Let E be a locally convex Hausdorff space and E' be the topological dual of
E. Denote by E'b (resp. E's) the dual with the strong dual topology /3(E',E)
(resp. weak * topology a(E',E)). The strong bidual of E is denoted by (E'b)'b.
Let JJL be a cylinder set measure on E' . Then we say that JLL is a continuous
cylinder set measure if the characteristic functional

is continuous on E.
The cylinder set measure JLI on E' is called a continuous discrete /?-stable

cylinder set measure on E' if the characteristic functional ^(x) is given by

where T:E -> /'p is a continuous linear operator and 0 < p < 2 . In the sequel, we
consider only the cases p = 1 and 2. In the case where p = 2, JLL is called a
continuous Gaussian cylinder set measure. See Linde [7].



THE CONVERSE OF MINLOS' THEOREM 853

Let F, G be normed spaces and 0 < q , r < °° . A linear operator S: Ff -> G' is
called (g,r)-summing if for every [an] d F' with ^n=i\(x,an)\

r <0° f°r everY

x E F, it holds that I^JSXflJIIc?' < °° . A linear operator T:F -> G is called (g,r)-

summing if for every {xn} c F with Z^lOc^a)!1" < °° ^or everY 0 e F' , it holds

that Er=i 11^(^)11?? < °°- In the case where r=q,S and T are called r-summing, see
Pietsch [15], Schwartz [18] and Tomczak-Jaegermann [19].

Let G be a Banach space and 2<q<°°.G is called of cotype q if there
exists K > 0 such that for every n and every z1 , Z2 , - - • , zn e G , it holds that

r R -iV* f

I WS ^* III ft
Li=i J -to 1=1

where {gf.} is a sequence of independent identically distributed Guassian random

variables on a probability space (O,P) with the characteristic functional e~l/|2 ,
see Linde [7], Maurey and Pisier [9], Tomczak-Jaegermann [19].

Let F be a locally convex Hausdorff space. For a closed absolutely convex
neighborhood U of 0, we set N(U) = {xe E:pu(x) = 0} where pv(x) = inf {t > 0:
x e tU} . Denote by x(U) the equivalence class corresponding to x e E in the
quotient space E(U) = E/N(U) . E(U) is a normed space with norm p[x(U)]
= pu (x) for x e F .

For a closed absolutely convex bounded subset A of F, we setF(A) = {jc e F:
;te/A for some t>0}. E(A) is a linear subspace of F. We put the norm on
F(A) by pA (x) = inf {f > 0: x e *A} for x E F(A) .

For a neighborhood U of 0 in F, the polar £7° = [a e F'lKjc,^)! < I for every
jc e 17 } is weakly compact absolutely convex subset of E's . The normed space
E'(U° ) is a Banach space and E(U)' = E'(U° ) by the duality (x(U\ a) = (x, a) .

For two zero neighborhoods U, V with V c £ 7 , we define a canonical
mapping E(V,U):E(V)-> E(U) by associating x(U) with jc(V).

For two closed absolutely convex bounded subsets A and B withA c B , it
holds that F(A) e F(£) and the canonical mapping F(A,£):F(A) -> F(5) is
defined by F(A, B)(;c) = x for jc e F(A) .

A locally convex Hausdorff space F is called nuclear if it contains a
fundamental system UF(E) of zero neighborhoods which has the following

equivalent properties (see Pietsch [15], 4.1.2):

(N,) For each U eUF(E) there exists VeJ7F(F) with V dU such that the
canonical mapping E(V,U):E(V) — > E(U) is 2-summing.
(N2) For each UtUF(E) there exists VeUF(E) with VaU such that the
canonical mapping E'(U°,V°):E'(U°) — > E'(V°) is 2-summing.
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A locally convex Hausdorff space E is called dual nuclear if the strong dual
E'b is nuclear. For other basic notions of locally convex spaces, we refer to

Schaefer [17].

§3. Summability and Dual Nuclearity

Let E be a locally convex Hausdorff space and l<p<°°. A sequence
(xn) c E is called weakly p-summable if for every neighborhood U of 0, it holds

that

Denote by lp[E] the linear space of all weakly p-summable sequences. The
topology of lp[E] given by the seminorms e£, U^UF(E), is called the e-
topology where UF(E) is a fundamental system of zero neighborhoods of E.

