The Converse of Minlos' Theorem

Dedicated to Professor Tsuyoshi Ando on the occasion of his sixtieth birthday

Ву

Yoshiaki OKAZAKI* and Yasuji TAKAHASHI**

Abstract

Let \mathscr{M} be the class of barrelled locally convex Hausdorff space E such that E_b' satisfies the property B in the sense of Pietsch. It is shown that if $E \in \mathscr{M}$ and if each continuous cylinder set measure on E' is $\sigma(E',E)$ -Radon, then E is nuclear. There exists an example of non-nuclear Fréchet space E such that each continuous Gaussian cylinder set measure on E' is $\sigma(E',E)$ -Radon. Let Q be $Q \leq Q < \infty$. Suppose that $Q \in \mathscr{M}$ and $Q \in \mathbb{R}$ is a projective limit of Banach space $Q \in \mathbb{R}$ such that the dual $Q \in \mathbb{R}$ is of cotype $Q \in \mathbb{R}$ for every $Q \in \mathbb{R}$ suppose also that each continuous Gaussian cylinder set measure on $Q \in \mathbb{R}$ is $Q \in \mathbb{R}$ -Radon. Then $Q \in \mathbb{R}$ is nuclear.

§1. Introduction

Let E be a nuclear locally convex Hausdorff space, then each continuous cylinder set measure on E' is $\sigma(E',E)$ -Radon (Minlos' theorem, see Badrikian [2], Gelfand and Vilenkin [4], Minlos [11], Umemura [20] and Yamasaki [21]). We consider the converse problem. Let E be a locally convex Hausdorff space. If each continuous cylinder set measure on E' is $\sigma(E',E)$ -Radon, then is E nuclear? The partial answers are known as follows.

- (1) If E is a σ -Hilbert space or a Fréchet space, then the answer is affirmative (see Badrikian [2], Gelfand and Vilenkin [4], Minlos, [11], Mushtari [12], Umemura [20] and Yamasaki [21]).
- (2) If E is barrelled and if E is a projective limit of L^0 -embeddable Banach spaces, then the answer is affirmative (see Millington [10], Mushtari [12], Okazaki and Takahashi [14]).

Communicated by T. Kawai, February 28, 1994.

¹⁹⁹¹ Mathematics Subject Classifications: 60B11, 28C20

^{*} Department of Control Engineering & Science, Kyushu Institute of Technology, Iizuka, Fukuoka 820, Japan.

^{**} Department of System Engineering, Okayama Prefectural University, Soja, Okayama 719-11, Japan.

In this paper, we shall extend the case (1) for more general locally convex spaces. We introduce a class \mathcal{M} in Section 4. \mathcal{M} is the class of all barrelled locally convex Hausdorff space E such that the strong dual E_b' satisfies the property B in the sense of Pietsch (Pietsch [15] 1.5.5). The class \mathcal{M} contain LF-spaces, barrelled DF-spaces and inductive limits of them. We prove the next theorem.

Theorem. Let $E \in \mathcal{M}$. If each continuous discrete 1-stable cylinder set measure on E' is $\sigma(E', E)$ -Radon, then E is nuclear.

For the Gaussian cylinder set measures, the following result is well-known.

(3) Let E be a σ -Hilbert space. If each continuous Gaussian cylinder set measure on E' is $\sigma(E',E)$ -Radon, then E is nuclear (see Gelfand and Vilenkin [4], Minlos [11], Umemura [20] and Yamasaki [21]).

In general, we can not conclude that E is nuclear even if each continuous Gaussian cylinder set measure on E' is $\sigma(E',E)$ -Radon. We give a counter example. In this case, we prove the next result.

Theorem. Let $2 \le q < \infty$ be fixed and $E \in \mathcal{M}$. Suppose that E is a projective limit of Banach spaces $\{E_{\alpha}\}$ such that the dual E'_{α} is of cotype q for every α . Suppose also that each continuous Gaussian cylinder set measure on E' is $\sigma(E', E)$ -Radon. Then E is nuclear.

§2. Preliminaries

Let E be a locally convex Hausdorff space and E' be the topological dual of E. Denote by E'_b (resp. E'_s) the dual with the strong dual topology $\beta(E', E)$ (resp. weak * topology $\sigma(E', E)$). The strong bidual of E is denoted by $(E'_b)'_b$. Let μ be a cylinder set measure on E'. Then we say that μ is a continuous cylinder set measure if the characteristic functional

$$\mu^{\wedge}(x) = \int_{E'} e^{\iota\langle x, a \rangle} d\mu(a), \ x \in E,$$

is continuous on E.

The cylinder set measure μ on E' is called a continuous discrete p-stable cylinder set measure on E' if the characteristic functional $\mu^{\wedge}(x)$ is given by

$$\mu^{\wedge}(x) = \exp(-\|T(x)\|_{L_{p}}^{p}), x \in E,$$

where $T: E \to \mathbb{Z}_p$ is a continuous linear operator and 0 . In the sequel, we consider only the cases <math>p = 1 and 2. In the case where $p = 2, \mu$ is called a continuous Gaussian cylinder set measure. See Linde [7].

