Publ. RIMS, Kyoto Univ.
30(1994), 851-863

The Converse of Minlos’ Theorem
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Abstract

Let .# be the class of barrelled locally convex Hausdorff space E such that E; satisfies the
property B in the sense of Pietsch. It is shown that if E €.# and if each continuous cylinder set
measure on E’ is o(E’, E) -Radon, then E is nuclear. There exists an example of non-nuclear Fréchet
space E such that each continuous Gaussian cylinder set measure on E’is o(E’, E)-Radon. Let g be
2 < g <. Suppose that Ee.# and E is a projective limit of Banach space {E, } such that the dual

E;, is of cotype g for every o . Suppose also that each continuous Gaussian cylinder set measure on
E’ is o(E’,E)-Radon. Then E is nuclear.

§1. Introduction

Let E be a nuclear locally convex Hausdorff space, then each continuous
cylinder set measure on E’ is 6(E’,E)-Radon (Minlos’ theorem, see Badrikian
[2], Gelfand and Vilenkin [4], Minlos [11], Umemura [20] and Yamasaki [21]).
We consider the converse problem. Let E be a locally convex Hausdorff space. If
each continuous cylinder set measure on E’ is o(E’,E)-Radon, then is E
nuclear? The partial answers are known as follows.

(1) If E is a o-Hilbert space or a Fréchet space, then the answer is
affirmative (see Badrikian [2], Gelfand and Vilenkin [4], Minlos, [11], Mushtari
[12], Umemura [20] and Yamasaki [21]).

(2) If E is barrelled and if E is a projective limit of I°-embeddable Banach

spaces, then the answer is affirmative (see Millington [10], Mushtari [12],
Okazaki and Takahashi [14]).
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In this paper, we shall extend the case (1) for more general locally convex
spaces. We introduce a class . in Section 4. ./# is the class of all barrelled
locally convex Hausdorff space E such that the strong dual E/ satisfies the
property B in the sense of Pietsch (Pietsch [15] 1.5.5). The class .# contain LF-
spaces, barrelled DF-spaces and inductive limits of them. We prove the next
theorem.

Theorem. Let E€ /# . If each continuous discrete 1-stable cylinder set
measure on E’ is 0(E’,E)-Radon, then E is nuclear.

For the Gaussian cylinder set measures, the following result is well-known.

(3) Let E be a o-Hilbert space. If each continuous Gaussian cylinder set
measure on E’ is o(E’,E)-Radon, then E is nuclear (see Gelfand and Vilenkin
[4], Minlos [11], Umemura [20] and Yamasaki [21]).

In general, we can not conclude that E is nuclear even if each continuous
Gaussian cylinder set measure on E’ is o(E’,E)-Radon. We give a counter
example. In this case, we prove the next result.

Theorem. Let 2< g <o be fixed and E e .# . Suppose that E is a projective
limit of Banach spaces {E,} such that the dual E] is of cotype q for everya..
Suppose also that each continuous Gaussian cylinder set measure onE’ is
o(E’,E)-Radon. Then E is nuclear.

§2. Preliminaries

Let E be a locally convex Hausdorff space and E” be the topological dual of
E. Denote by E; (resp. E’) the dual with the strong dual topology B(E’,E)
(resp. weak * topology o(E’,E)). The strong bidual of E is denoted by (E});.
Let u be a cylinder set measure on E’. Then we say that y is a continuous
cylinder set measure if the characteristic functional

Ur(x)= .gq e*du(a), xeE,
.

is continuous on E.
The cylinder set measure ¢ on E’ is called a continuous discrete p-stable
cylinder set measure on E’ if the characteristic functional u~(x) is given by

pr(x)=exp(=[T(x)]7 ). x€E,

where T:E — /, is a continuous linear operator and 0 < p<2. In the sequel, we
consider only the cases p = 1 and 2. In the case where p = 2, is called a
continuous Gaussian cylinder set measure. See Linde [7].
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Let F, G be normed spaces and 0 < g, r < oo. A linear operator S:F’ — G’ is
called (g,r)-summing if for every {a,}c F’ with Y. [(x,a,)|" <o for every
x € F, it holds that ¥7,|S(a,)|%. <. A linear operator T:F — G is called (g,r)-
summing if for every {x,} c F with Y. [(x,,a)]" <eo for every ae F’, it holds
that X7 [|T(x,)|% <eo.In the case where r = g, S and T are called r-summing, see
Pietsch [15], Schwartz [18] and Tomczak-Jaegermann [19].