A sequence (xn) c E is called absolutely p-summable if for every neighbor-

hood U of 0, it holds that

Denote by lp{E] the linear space of all absolutely p-summable sequences. The
topology of lp{E] given by the seminorms np

v, U^UF(E), is called the n-
topology, where UF(E) is a fundamental system of zero neighborhoods of E. It
holds that (lp{E], np) d(lp{E},ep) , where the inclusion is a continuous injection.

A sequence (xn)aE is called totally p-summable if there exists a closed

absolutely convex bounded subset B such that ^=ipB(xn)
p <°°. Denote by

lp(E) the linear space of all totally p-summable sequences. It is clear that
/ '<£><=/ '{£}.

It is called that E has property B if for each bounded subset & e /' {E} there
exists a bounded set B c: E such that %"=lpB(xn)<l for every (xn)e& , see
Pietsch [15], 1.5.5. If E has property B, then it holds that I1 {£} d I1 (E) .

The nuclearity of the strong dual E'b is characterized by the above

summabilities as follows.

Lemma 1 (Pietsch [15] Theorem 4.2.11). // E has property B ancttl[E]
= I1 {E} , then E'b is nuclear.

It is known that the metrizable space or the dual metrizable space has
property B (Pietsch [15] Theorem 1.5.8). We prove that the property B is
retained by the projective or inductive limit operation.
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Proposition 1. (1) If each En has property B, then the projective limit
E^ has property B.

f—
(2) Let E = limEn be the strict inductive limit. Suppose that each En has

property B and every bounded set B of E is contained and bounded in Ek for

some k (k depends on B). Then E has property B.

Proof. (1) Let 3$ be bounded in l l { E } . Let nn\E-^En be the canonical
mapping. Then 7in(^) = {(7rnxl)^l:(xl)e ^} is bounded in l l { E n ] for every n.
By the property B of En, there exists a bounded set Bn in En such that

supfl^/^Cflyc,) : ( jc£)e^}<! for every n. We set B = {xeE : I"=1 2~npB

•(nnx)<\}. Then B is bounded in E and it holds thatpB(x) = ̂ ==l2~n pB (nnx). So

we have £^ ip B ( x l ) < X^ 2~n < °o for every (jc f) e 3$.

(2) Let & cll{E] be bounded. Then the subset C = {xl:i = l,2,..,(xJ)e£#}

is bounded in E. There exists k so that Cc Ek and C is bounded in Ek. Since E

induces the topology on Ek, 38 is contained in l l [ E k ] and bounded in l l { E k } .

Hence there exists a bounded subset B in Ek such that ^L\pB(xt) < 1 for every
(jc f) e &. This proves (2).

We investigate the property B of the strong dual E'b.

Lemma 2. Lef Zs^limZ^ be the inductive limit of locally convex spaces. If
—>

£ /s1 barrelled and if each (En)'b has property B, then Eh has property B.

Proof. Let ^ c:ll{Eh] be bounded, that is, sup{S"iPfl0 ( a , ) : ( a , ) e ^} < oo for

every bounded subset 5 in E. Let TT ; I:£'—»£ f ' be the canonical mapping. For

every n, {(7Tn(«,)):(«,) e ^} is bounded in l]{(EnYh] since each bounded set in En

is also bounded in E. For every n, take a closed absolutely convex bounded set
Knd(Enyb such that ^/^(^(fl,))^! for every (<2, )e^ . We set

A' = tae£ / :S~= 12- | Ip^(a)<l}. Then A' is bounded in E'b since ^(^) is

bounded in (^)^ for every n and £ is barrelled (in fact,^0 absorbs each point in

E). We have pK(d) = I^=l2~npK (a) for every atE'(K). For each (a ,)e^, we

obtain I^1pJ f(fl l) = S:=12-"(I-1pJ, j i(^ l l(fl l))<i:=I2-w<oo. Thus E'b has property

B.

Proposition 2. L^r E be either

(1) metrizable,
(2) flfwa/ metrizable,
(3) LF-space,
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(4) dual LF-space, or
(5) E = limEn and E is barrelled, where En is one of ( I ) , (2), (3) and (4)

above. Then E'b has property B.

The next Lemma shall be used in Section 4, Theorem 2.

Lemma 3. Let qbel<q<°°.IfE has property B, then for each bounded

subset 3$ c lq{E\ there exists a bounded set Be: E such that ^=\PB(x
n)

q - 1 for

every ( x n ) e & .