Let F,G be normed spaces and 0 < q, $r < \infty$. A linear operator $S: F' \to G'$ is called (q,r)-summing if for every $\{a_n\} \subset F'$ with $\sum_{n=1}^{\infty} |\langle x,a_n \rangle|^r < \infty$ for every $x \in F$, it holds that $\sum_{n=1}^{\infty} ||S(a_n)||_{G'}^q < \infty$. A linear operator $T: F \to G$ is called (q,r)-summing if for every $\{x_n\} \subset F$ with $\sum_{n=1}^{\infty} |\langle x_n,a \rangle|^r < \infty$ for every $a \in F'$, it holds that $\sum_{n=1}^{\infty} ||T(x_n)||_{G}^q < \infty$. In the case where r = q, S and T are called r-summing, see Pietsch [15], Schwartz [18] and Tomczak-Jaegermann [19].

Let G be a Banach space and $2 \le q < \infty$. G is called of cotype q if there exists K > 0 such that for every n and every $z_1, z_2, \ldots, z_n \in G$, it holds that

$$\left[\sum_{i=1}^n \|z_i\|_G^q\right]^{1/q} \leq K \int_{\Omega} \|\sum_{i=1}^n g_i(\omega)z_i\|_G dP(\omega),$$

where $\{g_i\}$ is a sequence of independent identically distributed Guassian random variables on a probability space (Ω, P) with the characteristic functional $e^{-|t|^2}$, see Linde [7], Maurey and Pisier [9], Tomczak-Jaegermann [19].

Let E be a locally convex Hausdorff space. For a closed absolutely convex neighborhood U of 0, we set $N(U) = \{x \in E: p_U(x) = 0\}$ where $p_U(x) = \inf\{t > 0: x \in tU\}$. Denote by x(U) the equivalence class corresponding to $x \in E$ in the quotient space E(U) = E/N(U). E(U) is a normed space with norm $p[x(U)] = p_U(x)$ for $x \in E$.

For a closed absolutely convex bounded subset A of E, we set $E(A) = \{x \in E: x \in tA \text{ for some } t > 0\}$. E(A) is a linear subspace of E. We put the norm on E(A) by $P_A(x) = \inf\{t > 0: x \in tA\}$ for $x \in E(A)$.

For a neighborhood U of 0 in E, the polar $U^{\circ} = \{a \in E' : |\langle x, a \rangle| \le 1 \text{ for every } x \in U \}$ is weakly compact absolutely convex subset of E'_s . The normed space $E'(U^{\circ})$ is a Banach space and $E(U)' = E'(U^{\circ})$ by the duality $\langle x(U), a \rangle = \langle x, a \rangle$.

For two zero neighborhoods U, V with $V \subset U$, we define a canonical mapping E(V,U): $E(V) \to E(U)$ by associating x(U) with x(V).

For two closed absolutely convex bounded subsets A and B with $A \subset B$, it holds that $E(A) \subset E(B)$ and the canonical mapping E(A,B): $E(A) \to E(B)$ is defined by E(A,B)(x) = x for $x \in E(A)$.

A locally convex Hausdorff space E is called nuclear if it contains a fundamental system $U_F(E)$ of zero neighborhoods which has the following equivalent properties (see Pietsch [15], 4.1.2):

 (N_1) For each $U \in U_F(E)$ there exists $V \in U_F(E)$ with $V \subset U$ such that the canonical mapping $E(V,U): E(V) \to E(U)$ is 2-summing.

 (N_2) For each $U \in U_F(E)$ there exists $V \in U_F(E)$ with $V \subset U$ such that the canonical mapping $E'(U^\circ, V^\circ): E'(U^\circ) \to E'(V^\circ)$ is 2-summing.

A locally convex Hausdorff space E is called dual nuclear if the strong dual E'_b is nuclear. For other basic notions of locally convex spaces, we refer to Schaefer [17].

§3. Summability and Dual Nuclearity

Let E be a locally convex Hausdorff space and $1 \le p < \infty$. A sequence $(x_n) \subset E$ is called weakly p-summable if for every neighborhood U of 0, it holds that

$$\mathcal{E}_{U}^{p}((x_{n})) = \sup\{(\sum_{n=1}^{\infty} |\langle x_{n}, a \rangle|^{p})^{1/p} \colon a \in U^{\circ}\} < \infty$$

Denote by $l^p[E]$ the linear space of all weakly p-summable sequences. The topology of $l^p[E]$ given by the seminorms \mathcal{E}_U^p , $U \in U_F(E)$, is called the ε -topology where $U_F(E)$ is a fundamental system of zero neighborhoods of E.

A sequence $(x_n) \subset E$ is called absolutely *p*-summable if for every neighborhood U of 0, it holds that

$$\pi_U^p((x_n)) = (\sum_{n=1}^{\infty} p_U(x_n)^p)^{1/p} < \infty.$$

Denote by $l^p\{E\}$ the linear space of all absolutely *p*-summable sequences. The topology of $l^p\{E\}$ given by the seminorms π_U^p , $U \in U_F(E)$, is called the π -topology, where $U_F(E)$ is a fundamental system of zero neighborhoods of E. It holds that $(l^p\{E\}, \pi^p) \subset (l^p\{E\}, \mathcal{E}^p)$, where the inclusion is a continuous injection.