Let G be a Banach space and 2<g<e. G is called of cotype g if there
exists K > 0 such that for every n and every z,,2,,...,2, €G, it holds that

n 1/q n
[2 nz.nz] <K jﬂ I3, 8, (@2, dP(®),
=1 =1

where {g;} is a sequence of independent identically distributed Guassian random
variables on a probability space (,P) with the characteristic functional e’

see Linde [7], Maurey and Pisier [9], Tomczak-Jaegermann [19].

Let E be a locally convex Hausdorff space. For a closed absolutely convex
neighborhood U of 0, we set N(U) ={x € E: p,(x)=0} where p,(x)=inf{t>0:
x €tU}. Denote by x(U) the equivalence class corresponding to x € E in the
quotient space E(U)=E/N(U). E(U) is a normed space with norm p[x(U)]
=py(x) for xeE.

For a closed absolutely convex bounded subset A of E, we setE(A)={x€ E:
x€tA for some t>0}. E(A) is a linear subspace of E. We put the norm on
E(A) by p,(x)=inf{t > 0:x 1A} for x € E(A).

For a neighborhood U of 0 in E, the polar U° ={a € E":[(x,a)| <1 for every
xeU} is weakly compact absolutely convex subset of E’. The normed space
E’(U*) is a Banach space and E(U)’ = E’(U°) by the duality (x(U),a) =(x,a).

For two zero neighborhoods U, V with Vc U, we define a canonical
mapping E(V,U):E(V)— E(U) by associating x(U) with x(V).

For two closed absolutely convex bounded subsets A and B withA c B, it
holds that E(A)c E(B) and the canonical mapping E(A,B).E(A)— E(B) is
defined by E(A,B)(x)=x for x € E(A).

A locally convex Hausdorff space E is called nuclear if it contains a
fundamental system U.(E) of zero neighborhoods which has the following

equivalent properties (see Pietsch [15], 4.1.2):

(N)) For each Ue€U.(E) there exists VeU.(E) with VcU such that the
canonical mapping E(V,U):E(V)— E(U) is 2-summing.
(N,) For each UeU.(E) there exists VeU.(E) with VcU such that the

canonical mapping E’(U°,V°):E’"(U°) —> E’(V°) is 2-summing.
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A locally convex Hausdorff space E is called dual nuclear if the strong dual
E] is nuclear. For other basic notions of locally convex spaces, we refer to

Schaefer [17].
§3. Summability and Dual Nuclearity

Let E be a locally convex Hausdorff space and 1< p<o. A sequence
(x,) C E is called weakly p-summable if for every neighborhood U of 0, it holds

that

e ((x,)) =sup{(X Kx,, a)P)"":ac U} <o
n=1
Denote by [?[E] the linear space of all weakly p-summable sequences. The
topology of I?[E] given by the seminorms &}, UeU.(E), is called the &-
topology where U.(E) is a fundamental system of zero neighborhoods of E.
A sequence (x,) c E is called absolutely p-summable if for every neighbor-

hood U of 0, it holds that
5 ((x,)) = (3, py (x,)P)V? < oo,
n=1

Denote by I?{E} the linear space of all absolutely p-summable sequences. The
topology of [?{E} given by the seminorms x}, UeU,(E), is called the z-
topology, where U(FE) is a fundamental system of zero neighborhoods of E. It
holds that (I7{E}, m?) c (IP{E},€?), where the inclusion is a continuous injection.

A sequence (x,) C E is called totally p-summable if there exists a closed
absolutely convex bounded subset B such that Y. p,(x,)? <eo. Denote by
17(E) the linear space of all totally p-summable sequences. It is clear that
I"{E) CIP{E}.

It is called that E has property B if for each bounded subset % c I'{E} there
exists a bounded set Bc E such that Y. pg(x,)<1 for every (x,)e %, see
Pietsch [15], 1.5.5. If E has property B, then it holds that/'{E} c ['(E).

The nuclearity of the strong dual E; is characterized by the above

summabilities as follows.

