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Abstract

We present an explicit construction of an action-angle map for the nonrelativistic
Calogero-Moser systems with 1/sh2 and — 1/ch2 pair potentials, and for relativistic generalizations
thereof. The map is used to obtain extensive information concerning dynamics and scattering.
We also discuss the relation between the relativistic TV-particle systems and the TV-particle-like
solutions of various soliton PDEs, including the sine-Gordon equation.
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1. Introduction

In this paper we continue our construction and study of action-angle maps
initiated in our previous paper [1], which we shall refer to as I. Some of the
results reported here have been announced in [2]. A wider context for the
results and more background information on the integrable systems at issue (in
particular as regards their quantizations) can be found in our survey [3]. This
article can be read independently of I, but we do need one key result from I,
viz., the canonicity property established there.

The TV-particle systems studied here can be physically characterized as
describing N+ particles of positive charge (solitons) and N_ particles of negative
charge (antisolitons) in one spatial dimension. From a mathematical viewpoint,
we are dealing with integrable systems corresponding to the nonrelativistic
Calogero-Moser type Hamiltonian

^ 1

y 1 y 1 1

(1.1)
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first studied in [4,5], and its relativistic generalization

//=/?-' I exp(/S!pl
+)Fr+/r1 I expC/^Fr (flrel) (1.2)

l ^ i = $ t f + Kj^JV-

introduced in [6]. In (1.2) the potentials and coupling constants are given by

l+— r - II l -- - d-3)

[ sin2T 11/2 f sin2T 11/2

i+-TT^—J ignji- zl J (i.4)

(1.5)

The radicands in (1.3) and (1.4) are positive, so we may and will take positive
square roots.

In I the special 'pure soliton' case JV_ =0 (or, equivalently, N+ = 0) has been
dealt with, the systems then being denoted by IInr and IIrel. In this paper (in
contrast to I) we shall as a rule suppress the dependence on the parameters /?,
\x, and g, as these are assumed to be fixed and this eases the notation. More
generally, our notation is chosen such that many equations for the IInr case apply
to the flrel case, too.

For N+N,>Q the Hamiltonian (1.2) is not smooth on the hyperplanes
x.+ = xj when T takes its maximum allowed value n/2. We shall return to this
singular case after presenting some common features of the remaining two cases
flnr and flrel with Te(0,rc/2).

First, the phase space will be taken to be the symplectic manifold
where

\x+eGN+,x-eGN_} (1.6)

<a= £ dx^dp++ X dxjt^dpj. (1.7)
l ^ i < N + l ^ j

Here and below, Gn denotes the wedge
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GH = {xeR"\xH<~.<Xl}. (1.8)

The N independent Hamiltonians in involution can be obtained from an N x N
matrix-valued function L on O specified in Chapter 2, cf. (2.21) and (2.70). A key
property of this Lax matrix L is that it is pseudo-self-adjoint w.r.t. the indefinite
metric

-IN
(1.9)

Correspondingly, we shall have occasion to use various (known) properties of
pseudo-self-adjoint and pseudo-unitary matrices, which are summarized in Ap-
pendix A.

Most of our results pertain to the open dense full measure subset of O given
by

Os = {PeQ\L(P) has nondegenerate spectrum}. (1.10)

On Os the Lax matrix has /e {0,1, • • • , w} complex-conjugate pairs of eigenvalues,
where

m = min(N+,N_). (1.11)

Such pairs will be shown to correspond to soliton-antisoliton bound states
('breathers'). Any remaining simple eigenvalue A el? comes equipped with a
signature, viz., the sign of (cp, /q>\ where cp is an eigenvector corresponding to
L Specifically, setting

k+=N+-l, k_=N_-l /=0 , l , - - - ,m (1.12)

there are k+(k_) positive (negative) signature eigenvalues, cf. Appendix A.
For the exceptional case i = n/2 we take as phase space the toned-down

symplectic manifold <Qb,o>>, where

& = {(x+
yx-,p +

 9p-)Ea\x+*x^i=l.-,N+J=l,..;N-}. (1.13)

With Os replaced by Q£ the algebraic features just sketched apply again. Gener-
ically, solutions to the Hamilton equations hit the hyperplanes where soliton and
antisoliton positions coincide in finite time, so the H flow is not complete on
Qb. However, this disease will be shown to have an effective—if somewhat
exotic—cure.
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Having set the stage, we are now prepared to discuss the organization of the
paper and its results in more detail. Roughly speaking, the paper consists of
three parts. The first part concerns the construction of the action-angle map
(Chapters 2-4) and its 'harmonic oscillator' extension (Chapter 5). The second
part (Chapter 6) is devoted to a study of the flows generated by the Hamiltonians
(1.1), (1.2) and the associated commuting flows. In the third part (Chapter 7)
the results obtained in the first two parts are used to study particle-like solutions
to various PDEs. The appendices A and B contain algebraic results that are
used at various places in the paper. Appendix C deals with spectral asymptotics;
it is used only in the second and third part.

The first part of the paper is quite long and involved. To assist the reader
in keeping track of the flow chart, a sketch of the main steps—as regards the
IInr case—now follows. (The treatment of the IIrel case is quite similar from a
conceptual viewpoint.) We shall refer to a number of key equations in Chapters
2-5, so this sketch might be skipped at first reading and referred back to as
needed. (Possibly, this is the best way to proceed as concerns all of the first part.)

Chapter 2 is concerned with the algebraic aspects of the construction of the
action-angle map. First of all, this involves a determination of the range of
variation of the spectrum of the Lax matrix L(P) as P varies over the subset Of
of Os where L has / complex-conjugate pairs of eigenvalues, cf. (l.lO)-(l.l 1). A
priori, the normal form (A8)-(A12) allows any eigenvalue vector /I in the set At

(2.4). For the concrete Lax matrix (2.21), however, it is not even immediate that
Os is non-empty, let alone that Of is non-empty for all /e{0,1, •••m}.

Our strategy is to first obtain restrictions on the set Af for the pseudo-self-
adjoint matrices at hand, and then to prove that any eigenvalue vector in the
restricted set actually occurs. The key to this restriction is the implication
(2.18), which says that certain auxiliary functions are non-negative wherever
a complex-conjugate pair of eigenvalues occurs. We have isolated this
implication in Section 2A before fully specifying the objects in the fundamental
commutation relation (2.7), so as to handle the cases flnr and ftrel simultaneously
and without clutter.

Specializing to the flnr case in Section 2B, it is an immediate consequence of
the implication (2.18) and the transformed commutation relation (2.24) that the
spectrum of the Lax matrix belongs to the closed strip (2.26). Until Chapter 5,
however, attention is restricted to the subset Qj of Qf on which the spectrum
belongs to the interior of the strip. (The strip boundary corresponds to
collapsing tori; such points are dealt with in Section 5A.) Thus, the range of
variation Al (2.43) for the eigenvalue vector A, arises.
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Via the auxiliary vector-valued function e (given by (2.20)) and a suitable
transformation of the commutation relation (2.7) we also associate a vector v of
'norming constants' (2.40) to any point in Oz. This vector is shown to vary over
the set Ni (2.44). (In Chapter 4 it will be made clear how 1 and v determine the
actions and angles, resp.; the reparametrizations involved would amount to
distracting fuss in the algebraic context of Chapter 2.) In analogy with soliton
theory, we have dubbed the transformation from PeOz to (v,X)eNlxAl the
'direct transform'.

The crux is now, that the reasoning can be 'run backwards'. That is, we
can start from a point in NtxAh define matrices and vectors that satisfy the
transformed commutation relation, and transform back to the form these objects
take on Q,. In this way it follows not only that Q, is non-empty, but also that
the direct transform is a bijection from Q,l onto the data set Di = NixAt.

The next problem consists in showing that the data set can be promoted to
a symplectic manifold in such a way that the (reparametrized) direct transform
is a symplectic diffeomorphism. Chapter 3 is a crucial step towards solving this
problem: it enables us to reduce the problem to the special (pure soliton) case
N+N-=Q already handled in I. Specifically, the idea is to exploit the
canonicity and analytic features of the diagonalizing map <X> from I.

Unfortunately, it turns out to be quite difficult to rigorously control the
analytic continuation of this map from its definition domain GN x RN c= R2N to
the subsets of C2^ that correspond to the phase spaces (1.6) with N+N_>Q.
Therefore, we have opted for the simpler strategy of controlling the continuation
of the inverse map $: in that case one can block part of the prolific branching
that occurs by restricting attention to the domain (3.2). (The excluded branch
varieties occur at the boundaries of the strip in (3.2).) The remaining branching
can then be determined by estimating the relevant quantities along suitably
chosen non-contractible loops, cf. Lemma 3.3.

In Chapter 4 the algebraic and analytic information assembled in Chapters
2 and 3 is combined with geometric information to solve the above problem. As
already alluded to, this involves first of all a reparametrization of the data set
Db cf. (4.1)-(4.4). The resulting set O? (4.5)-(4.7) can then be viewed as a
symplectic manifold that arises from quotienting out a free symplectic action
of the symmetric group St on an open subset of a cotangent bundle, equipped
with its obvious symplectic form.

The main result of Section 4A (Theorem 4.1) is now, that the reparametrized
direct transform Oz is indeed a symplectomorphism from <Qbo>> onto the
quotient symplectic manifold <Qj, d>j>. In particular, this reveals that breathers
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cannot be distinguished, a property that is far from obvious a priori—and
quite a surprise at the classical level. With hindsight, one may attribute this
indistinguishability property to the solitons and antisolitons, too; this viewpoint
is suggested especially by Theorem 6.3. But in contrast to the breathers, this
picture of the (anti)solitons is not forced by the geometric state of affairs, since
the relevant symmetric group action admits a fundamental set that is a
manifold. As will be seen, this difference comes down to the fact that distinct
real numbers—as opposed to complex ones—admit a continuous ordering.

The commutative diagram (4.19) encompasses a great deal of the notations
and constructions of Chapters 2-4. Together with its pure soliton specialization
(3.28), it can serve as a blueprint and memory aid. It is also used as a starting
point for obtaining the main result of Section 5A, namely Theorem 5.1. Here
we show that the action-angle map <$)l extends to a symplectomorphism <X>f from
<Of,co> onto the symplectic manifold <Q?,cof> defined by (5.15)-(5.19). In new
coordinates M f , r / f (defined via (5.3)) on the breather part Bl of Qj (cf. (4.5)-(4.7)),
the extension amounts to allowing the origins (uh of) = (0,0), /=!,•••,/.

More specifically, when a pair of complex-conjugate eigenvalues of L
converges to the strip boundary, the radius (uf + v2)1'2 of the corresponding torus
goes to 0. Now this much is plain from the transformation (5.3), but the main
problem in proving Theorem 5.1 is to show that arbitrary spectral boundary
points do occur and that the extended map remains bijective. The first difficulty
is handled by showing that the inverse % of <J>j extends to Of, which involves
analytic and geometric arguments. In order to obviate the second one, we have
to repeat a part of the algebraic reasoning of Section 2B, cf. (5.35)-(5.49). The
point is, that a different gauge fixing is needed to control spectral boundary
points. (The gauge freedom resides in the GL(N, C) matrix diagonalizing L on
Qs. Thus, the gauge group involved here is a semi-direct product of the
C*N-valued functions on Qs and the symmetric group SN, the action of SN being
the obvious one.)

The special case N+ = 7V_ = 1 is spelled out in considerable detail at the
beginning of Section 5A, cf. (5.1)-(5.12). This should serve as a guide for
understanding the notation and the 'harmonic oscillator' terminology associated
with the extension procedure for the general case. In Section 5A we also show
that the Lax matrix is not diagonalizable on the exceptional set (separatrix)
Qe = Q\Qs, and present explicit examples of phenomena occurring on Oe.

After this rather detailed summary of the first part of the paper we now turn
to a shorter description of the results in the second part, Chapter 6. Here, the
extensive information gathered in the first part is used to study the character
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and temporal asymptotics of a large class of mutually commuting Hamiltonian
flows, containing in particular the flows generated by the Hamiltonians (1.1) and
(1.2) in the nonrelativistic and relativistic case, resp. Just as in the pure soli ton
regime, the position part (x+(t)9x~(t)) of the flows can be expressed in terms of
the eigenvalues of an explicitly known r-dependent NxN matrix. Therefore,
studying scattering theory is again tantamount to studying spectral asymptotics.

In the pure soliton case we could determine the desired spectral asymptotics
for matrices defined on open neighborhoods of phase space viewed as a subset
of C2^. This led to uniform estimates without which the canonicity proof in I
would break down. Here however, venturing into complex neighborhoods is
troublesome, as this leads to breather dissociation.

However, since we solve the canonicity problem via analytic continuation,
we only need the spectral asymptotics for the type of matrices arising on phase
space. This is dealt with in Appendix C in a slightly more general setting. The
main result, Theorem Cl, is of independent interest. The reality restriction (as
compared to Appendix A in I) enables us to obtain quite precise information on
the times needed for eigenvalue clusters to collide and separate, and on the
behavior before collision and after separation. For the matrices occurring in
Chapter 6 the shifts of the center of mass of each cluster (and of the phase in
case the cluster consists of one breather) can be calculated explicitly by exploiting
an explicit formula for the inverse of the Cauchy matrix, cf. Appendix B. From
a physical point of view, the corresonding elucidation of the long-time asympto-
tics of the various Hamiltonian flows (to be found in Theorems 6.2, 6.5 and 6.8)
may be regarded as the principal result of this paper.

Besides the general case, Chapter 6 also deals with a special situation of
considerable physical interest. It so happens that the collapse of the invariant
tori already discussed above corresponds physically to breathers that do not
breathe any more. In the special case N+ = N_ = M there exists an invariant
submanifold of phase space characterized by x+=x~, p+=p~, which corre-
sponds to M such breathers. We prove that the action-angle map restricted to
this submanifold coincides with the action-angle map for M solitons up to
rescalings, cf. Theorems 6.3, 6.6. Pictorially speaking, this says that dead
breathers behave like solitons. (For the IInr case and the H flow this phenome-
non was first observed by Calogero [7].)

Another striking phenomenon pertaining to the singular i-value n/2 is the
existence of simultaneous collisions of all solitons and antisolitons. This can
only happen when the asymptotic soliton and antisoliton momenta are in-
terlaced, so that one must have \N+ — 7V_ | ̂  1. This restriction is quite surpris-
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ing; as a bonus, the existence proof corroborates the inevitability of somewhat
complicated signs in several formulas occurring below.

Our results for the IInr and flrel (i < n/2) systems are presented in Sections
6A and 6B, resp. These are quite complete; the problems left open concern the
exceptional set Q\QS. In contrast, our account of the IIrel (i = n/2) case in
Section 6C leads to some questions that are left unanswered even for Q£. These
questions are connected with the fact that the commuting local flows on Ob are
not global: Even though we have found a way to complete the flows on a
jazzed-up phase space fl*s one winds up with some problems that appear quite
elusive.

In order to discuss Chapter 7, we begin by commenting on our terminology
'solitons' and 'antisolitons', as applied to the point particles and antiparticles of
the flnr and flrel systems. This terminology is natural first of all because the
factorization of the S-map revealed in Chapter 6 is the hallmark of the scattering
of the soliton-antisoliton solutions of the sine-Gordon and modified Korteweg-
de Vries equations. These solutions have been viewed as 'particle-like' ever since
they were discovered some 20 years ago. However, the fact that the particle
character of soliton solutions to various PDEs and infinite lattices (such as the
Toda lattice) can be understood from an intimate relation to integrable finite-
dimensional Hamiltonian systems (viz., the IIrel systems) has only been demon-
strated in recent years [6, 2, 3].

We mention in passing that this relation has an intriguing resemblance to
phenomena in the area of non-integrable PDEs, such as the Navier-Stokes
equation [8]. Note in this connection that in actual applications of soliton
PDEs the relevant PDE is typically obtained after some drastic approximations
of a more accurate, but non-integrable description; in many such cases, the
observed long-time behavior is indeed finite-dimensional (namely, 'solitonic').

In the first section of Chapter 7 we reconsider the particle-soliton relation,
firstly with regard to the notion of soliton space-time trajectory [6, 2] and
secondly with the aim of proving uniform decay bounds of the form

t-* ±00. (1.14)±
yeR

Here, \l/(t,y) denotes an N-soliton solution and \j/±(t,y) denote linear combina-
tions of N 1-soliton solutions; the constant r>0 can be expressed in terms of
the action variables associated with the initial point in phase space that
determines the Cauchy initial value of the soliton evolution equation.
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As it turns out, the correspondence between particles and solitons, combined
with Appendix C, can be used to great advantage to prove (1.14). For the pure
soliton solutions of the KdV and modified KdV equations these bounds improve
previous results of Tanaka [9] and Ohmiya [10], resp., who proved that the Ihs
of (1.14)+ converges to 0 for t-+ +00. It is easy to check that our decay
estimates cannot be sharpened for N=2, and we believe that they are best
possible for general N, too.

In Section 7A we make essential use of (a special case of) Theorem Cl, but
the previous chapters are only needed in as much as they subsume the pure
soliton case already handled in I. In contrast, Section 7B leans heavily on
Chapters 2-6. Here, we use virtually all of our results on the T = n/2 IIrel systems
to study a class of sine-Gordon and modified KdV solutions. This class
subsumes all real-valued Schwartz space solutions that yield a vanishing
reflection coefficient and a transmission coefficient having N poles in the upper
half plane, each of which is simple. (Here and below, we use terminology
associated with the Inverse Scattering Transform (1ST), cf. e.g. [11, 12].)