A sequence $(x_n) \subset E$ is called totally p-summable if there exists a closed absolutely convex bounded subset B such that $\sum_{n=1}^{\infty} p_B(x_n)^p < \infty$. Denote by $l^p \langle E \rangle$ the linear space of all totally p-summable sequences. It is clear that $l^p \langle E \rangle \subset l^p \langle E \rangle$.

It is called that E has property B if for each bounded subset $\mathscr{B} \subset l^1\{E\}$ there exists a bounded set $B \subset E$ such that $\sum_{n=1}^{\infty} p_B(x_n) \le 1$ for every $(x_n) \in \mathscr{B}$, see Pietsch [15], 1.5.5. If E has property B, then it holds that $l^1\{E\} \subset l^1\langle E \rangle$.

The nuclearity of the strong dual E_b' is characterized by the above summabilities as follows.

Lemma 1 (Pietsch [15] Theorem 4.2.11). If E has property B and $l^1[E] = l^1\{E\}$, then E'_b is nuclear.

It is known that the metrizable space or the dual metrizable space has property B (Pietsch [15] Theorem 1.5.8). We prove that the property B is retained by the projective or inductive limit operation.

Proposition 1. (1) If each E_n has property B, then the projective limit $\lim_{n \to \infty} E_n$ has property B.

- (2) Let $E = \lim_{N \to \infty} E_n$ be the strict inductive limit. Suppose that each E_n has property B and every bounded set B of E is contained and bounded in E_k for some k (k depends on B). Then E has property B.
- *Proof.* (1) Let \mathscr{B} be bounded in $l^1\{E\}$. Let $\pi_n : E \to E_n$ be the canonical mapping. Then $\pi_n(\mathscr{B}) = \{(\pi_n x_i)_{i=1}^{\infty} : (x_i) \in \mathscr{B}\}$ is bounded in $l^1\{E_n\}$ for every n. By the property B of E_n , there exists a bounded set E_n in E_n such that $\sup\{\sum_{i=1}^{\infty} p_{B_n}(\pi_n x_i) : (x_i) \in \mathscr{B}\} \le 1$ for every n. We set $E_n = \{x \in E : \sum_{n=1}^{\infty} 2^{-n} p_{B_n}(\pi_n x_i) : (\pi_n x_i) \le 1\}$. Then E_n is bounded in E_n and it holds that $E_n = \sum_{n=1}^{\infty} 2^{-n} p_{B_n}(\pi_n x_i)$. So we have $E_n = \sum_{i=1}^{\infty} p_{E_n}(\pi_n x_i) \le \sum_{i=1}^{\infty} 2^{-n} < \infty$ for every $E_n = \mathbb{B}$.
- (2) Let $\mathscr{B} \subset l^1\{E\}$ be bounded. Then the subset $C = \{x_i : i = 1, 2, ..., (x_j) \in \mathscr{B}\}$ is bounded in E. There exists k so that $C \subset E_k$ and C is bounded in E_k . Since E induces the topology on E_k , \mathscr{B} is contained in $l^1\{E_k\}$ and bounded in $l^1\{E_k\}$. Hence there exists a bounded subset E in E such that $\sum_{i=1}^{\infty} p_{E}(x_i) \leq 1$ for every E of E. This proves (2).

We investigate the property B of the strong dual E'_h .

Lemma 2. Let $E = \lim_{n \to \infty} E_n$ be the inductive limit of locally convex spaces. If E is barrelled and if each $(E_n)'_b$ has property B, then E'_b has property B.

Proof. Let $\mathscr{B} \subset l^1\{E_b'\}$ be bounded, that is, $\sup\{\sum_{i=1}^\infty p_{\mathcal{B}^\circ}(a_i): (a_i) \in \mathscr{B}\} < \infty$ for every bounded subset B in E. Let $\pi_n: E' \to E_n'$ be the canonical mapping. For every $n, \{(\pi_n(a_i)): (a_i) \in \mathscr{B}\}$ is bounded in $l^1\{(E_n)_b'\}$ since each bounded set in E_n is also bounded in E. For every n, take a closed absolutely convex bounded set $K_n \subset (E_n)_b'$ such that $\sum_{i=1}^\infty p_{K_n}(\pi_n(a_i)) \le 1$ for every $(a_i) \in \mathscr{B}$. We set $K = \{a \in E': \sum_{n=1}^\infty 2^{-n} p_{K_n}(a) \le 1\}$. Then K is bounded in E_b' since $\pi_n(K)$ is bounded in $(E_n)_b'$ for every n and E is barrelled (in fact, K° absorbs each point in E). We have $p_K(a) = \sum_{n=1}^\infty 2^{-n} p_{K_n}(a)$ for every $a \in E'(K)$. For each $(a_i) \in \mathscr{B}$, we obtain $\sum_{i=1}^\infty p_K(a_i) = \sum_{n=1}^\infty 2^{-n} (\sum_{i=1}^\infty p_{K_n}(\pi_n(a_i)) \le \sum_{n=1}^\infty 2^{-n} < \infty$. Thus E_b' has property B.

Proposition 2. Let E be either

- (1) metrizable,
- (2) dual metrizable,
- (3) LF-space,

- (4) dual LF-space, or
- (5) $E = \lim_{n \to \infty} E_n$ and E is barrelled, where E_n is one of (1), (2), (3) and (4) above. Then E'_b has property B.