Lemma 1 (Pietsch [15] Theorem 4.2.11). If E has property B andl'[E]
=1'"{E}, then E] is nuclear.

It is known that the metrizable space or the dual metrizable space has
property B (Pietsch [15] Theorem 1.5.8). We prove that the property B is
retained by the projective or inductive limit operation.
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Proposition 1. (1) If each E, has property B, then the projective limit
lim E, has property B.

(2) Let E=1limE, be the strict inductive limit. Suppose that each E, has

property B and every bounded set B of E is contained and bounded in E, for
some k (k depends on B). Then E has property B.

Proof. (1) Let % be bounded in ['{E}. Let x,:E — E, be the canonical
mapping. Then 7, (%) ={(m,x,)z,:(x,)e F} is bounded in I'{E,} for every n.

By the property B of E,, there exists a bounded set B, in E, such that
sup{X7, pp (T,x,) : (x,)€ Z}<1 for every n. We set B={xe€E : ¥, 27" p,

n-t

*(m,x)<1}. Then B is bounded in E and it holds that py(x) =¥, 27" p, (7,x). So

n=l
we have Y- pp(x)<Y7 2™ < forevery (x,)e % .
(2) Let & cI'{E} be bounded. Then the subset C={x:i=12,.., (x,)e £}
is bounded in E. There exists k so that C < E, and C is bounded in E, . Since E
induces the topology on E,, % is contained in ['{E,} and bounded in I'{E,}.

Hence there exists a bounded subset B in E, such that Y.~ p,(x,) <1 for every
(x,)e % . This proves (2).

We investigate the property B of the strong dual E].

Lemma 2. Let E=1lmE, be the inductive limit of locally convex spaces. If

E is barrelled and if each (E,), has property B, then E] has property B.

Proof. Let & cI'{E]} be bounded, that is, sup{}.=, Py (a):(a)€ L} <o for
every bounded subset B in E. Let r,: E’ = E/ be the canonical mapping. For
every n,{(7,(a,)):(a,) € %} is bounded in I'{(E,);} since each bounded set in E,
is also bounded in E. For every n, take a closed absolutely convex bounded set
K,c(E,);, such that ¥7 p, (7,(q))<1 for every (q)es. We set

K={aeE’:Z:=12”"pK”(a)S1}. Then K is bounded in E/ since x,(K) is

bounded in (E,); for every n and E is barrelled (in fact,K* absorbs each point in
E). We have py(a)=%,,27" Pk, (a) for every ae E’(K). For each (a,)e #, we

n=|

obtain Y7 py(a,) =227 (E5 pg, (7,(a,)) S X, 27" <. Thus E; has property
B.

Proposition 2. Let E be either
(1) metrizable,

(2) dual metrizable,

(3) LF-space,
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(4) dual LF-space, or
(5) E=1imE, and E is barrelled, where E, is one of (1), (2), (3) and (4)

above. Then E] has property B.

The next Lemma shall be used in Section 4, Theorem 2.

Lemma 3. Let g be 1< g<oo. If E has property B, then for each bounded

subset B c l9{E} there exists a bounded set BC E such that Y., ps(x,)? <1 for
every (x,) €% .

Proof. Let s be 1/g+1/s=1. Then the family & ={(x,):(x,)e % and
Iz)l, <1} is bounded in ['{E} since it holds that for every zero neighborhood U
2Py x ) S (I (X, py (X)) < (X py(x;,)7)V and since % is bounded in
/9{E}. By property B, there exists a bounded set B of E such that for every
(tx,)e s/ it holds X2 pp(tx,)=3.|tIps(x;)<1. Thus for every (u,)e/ with
e ), <1, we have [3,u,py(x)| <3, py(ujx,)<1. By the duality of 4 and £, it

oo

follows that Y2, py(x,)? <1 for every (x,) € & , which shows the assertion.
§4. Converse of Minlos’ Theorem

Lemma 4. Let F, G be Banach spaces, y:G — F be a continuous linear
mapping and Y’:F’— G’ be the adjoint of y. Let (a,)C F’ be Y7 [(x,a,)| <o
for every x € F and U be a continuous discrete 1-stable cylinder set measure on
F’ with u~(x)=exp(-X7[(x.a,)|). Suppose that the image w’(u) is o(G’,G)-
Radon on G!. Then it holds that 37,||y’(a,)|,. <ee.