We first generalize the bounds (1.14)+ to those solutions that contain
solitons, antisolitons and breathers with distinct asymptotic velocities. We then
detail the link with the particle systems and prove that any solution in our class
is reflectionless in the sense of the 1ST. Finally, after discussing the relation of
the exceptional set Qb\Q^ and multipole solutions [13-15], we extend the notion
of space-time trajectories to any solution in our class and derive various
properties of these trajectories. The occurrence of soliton-antisoliton and
multiple collisions gives rise to a far richer picture than in the pure soliton case.

In Chapter 7 we also comment on related literature [2, 3, 9-17].
We conclude this Introduction with some general remarks concerning

organisation and presentation. A superficial reading of this paper might give
an impression of a certain redundancy, both in the notation and in the number
of gauge fixings and permutations employed. Now we do not presume that the
exposition cannot be improved, but we do believe that any clear-cut and rigorous
account of the results occurring below will have a quite baroque appearance.

The strategy followed here has the advantage of clearly distinguishing the
algebraic, analytic and geometric problems involved, at the expense of a small
amount of repetition. In our choice and use of gauge-dependent objects we
have attempted to obtain maximal information with minimal notation for each of
the three aspects before putting the pieces together. The various permutations
are a trifling nuisance from a conceptual point of view, but their use appears
inevitable in establishing unambiguous notation and definitions. We should
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also mention that a rigorous grip on what we have dubbed the harmonic
oscillator transform seems unattainable without first getting the action-angle
map under control.

Finally, we are aware of results in abstract symplectic geometry (described
e.g. in [18]) that may seem to have a bearing on some of the problems
encountered below, but these results hinge on certain compactness assumptions.
Our sole hypotheses are (1.1)— (1.5), and it so happens that these equations give
rise to concrete integrable systems for which these compactness assumptions are
violated. In fact, for better or worse we use very little geometric machinery and,
more generally, this paper is largely self-contained.

2. The Direct and Inverse Transforms

2A. First Steps

In this section we lay the groundwork for the construction of the direct
transform for both cases at once, without detailing the Lax matrix L yet. First,
fixing a point P in the subset Os on which L has simple spectrum, we may
invoke Prop. A3 to conclude that a ^-unitary U exists such that U~1LU
takes the normal form (A8)-(A12). (For the critical value T = rc/2 we take

Setting

)1 M
*J •"AjJ

) = K-*=K* (2.1)
L*J •"AjJ

and

L = KU~1LUK (2.2)

we then obtain

ai, -•',pl-ial,ni,--,nk_). (2.3)

Since the positive and negative signature eigenvalues p{ and nj are distinct,
we may and will require that they are ordered such that peGk+, neGk_ (recall
(1.8)). Similarly, we may and will order pl+ia1,--,pl + ial lexicographically;
Namely, we require p*^ •••</?!, and if pk+i=Pk> then we require cr f c + 1<cr f c .

With these ordering conventions in force from now on, we introduce a vector
A in the set
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>' n= j'"j 5

A,- ^ Afe when j ^ k, kk + + 1 , • • • , Ak + + j in lexicographic order} (2.4)

by writing L as

...,^). (2.5)

(In (2.4) and below, bars denote complex conjugation.) A priori, any A e A/ might
arise. However, this is not the case for the matrices L specified below. Just as
in I, a key tool to obtain detailed spectral information is a commutation relation
involving L and a matrix-valued function A on Q,

A =diag(exp(//x1
+), •••,exp0ixjjj, -exp(^r), •••,-exp(^_)). (2.6)

This commutation relation takes the form

c\_A,L]=e®e-\A ^ (2.7)
(rel)

where the constant c and vector e will be detailed below (cf. (2.19), (2.20) and (2.68),
(2.69)). Setting

A=KU~1AUK (2.8)

e = KU~le, e = KU'e (2.9)

we may transform (2.7) to get

c[A,£]=e®e-&* _ (nr) (2.10)1 J l(^L + L^)/2 (rel). l ;

Next, we derive an implication ((2.18) below), which can be combined with
(2.10) to obtain information on the eigenvalue vector L First, we note that

A/>0, (2.11)

cf. the definitions (2.6) and (1.9). This entails

A/>Q, (2.12)
where
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*_), (2-13)
l_*i uj

since we may rewrite A/ as

A/ = KU-1AU/K=(KU-l)(A/)(KU-1)*. (2.14)

Second, in both cases it can be read off from the definition of e (cf. (2.20), (2.69))
that

e = /e. (2.15)

This implies

e = /i (2.16)

since we may write

)e. (2.17)

Now let lj be a non-real eigenvalue and let k be the index such that
lk = Ij. Due to (2.12) we have (A/)jp (A/)kk>§\ also, combining (2.16) and
(2. 1 3) we infer ej = ek, ek = e>r Therefore, the following implication holds true:

l — p^tov^pt + ia^A^QtSfy^O. (2.18)

At this point it is expedient to proceed with a separate treatment of both
cases, detailing first c,e and L. However, it should be noted that these quantities
are in essence uniquely determined by the commutation relation (2.7) and the
definition (2.6) of A, once one insists on c ̂  0, L being ^/-s.a. and e satisfying (2. 1 5).

2B. The Case flnr

In the nonrelativistic case c,e and L are explicitly given by

c=-i/iig i*,ge(0,<x>) (2.19)

(-ju^+), eN+ +j = /exp(-^7) (2.20)

(2.21)
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/LN++j,k= -j J* + TJ.JI + ~ » JIJT J ' \ Jl' *

2cn—[J\Xj — X f c ) 2sh — ̂ L{X: —x± )
2 2

where z,/: e {1, ••• ,7V+} andy,/e{l, ••• ,7V_}. Since \JL and g are positive, L is of the

form

TL++ L+_1 L M*= = L M 9 L^_ a*=_ j L_w > ,5=+,- (2.22)

so that L is ,/-s.a., as announced. Furthermore, the equality (2.15) is evident and
the commutation relation (2.7) is easily verified. For later use we note the crucial
relation

H= 1 TrL2 (2.23)

cf. (1.1).
We now continue the construction of the direct transform begun in Section

2 A. Rewriting the commutation relation (2.10) we obtain

Combining this with the implication (2.18), we infer

1+2<7W//^0, * = 1,...,/. (2.25)

But then we may conclude

a(L) c S£/2 (2.26)

where 5^ denotes a strip defined by

5w={AeC||Imi|<w} (2.27)

and where c/ denotes closure.
Next, we introduce the subsets

:^/2} (2.28)
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(2.29)

(2.30)

(where i,b,r stand for interior, boundary, regular). From (2.24) and (2.16) we
now conclude

*>j = Pn+-Wg> ^k = Pn--^g^ej = ek=Q. (2.31)

In contrast, we claim that

Sj*Q9 j=l,-Jf, (onli,). (2.32)

Indeed, the square brackets in (2.24) are non-zero on On so we may rewrite (2.24)
as

Ajk = ejC(Q, n,-g',i, X)jkek> (on O,) (2.33)

where C is the Cauchy matrix (Bl). Now we clearly have \A \ = \A \ /O, cf. (2.6);
moreover, | C\ /O in view of Cauchy's identity (B4). Therefore, our claim (2.32)
follows.

We proceed by introducing

ffediagfo,.- •,*„). (2.34)

Restricting attention to Or from now on, we see from (2.32) that E is invertible.
Thus we may define the product matrix

(2.35)

and then we get from (2.2), (2.5) and (2.9) the relations

^L^-^diag^,.",^) (2.36)

^ = (1,-,1) = C. (2.37)

We also introduce

v = 0>-lte (2.38)

A = ̂ A^~l. (2.39)

Then we have from (2.9)
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k=l,.-.9N (2.40)

and from (2.33)

Ajk = C(Q^,-g;^l)jkvk. (2.41)

Finally, recalling (2.16) and (2.13), we conclude from (2.40) and (2.32):

v£e(0,oo), i=l,...9k+

v j v_ f c_+ j-e(-oo,0)5 y=l , • • - , £ _ (2.42)

Let us now take stock of our findings. We have associated to any point
in Or for which L has 21 (and only 21) non-real eigenvalues the following data:
An eigenvalue vector in the set

2)
w (2.43)

(recall (2.4), (2.27)), and a vector v of 'norming constants9 in the set

(2.44)

Moreover, the product matrix 0* used to define the association is uniquely
determined by (2.36) and (2.37) (in contrast to its factors). Indeed, the eigen-
values /Il9 ~',AN are distinct and ordered, so that (2.36) determines £P up to left
multiplication by a regular diagonal matrix, and then (2.37) fixes this gauge
ambiguity.

The upshot is, therefore, that we obtain a well-defined direct transform

^:Qr-»D, (x+
9x-9p

+
9p-)^(v,a)9 a = l (2.45)

where the data set D is given by

m

D=(jDl9 D^N^A^ (2.46)
1 = 0

At this point a comment on the change of notation A -» a in (2.45) (and below)
is in order: We are anticipating the IIrel case, where the action vector a is not
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equal to the eigenvalue vector L Various formulas involving this symbol will
apply without change to the flrel case because of this change in notation.

We continue by proving that 2 is a bijection. To this end, we choose a
point (v,a)GDl and define the matrices

A(v, a)jk = C(0, &-g;a, a)jkvk (2.47)

L(d) = diag(al5 • • •, aN). (2.48)

Then the commutation relation

c\_A,L]=^®v-A (2.49)

is easily verified. Next, we introduce

Sl = vl'2, i=l,-,*+ (2.50)

(2.51)

= N-k. + \,-,N (2.52)

(2.53)

make a similarity transformation

AS = SAS~\ (2.54)

and consider the matrix As/. Using the definition (2.13) of / and the properties
of the numbers ak, vk and sh, it readily follows that this matrix can be written

/ A ^jf)\ C~*(f\ * ~\ ~~ f) ^ ^\

Let us now come to the point of this: The Cauchy matrix occurring in (2.55)
is positive by virtue of Lemma Bl. But then it is clear from (2.55) that As/ is
positive, too. Therefore, As is ^/-s.a. and we may invoke Prop. Al to conclude
that As is diagonalizable and that As has N+ positive and 7V_ negative
eigenvalues.

As a result, we may conclude that there exists a regular matrix M such that

, - - - , a A r ) (2.56)

where
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<*! , • • -,0^6(0, oo), 0^ + !, ••-,a jve(-oo,0). (2.57)

But now we can exploit the commutation relation (2.49): It entails

(M ~ lLJi}jk(^ - afc) = im((Ji~ lQHJTv\ - Vy) (2-58)

so that

(^-^MT^a^O, j=l,-,N. (2.59)

Hence the rhs of (2.58) is non-zero for j + k, and so we may deduce that A has
simple spectrum. Thus, we may order the eigenvalues in such a way that the
definitions

jc+EE/^ln^, i=l,-,N+ (2.60)

x]-=iJi-lln(-KN++j)9 j=l,~>,N- (2.61)

entail

xdeGN6, 6=+,-. (2.62)

Clearly, this fixes M up to right multiplication by a regular diagonal matrix.
In order to complete the definition of the inverse transform, we now set

+ (2.63)

pj = MT *£j%+ +J.>JV+ +p j= !,-,#_. (2.64)

We assert that these numbers are real. To prove this, we shall exploit Fact (6)
from Appendix A, as follows. We have already shown that As is ^/-s.a. and that
A has simple and real spectrum. Therefore, KASK is /-S.SL. and has simple and
real spectrum. Invoking now Prop.AS, we conclude that KASK can be
diagonalized by a ^-unitary F The Fact mentioned above then implies that
the numbers (V~lKLKV)kk, k= 1, • • • , N, are real. (Note that KLK is /-s.a., so
that V~ 1KLKVis /-$.&., too.) But these real numbers must be a permutation of
the numbers^^,/?^, since the matrices S'^Fand M both diagonalize A and,
therefore, are related via right multiplication by a permutation matrix and a
diagonal matrix. Hence our assertion follows.

Since the gauge ambiguity in M does not influence the diagonal elements
of Jt~lLM, we have now obtained a well-defined map

,/:£>-> a(v,a)h-+(x+,*-,/7+,;O. (2-65)
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Lemma 2.1. The map J> is a bijection onto Or whose inverse is the map <2).

Proof. Since ( J ^ ~ l ( s ) j ^ Q due to (2.59), we may and will fix the ambiguity
in Jl by requiring

Jt~^ = e, (2.66)

where e is defined via (2.20) and (2.60), (2.61). Then it follows from (2.59) that

JPv = e. (2.67)

The point of this gauge choice is, that when we fix (v,a)eD, yielding a point
P = <#(v,a)eQ then the matrix L evaluated in P equals Ji~lLM. (To verify
this, note these two matrices have equal diagonals in view of (2.63), (2.64) and
(2.21). Next, combine (2.66), (2.67) with (2.58) to express the off-diagonal
elements in terms of x+,x~, which yields the off-diagonal elements in (2.21).)
Consequently, the numbers 0l5 ••-,% are just the ordered eigenvalues of L(P).
Since they are distinct and belong to S^g/2 we conclude that PeQr. Thus, </
maps D into Or.

Next, we note that the matrix £P(P) must be equal to Jl. Indeed, by
construction Jl has the properties (2.36), (2.37) that uniquely determine &(P\ cf.
(2.66). But then we may deduce @°^ = idD.

Conversely, picking some P0eOr, the matrix Ji evaluated in ^(P0) must
coincide with ^(P0), again by uniqueness. Thus we also have ^°@ = idQr and
the lemma follows. D

2C. The Case flrel

In the relativistic case c,e and L are defined by

c = - L cotT, T = ^g E (0, 71/2] (2.68)

(2-69)
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— (2-70)

+1=

where i , k e { l 9 - > - 9 N + } and y',/e{l, •••,Ar-}, and where the potentials K^,?} are
defined by (1.3), (1.4). Note that for i = 7c/2 the Lax matrix is real-analytic on
Ob, but gets singular on the hyperplanes x*=x^. Substituting

(2.71)

in (Bl), (B4), one obtains

r X p+
L l ^ i < N +

|L|=exp/? X p++ X /7/ (2.72)

on O for T e (0, Tc/2) and on Ob for T = n/2. Again, L is of the form (2.22) and hence
is /^-s.a. Also, (2.15) is obvious and the commutation relation (2.7) is readily
verified. Here we have

H=p-lTTL (2.73)

cf. (1.2).
Continuing now with the reasoning in Section 2A, we get from (2.10)

(2.74)

Combining this with (2.18) yields

pnT<7ncotT>0, / i= l , - - - , / . (2.75)

Therefore, any pair of complex-conjugate eigenvalues belongs to the closure of
the sector exp(5t) (recall (2.27)). More generally, we claim that
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a(L) c: exp(S? ), T=-fag. (2.76)

Indeed, from (2.12) and (2.16) we deduce

(2.77)

so that (2.74) implies any real eigenvalue of L is non-negative. Since O^a(L)
due to (2.72), our claim (2.76) follows.

We can now proceed in the same way as in Section 2B. We replace (2.28) by

O,=E {PeQ|<7(L(P)) c: exp(ST)} (2.78)

and then define Qb and Qr by (2.29) and (2.30). (For -c = n/2 one should replace
Q's by Ob's throughout.) The analog of (2.31) reads

A7- = rexp(/T), Afc = rexp(-z"T), r>0=>^. = efc = 0, (2.79)

the implication following from (2.74) and (2. 16). ' Again, the components of e (and
hence of e) do not vanish on Or (Q, for T = rc/2): Here, (2.74) yields after a
straightforward calculation

^ -g',a,a)jkek (on Q<b>) (2.80)

where

a^/T'liLljeS^ (2.81)

and C is the Cauchy matrix (Bl). Therefore, (2.32) and its T = n/2 version follow
in the same way as before.

Next, we introduce E by (2.34) and restrict attention to Q,. (Qj? for i = n/2)
henceforth. Then the product matrix (2.35) is well defined and (2.36), (2.37)
follow again. Defining v and A by (2.38) and (2.39), we obtain (2.40); also, from
(2.80) we infer

Ajk = C(^^-gia,a)jkvk. (2.82)

Then the properties (2.42) of the vector v follow as before.
The upshot is, that L again gives rise to a vector a in the set At and a vector

v in the set Nt. Once more, the matrix 2P is uniquely determined by (2.36) and
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(2.37), so that we obtain a well-defined map

® : n < » > - > A (x+,x-9p
+

9p-)}-+(v9a) (2.83)

where the data set D is defined by (2.46).

In order to run the map backwards we fix a point (v,a)eDh introduce

2(v, a)jk = q/J, K ~g ; a, a)jkvk (2.84)

L(a) = diagtexpCSflO, • • -, exp(« (2.85)

and verify the commutation relation

(2.86)

Defining S by (2.50)-(2.53) and As by (2.54), and invoking Lemma Bl once more,
we infer As/ is positive. Then both the existence of a regular matrix Ji
satisfying (2.56) and the properties (2.57) of the eigenvalues of A follow again
from Prop.Al.