The next Lemma shall be used in Section 4, Theorem 2.

Lemma 3. Let q be $1 \le q < \infty$. If E has property B, then for each bounded subset $\mathcal{B} \subset l^q\{E\}$ there exists a bounded set $B \subset E$ such that $\sum_{n=1}^{\infty} p_B(x_n)^q \le 1$ for every $(x_n) \in \mathcal{B}$.

Proof. Let s be 1/q + 1/s = 1. Then the family $\mathscr{A} = \{(t_i x_i): (x_i) \in \mathscr{B} \text{ and } \|(t_i)\|_{L_i} \le 1\}$ is bounded in $l^1\{E\}$ since it holds that for every zero neighborhood U $\sum_{i=1}^{\infty} p_U(t_i x_i) \le (\sum_i |t_i|^s)^{1/s} (\sum_i p_U(x_i)^q)^{1/q} \le (\sum_i p_U(x_i)^q)^{1/q}$ and since \mathscr{B} is bounded in $\mathscr{L}^q\{E\}$. By property B, there exists a bounded set B of E such that for every $(t_i x_i) \in \mathscr{A}$ it holds $\sum_{i=1}^{\infty} p_B(t_i x_i) = \sum_{i=1}^{\infty} |t_i| p_B(x_i) \le 1$. Thus for every $(u_i) \in \mathscr{E}$ with $\|u_i\|_{L_i} \le 1$, we have $|\sum_i u_i p_B(x_i)| \le \sum_i p_B(|u_i|x_i) \le 1$. By the duality of \mathscr{L}_s and \mathscr{L}_q , it follows that $\sum_{i=1}^{\infty} p_B(x_i)^q \le 1$ for every $(x_i) \in \mathscr{B}$, which shows the assertion.

§4. Converse of Minlos' Theorem

Lemma 4. Let F, G be Banach spaces, $\psi: G \to F$ be a continuous linear mapping and $\psi': F' \to G'$ be the adjoint of ψ . Let $(a_i) \subset F'$ be $\sum_{i=1}^{\infty} |\langle x, a_i \rangle| < \infty$ for every $x \in F$ and μ be a continuous discrete 1-stable cylinder set measure on F' with $\mu^{\wedge}(x) = \exp(-\sum_{i=1}^{\infty} |\langle x, a_i \rangle|)$. Suppose that the image $\psi'(\mu)$ is $\sigma(G', G)$ -Radon on G'. Then it holds that $\sum_{i=1}^{\infty} \|\psi'(a_i)\|_{G'} < \infty$.

Proof. We follow Linde [7], Cor. 6.5.2 and Maurey [8], Prop.2b). For every N let λ_N , τ_N be the cylinder set measures on G' with

$$\lambda_N^{\hat{}}(z) = \exp(-\sum_{n=1}^N |\langle z, \psi'(a_n) \rangle|)$$

$$\tau_N^{\ \ \ }(z) = \exp(-\sum_{n=N+1}^{\infty} |\langle z, \psi'(a_n) \rangle|), \ z \in G.$$

Then we have $\lambda_N * \tau_N = \psi'(\mu)$ as cylinder set measures, where * denotes the convolution. Since $\psi'(\mu)$ is $\sigma(G',G)$ -Radon, λ_N and τ_N are also $\sigma(G',G)$ -Radon, see Okazaki [13], Lemma 1.

For 0 < q < 1 it holds that

$$\begin{split} & \int_{G'} \|a\|_{G'}^q d\lambda_N(a) = \int_{G'} \int_{G'} \|a\|_{G'}^q d\lambda_N(a) d\tau_N(b) \\ & \leq 2^{-q} \int_{G'} \int_{G'} (\|a+b\|_{G'}^q + \|a-b\|_{G'}^q) d\lambda_N(a) d\tau_N(b) \\ & \leq 2^{1-q} \int_{G'} \|a\|_{G'}^q d\psi'(\mu)(a), \end{split}$$

since $||2a||_{G'}^q \le ||a+b||_{G'}^q + ||a-b||_{G'}^q$ and τ_N is symmetric, see Hoffmann-Jørgensen [4], Theorem 2.6.

Let $\{f_n(\omega)\}$ be a sequence of independent identically distributed symmetric 1-stable random variables on a probability space (Ω, P) with the characteristic functional $e^{-|q|}$. Let q be fixed such that 0 < q < 1. For every N, we set

$$S_N(\omega) = \sum_{n=1}^N \psi'(a_n) f_n(\omega).$$

 S_N is a random variable which values in a finite-dimensional subspace of G' and the distribution of S_N is λ_N . If we set

$$H_N(\omega) = \max_{1 \le n \le N} \| \psi'(a_n) f_n(\omega) \|_{G}$$

then by Kwapien [6], Remark 1, it follows that

$$\int_{\Omega} H_{N}(\omega)^{q} dP(\omega) \le 8 \int_{\Omega} ||S_{N}(\omega)||_{G}^{q} dP(\omega)$$

$$= 8 \int_{G'} ||a||_{G'}^{q} d\lambda_{N}(a).$$

Consequently, we have

$$\int_{\Omega} H_N(\omega)^q dP(\omega) \leq 8 2^{1-q} \int_{G'} ||a||_{G'}^q d\psi'(\mu)(a).$$