Proof. Let s be l/q + l/s = l. Then the family J/ = {(*,*,):(*,) e 33 and
\(tl}\/ <!} is bounded in 1}{E] since it holds that for every zero neighborhood U

X^i^C^J^CIJ^O^XI^^UJ^^^CI/^U,-)9)1^ and since & is bounded in
/q{E}. By property B, there exists a bounded set B of E such that for every
(f,jt,)ej/ it holds Sl=,pfl(^I) = Z,=ikilP/i(^ l-)^l. Thus for every <X)e< with
|H|X <1, we have Z,«fftU-)|^ X,/?fl(KK)< l- By the duality of /s and 4, it

follows that ^=]pB(xl)
q - 1 f°r every (X)e ^» which shows the assertion.

§4. Converse of Minlos9 Theorem

Lemma 4. Lef F, G Z?e Banach spaces, \f/:G—> F be a continuous linear

mapping and \//':F'-^G' be the adjoint of \ff. Let (a^dF' be ^=\\(x9at)\<°°
for every x e F and fj, be a continuous discrete l-stable cylinder set measure on

F' with ju
A(^) = exp(-X"i|(-^,«,}|). Suppose that the image \l/'(jLl) is a(G',G)-

Radon on Gf. Then it holds that Z~, || ̂ '(0, )||G, < °o.

Proof. We follow Linde [7], Cor. 6.5.2 and Maurey [8], Prop.2b). For every
/V let AN, TN be the cylinder set measures on G' with

Then we have A / v*ryv = \I/'(JLI) as cylinder set measures, where * denotes the
convolution. Since \I/'(JLI) is d(G',G)-Radon, A^ and TN are also

Radon, see Okazaki [13], Lemma 1.
For 0 < q < 1 it holds that
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f Ba||«,<ttw(a) = f f WG,dXN(a)dTH(b)
J G' J G'J G'

<2~"\ \ (||a + i||», + ||a - b\\"c, )d^N (a)dTN (b)
J G' J G'

<2>-*J \\a\\"c,

since ||2a||̂  < ||a + b\\q
G, + \\a — b\\q

G, and TN is symmetric, see Hoffmann-J0rgensen

[4], Theorem 2.6.
Let [fn(co)} be a sequence of independent identically distributed symmetric

1-stable random variables on a probability space (Q,P) with the characteristic

functional e~ltl. Let q be fixed such that 0 < q < 1. For every W, we set

SN is a random variable which values in a finite-dimensional subspace of G' and

the distribution of 5^ is XN . If we set

//„(<») = Max || r(O

then by Kwapien [6], Remark 1, it follows that

\<G.<ft,N(a).

Consequently, we have

\HN(G))«dP(0))<* 2'-« I \\a\\<c.dY'(n)(a).
Jo. JG-

Since \l/'(iu) is a 1-stable O"(G',G)-Radon measure on G' and 0 < q < 1, we

have

see de Acosta [1], Linde [7] , Cor. 6.7.5. Thus we have

J Max^ I Y'(aJfn((D)\\tl
G.dP(a))<& 2}-«L«*>

for every N = 1, 2, • • • . Letting N —> <*>, we have



858 YOSHIAKI OKAZAKI AND YASUJI TAKAHASHI

JQ.

Hence there exists R > 0 such that

J sup ii r («.)/. (a*.

P(co:sup || vr'(O/,(fl))||G,<^
" n=l

where we have used the independence of [fn(co)} . This implies that

I P(co:\fn((o)\>R/\\¥'(an)\\G,<^.
n-l

We remark that for every n.

\
JQ

that is, sup\\\i/'(an)\\G, < °° . Furthermore, it is known that P(co:\fn(0))\> t) ~ r1 as
n

t — > oo ? so we obtain for sufficiently large R.

Hence it follows that £ ly'tOllc' < °°-
«=i

Remark 1. If i^'C^) is Radon with respect to the dual norm of G', then

Lemma 4 is a direct consequence of the fact "every Banach space is of cotype 1-
stable", see Linde [7], Cor. 6.5.2 and Maurey [8], Prop. 2 b).

Lemma 5. Let E be a barrelled locally convex Hausdorff space. Suppose
that each continuous discrete l-stable cylinder set measure on Ef is 0(E',E)-
Radon. Then it holds that l][E'J = l l ( E ' b ) .