Transforming (2.86) we now obtain

(Jt ~ lLJ?)jkl - icosT(QCj - ock) + sinT(a,. + afe)] = 2sim(Jf ~ ̂ {JPv)* (2.87)

Clearly, the square bracket factor is non-zero on D when T e (0, n/2). However,
when T = 7r/2 the square bracket vanishes for those (v,a)eZ> for which A has
eigenvalues aj,afc with Oy-f afe = 0. Correspondingly, we introduce

D^ = {(v, a) E D(l}\ a, ̂  - ay} (T = n/2) (2.88)

and observe that all square brackets are non-zero on Db. Writing afc as

\T (189)
+ + l,~-,N

we obtain from (2.87) by using (Bl)

(jriLJVj^Jf-iQjCfahg; xyx)jk(^v)k. (2.90)

(Here, we take (v,a)eD\ for i = n/2.) Now we have |L|^0 in view of (2.85).
Hence, the Cauchy matrix is invertible and we have
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)J = (^r-1L^07jexp(MX>)^0, j=l,-,N. (2.91)

From Cauchy's identity (B4) we may now deduce x^xk iorj^k. But then o(A)
is simple, and so we may order the eigenvalues a l J - - - , a N such that the vectors
x+,x~ defined via (2.60), (2.61) satisfy (2.62). (Note that xf *x]~ for i = 7c/2,
since we are restricting attention to £>b in that case.)

Next, consider the diagonal elements in (2.91). We claim that these are
positive. Taking this for granted, we obtain uniquely determined real numbers
p* and /7J" by requiring

i=l,-,N+ (2.92)

+j.N++p 7= !,-,#-. (2.93)

(Since x* ^xj for t = n/29 the potentials V* ', V] are also positive for i = n/2, cf.
(1.3), (1.4).)

To prove the claim, we first note that we may repeat the reasoning below
(2.64) to conclude that the diagonal elements are real. Moreover, we may choose
the ^-unitary Fin such a way that (2.91) still holds true when Ji is replaced by
S~1KV at the Ihs. (This amounts to choosing an appropriate permutation
matrix commuting with /.) Now from (2.50)-(2.53) one readily verifies

(2.94)

Therefore, we may infer

(S-1KV)tv = /V-i/KS-lv = /(S~lKV)-1t; (2.95)

where we used the ^/-unitarity of V. This implies that the Ihs of (2.91) is positive
(negative) for j^N+(>N+), and since this also holds true for the numbers
exp(ju^j), the above claim is proved.

The upshot is, that for Te(Os7i/2) we obtain a map / given by (2.65), while
for T = 7i/2 we get a map

/: D»-*&,(v,a)^(x\x-,p\p-) (i = n/2). (2.96)

Lemma 2.2. For i e(0, n/2) the assertion of Lemma 2.1 holds true. Now let
T = 7i/2. Then the map / is a bisection onto Ob whose inverse is the map @.

Proof. In view of (2.91) we may and will fix the gauge ambiguity in Ji by
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requiring (2.66), where e is now defined via (2.69). Combining (2.91)-(2.93) we
then obtain again (2.67). The arguments in the proof of Lemma 2.1 now apply
with obvious changes that need not be spelled out. D

3. Holomorphy, Canonicity and Monodromy

3A. The Case flnr

In this section we are concerned with two vector-valued functions 1f and
Y\ and two matrix-valued functions 5£ and $4 whose arguments (q, 0) belong to a
domain Jjf c C2N in which they are holomophic. (Here and below, 'domain9

stands for "open and connected set'.) The functions v, A and L on the data set
D of Section 2B are related to restrictions of the holomorphic functions r\, &
and j2/, resp., to subsets of Jtf with 2N real dimensions.

We first introduce the vector- valued potential function 1^ by

=l,-,tf, /i,ge(0,oo). (3.1)

Clearly, i^k is well-defined, holomorphic and non-zero in the domain

je^={6eCN\0jGSM/296j^Sl9j^l9j9l=l9-9N} (3.2)

(the strip SMi2 being defined by (2.27)), provided we fix the square-root sign
ambiguities. (Indeed, all radicands in (3. 1) stay away from (— oo,0] on JfV.)
This we do by requiring the square roots to be positive when 6k — Sj is real. For
later use we note that this convention ensures

(3.3)

where GN is defined by (1.8).
Next, we introduce the functions

(0) (3.4)

<?jk = C(0, H-gl 8, fyjtfM, 0) (3.5)

s/ = diB.£dl9:',8N) (3.6)

which are clearly holomorphic in the domain
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^ = {(q96)eC2N\qECN
9Se^}. (3.7)

It is readily verified that on ^f one has

C = (l ,- , l) (3.8)

(3.9)

the last equality following from Cauchy's identity (B4).
We continue by introducing the set

jes = {P E #e | £(P) has simple spectrum}. (3.10)

Using well-known results from several complex variables analysis, one readily
deduces that ^fs is a domain, and that the exceptional set

tfe = tf\tfi (3.11)

is nowhere dense and has measure zero. Indeed, Jfe equals the zero locus of the
discriminant of the characteristic polynomial of £?. If the discriminant would
vanish identically on Jf , then the discriminant of the polynomial |diag(exp(^4i)3

• • • , exp^tf)) — altf| would vanish for any qeCN. (This follows e.g. by setting
6eGN in (3.5) and then taking 9k — 6k + i -» oo.) Since this is clearly false, jfe

is empty or an analytic subvariety of 3f?s with (complex) codimension one. In
either case the assertions follow. (In fact, Jfe is not empty, but we do not
need to know this.)

Lemma 3.1. Suppose that tft is a subset of J4?s such that any two points of
°U can be connected by a path in ^ consisting of finitely many line segments. If
in addition % is simply-connected or 3? has real spectrum on fy , then there exists
a function $: <% -> GL(N, C) that is holomorphic in tft and satisfies

(@-l<e@}jk=^ j^k (3.12)

#C = f, f = (l,-,l). (3-13)

Poof. Fix Pe^. Since JSf has simple spectrum and is holomorphic in P,
there exists a polydisc D c Jfs around P such that & has eigenvalues oc l3 • •• , (%
and corresponding eigenvectors u l y - - ' , u N that are holomorphic in D. Hence, the
function
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@ = Col(wl3 • - •, UN) e GL(N, Q (3.14)

satisfies (3.12); also, & and the vector ^~1^ are holomorphic in D. We claim
that J1"1^ has non-vanishing components. Indeed, when we transform the
commutation relation (3.8) with J*, we obtain (2.58) and (2.59) with Jt, L and v
replaced by J1, st and */, so that the claim follows. Multiplying J* from the right
by the matrix diag ((J*"1^, ••-,(J t~10JV) we obtain a holomorphic GL(N,Q-
valued function in D (again denoted ^) that satisfies (3.12) and (3.13) on D.

Obviously, any other holomorphic function ffi\ D -> GL(N, C) that satisfies
(3.12) and (3.13) must be related to @ via @' = @Hff, where YIffeO(N) is a
permutation matrix. When <£ has real spectrum on ^, we may and will render
J1 unique by ordering the eigenvalues in the point Petff. Specifically, we shall
require a^<- - -<a 1 .

Now choose a second point P'etft and a polygonal non-self-intersecting
path F c $U connecting P and P. For any point on F we can repeat the above
construction, and eventually shrinking the radii of the polydisc we may assume
that its intersection with F is connected. A compactness argument now shows
that finitely many polydiscs D(P0), D(P1), • • -, D(Pn) cover F, with P0 = P, Pn = P.

Next, we introduce the connected sets Dj = D(Pj)n>r and Djk = DjnDk.
Whenever Djk is non-empty, there exists a permutation matrix n^ such that
$j = $,fljk on Djk. Now if ^ is simply-connected, we may invoke the mono-
dromy theorem to conclude the proof. Indeed, in that case we can redefine
$l9-~,$n such that 11^ = 1^ on Djk. If <£ has real spectrum on ^, then our
ordering convention ensures a N < - - - < a 1 in Ppj=Q,--,N. Since ^ is contin-
uous and DJ connected, it follows that OLN< -•• <at on Dp so that Hjk must equal

Ijv- D

To proceed, we exploit some results from Section 2B pertaining to the 'pure
soliton' case N_ =0 (already dealt with in I). Let us denote the data set for
this special case by £>,, and let us reparametrize Dl with 2N real coordinates ^f, xf
defined by

(3.15)

To verify that the numbers xf may indeed be chosen real, one need only recall
(3.3) and the fact that aeGN and v f >0 for any (v9a)eDl9 cf. Section 2B. The
definition (3.15) amounts to a bijection
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%\ Dl = (Q,ao)NxGN-+RNxGN, (v,a)^(x\ps) (3.16)

which is clearly such that

(3.17)

s) (3.18)

(3.19)

It now readily follows from (3.18) that & has positive and simple spectrum
on the set

Vl = RNxGN (3.20)

so that % c j-fs. Indeed, combining (2.56) and (2.60) we obtain for 7V_=0

) (3.21)

whence the assertion is clear. Therefore, we may invoke Lemma 3.1 to conclude
that there exists a unique real-analytic function J^,: % -> GL(N, C) obeying

(Ji-1^^)(xs,X) = diag(exp(^1
+), --^expO^)), <»,( = £. (3.22)

Combining (3.21) and (3.22), it now follows that there exists a diagonal matrix
D such that

(3.23)

But then we may infer that

(3.24)

where we used (3.19) and (2.63).
Having established the relevant properties of ^ on the set % we now

invoke Lemma 3.1 once more to conclude that ^ can be analytically
continued along paths in Jfs. This gives rise to a (multi-valued) holomorphic
function in J-fs that will be denoted by 01. As a result, the functions

1 = 1,-, AT (3.25)

(3.26)
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(where the logarithms are chosen real) likewise extend to holomorphic functions
in Jfs, giving rise to a holomorphic map

R: tfs-*C2\ (q,d)^(q9ff). (3.27)

Before continuing with Lemma 3.2, let us summarize the above notation and
constructions in the following commutative diagram:

id id (3.28)

> (v, £1)8(0,00)" xGN - >(x+,

Here, the vertical maps are the identity maps, the map «/ is the inverse transform
from Section 2B, the map % is defined via (3.15), (3.16), and the map Z, is the
branch (Zweig) of R over % that corresponds to the functions q and 6 as initially
defined on % The commutativity of the diagram amounts to the fact that the
values of the latter functions coincide with x+ and/?+, cf. (3.22), (3.24). (At this
stage part of the notation and all of the diagram may seem superfluous. How-
ever, we are anticipating notation and diagrams in Chapters 4 and 5 that will be
indispensable in keeping track of the more elaborate state of affairs encountered
there.)

We are now prepared for the following key lemma, whose proof hinges on
results established in I.

Lemma 3.2. The multi-valued holomorphic map R defined by (3.27) admits a

local holomorphic inverse and satisfies

Ilt-H-
k9l=l9->,N. (3.29)

Proof. The map Z, in the diagram (3.28) coincides with the map denoted
by £ in I (for the IInr case). Now we have proved in I that $ is symplectic, in
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the sense that the equations (3.29) hold true on % cf. App. C in I. Clearly, these
relations can be analytically continued along paths in Jfs, so that it remains to
show that the matrix

(3.30)

is invertible on J^fs. But the canonicity relations (3.29) can be rewritten

L-IW OJ

so that |£>/?MO on Jfc. D

To conclude this section, we shall determine the relation between the values
of 01 and R lying over any point in J^s. From Lemma 3.1 we see that the values
of 01 must be related by permutation matrices Ef^, aeSN. The monodromy of
01 on the domain J"fs can, therefore, be described by the finite group

M($) = {ae SN\ there exist branches J>, J" of ̂  related by @' = JTIJ. (3.32)

It then follows from (3.25)-(3.27) that the monodromy of R is given by the discrete
group

M(R) = {(k9cr)eZNXSN\ there exist branches (#,0),

(?', 0') ofR related by <f = qa + 2nik/^ Q' = 0a}. (3.33)

(The notation will be clear from context.)

Lemma 3.3. One has

(3.34)

(3.35)

where

---+kN = 0}. (3.36)

Proof. From (3.9) and (3.25) we obtain

(3-37)
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Since this relation is preserved under analytic continuation and the Ihs is entire,
additive multiples of 2ni/n arising from going around non-contractible loops
must sum to zero. Therefore, we need only exhibit loops Fl5 • • •, F^_ 1? F^ in Jfs

starting at a point in % which are such that:
(i) looping Ffe results in qk,qk+1 -*qk+i,qk,k= 1, -,N-1;
(ii) looping TN results in qN_l,qN-*qN_i—2ni/fa qN + 2ni/[i.
Indeed, since SN is generated by transpositions, (i) entails that M($) equals SN and
that M(R) contains SN', combining this with (ii), it follows that M(R) is given by
(3.35).

We shall prove the existence of such loops by reduction to the case
N= 2. Correspondingly, we first take N= 2 and define loops F and f starting in

ql=^~llnd) d>Q (3.38)
2

1 7T

(3.39),
2 2 2

Clearly, this point belongs to %. The loop F is defined by taking

(3.40)
2

where

x(0^y(l-A t€ [0,27i]. (3.41)

Then the eigenvalues of J£? along F are given by

a+ = d[cosx±(cos2x — cos2y)1/2]/cosy. (3.42)

From this one readily deduces that one can find y0e(0,-) such that

|a±-</|<2dy, |a+ -a_ |>rfy, ye(0,y0] (onF). (3.43)

Taking y ̂  y0 from now on, it follows from the first estimate that the eigenvalues
stay in the right half plane and from the second one that a(&) remains simple
along F. Since cos2;c(0 — cos2y winds once around the origin, it follows that
<7i?#2 -»#2>#i along F, as advertised.

Next, we define a loop F by taking

0i W = ± - Mg/sh(lnr - it\ r ̂  2, 1 6 [0, 2n] (3.44)
2 2
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where r is chosen large enough so that F c jf . Then the eigenvalues of & are
given by

(3.45)
r

entailing

|a±|<dr, |a+-a_|>J (on T). (3.46)

Again, the loop F stays in Jfs, but now a + , a_ return to their values, winding
once around the origin; more specifically, we obtain #l5 q2~^q\ — 2ni/fi, #2 + 27cz'/ju,
as promised.

We are now prepared to handle the general TV case. By definition, the loop
Tk is given by

(3.47)
k

(3.48)

6j-6j+1=l*g\, j+k (3.49)

=
(k +

where A > 0 is at our disposal. We claim that when A is chosen large enough, the
loop remains in J-fs and has the desired property (i).

To prove this claim, we denote <£ evaluated in points of Ffc by JS?(A) and
observe that

iim &£f\/\)== uiag(yv, • • •, J\ — /c ~i~ .z, J^2\ )y -** — ^ -*? * * * ? -*•/== =*^vooj- (^J. juj
A-* oo

Here, JSf2(n denotes the 7V=2 matrix JSf evaluated along the loop F, with

d=N—k+ - and y = yk. From the estimates (3.43) we then see that the eigen-

values of & (oo) stay a distance at least y0 apart along F. (Recall y0 < 1/2.) Let
us now use the matrix
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diagonalizing J^(oo) along F to write

,!) (3.52)

F(A).

The point of this is, that one is then dealing with a perturbation F(A) of a normal
matrix D whose eigenvalues stay at least a distance y0 apart along P. Therefore,
the above claim will follow if for A large enough one has ||F(A)|| <y0/2 along
Fk. (Here and from now on, || • || denotes the norm derived from the standard
inner product on C*) But this is clearly true: One has || JS?(A)- JS?(oo)|| = O(A~ *)
uniformly on Pfc, and H^oo)"1!], ||^(oo)|| are independent of A and bounded
on T.

Next, we define fN by setting

j=N-\,N

(3.54)
1 N-l

As before, we assert that choosing A large enough ensures fN remains in ffls and
has property (ii).

To prove this, we proceed in the same way as for Fk, obtaining

lim JS?(A) - diag(#, N-1, • • -, 3, &2(F)) = Jg?(oo) (3.55)
A—» oo

as the analog of (3.50). Since the number d in F equals 1/r, it follows from the
estimates (3.46) that the eigenvalues of J^(oo) stay a distance at least 1/r apart on
P. Let us now set k = N—l and

^(oo) = diag(l, ••• , ! , ̂ (F)) (3.56)

in (3.52), and let us choose A large enough so that || K(A)|| < 1/r2 along fN. Since
r^2, it follows as before that fN a $?s. Moreover, the perturbed eigenvalues
a±(A) must still wind around the origin and return to their values, since |a+(oo)|
and |a_(oo)| equal 1 and 1/r2, resp. (cf. (3.45)). D
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3B. The Case flrel

We proceed by handling the relativistic case. Here, the potential function
"if is defined by

^(-^ncsh^v^
j * k 2 2 2

k=l,-9N (3.57)

where

0^,g)e(0, o))3n{Te(057r/2]}, i= l-fog. (3.58)

Then i^k is again well defined, holomorphic and non-zero on the domain 2?^ of
Section 3A, cf. (3.2); the restriction on T ensures that the radicands stay away

from (—oo,0] on JfV> so tnat we maY again fix the sign ambiguity by requiring
the square roots to be positive for real 9. Then (3.3) is again clear.