Since $\psi'(\mu)$ is a 1-stable $\sigma(G',G)$ -Radon measure on G' and 0 < q < 1, we have

$$L = \int_{G'} ||a||_{G'}^q d\psi'(\mu)(a) < \infty,$$

see de Acosta [1], Linde [7], Cor. 6.7.5. Thus we have

$$\int_{\Omega} \max_{1 \le n \le N} \| \psi'(a_n) f_n(\omega) \|_{G}^q dP(\omega) \le 8 \ 2^{1-q} L < \infty$$

for every $N = 1, 2, \cdots$. Letting $N \to \infty$, we have

$$\int_{\Omega} \sup_{n} \| \psi'(a_{n}) f_{n}(\omega) \|_{G}^{q}, dP(\omega) < \infty$$

Hence there exists R > 0 such that

$$P(\omega: \sup_{n} \| \psi'(a_{n}) f_{n}(\omega) \|_{G'} \le R) = \prod_{n=1}^{\infty} \{ 1 - P(\omega: |f_{n}(\omega)| > R/\|\psi'(a_{n})\|_{G'}) \} > 0,$$

where we have used the independence of $\{f_n(\omega)\}\$. This implies that

$$\sum_{n=1}^{\infty} |P(\omega)| |f_n(\omega)| > R/\| |\psi'(a_n)||_{G'} < \infty.$$

We remark that for every n.

$$\int_{\Omega} \| \psi'(a_n) f_n(\omega) \|_{G^{r}}^{q} dP(\omega) = \| \psi'(a_n) \|_{G^{r}}^{q} \int_{\Omega} |f_n(\omega)|^{q} dP(\omega) \le 8 2^{1-q} L,$$

that is, $\sup_{n} \|\psi'(a_n)\|_{G'} < \infty$. Furthermore, it is known that $P(\omega: |f_n(\omega)| > t) \sim t^{-1}$ as $t \to \infty$, so we obtain for sufficiently large R.

$$P(\omega:|f_n(\omega)| > R / \|\psi'(a_n)\|_{G'}) \sim \|\psi'(a_n)\|_{G'} / R.$$

Hence it follows that $\sum_{n=1}^{\infty} \|\psi'(a_n)\|_{G'} < \infty$.

Remark 1. If $\psi'(\mu)$ is Radon with respect to the dual norm of G', then Lemma 4 is a direct consequence of the fact "every Banach space is of cotype 1-stable", see Linde [7], Cor. 6.5.2 and Maurey [8], Prop. 2 b).

Lemma 5. Let E be a barrelled locally convex Hausdorff space. Suppose that each continuous discrete 1-stable cylinder set measure on E' is $\sigma(E', E)$ -Radon. Then it holds that $l^1[E'_{\bullet}] = l^1 \langle E'_{h} \rangle$.

Proof. Let $(a_i) \in l^1[E'_i]$, that is, $\sum_{i=1}^{\infty} |\langle x, a_i \rangle| < \infty$ for every $x \in E$. Since the semi-norm $|x| = \sum_{i=1}^{\infty} |\langle x, a_i \rangle|$ is lower semicontinuous on E, |x| is continuous by the barrelledness. The continuous discrete 1-stable cylinder set measure μ on E' with $\mu^{\wedge}(x) = \exp(-\sum_{i=1}^{\infty} |\langle x, a_i \rangle|), x \in E$, is $\sigma(E', E)$ -Radon. We can take a $\sigma(E', E)$ -compact set $K \subset E'_i$ of the form $K = U^{\circ}, U \in U_F(E)$, satisfying that $\mu(K) > 0$ and $|\mu^{\wedge}(x) - 1| < 1/2$ for $x \in U$ by the barrelledness and the continuity of $\mu^{\wedge}(x)$. Consider the Banach space $E'(K) = \bigcup nK$ with the unit ball K. By the 0-1 law of a stable measure, it follows that $\mu(E'(K)) = 1$, see Dudley and Kanter [3]. Thus μ

is a $\sigma(E'(K), E(U))$ -Radon measure. We claim that $(a_i) \subset E'(K)$. Take $\ell < \infty$ so that $|\exp(-|t|) - 1| < 1/2$ implies $|t| < \ell$. Hence for every $x \in U$, it follows that $|\langle x, a_i \rangle| < \ell$ and $a_i \in \ell U^\circ = \ell K$, that is, $(a_i) \subset \ell K$. By Lemma 4, we obtain $\sum_{i=1}^{\infty} p_K(a_i) < \infty$, which shows $(a_i) \in \ell^1 \langle E_b' \rangle$.

We introduce a class \mathcal{M} of locally convex spaces as follows. \mathcal{M} is the set of all barrelled locally convex Hausdorff space E such that the strong dual E'_b has property B. \mathcal{M} contain LF-spaces and barrelled DF-spaces. \mathcal{M} is closed under the operation taking a countable inductive limit (Proposition 2).

Theorem 1. Let $E \in \mathcal{M}$ and suppose that every continuous discrete 1-stable cylinder set measure on E' is $\sigma(E', E)$ -Radon. Then E is nuclear.