Proof. Let (at) G/1 [£'], that is, TL\(x,al)\<°o for every jce£. Since the
/=!

semi-norm |;c|= X l ( -^>^ , ) l is lower semicontinuous on E, \x\ is continuous by the
1=1

barrelledness. The continuous discrete l-stable cylinder set measure JLL on E'

with ^A(jc) = exp(-X|(^,fl /}|),jce£, is o(E',E) -Radon. We can take a o(E',E)-
i=\

compact set K c E( of the form K = U\U e UF(E) , satisfying that jJi(K) > 0 and
| jUAU)-l |< 1/2 for xeU by the barrelledness and the continuity of //A(*).
Consider the Banach space E'(K) = unK with the unit ball K. By the 0-1 law of
a stable measure, it follows that fi(E'(K)) = l , see Dudley and Kanter [3], Thus ]Lt
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is a a(E'(K),E(U)) -Radon measure. We claim that (at) c E'(K) . Take / < oo so
that |exp(-|f|)-l|<l/2 implies \t\< / . Hence for every x e U , it follows that
|{jt,0z)|</ and aie/U° = /K, that is, (a^tL/K. By Lemma 4, we obtain

1=1
K(ai) < °° ' which shows (^.) E

We introduce a class «jf of locally convex spaces as follows. J£ is the set
of all barrelled locally convex Hausdorff space E such that the strong dual E'b
has property B.df contain LF-spaces and barrelled DF-spaces.^ is closed
under the operation taking a countable inductive limit (Proposition 2).

Theorem 1. Let E E ̂  and suppose that every continuous discrete I -stable
cylinder set measure on E' is a(E',E) -Radon. Then E is nuclear.

Proof. By Lemma 5, we have P[E'b] = ll[E£} . By Lemma 1, it follows that
(E'b)'b is nuclear. Since E is barrelled, the topology of E is induced from (££)£,

which proves the Theorem.

In Theorem 1, we can not replace "1-stable" by "Gaussian" in general. We give
an example later on.

Lemma 6. Let 2<q<°°, E be a Banach space and G = E'b be the dual

Banach space. Suppose that G is of cotype q. Let (an)d G be £„ \(x,an}\2< oo for
every xeE. If the continuous Gaussian cylinder set measure \JL with

^AW = exp(-I7I|(jc,a/I)|
2) is a(G,E) -Radon, then it holds that i|aj£ <°°.

«=i

Proof. For every N, let A^, IN be the cylinder set measures on G with

Then we have A^ * rN = \JL . Since G is of cotype q, there exists K > 0 such that

N n1/? /. N

= K\ \\a\\ 0<aN(a)
Jo
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< f |
JGG

for every N by the manner same to Lemma 4. Since jii Is Gaussian, this last

integral is finite, which implies the assertion.

Theorem 2* Let q be 2 < q < °o . Let E be a locally convex Hausdorff space

with a fundamental system [Ua] of zero neighborhoods such that the dual

E(UaY = E'(U°a) is of cotype q . Suppose that EE^£ and each continuous

Gaussian cylinder set measure on E' is a(E',E)- Radon. Then E is nuclear.

Proof. Firstly, we show that l2[E'b]^l<*(E'b) cl«{E'b}. Let (a^el2 [E'b], that

f °° }is, for every zero neighborhood W of E'b , sup^^|(%,a.}|2 : x e W° > < °o . Then
L=i J

/ 00 \ 1/2

h(x) = \ ZK*,^)!2 is continuous on E since E is barrelled and h(x) is lower
i=i

2semicontinuous. Hence exp(-/i(;c)2) determines continuous Gaussian cylinder
set measure /a on E' with //A(jt) = exp(-/z(jt)2) taking T:E-*/2 be
T(x) = ( ( x , a l ) ) . By the assumption, [I is o( E',E) -Radon and so there exists a
such that iL(E'(U°a}) = 1 by the 0-1 law of a Gaussian measure, see the proof of

Lemma 5. Since E' is of cotype q it follows that £/?..„ (a.)q < °° by Lemma 6.
u« ,=i u*

Secondly, we show that each bounded set 38 in l2[E'b] is bounded also in
lq[E'b]. For every zero neighborhood W in E'b, there exists Mw > 0 such that

Suppose that 38 is not bounded in l q [ E b ] , that is, there is a zero neighborhood V

in Eb such that sup< £ Pv (at )
q '• (at) e 38 \ = °°. For every n, take Nn and (a") e ^

L=i J

such that ^pv(a?)q >2nq. Remark that sup\^\(x,a'^)\2:xG V\ n = 1,2,...}
1=1 [1=1

= C2<<*> since 38 is bounded in l 2 [ E b ] . Then we have for the sequence
oo Na

{2-na?:l<i<Nn,n = l,2,...} and for every xeV°,% t\(x,2-na?)\2 <
n=l i=l

Na

I2-2"Cv;
2 <oo. On the other hand, I Xpv(2~X)* ̂  1 2^2^ <oo, which con-

11=1 /=!