Next, we define

(3.59)

2?jk = Oft M, -g ; 6, S)jkrjk(q, 6) (3.60)

^^dia^exp^O, ...,exp(^)). (3.61)

Then YI, J2? and sf are holomorphic in 3? , cf. (3.7), and on ffl one has the relations

- icotT[JS? , sf] = 2^®Y\- gstf - stfg (3.62)

and (3.9), cf. (B4). Introducing jfs and jfe by (3.10) and (3.11), it follows as
before that Jfe is empty or a codimension-one analytic subvariety, so that J»fs

is a domain. Now let al9 ••• ,% be the eigenvalues of $£ in some point Pe Jfs.
Then afe extends to a multi-valued holomorphic function in J"fs, the values lying
over any point yielding some subset of {al9 •••,<%}. (As a matter of fact, this
subset equals {al5 •••,%} for any point, cf. Lemma 3.6 below. However, this
fact is not yet needed.) But the function

] (3.63)

is invariant under permutations and hence one-valued on J^s. Since 3F is not
identically zero, its zero locus
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^> = {PeJf,|^(F) = 0} (3.64)

is empty or a codimension-one analytic sub variety of Jfs. In either case, the set

jp/sjr.V^ (3.65)

is a domain.

Lemma 3.4. With Jfs replaced by ^fs
b, the assertions of Lemma 3. 1 hold true.

Proof. We follow the reasoning in the proof of Lemma 3.1. Here, the
commutation relation (3.62), transformed with 3%, yields

oij - e ~ "*k] = 2isim(@ ~ 1 Q; ( J^)fc • (3-66)

Since J* ^0 on Jfs
b, we may now invoke (B3) to deduce

(a-iQjmj^a-ts/Wjflj^Q, 7=1, :.,N. (3.67)

(Cf. the arguments leading to (2.91).) Then the proof can be completed as before.

D

We can now proceed as in the previous case. Thus, we reparametrize
the AT_ = 0 data set Dl by setting

(3.68)

and then (3.17)-(3.19) again hold true. Also, since (3.21) is still valid, it follows as
before that 3? has positive and simple spectrum on the set % Therefore, a
unique real-analytic function J[ : % -> GL(N, C) satisfying (3.22) exists again,
and ^ is related to the matrix M of Section 2C via a diagonal matrix D as
specified in (3.23). As a consequence we obtain

yv,a) = exp(^+)^(^+), i= !,..•,# (3.69)

cf. (2.92).
Now ^ gives rise to a holomorphic function 01 in ̂  in the same way as

before. We proceed by introducing the functions

qi = fjL"llnai9 a,i = ($l~
lg'@$ih (3.70)
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Here, all logarithms can and will be chosen real. Then we have again

q{ = x^ 0—pf, i =!,-•• , AT (on^i) (3.72)

cf. (3.22), (3.69), (1.3). Since the arguments of all logarithms are non-zero on
^ (recall (3.67) and (3.63)-(3.65)), analytic continuation to ̂  does not meet
obstructions, and hence a multi-valued holomorphic map

arises. Then the diagram (3.28) again applies, commutativity being a conse-
quence of (3.72).

Before continuing with Lemma 3.5, we would like to point out that (3.71)
can be rewritten

(^~lJ3^)fcfe = exp(/?0k)TTk(|u, jS, g; q) (on QQ (3.74)

where ffc(/?,^,g; 6) is defined by (3.57). This fact is only one aspect of the
self-duality of the IIrel case, cf. I. However, in this paper we have opted for
denoting the (q, 0)-space and (q, 0)-space objects by different symbols. Recall in
this connection that we have restricted the definition domain of the function
ffe05, fag I @) s° that it remains one-valued. Therefore, the function i^k(fJL, fl,g; q)
would no longer be well defined when the imaginary part of q^ gets large
(compared to | j?g|), and such g-values do arise in the flrel case, cf. also (1.3), (1.4).

Lemma 3.5. The assertions of Lemma 3.2 hold true, with R being the map
(3.73).

Proof. The proof of Lemma 3.2 applies with obvious changes. D

It is again clear that the monodromy of ̂  on ̂  can be encoded in the finite
group M($) defined by (3.32). (We shall presently prove M($) = SN.) However,
in the case at hand not only the definition of q but also that of 9 involves
logarithms; specifically, we conclude from (3.70) and (3.71) that (3.33) should be
replaced by
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= {(k,n,a)£(ZNxZN)>4SN\ there exist branches of R related by

(f = qff + 2nOc/n O' = 0a + nin/P}. (3.75)

Just as in the previous case, the additive multiples must add up to 0 by virtue
of the relations

Zqj = Zqp ZOj^Oj. (3.76)

(The first equality follows again by writing \Sf\ in terms of q and q, and the
second one by writing \s/\ in terms of 8 and 0, cf. (3.66), (3.74).)

We conjecture that for T e (0, n/2) these sum rules are the only constraints.
That is, using obvious notation (cf. (3.36)), we expect

M(R) = (EM x EN(6)) X SN9 T e (0, n/2) (?). (3.77)

However, for T = n/2 it is plausible that the group M(R) is smaller. Specifically,
we expect that in this case M(R) is generated by the transformations

1 + m/jS, 0fc - Hc/jB, & = 1, - • -, N- 1 (3.78)

(3.79)

These conjectures hold true for N=2, but we skip the proof. Here, we restrict
ourselves to handling the #-monodromy.

Lemma 3.6. For any aeSN and keZN with Dfc,- = 0 there exist branches $,
& of $ and branches Z, Z' of R related by @' = @Ua and qf = qff + 2nik/^

6' = 6a + nin/fi, resp. Here, one has neZ and E«7- = 0.

Proof. We follow the reasoning in the proof of Lemma 3.3. The N=2
loop F is defined in the same way as before, except that (3.39) is replaced by

6i = ±p- ^rshfsinTCOty), y E (0, y0i/8]. (3.80)
2

Then the eigenvalues of & are again given by (3.42) and using the bounds (3.43)
one readily verifies

Te(0,7i/2] (onT). (3.81)

As a consequence, one may infer F c J"fs
b and q^q2 -»q2><li along P.
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The loop f is defined by replacing (3.44) by

. (3.82)

(Once more, r is chosen large enough to ensure Sj(t) e 5M9/2.) Then (3.45) follows
again, implying f a & * and qi,q2-*qi—2ni/n, q2 + 2ni/^.

From the above the validity of the lemma for N=2 follows. Continuing
with the general case, we replace (3.48) by

6 k = ±]8~1arsh(sinTCotyk), yk = y0i/%(N-k+ -) (3.83)
k+i 2

and proceed as before. Choosing A large enough so that || F(A)|| <y0i/16 along
Ffc, one readily deduces Fk c ffl\ and the property (i) by using the estimates (3.43)
and (3.81).

Finally, in order to define FN we replace 6^-1 in (3.54) by the rhs of
N

(3.82). Choosing A such that one has ||F(A)|| <l/r2 along fN then guarantees
TN c ^ and property (ii). (Recall (3.45) and d=l/r on TN, cf. (3.53).) D

4. The Action-angle Transform

4A. The Case flnr

Using the results of Section 3A as a guide, we continue by reparametrizing
the data set D with 2N real coordinates that will be proved to be action-angle
variables. Specifically, fixing (v,a)eDl we set

,= l

t J f e _ (antisolitons) (4.2)

„.!,.,, (breathers)

«k++n=-(A.-^n)

(4.3)

(When JV_ =0 we have k. =/-0, and (3.15) results. Note also ^(«),
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are real, but not necessarily positive.) In this way we obtain a bijection

«>,:/>,-> &i> (v, fl) i-» (*s, *s~, x, yrf,f?9p9 8) (4.4)

where Q, can be written

as = Sk+tk_xBl (4.5)

^^ (4.6)

/?„ — iSn J=pk — idfrpi — idl9" -,pl — i5l in lexicographic order}. (4.7)

Summing over / now yields a set

O = Q Q,, m = min(N+ , 7V_) (4.8)
/ = o

and a bijection # : /) -> Q.

Clearly, the soliton set Sk+^k_ is a manifold having (k+ +k_)l/k+\kJ.

connected components, the binomial coefficient being the number of distinct
interlacings of the soliton and antisoliton momenta. On the other hand, the
breather set Bt is not a manifold, as it stands. But we may and will reinterpret
this set as a coordinatization of a manifold (denoted by the same symbol), as
follows.

When we omit the ordering restriction and take yneR at the rhs of (4.7), we
do obtain a manifold Bt. On this manifold we may define an action of the
symmetric group St by simultaneous permutation of x, y,p, 6 e Rl, and a Z'-action
given by

y\-^y + 2nk/fjL9 keZ1. (4.9)

In this way we obtain a free action of a semi-direct product of Zl and St. We
may and will view Bl as the manifold obtained from Bt by quotienting out
this action:

B^Bj&KSj (4.10)

It is to be noted that the covering manifold Bl is not simply-connected for /> 1.
Next, we turn Q,{ into a symplectic manifold by defining the symplectic form
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&,= £ «fef A<&+ I <fc} A4pj+ £ (dxn/\dpn + dy^ddn). (4.11)

More precisely, the rfc yields a symplectic form &l on Sfc+ fe x j?,, w.r.t. which the

(Zl XI Sj)-action is symplectic. Therefore, wl descends to a well-defined symple-
ctic form d)j under the covering projection Bl -» Bt, for which (4.1 1) is a convenient
shorthand.

We proceed by introducing the subset

o^</(A) (4.12)

of the phase space Q. On Q, the matrix L has simple spectrum and / complex-
conjugate pairs of eigenvalues in the strip S^^, cf. Section 2B. Since L is
continuous on O, the subset Q, is open and hence a manifold. Thus, restriction
of the symplectic form CD (defined by (1.7)) to Qf yields a symplectic manifold
<0,,co>.

As a preparation for Theorem 4.1 below, we introduce some more notation.
We denote the restrictions of the direct and inverse transforms to Qj and Dl by
3fi and </h resp., and define bijections

$, = ̂ 0^:0, ->Qj (4.13)

^j^-1;^-^. (4.14)

(Recall % is defined by (4.1)-(4.4).) Summing over / now yields the symplectic
manifolds

1 = 0

1 = 0

which are intertwined by the bijections

d> = ^o^:Q r-»Q (4.17)

g^SoV-i-.a^Cl,. (4.18)

Theorem 4.1. The maps <£j and O are symplectic diffeomorphisms with
inverses <£J and <f,
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Proof. We need only prove that &t is a symplectic diffeomorphism from
<O,cOi> onto <Q/5a>>, /=0 , - -^m. To this end we first construct and
then exploit the following commutative diagram:

nt (4.19)

(The definition of this diagram will be such that it reduces to the diagram (3.28) for
the special case N_ = 0.) The bottom line of the diagram has already been
detailed, so we need only specify &hnhZh£li and nt.

First, the set Clt consists of all points in C2^ of the following form (from
now on, e(-) denotes the sign function):

9 e^9N.k_+j (4.20)

f\ £(^-^_ fc_+j)= ±1, i=l,-,fc+

(4.21)

0 1 = 1

(4.22)

^eC21, Im0fc++ne(0,-^), 6k++n^6k++m

(4.23)

+ + i + B = ̂ ++H , ' i = I,-,/- (4-24)

Clearly, any such point belongs to ^, cf. (3.7), (3.2). Furthermore, the definitions
of the imaginary parts are such that

r\(q,6)ENb (#,$)e^X (4.25)

where Nt is given by (2.44). (This is readily verified from (3.4) and (3.1) by taking
the ordering (4.20) of the real 6k into account; cf. also (3.3).)

Second, we may and will identify &t with the above manifold Sk+tk_xBt by
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setting

(4.26)

Then the map ft, in the diagram (4.19) is defined by composing this identification

map with the covering projection Bt -> B,, cf. (4.10). Combining (4.1)-(4.3) with
(4.20)-(4.26) we now deduce the crucial relations

(4.27)

(4.28)

(4.29)

where

,!*.) (4.30)

and Mffe O(l) is the permutation matrix putting 6k+ + 15 • • • , 0fc+ +l in lexicographic

order. (This generalizes (3.17)-(3.19).)
Third, we define the map Zt. To this end we first observe that Clt c= jfs.

Indeed, from (2.56) and (2.60), (2.61) we have

(4.31)

and combining this with (4.28) the inclusion is clear. Since the spectrum of &

is real on &h we may now invoke Lemmas 3.1 and 3.3 to infer that there exists

a branch JJ of ^ over ^ that is uniquely determined by

). (4.32)

By definition, the map Zz is a corresponding branch of R over Oj, uniquely

determined by
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N+ + 1,-,N-1. (4.33)

N

On account of (4.32) and Lemma 3.3 such a branch does occur, with keZ
being given by (recall (3.37))

„ f N N+ N- 1
=^-\ I &- E *<+- I *7 -

2/7t|jk=l i=l j=l J

(434)

(Whenever Az has more than one connected component, this integer will depend
on the component, cf. (4.21), (4.22).) Moreover, from (4.28) together with (4.31),
(4.32) it follows that there exists a diagonal matrix D such that

(4.35)

(This generalizes (3.23).) Therefore, the map Zt yields a vector 9 given by

^ -'-^J '"* (4.36)

cf. (4.29) and (2.63), (2.64).
It is now clear how the definition of the diagram (4.19) is to be completed:

We set

(4.37)

and take for nt the obvious identification map

= Pt=6» i=l,—,N+

Then the diagram commutes by construction.
Having detailed the algebraic bottom line, analytic top line and geometric

side lines of the diagram (4.19), we can now proceed to the dynamical punch
line: from the commutativity relation

e> * „ "-7 ts & (0— 1 (A 1Q\&l°7Li — 7Tj°.Z»j, (3^ = ^°^ \^.jy)
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it follows that the bijection St is a symplectomorphism onto its range. Indeed,
smoothness of ^ is clear from (4.39) and holomorphy of Zb smoothness of g{~

1

follows from the fact that Zl has a local holomorphic inverse, and the canonicity
of ^ results from (4.33), (4.36) and (3.29) by specializing the holomorphic partials
in the latter equations to the relevant directions, cf. (4.20)-(4.24) and (4.26). Q

Thus far we have concentrated our attention on the submanifold Qr =
for which the Lax matrix (2.21) has simple spectrum inside the strip S^/2 cf.
(2.28). Of course, for the special case m = min(N+,N__) = Q this is no restriction,
since one then has Qr = Q. However, assuming m>0 from now on, Qr must be
smaller than Q. Indeed, O is a connected subset of R2N, whereas Or has more
than one connected component. On the other hand, Or is only slightly smaller:
it is dense in O and has full measure.

To prove the assertion just made, we introduce the exceptional set

(4.40)

and note that the complement of Or can be written

(4.41)

where Qb is the boundary set (2.29). Now let At, • • • , A J V be the roots of the
polynomial \L — 11N\, and define

D= II Vi-W (4-42)

F=
Since the functions D and Fare invariant under permutations of the ^, they must
be polynomials in the symmetric functions of L. Because L is real-analytic on
Q, it follows that D and F are real-analytic, as well. Now it is clear that Qe and
Qfc are just the zero loci of D and F, resp., so that these sets are real-analytic
sub varieties with codimension at least one. By virtue of (4.41) we may then
deduce that O\Or is nowhere dense and has measure zero, implying the assertion.

However, these simple observations leave quite a few questions open that
are not as easily answered. In particular, at this stage it is by no means clear
whether Oe and Ob are both non-empty, and what happens to the y^-torus when
the action variable 8n converges to — pg. We shall address such questions in
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Section 5A.

4B. The Case flrel

When the parameter T= -f$ng belongs to (0,7c/2), we can and will proceed

in the same way as in the previous section. Thus, we reparametrize the data
set D again via (4.1)-(4.3), with vk replaced by vfcexp( — /fofc) and i^k given by (3.57),
k=l,---,N. (Thus, we get (3.68) in the pure soliton case N_ = 0.) After these
substitutions all definitions and relations preceding Theorem 4.1 apply without
change.

For T = n/2 we define the map % in the same way as for T e (0, n/2), but now
we restrict attention to the subsets

(4.44)

(4.45)

of the manifolds Qj and Ob, resp. At this point is not yet obvious that any of
these sets is a manifold; in fact, thus far we have not even shown that D\ is
non-empty. Therefore, we may and will proceed just as for T e (0, n/2), replacing
D's and ff s by Z>b's and Qp's, but for the moment Qb and Qb can only be viewed
as sets. However, in the following theorem these sets are promoted to 2N-
dimensional manifolds, among other things.