Proof. By Lemma 5, we have $l^1[E_b'] = l^1\{E_b'\}$. By Lemma 1, it follows that $(E_b')_b'$ is nuclear. Since E is barrelled, the topology of E is induced from $(E_b')_b'$, which proves the Theorem.

In Theorem 1, we can not replace "1-stable" by "Gaussian" in general. We give an example later on.

Lemma 6. Let $2 \le q < \infty$, E be a Banach space and $G = E'_b$ be the dual Banach space. Suppose that G is of cotype q. Let $(a_n) \subset G$ be $\sum_n |\langle x, a_n \rangle|^2 < \infty$ for every $x \in E$. If the continuous Gaussian cylinder set measure μ with $\mu^*(x) = \exp(-\sum_n |\langle x, a_n \rangle|^2)$ is $\sigma(G, E)$ -Radon, then it holds that $\sum_{n=1}^{\infty} ||a_n||_G^q < \infty$.

Proof. For every N, let λ_N , τ_N be the cylinder set measures on G with

$$\lambda_N^{\hat{}}(x) = \exp(-\sum_{n=1}^N |\langle x, a_n \rangle|^2),$$

$$\tau_N^{\hat{}}(x) = \exp(-\sum_{n=N+1}^\infty |\langle x, a_n \rangle|^2), \ x \in E.$$

Then we have $\lambda_N * \tau_N = \mu$. Since G is of cotype q, there exists K > 0 such that

$$\begin{split} \left[\sum_{n=1}^{N} \|a_n\|_G^q\right]^{1/q} &\leq K \int_{\mathcal{Q}} \|\sum_{n=1}^{N} a_n g_n(\omega)\|_G dP(\omega) \\ &= K \int_{G} \|a\|_G d\lambda_N(a) \end{split}$$

$$\leq \int_G \|a\|_G \, d\mu(a)$$

for every N by the manner same to Lemma 4. Since μ is Gaussian, this last integral is finite, which implies the assertion.

Theorem 2. Let q be $2 \le q < \infty$. Let E be a locally convex Hausdorff space with a fundamental system $\{U_{\alpha}\}$ of zero neighborhoods such that the dual $E(U_{\alpha})' = E'(U_{\alpha}^{\circ})$ is of cotype q. Suppose that $E \in \mathcal{M}$ and each continuous Gaussian cylinder set measure on E' is $\sigma(E', E)$ -Radon. Then E is nuclear.

Proof. Firstly, we show that $l^2[E_b'] \subset l^q \langle E_b' \rangle \subset l^q \{ E_b' \}$. Let $(a_i) \in l^2[E_b']$, that is, for every zero neighborhood W of E_b' , $\sup \left\{ \sum_{i=1}^{\infty} |\langle x, a_i \rangle|^2 : x \in W^\circ \right\} < \infty$. Then $h(x) = \left(\sum_{i=1}^{\infty} |\langle x, a_i \rangle|^2 \right)^{1/2}$ is continuous on E since E is barrelled and h(x) is lower semicontinuous. Hence $\exp(-h(x)^2)$ determines continuous Gaussian cylinder set measure μ on E' with $\mu^*(x) = \exp(-h(x)^2)$ taking $T: E \to \ell_2$ be $T(x) = (\langle x, a_i \rangle)$. By the assumption, μ is $\sigma(E', E)$ -Radon and so there exists α such that $\mu(E'(U_\alpha^\circ)) = 1$ by the 0-1 law of a Gaussian measure, see the proof of Lemma 5. Since $E'_{U_\alpha^\circ}$ is of cotype q it follows that $\sum_{i=1}^{\infty} p_{U_\alpha^\circ}(a_i)^q < \infty$ by Lemma 6.

Secondly, we show that each bounded set \mathscr{B} in $l^2[E_b']$ is bounded also in $l^q[E_b']$. For every zero neighborhood W in E_b' , there exists $M_w > 0$ such that

$$\sup_{(a_i) \in \mathcal{A}} \sup \left\{ \sum_{i=1}^{\infty} |\langle x, a_i \rangle|^2 : x \in W^{\circ} \right\} < M_w.$$

Suppose that \mathscr{B} is not bounded in $l^q\{E_b'\}$, that is, there is a zero neighborhood V in E_b' such that $\sup \left\{\sum_{i=1}^\infty p_{\nu}(a_i)^q : (a_i) \in \mathscr{B}\right\} = \infty$. For every n, take N_n and $(a_i^n) \in \mathscr{B}$ such that $\sum_{i=1}^{N_n} p_{\nu}(a_i^n)^q > 2^{nq}$. Remark that $\sup \left\{\sum_{i=1}^\infty |\langle x, a_i^n \rangle|^2 : x \in V^\circ, n = 1, 2, \ldots \right\}$ $= C_{\nu}^2 < \infty$ since \mathscr{B} is bounded in $l^2[E_b']$. Then we have for the sequence $\left\{2^{-n}a_i^n : 1 \le i \le N_n, n = 1, 2, \ldots\right\}$ and for every $x \in V^\circ, \sum_{n=1}^\infty \sum_{i=1}^{N_n} |\langle x, 2^{-n}a_i^n \rangle|^2 \le \sum_{n=1}^\infty 2^{-2n}C_{\nu}^2 < \infty$. On the other hand, $\sum_{n=1}^\infty \sum_{i=1}^N p_{\nu}(2^{-n}a_i^n)^q \ge \sum_{n=1}^\infty 2^{-nq}2^{nq} < \infty$, which contradicts to $l^2[E_b'] \subset l^q\{E_b'\}$.