Proof. We follow Linde [7], Cor. 6.5.2 and Maurey [8], Prop.2b). For every
N let A, 7, be the cylinder set measures on G’ with

A" (@) =exp(=X Kz, y’(a,)))

n=|

T, (@) =exp(- YKz ¥’(@,))), z€G.
n=N+I
Then we have A4,#*7, = w’(u) as cylinder set measures, where * denotes the
convolution. Since y’(u) is o(G’,G)-Radon, 4, and 7, are also 6(G’,G)-
Radon, see Okazaki [13], Lemma 1.
For 0 < g < 1 it holds that
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[ et ary@= | | 1atar,@dz, o)
G’ G'JG’
<20 | (la+ bt +la= bl A, (@), (®)
G'YG’

<2 | Jalt, dy'(w)(a),
|

since [24al. <lla+blE. +lla— bl and 7, is symmetric, see Hoffmann-Jgrgensen
[4], Theorem 2.6.
Let {f,(w)} be a sequence of independent identically distributed symmetric

1-stable random variables on a probability space (Q,P) with the characteristic
functional e™. Let g be fixed such that 0 < g < 1. For every N, we set

N
Sy(@)=3 y'(a,)f,(@).

n—1

Sy is a random variable which values in a finite-dimensional subspace of G’ and
the distribution of S, is A,. If we set

HN(w) = 11!!2,]\(] " w’(an )fn(a))“G’

then by Kwapien [6], Remark 1, it follows that

[ Hu@rar) <] s, @l ap)
Q Q

= Sj lall%. dAy(a).
|
Consequently, we have
LHNm)qu(w) <8 2 [ Jalltdy (w)(a).
|

Since y’(u) is a 1-stable 0(G’,G)-Radon measure on G’ and 0 < g < 1, we
have

L= lalt dy (@) <<=,
G
see de Acosta [1], Linde [7] , Cor. 6.7.5. Thus we have
[ v 1v@)s. @l dP@)<8 2L <o
Q lsns

forevery N=1,2, - .Letting N — o, we have
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[ s 1w, @l @) <=
Hence there exists R > 0 such that

P(: sup || y(a,)f, (@) < R) =]T{1-P(w:|f, (@) > R/|ly"(a,)];)} >0,

n=1
where we have used the independence of {f, (®)}. This implies that
% P@:lf,(@)]> Rl wa,)s <o
n-1

We remark that for every n.
f lv(a,)f,(@)%dP(w) =y (a, )II"G'_LIf,, () *dP(0)<82L,
Q

that is, sup|y’(a, )|, <. Furthermore, it is known that P(w:|f,(®)|>1)~t" as

t — oo, so we obtain for sufficiently large R.
P(w:lfn ((D)| > R/I[ y/’(an )"G’) ~ " W,(an )"G’ / R

Hence it follows that Y [y”’(a,)l g < e°.

n=1

Remark 1. If w’(u) is Radon with respect to the dual norm of G’, then

Lemma 4 is a direct consequence of the fact “every Banach space is of cotype 1-
stable”, see Linde [7], Cor. 6.5.2 and Maurey [8], Prop. 2 b).

Lemma 5. Let E be a barrelled locally convex Hausdorff space. Suppose
that each continuous discrete 1-stable cylinder set measure on E’ is o(E’,E)-
Radon. Then it holds that I'[E!]1=1'(E}).

Proof. Let (a,)€l'[E], that is, Y|(x,a,) < for every xe E. Since the
=1

semi-norm |x|=Y |(x,q,)| is lower semicontinuous on E, |x| is continuous by the
=1

barrelledness. The continuous discrete 1-stable cylinder set measure g on E’
with u*(x)=exp(-X|(x,a,)),x € E, is o(E’,E)-Radon. We can take a 6(E",E)-
=1

compact set K < E! of the form K=U*,U e U.(E), satisfying that (K)>0 and
[u~(x)—1]<1/2 for xeU by the barrelledness and the continuity of u~(x).
Consider the Banach space E’(K)=unK with the unit ball K. By the 0-1 law of
a stable measure, it follows that u(E’(K))=1, see Dudley and Kanter [3]. Thus u
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is a o(E’(K), E(U))-Radon measure. We claim that (a,) c E’(K). Take / <o so
that |exp(—|ff)—1|<1/2 implies |f|< /. Hence for every xeU, it follows that
|(x,a,)|</ and a,€ Z/U°=/K, that is, (a;)c /K. By Lemma 4, we obtain
Y pi(a,) < oo, which shows (q;) €I'(E}).