Theorem 4.2. For T e (0, n/2) the assertions of Theorem 4. 1 hold true. Now
let T = n/2. Then Ob is an open dense submanifold of£lb Ob is an open submanifold
of Ob, and ®l is a symplectomorphism from <Qb,o>> onto <Ojb,o?j> with
inverse Sv Moreover, $ is a symplectomorphism from <Ob, &>> onto

<Ob,a),> (4.46)
1 = 0

with inverse

Proof. We first take T e (0, n/2) and follow the reasoning in the proof of
Theorem 4.1. From (4.31) and the definition (3.63)-(3.65) of Jfs

b we deduce
Qz c: ̂ . Then (4.32) again determines a unique branch ^ of 01. By definition,
the map Zz is again a corresponding branch of R. We may and will require
that the vector q is given by (4.33), but since we have not determined the
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0-monodromy, it is not clear whether this requirement fixes a unique branch of
R. (Most likely, it does not, cf. the paragraph preceding Lemma 3.6.) However,~
&t(P) must again be related to Jf(Q) via (4.35), so that any branch corresponding
to JJ yields a vector 0 of the form

' (4.47)
J-K++imjP N+ + 1,..., N

where «,- e Z. Then a unique branch can be fixed by elimination. (For instance,
one can proceed as follows: discard branches for which n1 ^0 except if no branch
remains; in the latter case discard branches whose \n^\ is larger than the
minimum \n1\; then discard branches whose nl is negative except if no branch
remains. Repeating this procedure for n2, • • •, %_ i, yields a unique set of integers
nn'">nN (nN being determined by 1^ = 0, cf. (3.76)), and hence a unique branch
Zj.) To complete the definition of the diagram (4.19), we now define Qj by (4.37)
and TCj by (4.38) with 6k replaced by Re0fe. Then the diagram again commutes
by construction, and the proof can be finished as before.

Now let i = Ti/2. Then we can once more construct a commutative diagram:
In (4.19) we replace the set Dt by D\ and the four O's by Qb's. The bottom line
has already been defined, so we may proceed by setting

5M*V .̂ (4.48)

Here, Qj is defined as before, and Jf& is defined by (3.63), (3.64). We claim that
Of is a (relatively) open dense subset of Qj. This claim will be justified
shortly. Since the function 3F is invariant under the (Zl ><1 5^-action, we may
compose the identification map (4.26) restricted to fr\ with the covering
projection Bl-

j^Bl. By definition, this yields the map nl9 and now it also
follows that Of is an open dense submanifold of Oz. Hence D\ is an open
dense subset of Dt and Of is non-empty. Now Qf is an open set (as is clear
from its definition), so from here on our previous arguments apply. Therefore,
we are left with proving the claim.

Clearly, it suffices to show that each connected component of Clt contains
points that do not belong to Jff. This can be seen as follows. Fixing any
interlacing in (4.20), we may choose z = 6(q) such that the real parts of
z1,'-,zk++l,zN_k _ + ! , - • - , ZN are distinct and a minimal distance ^gA(R) apart
and such that lmzk++n equals jug/4 (7c/2ju), cf. (4.23), (4.24). Then it is straight-
forward to verify that the limit JSf (oo) of <£ (A) = Jgf (q, 6) for A -» oo exists and that
j£?(oo) has eigenvalues 0^(00), ••-,a jv(oo) such that a,-(oo) + aj(oo)/0, provided R



910 SIMON N.M. RUIJSENAARS

is chosen large enough. Fixing such an R, it follows from a perturbation
argument exemplified by (3.52) that the eigenvalues of &(A) satisfy «XA) +
QLJ( A) 7^0 for A large enough. D

For Te(0,7r/2) one infers just as in the flnr case that Qr is a dense subset of
O with full measure: One need only replace (4.43) by

(4.49)

where Al5 • • • , AN are the roots of the characteristic polynomial of the Lax matrix
(2.70), and follow the reasoning after Theorem 4.1.

For T = n/2 we should compare Qb and Qb. Since fib is the subset of O on
which xf^xj, i=l9-~9N+9 7'=!, ••- ,#_, it has M/N+\NJ.=c connected
components. Likewise, Q0~SN+ > j v_ has c components (cf. (4.6)), so that QQ
has at least c components. Now QO is a proper open subset of Qb, so that
Qb has more than c components. But then Qb has more components than Ob,
since Qb and flb are homeomorphic by virtue of the theorem just
proved. Therefore, Qb\Ob is a codimension-one real-analytic subvariety of
Qb, and as such is nowhere dense and has measure zero. In Section 5B we
shall see that only the discriminant function D vanishes on Ob\Qb; the function
F is non-zero on Ob, so that Ob = Ob.

5. The Harmonic Oscillator Transform

5A. The Case ftnr

As promised at the end of Section 4A, we shall now obtain more information
on the sets Ob and Oe, and clarify the behavior of the yn-ton as one or more of
the actions dn converge to — ̂ g. To provide background, intuition and notation
for the general case, we begin by studying the case N+ =N_ = 1, where virtually
any question can easily be answered explicitly. In particular, one finds that Qe

is a codimension-one submanifold on which L is not diagonalizable, and that Q,b
is a codimension-two submanifold; specifically,

(5.1)

(5.2)
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Thus, Qe consists of two disjoint hypersurfaces separating the two components
of the soliton manifold SM from the breather manifold B± (recall (4.6), (4.7)), and
Qb consists of the 'dead breather' points.

Of course, in the case at hand it is evident from a phase space picture that
the -y-torus collapses to a point when the action variable 6 converges to — p,g. To
be more precise, let us introduce the 'harmonic oscillator variables'.

y = - arctg(ii/»)

(5.3)

and observe that this transformation densely embeds B± into an extended
breather manifold

B\ = {(x,u,p,v)eR*\u2 + v2<2g}. (5.4)

Let us now compose the action-angle transform <!>! from Qj onto Cll=Bl with
the coordinate change (5.3) and denote the resulting diffeomorphism again by
(Dj. Then one readily verifies that ^i can be extended to a 'harmonic oscillator
transform' <p* from £2*=Q1unfr onto fi*=/?J. Explicitly, one finds that <£* is
given by

x=-(x++x~), p=p++p~ (5.5)

- (5.6)

uV ii/2
^ (^+-^-)2 ,

1 ../v+ v-\ J

(5.7)

(5.8)

whereas the inverse transformation /f reads
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x±=x±-Arth(ur)

p± = -p±~ iivr(2g -u2- v2),

where

11/2

(5.9)

«•'<»
Moreover, equipping Q* with the symplectic form

(5.11)

the maps 0>* and <f* are canonical transformations. Finally, we note that
(5.6)-(5.8) entail

limn = 0, limv = (2g)1/2e(p + -p~) (p+ -p~ fixed). (5.12)
<5tO <5fO

It would be overly greedy to expect such explicitness for N> 2. Even so,
the main questions can again be qualitatively answered, as will now be
detailed. First, let us present a quite direct argument showing Ob is not
empty. (We shall greatly improve on this result in Theorem 5.1, but this involves
a lot more preparation; the a priori bounds in the argument that follows will be
needed again.)

We start from the symmetric functions of j£? on its definition domain
Jf . Using (3.1)-(3.5) and (B4) one verifies that these are given by

Sk(q, 6)= £ exp(/̂ .)]-][(0,. - 0/ + AI V] 1/2/(^.(U) - d^jj.
Jc{ l , . . . , JV} iel iel

|/|=k M

(5.13)

Now we specialize (q, 6) to the covering manifold fi, of Oj (defined by (4.20)-(4.24))

and kill the nth breather by taking Im0fc+ +n] -fig (and, therefore, lm@k+ +i+nl —

- iig). Using Re0fc+ +n = Re^fc+ +l+tt one reads off from (5.13) that Sk has a limit

to which only subsets / contribute that either contain both indices k++n,
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n or contain neither of the two. (Note the limit does not depend
on Im<7 f c++n , cf. (4.24).)

More generally, we can kill as many breathers as we please, as long as we
ensure that the real parts of the Ok++n involved are distinct. Since the functions
Sl3 ~-,SN converge, the eigenvalues of «£? have limits, too. Moreover, none of
the latter limits can be zero, since \&\ = SN^Q. Therefore, the corresponding
position vectors x+ and x~ converge as well.

However, the position limits might not belong to GN+ and GN_, resp. Put
differently, some points in a(<$f(q,S)) might collide, a priori. To exclude this
contingency, we first observe that

-Trj/(P)2= -TrL(P)2 = H(P) (5.14)

cf. (4.19), (4.29), (2.23). Next, we note the Ihs converges, so that H has a limit,
too. But from (1.1) it is then plain that there is a non-zero lower bound on the
distances |xf— jc^|, d= +, — , so no collisions can occur. Now (1.1) also entails
that p + and p ~ remain bounded. Via a compactness argument it then follows
that one can find convergent subsequences. Thus Q& is non-empty, as
advertised.

Next, we are headed for a complete elucidation of the structure of O6nOs

(entailing in particular that p+ and p~ actually converge in the limit just
studied). To this end we introduce an extended breather manifold B\ by trading
yn, Sn for un, vn9 cf. (5.3), and by setting

B\ = {(x, u,p, v) E R4l\ u2
n+v2

n< 2g, pn - idn ̂ pk - i8k,

Pi — i$i," '>Pi — *<5j in lexicographic order} (5.1 5)

8H=!4ui + it-2g\ u2
n+v2

n<2g, «=!,...,/ (5.16)

(recall (4.7)). More precisely, one obtains a manifold B*c when one omits the
ordering restriction in (5.15), and then B* can and will be viewed as

(5.17)

We now introduce symplectic manifolds <Q*<c), a>f <c)> by

Q^E^^X^O (5.18)
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£ (dxn /\dpn + du^dvn) (5. 19)
7 = 1 w = l

(recall (4.5), (4.11)), and then set

Moreover, we denote by fif the subset of Os on which L has / (and only /)
complex-conjugate pairs of eigenvalues. Thus we have

1 = 0

We are now prepared for the principal result of this section.

Theorem 5.1. The maps <Dj and <I> extend to symplectomorphisms Of and
<&* from <Of, co> onto <Qf , o>f > and from <QS, co> 0«to <Q*, o>*>, resp. The sets D,e
and£lbn£ls have codimension one and two, resp., andL is not diagonalizable on Oe.

Proof. In order to prove the existence of smooth extensions we are going
to make use of notation and arguments from the proofs of Theorem 4.1 and
Lemma 3.1. We begin by identifying 5, with the manifold S f c + > f e_ xBt c R2N

via the identification map (4.26). Then the commutativity of the diagram (4.19)
entails that ^ and Z| give rise to real-analytic functions of (xs,xs,ps,ps\ x,y,p,§)
that are invariant under the Z'-action (4.9) on Bt. Therefore, JJ and Z, descend
to real-analytic functions (again denoted Jj, Zj) on

ff^S^k_xBl Bi = BjZl. (5.22)

We may and will view 1% as the open subset of R41 obtained via the transform-
ations yw 5n i-> un, vw «=!,•••,/ , cf. (5.3). Explicitly, this amounts to

B\ = {(x, u,p, v) E R*1 1 0 < ul + vl < 2g,pn - idn ¥=Pk - idk}. (5.23)

Correspondingly, we may and will view OJ as the open dense submanifold
obtained from Ofc by requiring (wn,yn)/(0,0), « = !,••-,/.

As a result of these considerations, we may now replace (4.19) by the
commutative diagram
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(5.24)
>a

n,-

Here, the map

Yl^nloZl (5.25)

is real-analytic and symplectic, and invariant under the 5raction on the breather
variables (x, u,p, v). Moreover, nc

t is the covering projection that quotients out
the Sj-action, and just as before we abuse notation by denoting the images of
^ and Oj under the canonical coordinate change (y,6) v-> (u, v) by the same
symbols.

We are now aiming for an extension of (5.24) to the following diagram:

Yf

(5.26)

fif-

Here, the manifolds Of(c) and Of have been defined already (recall (5.18), (5.21))
and 7ifc is the covering projection extending nc

t. Thus, the definition of the
diagram will be complete once we define the maps Yf and £f.

We proceed by doing so. The result will be that Yf is a real-analytic
symplectic map from Ofc into Of that extends Yl9 whereas fff is a bijection from
Of onto Of that extends Sv The diagram will commute by construction, so that
the map O* — ̂ *"1 has the asserted properties. The details now follow.

First, we restrict the vector-valued function rj and matrix-valued function JS?
from Section 3 A to Cll~Sk+tk_xBl and trade (y,8) for (u9v). Then we obtain
real-analytic functions (denoted by the same symbols) on O£. Now one readily
deduces from (3.4), (4.26) and (5.3) that */ has a real-analytic extension to Ofc,
whereas (3.5) and (Bl) entail that the matrix element &k++nfk^+l+n diverges
when (un,vn) converges to (0,0). Therefore, one should not expect that the
matrix-valued function JJ occurring in the proof of Theorem 4.1 has a
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real-analytic extension (and indeed it does not, as we shall presently see).
To cope with this problem we introduce a renormalized matrix

(5.27)

were

/)r = diag(l/u,^fe+ + 1, • • • , f / f c + + i , l f f _ ) . (5.28)

The point is, that the singularity in the matrix element Cjk arising for
(un, vn) -* (0,0) is then canceled by zeros coming from Y\J and f/k, where
j=k+-\-n,k=kJr+l-\-n. Indeed, a straightforward calculation yields

(Sf^jk = exp(2itxn)fj,g(2 Im aj + [ig)(2 Im a,-) ~ 2

. f] Kflj-gJ +0 g 3 .[fa-**) +A* g ] ? (5 29)

j=k++n, k=j + l, n = l,-~J.

(Here, we have used the notation

a = (j?,—(p — i8\—(p + id\]f) (5.30)
2 2

and (5 is to be viewed as a function of u and y, cf. (5.16)). Therefore, Sfr does have
a real-analytic extension to Ofc. Furthermore, the renormalized vectors

have real-analytic extensions, as well.
The crux is now, that <£r is not only real-analytic, but also has real and simple

spectrum on Ofc. (Indeed, we know already this holds true on the dense
submanifold OJ. Taking limits, reality is obviously preserved, and no collisions
can occur by virtue of the argument in the paragraph containing (5.14).)
Consequently, we may mimic the reasoning in the proof of Lemma 3.1 to infer
that there exists a real-analytic function ^ r from Ofc to GL(N, Q satisfying

(5.32)

(5.33)
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Moreover, this function is unique up to right multiplication by a permutation
matrix. We can and will fix this ambiguity by requiring

^r = Dr^ (on flf). (5.34)

(Since JJr is invertible on Ofc and |Dr| = 0 when one or more (un,vn) equal (0,0),
one can now deduce that 3% does not admit an extension, as asserted above.)

We now define Y\ in the same way as Yl9 except that we use 5£r and
38itr. Since the matrices entering into this definition are all real-analytic on Qfc,
the map Y\ is real-analytic. Moreover, since $4 is similar to L, Y\ maps into
Of, as promised. Finally, since Y\ coincides with Y{ on Qf, Y\ inherits the salient
properties of Yl9 on account of real-analyticity and the denseness of OJ in Ofc;
specifically, Y\ is symplectic and invariant under the Sraction on Bf.

We are now in the position to define Sf and hence to complete the definition
of the diagram (5.26). To this end, let Pe&f and let Pcente~1(ff). Then we
set ^i\P)= Yf(Pc). (This is well defined, since Y\ is ^-invariant.) As a conse-
quence, the diagram commutes and $\ is a smooth symplectic extension of the
symplectomorphism S{. Therefore, it remains to show that $\ is a bijection onto
Of. To this end we shall construct a map cpl: iQf -> Qf satisfying

^o^ = id0; (5.35)

&9 " J (C *J £\cpt o &£ = id £». (j.3o)

(Once we succeed in doing so, we have Of = (pi, of course.)
As a preparation for the definition of (pl we choose a point PEO* and

diagonalize L(P) with

(5.37)

where

++l,ek++l+l,-'',eN). (5.38)

Here we are using the matrices C7, K and vectors e, e from Sections 2A and
2B. (To verify that the components of e and e entering Er are non-zero one
need only recall (2.18) and (2.24). Note that E is not invertible when
cf. (2.31), (2.34).) It is easy to see that ^J. is the unique matrix such that

5 - - -, aN), atA\ (5.39)

where
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A^A^^y (5.40)

(cf. (2.4) and (2.43)) and such that

(5.41)

(£•.-%= 1, y=*+ + !,-,*++/.

Next, we note that

vj, j=k+ + \,--,k++l
(5.42)

where v is defined by (2.40). Now it follows just as in the special case P e Q,
that (2.42) holds true, except that C* should be replaced by C. Moreover, setting

(5.43)

we deduce

(Ar)Jk = ejAjkek>Q, j = k++n, k=j+l, « = ! ,••- , / (5.44)

by using (2.18) and (2.16).
We are finally in the position to specify q>t. First, we define vectors xseRk*,

x5eRk by setting

(5.45)

Second, we define a vector xeR1 by parametrizing (Ar)k+ +„ k+ + i + n via the rhs of
(5.29). (In view of (2.42) and (5.44) all positions can indeed be chosen real.)
Third, we define u,veRl by writing

(5.46)

Fourth, we parametrize the vector aeA\ by using (5.30), which yields pseGk+9
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//eG fc_, peR1 and Se[-iJig,Q)1.
Setting now

(5.47)

we claim that the r/zs belongs to Qf. To prove this, we need only show that 6n is
related to un, vn via (5.16), all other properties then being clear. To this purpose
we observe that on the one hand the parametrizations just detailed imply

efjAjk^jvjtf^tf + uS/Tg, j=k++n, k=j + l. (5.48)

(Recall also (5.44) and (2.42) to verify this.) On the other hand, we infer from
(2.24) that

ejek/Ajk=l + 6n/ng, j=kn + n, k=j+l (5.49)

so that the desired relation (5.16) results.
It remains to prove that <pt satisfies (5.35) and (5.36). To this end we identify

<pi(P) with a point PceQ*c in the obvious way (namely, by keeping the
lexicographic ordering). Then we must have

), - . ., eN(P)) (5.50)

since the matrix at the rhs has the properties that uniquely determine
From this (5.35) is clear. Conversely, picking PeQf and identifying P with
PceQ?c, we obtain an image point PeOf whose 0*r must satisfy (5.50), again by
uniqueness. Thus, (5.36) follows and the proof of the first assertion of the
theorem is complete.