Thirdly, we prove that for every α , there exists β such that $E'(U_{\alpha}^{\circ}, U_{\beta}^{\circ}) : E'(U_{\alpha}^{\circ}) \to E'(U_{\beta}^{\circ})$ is (q, 2)-summing. For every $\alpha, A = U_{\alpha}^{\circ}$ is a bounded set in E'_{b} . We set $\mathscr{B} = \{(a_{1}) \in l^{2}[E'_{b}] : \mathcal{E}_{A}^{2}((a_{1})) = \sup\{\sum_{i} |\langle x, a_{i} \rangle|^{2} : \mathcal{E}_{A}^{2}((a_{1})) = \sup\{\sum_{i} |\langle x, a_{i} \rangle|^{2}$

 $x \in A^{\circ}\} \leq 1\}$. Since A is bounded in E'_b , \mathscr{B} is bounded in $l^2[E'_b]$. Thus \mathscr{B} is bounded in $l^2[E'_b]$ by the second step. By Lemma 3, there exists a bounded absolutely convex closed subset B in E'_b such that $\sum_{i=1}^{\infty} p_B(a_i)^q \leq 1$ for every $(a_i) \in \mathscr{B}$. We can assume that $B = U^{\circ}_{\beta}$ for some β with $U_{\beta} \subset U_{\alpha}$ since E is barrelled. So we obtain $(\sum_n p_{U^{\circ}_{\beta}}(a_n)^q)^{1/q} \leq \sup\{(\sum_n |\langle x, a_n \rangle|^2)^{1/2}; p_{U^{\circ}_{\alpha}}(x) \leq 1\}$, which shows the assertion.

Lastly, we show that for every α there exists β such that $E'(U_{\alpha}^{\circ}, U_{\beta}^{\circ}) : E'(U_{\alpha}^{\circ}) \to E'(U_{\beta}^{\circ})$ is 2-summing. Let α be arbitrarily fixed. By the third step, there exists α_1 such that the canonical injection $E'(U_{\alpha}^{\circ}, U_{\alpha_1}^{\circ})$ is (q, 2)-summing. Similarly we can find α_2 such that $E'(U_{\alpha_1}^{\circ}, U_{\alpha_2}^{\circ})$ is (q, 2)-summing. Repeatedly, we can find $\alpha_1, \alpha_2, \dots, \alpha_k$ such that $E'(U_{\alpha_1}^{\circ}, U_{\alpha_{l+1}}^{\circ})$ is (q, 2)-summing for every i. Let k be k > q/2. Then the k-composition $E'(U_{\alpha}^{\circ}, U_{\alpha_k}^{\circ}) = E'(U_{\alpha_{l-1}}^{\circ}, U_{\alpha_k}^{\circ}) \circ \dots \circ E'(U_{\alpha}^{\circ}, U_{\alpha_1}^{\circ})$ is 2-summing by Tomczak-Jaegermann [19], Theorem 22.5, since each $E'(U_{\alpha_k}^{\circ})$ is of cotype q. This completes the proof.

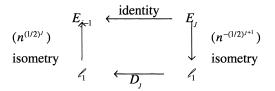
Remark 2. In general, E is not necessarily nuclear even if each continuous cylinder set measure on E' is $\sigma(E',E)$ -Radon. For example, let τ_s be the Sazonov topology on the infinite-dimensional Hilbert space E and consider $E = (H, \tau_s)$, see Sazonov [16]. Then E is not nuclear but each continuous cylinder set measure on E' is $\sigma(E',E)$ -Radon, see Yamasaki [21], §20.

Counterexample. Let E be a Fréchet space. Suppose that each continuous Gaussian cylinder set measure on E' is σ -additive. Then can we conclude that E is nuclear? The answer is in general negative. We give a counterexample. The following result is well-known, see Schwartz [16].

Lemma 7. Let G, F be Banach spaces and ψ : $G \to F$ be a continuous linear operator. Let ψ' be the adjoint of ψ and $0 < r < \infty$. Suppose that ψ' is rsumming. Then for every Gaussian cylinder set measure μ on F', the image $\psi'(\mu)$ is $\sigma(G',G)$ -Radon.

Example. Let
$$D_j = (n^{-(1/2)^{j+1}})_{n=1}^{\infty} : \ell_1 \to \ell_1$$
 be the diagonal operator given by
$$D_j((x_n)) = (n^{-(1/2)^{j+1}} x_n)_{n=1}^{\infty}, (x_n) \in \ell_1.$$

Let E be the projective limit of $\{\mathscr{E}_1, D_j\}_{j=1}^{\infty}$. Explicitely, E is given by $E = \left\{ (x_n) \in R^{\infty} : \sum_{n=1}^{\infty} n^{-(1/2)^{j+1}} |x_n| < \infty \text{ for each } j \right\}. \text{ Let } E_j = \left\{ (x_n) : |(x_n)|_j = \sum_n n^{-(1/2)^{j+1}} |x_n| < \infty \right\} \text{ with seminorm } |\cdot|_j. \text{ Then we have } E = \bigcap_j E_j \text{ and } |\cdot|_j$