tradictsto l 2 [ E ' b ] c l q { E ' b } .
Thirdly, we prove that for every a, there exists /? such that

E'(U0
a,Up)\E'(U0

a)^E'(Up) is (<?,2)-suinming. For every a,A = U°a is a

bounded set in Eb. We set ^ - {(a,) e /2[££] :£2((^)) = sup{Il|<jc,al>|2 :
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jceA°}<!}. Since A is bounded in E'b, 3S is bounded in l2[E'b]. Thus 3S is
bounded in l2[E'b] by the second step. By Lemma 3, there exists a bounded

absolutely convex closed subset B in E'b such that ^LpB(at)
q <1 for every

7=1

(a t)e^. We can assume that B=Up for some j8 with Up c £/a since E is

barrelled. So we obtain (J^. K)*)1" <sup{(£J(;t,aJ2)1/2; /^ (*) < 1} , which

shows the assertion.
Lastly, we show that for every a there exists j3 such that

E'(U°a,U°p): E'(U°a )->E'(Up) is 2-summing. Let a be arbitrarily fixed. By the
third step, there exists al such that the canonical injection E'(U°a,U°a ) is (q, 2)-
summing. Similarly we can find a2 such that E'(U°a ,U°a ) is (q, 2) -summing.
Repeatedly, we can find a15a2,...,a^ such that E'(U°a ,U°a ) is (g, 2) -summing
for every /. Let k be k>q/2. Then the ^-composition E'(U°a,U°a )
= E'(U° ,Ua

ak )°'-°E'(U0
a,U°a^ ) is 2-summing by Tomczak-Jaegermann [19],

Theorem 22.5, since each E'(U°ak ) is of cotype q. This completes the proof.

Remark 2. In general, E is not necessarily nuclear even if each continuous
cylinder set measure on E' is a(E',E) -Radon. For example, let TS be the

Sazonov topology on the infinite-dimensional Hilbert space H and consider
E = (H,rs), see Sazonov [16]. Then E is not nuclear but each continuous
cylinder set measure on E' is 0(E',E) -Radon, see Yamasaki [21], §20.

Counterexample. Let E be a Frechet space. Suppose that each continuous
Gaussian cylinder set measure on E' is a -additive. Then can we conclude that
E is nuclear? The answer is in general negative. We give a counterexample. The
following result is well-known, see Schwartz [16].

Lemma 7. Let G, F be Banach spaces and \j/:G — > F be a continuous linear
operator. Let iff' be the adjoint of if/ and 0 < r < ° o . Suppose that \j/' is r-
summing. Then for every Gaussian cylinder set measure jJi on F', the image
V'(AO is a(G\G) -Radon.

Example. Let Dj = (n~(l/2)J+l ) „", :/^ — » ^ be the diagonal operator given by

Let E be the projective limit of {/pJD;}^,. Explicitely, E is given by

. Let £ = ( j c : | ( j c | = 2>-<"2>'+1|je

< 00} with seminorm | |7 . Then we have E = r\jEj and
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E , identity ^
/fs-l ^ n

( d/2V\ ](n )

isometry '
x < >

j
(n~(l/2y+l )

x isometry
s>

Then the dual Ef is the inductive limit of «,,/>,.}, where £,•:<.-»<, be

Dj((xn)) = Or(1/2)/+IjcJ- For every k, the composition Dfc o D^ Q. . . .O Dt :<,-»<, is

the diagonal operator (n-
l/2+wk+l )5 which is not 2-summing for every k. Remark

that the diagonal operator A = (an):/oa — > /„ (or into Sr is r-summing if and only
if (an)e/r. Thus E is not nuclear. We remark that each D} is 2J+2-summing

since

By Lemma 7, for each continuous Gaussian cylinder set measure on E' is
d-additive on E'J+l since the natural injection ij+l tj : E' -» E'J+l is 27+2-summing.
Hence each continuous Gaussian cylinder set measure on E' is also o(E\E)-
Radon.

Remark 3. In the above example, D; is in fact defined on /^+l into ^+2

which is also 2;+2 -summing. And the composition Dk o Dfe_t o - . - o ^ :^ — > /^+2 is

not 2-summing. This shows that, in Theorem 2, we can not relax the condition
"£'(£/;) is of cotyple q" by "E'(U°a) is of finite cotype". In Theorem 2, q must
be uniform for every Ea .
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