To prove the assertions concerning codimension, we note that O is
connected, whereas Os is not (recall our standing assumption m>0). Therefore,
the real-analytic subvariety Q,e must have codimension one. Also, the set O&nQs

consists of those points whose images under <DS belong to Q?\Oj for some />0,
and the latter set manifestly has codimension two. Thus, O5nOs has codimen-
sion two.

To complete the proof of the theorem, we need only show that whenever
PeQ is such that there exists MeGL(N,Q with

M~iL(P)M = dmg(^ ..-, A*), (5.51)

one must have ^-/Afc for j^k. We shall now derive a contradiction from the
assumption that two /I's are equal. Eventually making a permutation, we may
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assume A1 = 12 = L Then we obtain as the analog of (2.24)

(M- lAM)jk{\ + i(A, - 4)/^l = (M- HWHb Al5 • • •, ̂  e S£/2. (5.52)

Viewing this as an equality between NxN matrices, it follows that the matrix
at the Ihs has rank one. Since \M~*AM\ = \A\^Q, this gives rise to a contra-
diction for N=2, so we may assume N>2.

Next, we set

^sl+^-^/w, ^1 + j^-j,)/^, j,k = l,.~,N (5.53)

which entails r t = r2 = cl = c2 ^ 0 and r^ + Cj =£ 0. If all rk would be non-zero, then
(5.52) would imply that the first two rows of M~1AM are linearly dependent,
contradicting \A \ ̂ 0. Hence, we may as well assume r3 = 0. But then we have
c37^0 and also

A3 = *-iW. (5.54)

Thus, A must belong to the upper boundary and A3 to the lower one. Since
A.= A! =^23 this is not possible for A^=3, so we may assume N>3. Likewise, if
all Cj would be non-zero, then M~iAM would have two linearly dependent
columns, so we may assume c4 = 0. But then we have

*4 = A + i-W (5.55)

so that A must belong to the lower boundary. This contradiction completes the
proof. D

The theorem just proved yields a complete elucidation of the state of affairs
on Os. However, it leaves open some natural questions concerning Q,e. For
instance, it does not specify the dimension of OenOb, and it does not make clear
whether collisions off the real axis can occur. Another open question is: Are
there points in Q for which a(L) has cardinality one? (We suspect the answer
is 'yes' if and only if \N+ — W_|<1.)

We shall finish this section by exhibiting such phenomena for the special
case N+=N_=2, taking

pi =P2 = ~Pi = -P2 =P- (5.56)

First, choosing
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p = ̂ g/2ch^x (5.57)

one finds an x- value for which \a(L)\ = 1:

sh//jt=l=><7(L) = {0}. (5.58)

Second, with (5.57) in force one obtains, indicating (algebraic) multiplicities,

shjtx<l =>d(L) = {fl,fl,-fl, -fl}, a = Mg(l-shV)1/2/2slvix (5.59)

sh/uc>l =xr(L) = {b9b, -b, -b}9 b = i^g(sh2^x-l)i/2/2sh^x. (5.60)

Therefore, multiple collisions and collisions off the real axis cannot be excluded in
general. Third, one finds

shjix - 2,p2 = 9jx V/80 => a(L) = (0, 0, 1 w, - i^} (5.61)

so that OenO& is not empty in general.

SB. The Case flrel

As already mentioned, the cases 1 6 (0, n/2) and T = n/2 are quite different as
regards spectral boundary points. Therefore, we shall first handle the case
T E (0, 7i/2) by following the path laid out in the previous section and then study
the T = 7E/2 case.

Starting with the special case N+ =N_ = 1, one finds that Qft is again given
by (5.2), whereas

&e = {(x+,x-,p + ,p-)€R4\th2-p(p+-p-)ch2-iJ,(x+-x-)= (5.62)

Thus, Oe is a codimension-one submanifold having two connected components,
just as (5.1). Again, L is not diagonalizable on Oe. Changing variables accord-
ing to (5.3) and using notation introduced below (5.3), one finds that <J>* is given
by (5.5) and by

(5.63)
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s n T - s n

(5.64)

where

^(*+-*~)-sin2T])1/2. (5.65)

Also, the inverse transformation <?* reads

x±=x±-A.rth(ur)

± = -p±-Arth(.rtg[T- -
2 p 4

(5.66)

where

-

M2sin2T + i;2sin2[T - -
4

(5.67)

As expected, these formulas reduce to (5.6)-(5.10) when /?-»0. (Recall
r = j8/ig/2.) Once again, ®\ and S\ are symplectomorphisms w.r.t. (5.11), and

(5.12) holds true.
We continue with the general case. Replacing (5.13) by its flrel generaliza-

tion

Sk(q, S) =
|I| = fc iel iel

(5.68)

(cf. (3.57)-(3.60) and (B4)) we shall first show O& is non-empty. To this end we

follow the reasoning after (5.13), replacing (5.14) by
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(5.69)

where P0 is the Hamiltonian

N+ N-

(5.70)

cf. (1.3), (1.4). (The second equality in (5.69) follows by using (B4).) From this
the desired a priori estimates readily follow. (Note H=f}~ *TrL cannot be used,
since e* is not bounded away from zero.)

Next, we may and will copy the definitions and relations (5.15)-(5.21), which
prepares us for the following theorem.

Theorem 5.2. For ie(0,7c/2) the assertions of Theorem 5.1 hold true.

Proof. The reasoning in the proof of Theorem 5.1 applies nearly verbatim,
with Theorem 4.2, Lemma 3.4, (5.69) and Section 2C playing the role of Theorem
4.1, Lemma 3.1, (5.14) and Section 2B, resp. Therefore, we only list the changes,
to wit: (5.29), (5.39) ->

.-a,) sh-/S(at-a,)

p^a,), ' • -, exptM, (5.72)

resp.; vfc^exp(-^t)vt at the /fc of (5.45); (5.46), (5.48), (5.49)-*

(5.74)
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ejek/Ajk = exp(/?Refly)[cos(/? Ima) — cotisin(j5 Ima,-)] (5.75)

resp.; (5.52)-(5.55) ->

(5.76)

rk= -(A + 4)+^coti(A-4), Cj= -(Aj + AHcott^-A) (5.77)

(5.78)

(5.79)

resp. (Note r;- + Cj ̂  0 since Re lt > 0, i = 1 , • • • , N.) D

The first paragraph after Theorem 5.1 applies again. Moreover, the situa-
tion concerning collisions for the special case N+=N_=2 is the same as
before. Indeed, consider again points in O of the form (5.56), Choosing first

chflp = [1 - sin2i/ch V] ~1/2 (5.80)

one finds as the generalization of (5.58)-(5.60)

where a is defined by

cha = COST[! + sin2i/sh Vx]1/2. (5.82)

(In particular, o(L) = {\] when shjoc^cosT.) Also, one obtains

a(L) = {\, l,exp(/T), exp( —ZT)} (5.83)

(and, therefore, a point in QenO6), when one chooses

shfiix = [2cosi 4- 2cos2i]1 /2

(5.84)

l[(l-
cos TL 4 + 6cosi



ACTION- ANGLE MAPS AND SCATTERING THEORY II 925

We proceed by studying the case T = n/2, taking again N+ = N_ = 1 for a first
orientation. From (2.70) one then infers

M. (5.85)

Thus, L has a jump discontinuity on Q\Qb, but cr(L) is continuous. Conse-
quently, one may include the hypersurface x+ =x~ as regards spectral properties.
Doing so, one finds

ab = n\n* = {(x+,x-9p
+

9p-)eR*\x+=x-} (5.86)

whereas Oe is given by (5.62) with T = n/2. Thus, Oe now consists of four disjoint
hypersurfaces. Moreover, after the change of variables (5.3) one finds that <!>l

and &i are given by (5.5) and (5.63)-(5.67) with r = n/2, but now these real-
analytic symplectomorphisms do not have sensible extensions. Indeed, when
x+ ->x~ one gets w,y-»0 for any p+,p~', when M,y-»0 one gets x+ -»;c~,
whereas p+,p~ have direction-dependent limits.

Next, we turn to the general case. The formulas (5.68)-(5.70) now do not
lead to useful conclusions, since the potentials in PQ are not bounded away from
zero for T = n/2, cf. (1.3), (1 .4). However, it is not hard to see directly that the Lax
matrix has no imaginary eigenvalues on Qb. Indeed, let PeQb and assume
L(P)(p = A(p, (p^O, Re^ = 0. Then it follows that (<p,(L + L*)<p) = Q. But from
(2.70) one obtains

_ (5.87)
L__ 0

where

£»+_=diag(

(5.88)

and where L(N+)/L(N-) are pure soliton/antisoliton Lax matrices. Since all of
these matrices are positive on Ob, one has L + L*>0, so that tp = 0. This is a
contradiction, so that no spectral boundary points can arise on !Qb.

Just as for the above special case, a(L) has a continuous extension to O,
whereas L has jump discontinuities on O\Ob. For example, from (2.70) and
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(1.3), (1.4) one reads off

0±
ik, Lkb

(5.89)

whereas the remaining matrix elements lose their dependence on xf and
x~f. Thus, any point in Q\Qb yields imaginary eigenvalues and the correspond-
ing dead breathers are forgotten altogether, in contrast to the situation for i < n/2.

We now summarize and extend these findings.

Theorem 5.3. Let i = n/2. Then one has

Q5 = Q\Qb, Qr
b = n5

b. (5.90)

The set Qb = Qb\Qb has codimension one and L is not diagonalizable on Qb.

Proof. We have shown above that no point in Qb yields imaginary
eigenvalues, whereas any point in O\Ob does, cf. (5.89). Hence (5.90) follows.
Next, we recall that we have already proved that Ob\Qb has codimension one,

cf. the last paragraph of Section 4B. Since Qb = Qb\Oj?, it remains to prove
non-diagonalizability of L on Qb. But this follows as before; in fact, already

(5.78) yields a contradiction, since ReAj>0. D

The points (5.56) do not belong to Ob and hence cannot be used to obtain
illuminating examples for T = n/2. However, just as in the previous cases it is

easy to see that for N+=2,N_ = l there exist points in Qb yielding \a(L)\ = l.

6. Dynamics and Scattering

6A. The Case ftnr

Thus far, we have been engaged in the construction and study of the

action-angle transform 3> and its harmonic oscillator extension O*. In this
enterprise the Hamiltonian (1.1) has been invoked only once, namely to yield

bounds relevant for studying the boundary set Slb, cf. (5.14). However, it
should be stressed at this point that we proved the crucial canonicity property

of O(S) by reduction to the case m = 0 studied in I, and our canonicity proof
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for this special case does make essential use of prior information concerning
the H flow and its temporal asymptotics, cf. I.

We proceed by obtaining detailed information on the ra > 0 H flow and its

asymptotics. In fact, we shall study along with H=-TrL2 the class of Hamil-

tonians of the form

Hh = Trh(L\ he% (6.1)

where ^ is the class of all entire functions h of the form h(z) = ̂ =0anz
n

9

aneR. Since the Hamiltonians TrL" are real-valued real-analytic functions on
O (recall L is ^/-s.a. and real-analytic), the same is true for any Hh.

We begin by noting that the H flow is complete on all of O. Indeed,
conservation of //yields both a non-zero lower bound on the distances |jcf — x]\9

i^j, 6= +, — (so that any integral curve stays away from 3Q) and an upper
bound on \p + \ and \p~\ (so that the particles cannot escape to infinity in finite
time).

To handle, more generally, the Hh flow, we shall make extensive use of the
relations

A(P)~A(P\ PeCll9 / = <D,(P) e , . (6.2)

(Here and from now on, ~ denotes similarity. Also the matrices A and L,
originally defined by (2.47), (2.48), are here viewed as functions on Of via the
coordinate change (4.1) -(4.3).) We begin by introducing the Hamiltonians

(6.3)

on Q,. In view of (6.1) and (6.2) we have

ffh,,( P) = £ h(pl) + I h(p^ + 2 £ Re// (Pn - iSn)) (6.4)
i=l j=l n=l 2-

cf. also Section 4A. It is evident from this that all of these Hamiltonians
commute, and since ^ is symplectic, the Hamiltonians Hh commute on Qj, and
hence on the open dense subset £lr of Q. On account of their real-analyticity,
they then commute on all of O. In particular, H is conserved under the Hh

flow, so that any Hh integral curve stays away from <9Q and has bounded \p + \
and |/7 ~|. Therefore, completeness of the integral curve exp(tHh)(P) through
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PeQ, will follow if we can prove that the position part of the curve does not
diverge in finite time.

Before deriving this from an explicit description of the position part, it
should be noticed that completeness of exp(tHh) on Or easily follows from (6.3)
and (6.4). Indeed, due to (6.3) one has

(6.5)

and it is obvious from (6.4) that the Hhtl flow reads

(/>1-/5^

and so is complete on Oz. (Using the results of Section 5A it is easy to
extend the previous argument to Os.) However, completeness of a Hamiltonian
flow is not implied by completeness on an open dense set, so we need an
extra argument to handle the general case. Among other things, such an
argument is provided by the following theorem, which involves the matrix

A&9 P) = ̂ (P)exp(f^'(L(P))). (6.7)

Theorem 6.1. Let hef, teR and PeQ. Then the matrix Ah(t,P) has
simple and real spectrum and its eigenvalues a1(f), • • •, ocN(t) can be ordered such that

(6.8)

Moreover, the integral curve exp(tHh)(P) is complete and its position part is given by

jc7(f) = ̂ -1ln(-aw++/r)), j=\,-,N_. (6.9)

Proof. We have already shown that the Hh flow is complete on Q,, cf.
(6.5), (6.6). Taking first PeQ.h we claim that

A(exp(tHh)(P))~Ah(t,P). (6.10)

To prove this, we note that on the one hand
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A(exp(tHh)(P)) = ̂ exp(^)^CP)) - A(exp(tHh.)(P)) (6.11)

where we used (6.5) in the first step and (6.2) in the second one. On the
other hand, we infer from (6.6) and the explicit form of A and L (cf. (2.47),
(2.48) and (4.1) -(4.3)) that

;[(exp(f#fcilX^ (6.12)

(To verify the second step one need only recall that the similarities in (6.2)
are effected by the same matrix.) Thus, (6.10) follows for PeQj, as claimed.

From (6.10) and the definition (2.6) of A one now sees that the theorem
holds true for any PeOj and hence for any Pe£lr. To handle the general
case, we observe that by virtue of standard ODE lore we can find a time
interval [ — e05eo] anc^ a closed ball B0a£l around any P06O such that the
map [ — e0, e0] x B0 -»Q, (t, P)t-*exp(tHh)(P) is well defined and real-analytic. On
the other hand, the matrix Ah(t, P) has simple spectrum on {0} x BQ, so one
can find et e(0,e0] such that it has simple spectrum and real-analytic eigenvalues
on [ — £i,£i] x BQ. Furthermore, since Or n B0 is dense in B0, the position part
of exp(r//ft)(P0) must be related to the eigenvalues of Ah(t, F0) via (6.9) for any

A moment's thought now shows that a contradiction arises when one
assumes that the maximal e(P0) for which the relation holds is finite. Indeed,
we have already seen that the integral curve exp(tHh)(P0) can only fail to be
complete due to divergence in finite time of its position part, whereas the
spectrum of Ah(t, P0) clearly stays away from 0 and + oo for finite times. D

The theorem just proved entails that the |/| -> oo asymptotics of the position
part of the Hh integral curve through P reduces to the spectral asymptotics
of the matrix Ah(t,P). To study this, we first choose PeQ. Recalling the
diagonal similarity transformation (2.54), we deduce from (6.12)

Ak(t, P)~Mj exp(^'(L(P))), P E 0, (6. 1 3)

where we have introduced the positive matrix

Ml = AJ. (6.14)

Combining (2.50)-(2.55) with (4.1)-(4.3), we may and will view Ml as a function
on O2, explicitly given by
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M, = SC(0,^-g;M)S* (6.15)

where

(6.16)

« = (^--s^^5-(^i-^i)5--^-(^

From this one readily infers that Ml has a continuous and positive extension
to Of, cf. Section 5 A. Indeed, as Snl — fjLg9 the matrix element C f c + + n f t + + r j

diverges, but (Mj)k ++n>k++n does not, since i^k + + „ -> 0. Explicitly, one obtains

0, i = k++n,

0, i=£k++n, j=k++n (6.18)

cw, i = k++n, j=k++n

where

f]
j*k+ +n,k+ +H

We proceed by introducing real numbers <^-, rjj via

(6.19)

4+ + i -"hr-s4 + +j-^z>^-fc_ + ir-^jv) (6-20)

and then set

{^9"'9^} = {dl9'^K}9 dK<-..<dl9 l^K^N-l. (6.21)

Next, we define a permutation a, as follows: first, we permute the rhs of (6.20)
into
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(6.22)

fo il
(so that / turns into diag(lfc+,<j l5 ••-,(71 ,-l f c_), 0^ = 1 occurring / times),

and then we reorder (6.22) so that the real parts are decreasing from left to
right, retaining the ordering of (6.22) in each cluster.