Then the dual E' is the inductive limit of $\{\ell_{\infty}, D_j\}$, where $D_j : \ell_{\infty} \to \ell_{\infty}$ be $D_j((x_n)) = (n^{-(1/2)^{j+1}}x_n)$. For every k, the composition $D_k \circ D_{k-1} \circ \ldots \circ D_1 : \ell_{\infty} \to \ell_{\infty}$ is the diagonal operator $(n^{-1/2+(1/2)^{k+1}})$, which is not 2-summing for every k. Remark that the diagonal operator $A = (a_n) : \ell_{\infty} \to \ell_{\infty}$ (or into ℓ_r is r-summing if and only if $(a_n) \in \ell_r$. Thus E is not nuclear. We remark that each D_j is 2^{j+2} -summing since

$$\sum_{n=1}^{\infty} (n^{-(1/2)^{J+1}})^{2^{J+2}} = \sum_{n=1}^{\infty} n^{-2} < \infty.$$

By Lemma 7, for each continuous Gaussian cylinder set measure on E'_j is σ -additive on E'_{j+1} since the natural injection $\iota_{j+1,j}: E'_j \to E'_{j+1}$ is 2^{j+2} -summing. Hence each continuous Gaussian cylinder set measure on E' is also $\sigma(E', E)$ -Radon.

Remark 3. In the above example, D_j is in fact defined on $\mathscr{L}_{2^{j+1}}$ into $\mathscr{L}_{2^{j+2}}$ which is also 2^{j+2} -summing. And the composition $D_k \circ D_{k-1} \circ \cdots \circ D_1 : \mathscr{L}_4 \to \mathscr{L}_{2^{k+2}}$ is not 2-summing. This shows that, in Theorem 2, we can not relax the condition " $E'(U_{\alpha}^{\circ})$ is of cotyple q" by " $E'(U_{\alpha}^{\circ})$ is of finite cotype". In Theorem 2, q must be uniform for every E_{α} .

References

- [1] De Acosta, A., Stable measures and seminorms, Ann. of Prob., 3(1975), 865-875.
- Badrikian, A., Sémiaire sur les fonctions aléatoires linéaires et les mesures cylindriques, L.
 N. in Math. 139, Springer-Verlag, New York-Heidelberg-Berlin, 1970.
- [3] Dudley, R. M. and Kanter, M., Zero-one laws for stable measures, *Proc. Amer. Math. Soc.*, 45(1974), 245-252.
- [4] Gelfand, I. M. and Vilenkin, N. Ya., Generalized functions 4, Academic Press, New York-London, 1964.
- [5] Hoffmann-Jørgensen, J., Sums of Banach space valued random variables, Studia Math., 52(1974), 159-186.
- [6] Kwapien, S., Sums of Banach space valued random variables, Séminaire Maurey-Schwartz 1972/1973, N° VI, École Polytechnique.
- [7] Linde, W., Probability in Banch spaces-Stable and infinitely divisible distributions, John Wiley & Sons, Chichester-New York-Brisbane-Toronto-Singapore, 1986.
- [8] Maurey, B., Espaces de cotype p, 0 < p ≤ 2, Séminaire Maurey Schwartz 1972/1973, N° VII, École Polytechnique.
- [9] Maurey, B. and Pisier, G., Séries variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, *Studia Math.*, **58**(1976), 45–90.

- [10] Millington, H., On characterizations of nuclear spaces and quasi-integral operators, Math. Ann., 212(1974), 103-111.
- [11] Minlos, R. A., Generalized random processes and their extention to a measure, Selected translation in Math. and Prob., 3(1963).
- [12] Mushtari, D, Kh., Certain general questions in the theory of probability measures in linear spaces, *Theory Probab. Appl.*, **18**(1973), 64–75.
- [13] Okazaki, Y., Gaussian measures on topological vector space, Mem. Fac. Sci. Kyushu Univ. 34(1980), 1-21.
- [14] Okazaki, Y. and Takahashi, Y., Nuclear subspace of L^0 and the kernel of a linear measure, J. Multivariate Anal., 22(1987), 65-73.
- [15] Pietsch, A., Nuclear locally convex space, Ergebnisse der Math. 66, Springer-Verlag, New York-Heidelberg-Berlin, 1972.
- [16] Sazonov, V.V., A remark on characteristic functionals, Theory Probab. Appl., 3(1958), 201–205.
- [17] Schaefer, H. H., *Topological vector space*, Graduate Texts in Math. 3, Springer-Verlag, New York-Heidelberg-Berlin, 1971.
- [18] Schwartz, L., Applications p-sommantes et p-radonifiantes, Séminaire Maurey-Schwartz 1972/1973, N° III, École Polytechnique.
- [19] Tomczak-Jaegermann, N., Banach-Mazur distance and finite-dimensional operator ideals, Longman Scientific & Technical, co-published in The United States with John Wiley & Sons, 1988.
- [20] Umemura, Y., Measures on infinite dimensional vector spaces, *Publ. RIMS*, *Kyoto Univ.*, 1(1966), 1-47.
- [21] Yamasaki, Y., Measures on infinite dimensional spaces, World Scientific Singapore-Philadelphia, 1985.