=1

We introduce a class .# of locally convex spaces as follows. .#Z is the set
of all barrelled locally convex Hausdorff space E such that the strong dual E]

has property B. .# contain LF-spaces and barrelled DF-spaces..#Z is closed
under the operation taking a countable inductive limit (Proposition 2).

Theorem 1. Let E € # and suppose that every continuous discrete 1-stable
cylinder set measure on E’ is 6(E’,E)-Radon. Then E is nuclear.

Proof. By Lemma 5, we have I'[E/]=I'{E]}. By Lemma 1, it follows that
(E}); is nuclear. Since E is barrelled, the topology of E is induced from (E});,

which proves the Theorem.

In Theorem 1, we can not replace “1-stable” by “Gaussian” in general. We give
an example later on.

Lemma 6. Let 2<g<o, E be a Banach space and G =E] be the dual
Banach space. Suppose that G is of cotype q. Let (a,) G be ¥, [(x,a,)’< o for
every x€E. If the continuous Gaussian cylinder set measure [ with

ur(x) =exp(-X,(x,a,)?) is (G, E)-Radon, then it holds that ¥ |a,|% <.

n=1

Proof. For every N, let A, T, be the cylinder set measures on G with

N
Ay"(x) = exp(=2, [(x.a,)),

n=l1

7" (x) =exp(— Y [(x,a,)|?), x € E.

n=N+l

Then we have 4, * 7, =pu . Since G is of cotype g, there exists K > 0 such that

N l/g N
[Stos | <k Sas @ ape
1

n= 0 n=l

=K Lnanc dAy(a)
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< quauG dii(a)

for every N by the manner same to Lemma 4. Since g is Gaussian, this last
integral is finite, which implies the assertion.

Theorem 2. Let g be2<g<o. Let E be a locally convex Hausdorff space
with a fundamental system {U,} of zero neighborhoods such that the dual
EWU,) =E'(Uy) is of cotype q . Suppose that E€.# and each continuous
Gaussian cylinder set measure on E’ is 6(E’,E)-Radon. Then E is nuclear.

Proof. Firstly, we show that [2[E}]c l7(E]) c l7{E}}. Let (a;) € [*[E]], that

is, for every zero neighborhood W of E, sup{2|(x,a,.)|2 (X € W°} <eoo. Then

=1
oo 172
h(x)=(2|(x,a,)|2) is continuous on E since E is barrelled and h(x) is lower
=1

semicontinuous. Hence exp(—h(x)?) determines continuous Gaussian cylinder
set measure U4 on E’ with u~(x)=exp(-h(x)?) taking T:E— /4 be
T(x)=({x,a,)). By the assumption, u is o(E’,E)-Radon and so there exists «
such that u(E’(U;)) =1 by the 0-1 law of a Gaussian measure, see the proof of

Lemma 5. Since El’/; is of cotype q it follows that pzlpué (a,)? <eo by Lemma 6.

Secondly, we show that each bounded set % in [>[E]] is bounded also in
l7[E]]. For every zero neighborhood W in E], there exists M, >0 such that

sup sup{Zl(x,a,)l2 x € W“} <M,.
=1

(a)es
Suppose that % is not bounded in [?{E}}, that is, there is a zero neighborhood V

in E] such that sup{z p,(a):(a)e 95’} =oo_ For every n, take N, and (a!)e &
=1
N, oo
such that Y p (a")?>2". Remark that sup{ZKx, a:xeVe,n=12,.1}
=1 =1

=C‘,2 <eo since Z is bounded in [*[E;]. Then we have for the sequence

w N,
n=12,..} and for every xeV.,3 Y|x,27"a")?<

n=l =1

{2™a"1<i<N,

n?

- A =
¥ 272C,> <eo. On the other hand, ¥ ¥ p,(27"a")’ 2 ¥ 272" <o, which con-

n=l1 n=l =1 n=l
tradicts to I*[E]]1c l7{E}}.