We now transform the rhs of (6.13) with the permutation matrix Ha

representing the permutation o just defined. This yields

Ah(t,P)~E(t\ PGQZ (6.23)

where E(i) is given by (C4) with

l (6.24)

-diairfl P exP(-^)l ... [0 exp(-^Mn(b))l
— QiagVlw(s)> ,. v A ' ' /-. \ ^ 'LexpOfi/J 0 J LexpOfij^J 0 J

-lM(s-}) (6-25)

and with d^--,dK defined via (6.20), (6.21); thus one has

(6.26)

The point of these transformations is, that the assumptions (C3), (C5), (C6)
are now satisfied. Therefore, we may read off from Theorem Cl the gross
features of the temporal asymptotics of the positions x^(t)<---<x^(t),
Xx_(t)<--<Xi(t): For |f|->oo there are K separated clusters moving with
velocities dK<---<d1 and the number of solitons, antisolitons and breathers
in each cluster stays the same. (However, rearrangements must occur in
general, so as to preserve the two orderings involved.)

To study the asymptotics in more detail, we should determine the cluster
matrices (CIO) for the case at hand. Since /p(f) is given by (6.25), we need
only calculate the matrices md

p defined by (C9). We begin by doing so when
M is of the form

j,k=l,.:,N. (6.27)

(Here, peCN is chosen such that Lemma Bl applies.) To this end we invoke



932 SIMON N.M. RUIJSENAARS

Lemma B2: it enables us to calculate the inverses of the three Cauchy matrices
that are involved. Explicitly, this yields

5= + , -, J9kelp (6.28)

where

(6-29)

(Recall (Cl) and (C8).)
In the case at hand M is of the form (6.27) with

provided PeOj. However, (6.28) holds true for />eOf, too, since all eigenvalues
of M stay away from 0 on Of, cf, (6.24), (6.14).

We are now in the position to determine the asymptotics of the center
of mass position of cluster p by combining Theorem Cl with the explicit
formulas just derived. To determine the asymptotics of the individual positions
is not feasible in general; we shall only handle the three cases in which
n(s) + n(b) + n(s)=l. Since h(z) is assumed to be entire, the subset of Of for
which all clusters satisfy this restriction is an open dense full measure subset
whenever h depends nonlinearly on z. In particular, for the Hamiltonian H

(for which h(z) = -z2, cf. (2.23)) this subset is given by

n^ = {PGn?|^,..^+yi,..^j.,-/i1,..^-/ildistinct}. (6.31)

The scattering will be detailed in terms of the center shift and phase shift functions

a,:S£\{0,±iW}-*«, zh-^-'lnll+jiY/z2! (6.32)

Sp: SM\{Q}-»2»-\-n,nl z^2^1 arg([z2 + ̂ V]1/2/4 (6.33)

Here, S^ is defined by (2.27) and the square root sign is defined by requiring

Re[z2 + ̂ Y]1/2>0, zesw. (6.34)

Theorem 6.2. Let PeOf and let x+(t), x~(f) denote the position part of
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the integral curve QXp(tHh)(P). Let a be the permutation defined in the paragraph
containing (6.22). Let p e {1, • • •, K] and let dp be defined via (6.20), (6.21). Finally,
let /p(i), \Ip\ and rp be given by (6.25), (6.26) and (C12), resp. Then there exist
uniquely determined indices i l 9 - - - , zn(s)e{l, • • - , & + },j\, •••,7w(5)e{l, ••- ,£_}, nl9~;
;tn(b)G{l, ••-,/}, /a,!,-, ^M ( S)+ W(b )e{l,---,JV+}, jd,i,-JttnM+n(b}e{l9-'9N,} such
that

1 rn(s) + n(b) n(S) + n(b) ~] 1 |~ n(s) n(s) n(b)

TTT Z <,w+ Z ^,,(0 =- Z < + Z 4 + 2 Z ^
Kpl L fc=l fc=l J \'p\ Lk= l fc=l k=l

f-»<5oo (6.35)
z

d = 4-, — flwrf where

Ap^ Z [Z+ - JC ]<5c(«*-'u-,-^-W- (6-36)

t, consider the following special cases.

(i) |/p| = l, /„«=!• (6-37)

77zen ^/zere are indices / e{ l , • • - ,&+} anrf z'5e{1, • -•,7V+ } swc/z that

8
X7'(t) = xs

i Af + fA'(/7$ + 0(exp(—|f|r,)), t-*doo (6.38)
2

w/zere

f 1
^f-fl.-ick)) (6-39)

(ii) I/PI = 1, /p(0=-l- (6-40)

Tftew ^/zere are indices y6 {1, •",/:_} a«rfyae {1, •• •,7V_} ^MC^ ^/za^

^(0 = -XJ — ^j-+^'(/7]) + 0(exP(~~klrp))j t-+dao (6.41)

w/zere
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(iii) , , p }

(6.43)

Then there are indices ise[l,--;N+} and jse{\, ••• ,A r_} such that

'(-(P»-iSn)) + 0(exp(-\t\rp):

(6.44)

- I ««(A-«J-a.-i(*))- (6-45)

^ te/p

Moreover, when Sn > — pg one has

1
sh - M x ( 0 - x7(t))

+ 0(exp(-|?|rp)), /-»5oo (6.46)

- I l^fo-tfJ-fl.-W (6-47)
+ fee/pj ^

dn= —fig one has

xt(t)-xJ6(t) = 0(^(-\t\rp)l t-*6x>. (6.48)

Since the eigenvalues of the cluster matrices are bounded away
from 0 and ±00, it follows from (C15) that

laJ/OI =ln|detcj(0l + t\Ip\dp + O(exp(- \t\rp)), t-+6w. (6.49)

Now |cj(f)| equals (-)H(&)+n(5)|/w^|, and the latter determinant can be calculated
by using (6.27) -(6. 30). Doing so, the first assertion readily follows. Then
(6.38), (6.41) and (6.44) are obtained by specializing (6.35). (Recall non-real
a-s occur in complex-conjugate pairs.)

It remains to prove (6.46) and (6.48). To this end we combine (C15) with
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(6.49) to infer

1 1
sh-n(x?d(t)-xjd(t)) = -\detcd

p(t)\
 1/2Tr c*p(t)+ O(exp(-\t\rp)), t-*dao. (6.50)

Calculating the rhs from (6.27)-(6.30) and (6.43), we now obtain (6.46) and

(6.48). D

We continue with some remarks on the results just obtained. First, the

occurrence of rearrangement collisions already mentioned above is best
illustrated by considering a special case: Take N+=2, 7V_ = 1, /=!,

-p! = —p\ > 0, (51 = — jug, x i = x{ = 0, h(z) = - z2. Then the integral curve

describes the following process. For t-+ — oo one sees a dead breather
X2(t) — Xi(f) at the far left and a soliton xf(t) at the far right; for t-+ao one

sees a dead breather xj'XO —*f(0 at the far right and a soliton x^(0 at the
far left; for finite times the breather is alive and rearrangement occurs.

Second, it should be noticed that when one would omit the factor (—) k + +"~ *

in the definition (4.3) of yn (so that corresponding terms in (4.26) and (6.16)
drop out), then one would obtain an extra factor (—)k+ +n~1 at the rhs of (6.46).

Third, taking 5n> — /^g, the shift in the complex breather positions xn±iyn

due to the scattering at the other clusters can be written in terms of the
multi-valued shift function

jiy/z2), z^O, ±iW. (6.51)

Specifically, one has

-«,-.W) (mod 27C/M (6.52)
kel- fcel+ 2-

Clearly, dc(z) equals Re^(z). However, one cannot replace dp in (6.47) by
Im<5. Indeed, this renders (6.46) ill defined, since the factor 1/2 multiplying

A£ gives rise to sign ambiguities after this substitution.
Fourth, we point out that the above results regarding asymptotics do not

include the following items: the asymptotics of p±(t\ a description in terms
of wave maps, an invariance principle for the latter, and an 'asymptotic
constancy' generalization. (See Chapter 4 and Section 5A of I for the pure

soliton case.)
We conclude this section by studying the 'dead breathers ~ solitons'
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phenomenon already described in the Introduction. Thus, we restrict attention
to the special case

N+=N_=-N=M (6.53)

and the submanifold

na = {x+
9x-9p

+
9p-)en\x+=x-9p

+
9=p-}. (6.54)

We identify £ldb with the manifold

(6.55)

by setting

6=+,- (6.56)

and equip O(M) with the symplectic form

:Q(M) ^QdfccQ (6.57)

where * denotes the identification (6.56).
Now consider the Hamiltonian vector field X=XH (with H given by (1.1))

restricted to Q,db. It is readily seen that X is tangent to Qdb. Indeed, this
amounts to the symmetry properties

Xj = XM+p X2M+j = X3M+p j=\,-M (onOJ (6.58)

which are easily verified. Therefore, the flow Qxp(tH) leaves Qdb invariant and
corresponds to the Hamiltonian flow on the symplectic manifold <O(M),o>(M)>
generated by

Hr^*(H). (6.59)

In view of (1.1) this Hamiltonian reads

f. (6.60)
/-ft) 4

Thus, its flow equals the pure M-soliton flow up to a factor 1/2 (the soliton
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mass is doubled) and a doubling of \JL and g.
As a consequence of this state of affairs, we may now infer from Th. 3.2

in I (with jj,,p,N-+2jiJi,2ig,M) that on £ldb one has

(6.61)

(6.62)

Here, (q,6) belongs to the action-angle phase space

&w = {(q,9eR2M\0eGM}, d>(M) = £ dq^dSj (6.63)
j = i

of I and is given by

(^^) = <Dnr(2/x,2zg;?,0), 9^(0), 0 = V(0) (6.64)

where <J>nr is the map from Th. 2.3 in I; moreover,

(6.65)
i<j i>J

Now it follows from (6.61), (6.62) that the matrix Lt = L°Q\p(tH) on Qdb (with
L given by (2.21)) has the t-+ao limit

l, S^ldiag(0V-A), «=\
I ^-» ^

(6.66)
z

Since the flow is isospectral, this entails

1 .1 1 . 1
(6.67)

so that Od& indeed consists of dead breather states.
More precisely, since L0 has 2M = N distinct eigenvalues on the boundary

of the strip S^/2, it follows that Q,db c Os and that 3>* maps Qd& into

ul=vl = '-'=uM = vM = Q} (6.68)
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cf. Section 5A. Therefore, we may now invoke Th. 6.2 to deduce

*;«-*;- - A5 + -tPj t-*co (6.69)

where

(6.70)

cf. (6.44), (6.45). Comparing this to (6.61), we infer successively pj = Op AJ = A/0)
(recall (6.32) to check this), Xj = qp j=l,—,M.

To summarize and extend these findings, we now identify Q(M) with Odb

by setting

x = q, p = 6. (6.71)

Denoting this identification by /, we clearly have

&<"> = /*(&«f)5 ; . Q(M) ̂  Qd& c Q^ (6J2)

Theorem 6.3. The map O* restricts to a canonical transformation from
(Qd&,a>> onto <Orfb,d)|f> vv/z/cA satisfies

(r 1 oO»o^?, 0) = (IU2M, 2ig ; ?, 0). (6.73)

Proo/. We have already shown that the diagram

(6.74)

Q(M) _ ,, Q(M)

commutes. Thus, it remains to prove ®* maps onto Qdb. But since $nr is a
bijection, this is clear from commutativity. D

We close this section with some remarks. First, recall from (6. 14) -(6. 19)
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that the matrix-valued function As on OM admits an extension to Qjj. Thus
one gets a function As(q,9) on O(M) via (6.71). Substituting (6.56) in A (recall
(2.6)), one readily deduces

\AJ(q9 0) - a!2Ml = ft (*2 - exp2Wj). (6.75)

Since the map (q, 6) h-»(#, 6) is canonical, it follows that the symmetric functions
of As(q, 9) Poisson commute. In point of fact, these functions can be explicitly
found: from (6. 14) -(6. 19) one obtains

,

where C is given by (Bl) and where

(676)
-2g;6,9)

(6'77)

From Cauchy's identity (B4) it then follows that the functions S2k(As) coincide
with the functions Sk(lrel) of I with jU->2ju, p-+2ig, N-+M.

Second, when we substitute (6.56) in the Lax matrix (2.21), yielding a
2M x 2M matrix L(2\q, 9), then the symmetric functions of L(2) are real-valued
and commute. Indeed, by virtue of (6.67) one has

|L<2>(?,0)-112M|= fl [(*- ^/+ ^Vl (6-78)
j= l Z 4

which proves the assertion.
Third, using kih roots of unity the fusion procedure can be generalized

to obtain kM x kM matrices L(fc) on O(M) with real-valued commuting symmetric

functions, the function -kTrL(k\q,9) (minus an irrelevant constant) being equal

to the Hamiltonian H from Th. 3.2 in I, with [i,p,N-*k/j,,kig,M. This entails
remarkable restriction properties of the holomorphic function R from Chapter
3, which generalize (6.73).

Finally, we point out that the C, and BCl reduction described in Th. 5.2
of I generalizes to the flnr case. The point is, that when one requires that
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the two particles at equal distance from the origin have the same charge, then
the vector field XH is again tangent to (the obvious generalization of) Q,e for
N=2l and to O° for N=2l+l, resp.

6B. The Case flrel (Krc/2)

Just as in previous chapters, provided that ie(0, n/2), the reasoning for
the Hnr case can be followed to a considerable extent. In particular, we can
consider the same class %> of entire functions h, but now (6.1) should be replaced
by

Hh = Tr/z(jg ~ ] InL), heV. (6.79)

Here, the matrix InL can (and will) be defined by the (Riesz-Dunford) functional
calculus. (Recall a(L) belongs to the open right half plane.) Then InL is
real-analytic on O, so that Hh is real-analytic on O, too. Moreover, on Os

one has

/r'lnL-diag^,,...,^) (6.80)

cf. (5.72). Therefore, Hh is real-valued on Os and hence on O as well.
Clearly, the Hamiltonian H given by (1.2) arises when one takes

h(z) = f}~1 exp/?z, cf. (2.73). In the present case however, completeness of the
H flow is not immediate, since the functions exp/?/^ in (1.2) are not bounded
away from 0 on O. But if we start from /z(z) = ch/?z, then we obtain the
Hamiltonian P0 given by (5.70), and completeness of the P0 flow is again
obvious. Now (6.2) still holds, and the definition (6.3) then leads once again
to (6.4). Therefore, all Hamiltonians Hh9 he^, commute on O, and from (6.5)
and (6.6) one infers that their flows are complete on Qr Setting

(6-81)

we are now prepared for the analog of Th. 6.1.

Theorem 6.4. For te(0,7c/2) the assertions of Th. 6.1 hold true.

Proof. The proof of Th. 6.1 can easily be adapted. Specifically, the role
of (2.47), (2.48) is played by (2.84), (2.85), and (4.1) -(4.3) should be modified
as detailed in the first paragraph of Section 4B. Substituting
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L(P)->p-l\nL(P) (6.82)

in (6.12), the reasoning now applies verbatim. D

Continuing as in the previous case, the definition (6.14) leads to (6.13) with
the replacement (6.82). Then (6.15) holds true with 0 replaced by /?, and with
S defined via (6.16), (6.17) with the following changes: in (6.16) one should
substitute

rtxm + iyn) -> i4xn + iyn) + - p(Plt - idn\ * = 1, • - -,/ (6.83)

tix] -> fJjfj + Pp], j=l,—Jc-

and i^k is now given by (3.57). Then (6.18) follows once more, with (6.19)
replaced by

cn = 2 COST exp(2^jcn + - fipn) f]
2 +n,k+

sin2i
. (6.84)

Next, we fix he^ and proceed as before: (6.20)-(6.26) apply again, and
in (6.27) we need only replace 0 by p. Lemma B2 then yields (6.28), with
(6.29) generalized to

1

* rr 2

Then (6.30) applies again. To state the analog of Th. 6.2, we replace (6.32)-(6.34)
by the definitions

1 +
sin2t

(6.86)

sh-/?z

(6.87)
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(6.88)

Theorem 6.5. For Te(0,7r/2) the assertions of Th. 6.2 hold true, with 5C

and dp given by (6.86) and (6.87), and with the replacement

in (6.46).

Proof. Since (6.49) and (6.50) are still valid, we can proceed as before,
using the generalization (6.85) of (6.29). D

The remarks after Th. 6.2 apply with obvious changes. In particular,
(6.51) should be replaced by

Jsp-Mn 1+-5H1~r- ,
L i 2 * o-J

-1, keZ (6.90)

sh2-/?z-

and then (6.52) holds true again.