Thirdly, we prove that for every «, there exists B such that
E’(U;,U;):E’(U;)%E’(U;) is (g,2)-summing. For every o,A=U; is a
bounded set in E]. We set Z={(a,)el’[E]]:€2((a))=sup{3, [(x,a,)*:
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x€A°}<1}. Since A is bounded in E}, % is bounded in [?[E]]. Thus #Z is
bounded in [?[E]] by the second step. By Lemma 3, there exists a bounded

absolutely convex closed subset B in E] such that ¥ p;(q,)? <1 for every
=1

(a,)€ #. We can assume that B=U; for some B with Uy cU, since E is
barrelled. So we obtain (anué (a,))"1 < sup{(Z,|(x,a,)*)"?; Py, (x) <1}, which

shows the assertion.

Lastly, we show that for every « there exists B such that
E’(U;,U[,):E’(U;)—) E"(Up) is 2-summing. Let a be arbitrarily fixed. By the
third step, there exists «, such that the canonical injection E’(U(‘;,U;‘ ) is (g,2)-
summing. Similarly we can find @, such that E'(U; ,U; ) is (g, 2)-summing.
Repeatedly, we can find @,,,,...,a, such that E'(U; ,U; ) is (g,2)-summing
for every i. Let k be k>g/2. Then the k-composition E’(U,.U; )
=E’(U;‘_I,U;‘)o---oE’(U;,U;;I) is 2-summing by Tomczak-Jaegermann [19],
Theorem 22.5, since each E’(Uy, ) is of cotype g. This completes the proof.

Remark 2. In general, E is not necessarily nuclear even if each continuous
cylinder set measure on E’ is o(E’,E)-Radon. For example, let 7, be the

Sazonov topology on the infinite-dimensional Hilbert space H and consider
E=(H,1,), see Sazonov [16]. Then E is not nuclear but each continuous

cylinder set measure on E’ is o(E’, E)-Radon, see Yamasaki [21], §20.

Counterexample. Let E be a Fréchet space. Suppose that each continuous
Gaussian cylinder set measure on E’ is o -additive. Then can we conclude that
E is nuclear? The answer is in general negative. We give a counterexample. The
following result is well-known, see Schwartz [16].

Lemma 7. Let G, F be Banach spaces and y:G — F be a continuous linear
operator. Let Yy’ be the adjoint of Yy and 0<r<oo. Suppose that Yy’ is r-
summing. Then for every Gaussian cylinder set measure [l on F’, the image
y’(u) is 0(G’,G)-Radon.

Example. Let D, =(n""»"") = :/ — / be the diagonal operator given by

n=l1

D,((x,) = (n""""x,) =, (x,) € /..

n=1>

Let E be the projective limit of {/,D}Z,. Explicitely, E is given by

n=l

E - {(xll) e Rm: zn_(l/?-)rH | xlll < ° for eaCh j} ' Let E-I = {(x") : |('xl'l )I_[ = zll n_(IIZ)’+]|xH|

<o} with seminorm | | . Then we have E=n E, and
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identit
E, «—Y F
(n(l/2)l ) (n—(1/2)/“‘ )
isometry isometry
4 p— 4

7
Then the dual E’ is the inductive limit of {/,D;}, where D;:/ — / be
D ((x,)= (n~w2™ x,). For every k, the composition D, e D, o....o D1 £, — 2, is

the diagonal operator (n~/**¥“") which is not 2-summing for every k. Remark
that the diagonal operator A=(a,):Z, — /4 (or into /Z is r-summing if and only

if (a,)€ /. Thus E is not nuclear. We remark that each D, is 2/**-summing

since
Z(n—(uz)”' )21+2 — z n?<oo,
n=1 n=1

By Lemma 7, for each continuous Gaussian cylinder set measure on E; is
o-additive on E7,, since the natural injection i, :E/ — E/, is 2/*?-summing.
Hence each continuous Gaussian cylinder set measure on E’ is also o(E’,E)-
Radon.

Remark 3. In the above example, D, is in fact defined on 4 into 4
which is also 2/*2-summing. And the composition D, o D, o---0 D,:/, = Z,., is

not 2-summing. This shows that, in Theorem 2, we can not relax the condition
“E’(U;) is of cotyple ¢” by “E’(U;) is of finite cotype”. In Theorem 2, g must
be uniform for every E,, .
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