We continue by generalizing the reduction result Th. 6.3, starting again
from (6.53) -(6.57). With H given by (1.2), the vector field X=XH again has
the symmetry properties (6.58). Thus, the H flow restricts to O,db and can be
identified with the flow on O(M) generated by

1 M i f sin22r 11/2

HJ(q9g) = (-fi-lCQ*c X exp(-^,)0 1+^^ - - -
2 j=i 2 fe^-L shV^-^J

(6.91)

(Indeed, Hr is related to H via (6.59).) Hence one obtains the pure M-soliton

flow of Th. 3.4 in I, with /?, /x, z = h replaced by -j8, 2^, 2z and with a scale

factor COST. (Physically speaking, the latter corresponds to the mass defect
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of the relativistic bound state.) From I I.e. it then follows that the asymptotics
of the H flow on Qdfe is given by

xdj(t) ~qj-- A/0) 4- 1 cos T exp - /$,. t-* oo (6.92)

and by (6.62), with (q, 6) in the phase space (6.63) and with (6.64), (6.65) replaced by

e = 2p\0) (6.93)

(6.94)

Using (6.92), (6.62) we now get as the analog of (6.66)

— sini^l , . , ! „ * 1
, 9 9 (6.95)

cosT^J 2 2

(recall (2.70)), so that

a(LJ = {exp 1 /?(^ ± i Mg), - - -,exp 0(6 M ± i /xg)}. (6.96)

Therefore, one has again Odbc=Qs, O*(Qdfc) c Qdb, cf. (6.68). From Th. 6.5 we
then obtain

tf(t)~Xj -- &cj + t COST exp-fipj t-+ao (6.97)

with AJ given by (6.70), (6.86), and comparing this to (6.92) we deduce again
Pj = 6p Aj^A^O), Xj = qj. Defining i by (6.71) and recalling (6.72), we are now
prepared for the analog of Th. 6.3.

Theorem 6.6. With (6.73) replaced by

, e) (6.98)
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the assertion of Th. 6.3 holds true.

Proof. After replacing d>nr by d>rel the proof of Th. 6.3 applies verbatim. Q

The remarks after Th. 6.3 can be adapted with minor changes. First,
(6.75) is still valid, and (6.76), (6.77) should be replaced by

(6.99)
, „ >„ ^->~.fl S\ U J

12F"

2 J k*j[_
(6,00)

In the present case, (B4) entails equality of the functions S2k(As) and the
functions Sk(llrel) of I with the replacements ft -> j8/2, ̂  -> 2/i, z -» i jS/ig, N-*M.

Second, in view of (6.96) the analog of (6.78) reads

|L(%,0)-A12M|= fl y2-2Acosi exp(i/?^) + exp(/J^)]. (6.101)
7=1 2

Third, assuming T6(0,7c/2) satisfies sin^r/0, ^-fold fusion can again be
performed, the function sinfcr(/:sinT)""1TrL(fe) being equal to the Hamiltonian

H from Th. 3.4 in I with j8,^,z,7\T ->Jfc-

Finally, the Cl/BCl reduction remark applies again, with XH replaced by XPo.

6C. The Case flre, (i = n/2)

In this section we study the singular case /fyig = 7i. Taking PeOb, one
can again define InL(P) by the functional calculus. Then (6.80) holds true on
QS, and for any heW the definition (6.79) yields a real-valued real-analytic
Hamiltonian Hh on Ob. Defining Hhtl on Of

b by (6.3), it now follows from (6.79),
(6.80) and (6.2) (with Q-»nb) that (6.4) holds true for any PeOb. Arguing
as before, this entails that all Hamiltonians Hh commute on Ob.

However, the Hh flow is not complete on Ob whenever h(z) depends
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nonlinearly on z, as will be clear from what follows. (Of course, Qb is left
invariant when h(z) = aQ + alz.) For instance, it is easily seen that any integral
curve of

P0 = (chfip++chpp-)\ih-i4x+-x-)\ (N+=N_ = l) (6.102)

yields x+— jc~-»0, \p + l \p~\-* co in finite time.
When one is willing to ignore sets of measure zero, there is a quite simple

solution to this problem, which will now be detailed. Fixing PeQb with image
jPeQb under ®j, we define a curve P(f) in Q via the rhs of (6.6). Then the
set Ch P of times for which this curve intersects Q/\Qb does not contain an
interval around £ = 0. We claim that C f tP is actually discrete.

Indeed, lifting the curve to a curve P(t) in the covering manifold
5jdjf cC2*, the set consists of those times at which P(t)e^, cf. (4.48),
(3.64). Since the function t\-^^r(P(t)) is real-analytic on R, existence of a limit
point in ChtP would entail P(t)e^Vy for any teR, a contradiction. Thus our
claim follows.

Obviously, for any connected component / of R\Ch^P the curve 7-»Qb,
t\-*$!(P(t)) = Qxp(tHh}(P) is a maximal integral curve of Hh. Thus we obtain
piecewise integral curves going through any PeQb. In the Koopman picture
of classical mechanics (cf. e.g. [19]), this piecewise definition of exp(tHh)(P),
PeQb, yields the pointwise action of a strongly continuous 1-parameter group
of measure-preserving (hence unitary) transformations on L2(O). Indeed, the
rhs of (6.6) gives rise to such a group U(t) on L2(O), and the canonical map
$ from Qb onto Qb gives rise to an isometry W from L2(O) onto L2(Q), since
Q\Qb and Q\Q% have measure zero. Thus the image group U(t) on L2(O) has
the asserted properties, entailing completeness in the functional analytic sense.

However, this solution leaves much to be desired. We shall present a
more satisfactory remedy at the end of this section, after having assembled
extensive information that is of interest in its own right. First of all, we shall
show that there exists a clear-cut method to piece together maximal integral
curves for any initial point in the exceptional set Ob too. To this end we
shall make use of the matrix-valued function Ah(t,P), cf. (6.81). We begin by
noting that for FeOf and teR\ChfP one has

(6.103)
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on account of (6.2) -(6.6). Therefore, Ah(t,P) has simple and real spectrum and
its eigenvalues can be ordered according to (6.8); moreover, the position part
of exp(tf/fc)CP) is given by (6.9).

Now consider the general case PeO17. Then the argument below (6.12)
still applies, so that (6.8) and (6.9) hold true for small \t\. Next, let us introduce

(6.104)

where a^f), ••-,o /v(r) are the roots of \Ah(t,P) — <x,lN\. Since the rhs is invariant
under permutations, 3F is well defined and can be written as a polynomial in
the symmetric functions of Ah(t,P). Thus 3F is real-analytic on J?xQ b ;
moreover, 2F is non-zero and real-valued for \t\ small enough. But then it
follows that !F is real-valued on R and that the set

) = Q} (6.105)

is discrete.
Of course, for PeQb the set ChP coincides with the collision set already

encuntered. Fixing PeQb and a connected component / of ChtP not containing
/ = 0, the question is now whether the spectrum of Ah(t,P) is again related via
(6.8) and (6.9) to an Hh integral curve on / that is uniquely determined by
P. (We have already seen that this is indeed the case when Oe/.)

To answer this question in the affirmative, we begin by recalling Qb is
dense in Ob. To exploit this, we fix a closed ball with center P whose radius
r is chosen small enough so that the ball belongs to Qb, and we consider the
line segments connecting P to the surface of the ball. Recalling that Qb is
the zero locus of the discriminant function Z), which is real-analytic on Qb (cf.
(4.42)), it follows that a line segment either belongs to Qb or meets Og in a
finite set. Since Qb is nowhere dense, there exists a segment for which the
second possibility applies. Therefore, there exists a segment 5: (0, <5)-»Qb,
ji-> Ps of length d^r such that PS-+P as s-*Q and such that S does not meet
Ob. Now Ob is the complement of the connected components of Ob, so it
follows that 5 belongs to a component of Qb for some /e{0,---,w}.

Next, we fix a compact interval Kal and note ^(t,Ps)^Q for teK and
s^e^. (Indeed, !F(t,P) is non-zero on / and hence stays a finite distance
from 0 on K. Since PS-*P as s-*Q and J^y) is continuous on J?xQb, this
also holds true for J^PJ, provided s is small enough.) Consequently, for



ACTION-ANGLE MAPS AND SCATTERING THEORY II 947

any sE(Q,e] the piecewise integral curve e\p(tHh)(Ps) = Ps(t) is defined on
K. Our aim is now to show that the limit P(t) of Ps(t) for 5-+0 exists for
any teK and yields an integral curve ^-»Qb, ft— »P(f).

We begin by noting that there is a finite lower bound on the quantities
\ajs(t) + ocks(f)| for (s, t) E (0, e] x K. (Indeed, all eigenvalues als(t) of Ah(t, Ps) remain
bounded and ^(t,Ps) stays away from 0.) Using constancy of Tr(L + L-1)
along integral curves in a by now familiar way, it follows that there is a finite
lower bound on the quantities \ocjs(t) — ocks(t)\ and a finite upper bound on the
norm of the momentum part ps(t) of Ps(t) for (s,t)e(Q,e] xK. Therefore, the
position part xs(t) of Ps(t) does converge to a position vector x(f) in the
configuration space of Qb for any t E K.

Now ps(f) remains bounded for t E K, so the set A, of limit points of ps(f)
as s-*Q is non-empty. We claim that |Af| = 1, i.e., that ps(f) has a limit p(f)ERN

as s— >0. Accepting this for a moment, let us first show that the limit
P(t) = (x(t\p(t)) of Ps(t) for s-»0 and tEK is in fact an integral curve of Hh,
as advertised above. To this end we exploit Hamilton's equation Ps(t) = (^VHh)
(Ps(t)), where the rhs is the symplectic gradient, cf. (3.3 1). Since Hh is real-analytic
on Qb, its gradient remains bounded on compacts of Qb. Therefore, when we
integrate the Hamilton equation over an interval belonging to K, the integrand
at the rhs remains bounded as j->0. Since it converges pointwise, we may
use the domainated convergence theorem and the fundamental theorem of
calculus to deduce that P(t), tEK, is an integral curve of Hh.

Next, we prove our claim |At| = l. First, we note that ps(t\ tEK, is—
continuous on (0, e]. (Indeed, ps(0) is continuous, so this follows from inspection
of (6.6) and continuity of Oj and ^{.) Therefore, the limit set Af must be
connected. So if |A,|>1, then Af is not a finite set. We now continue by
ruling out |Af| = oo.

We first observe that the spectrum of the Lax matrix in points of the form

tEK (6.106)
s->0

equals o(L(P)). (To see this, use cr(L(Ps(G))) = a(L(Ps(t))).) Now the impossibility
of | Af| = oo follows from a Fact that is of some interest by itself, viz.: For a
fixed (x,p) E Ob, there are at most finitely many/? such that a(L(x,p)) = a(L(x,p)).

To prove this, we write
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L(x,p) ~ diag(z1?- • -,zN)C(x) = M(z,x\ Zj = exp(^) (6.107)

cf. (2.70). Next, we consider the zero locus Ya CN of the polynomials

Sk(M(z,x))-Sk(M(z,x)l k=l,.~9N, zj = exrtppj) (6.108)

in zl9 • • • ,Z t f . Since V is an affine algebraic variety, V is either a finite point
set (containing in particular z) or V is unbounded. Suppose V is
unbounded. Then there exists a sequence z(w) e F and fc^ 1 indices il9--9 ik such
that z[f, • • •, z^ diverge for n -» oo, whereas the remaining zf stay bounded. Since

,Sfc(M(z(M), x)) equals Sk(M(z,x)\ we may then deduce

0 - lim Sk(M(&\ x))/zg> • • • zg> = C(/13- • -,4) (6.109)
«-» oo

where the rhs denotes the relevant principal minor of C(x)9 cf. (6.107). But
since (x5j/?)eQb

5 this minor does not vanish, a contradiction. Thus, the Fact
is now proved. (It is easy to adapt this argument to the flrel(T < n/2) and IIwr

systems, with Qb replaced by O. Thus the Fact is a fact for these systems, too.)
Where do we stand? We have shown that for any PeQ^ and /ze^ one

can piece together maximal integral curves of Hh whose position part is related
to ff(Ah(t9P))9 teR\Chip, via (6.8) and (6.9). In order to study the uniqueness
of this procedure (and for later purposes) it is important to extend the reasoning
to ^-parameter flows. Thus, let PeSf,hl9 --,hn 6^ and t = (tl9 -"Jn)eMn. Then
the above arguments and the equations (6.103)-(6.105) have straightforward
generalizations. In particular, exp(ZJ= 1 tjHhj)(P) has an obvious meaning for
PeOb and t$Chlt...hnfp9 and then the above approximation argument shows

that through any P in the exceptional set, too, there passes a piecewise orbit
P(t) (locally a submanifold of Ob with dimension ^min(N9n))9 whose
configuration space projection is uniquely determined by a(Ahlt...hn(t9P))9

teR*\Ckl....kntp9 via (6.8) and (6.9).

Returning to a fixed /ze^7, we now discuss the uniqueness of the
piecing. Here we hit a snag: A priori, there might be two different maximal
curves having equal cr(L) and equal position parts. We believe that this cannot
happen for h(z) nonlinear, but we are unable to rule out this contingency.
Fortunately, we do not need to know this to show that to all intents and
purposes the above piecing is unique.

To be specific, we shall prove that whenever a sequence PneQ^ converges
to Pefib as «-*oo, the piecewise integral curves exp(tHh)(Pn) converge to
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the piecewise integral curve through P defined via the above line segment
S. Arguing as before, this is plain for the position parts. Consider now the
limit set cof, t e K, for| the momentum parts pn(t) as n -»oo. This set is non-empty,
but not connected, a priori. Suppose tot^A.lt = {p(t)}, where p(t) is obtained via

the segment 5. Th^n there exists p(i) e cot such that p(t) ̂ p(t\ and a subsequence
converging to p(t).

Next, we compare the piecewise orbits exp(tiHh + t2Hh2)(P}, h2(z) = P~l

exp(/fc), as obtained via this subsequence and as obtained via S. Of course,
these have equal position parts and they coincide on the component of R2\Ch th2 P

containing the origin. However, by assumption one has (t,Q)£Chh2p and

p(t,G)^p(t,Q). That is, near (r,0) the position vectors are equal, but the
momentum vectors are not. This yields the desired contradiction, as
8tiXj = Qxp(/3pj)Vj^exp((3pJ)Vj=8t2xj for at least one/

Now that we have proved uniqueness of the integral curves J?\CftP-»Qb,
t±-+exp(tHh)(P), we can also show that the curves have a continuous dependence
on the initial point. Specifically, we assert that whenever a sequence jPBeQb

converges to PeQb as Ji-»oo, the corresponding curves converge, too. To
prove this, one need only repeat the previous argument: It applies almost
verbatim. (Of course, for PeO^ this property is evident; the non-trivial case
is sequences in Ob.)

There is yet another way to obtain the above piecewise integral curves
that is illuminating in itself and that will be quite useful shortly. This consists
in exploiting Th. 6.4 and continuity in g. More specifically, fixing PeQb and
he^, the limit of the global integral curve 1?->Q, t\->exp(tHh(g))(P) as g]n/fJif$
exists provided teR\CH^ and coincides with the piecewise integral curve of
Hh = Hh(n/nP) defined above. Again, the proof of this characterization is simply
a variation on previous arguments: Convergence of the position part follows
from continuity of Ah(t,P) in g, and then the momentum part must 'come
along'. (To bypass the above-mentioned snag, the argument should be
generalized again to the ^-parameter case, which is straightforward.)

We shall now study the behavior of the curves near times in the discrete
set Ch p at which solitons collide with antisolitons. To this end it is expedient
to introduce the 'multiple collision' and 'smooth' sets

Qm
P = {t € R\o(Ah(t, P)) is not simple}, ShtP = R\C%P (6.110)

Thus, the former set consists of times for which at least two solitons or two
antisolitons collide. Of course, this can only happen when an ss-collision
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occurs at the same time and position, so that Qm
PcQp. Before showing by

example that C™P need not be empty, we summarize and extend the above
findings.

Theorem 6.7. Let t = n/2, /ze^7 and PeOb. For any tGShtP the matrix
Ah(t,P) has distinct eigenvalues., of which N+(N_) are positive (negative). Ordering
the eigenvalues according to (6.8), the position part of the piecewise integral
curve R\Ch)P-+Q,*, t\-*exp(tHh)(P) defined above is given by (6.9). It has a
continuous extension to R which is real-analytic on ShtP.

Now let jfeQp. Then the matrix elements of L remain bounded as
t -» T. Suppose x* ,xj -» x0 for t -> T, while no other x{ converges to XQ. Then

remains bounded as t-*T, whereas either one has

p* = co9 limp]' = —Go (6.111)

lim ext (sh/?;+F;+)e(0, oo), lim ext( — sh/7," Kpe(0, oo), ext = inf, sup
t-»r t-»r

(6.112)

or the same formulas hold true with p*,p]~ replaced by —pf, ~P~i>

Proof. The first two assertions have already been proved. The third one
easily follows from the discreteness of CfcJP and the fact that the spectrum of
Ah(t,P) is continuous in t on R and real-analytic in t wherever it is simple.

To prove the fourth assertion we recall that any kih order principal
minor Mk of L is positive on Ob. Since the flow is isospectral, it follows that
Mk(Lt) is bounded above by Sk(L0) and bounded below by 0 for any
t E R\ChtP. In particular, this entails that the diagonal elements remain bounded
as / -> T. Recalling (2.70) we infer that, for instance,

(6.113)

and so Lt remains bounded as t-*T.
To prove the last assertion we note the assumption entails
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lim Vt V]-/sh2-i4xJ- -xj)= 1 (6.114)
t-*T 2

cf. (1.3), (1.4). In view of (6.113) this implies that pf +pj remains bounded
above as t-*T. Likewise, consideration of the relevant term in S^1 SN_2

leads to the conclusion that pf +pj remains bounded below.
Next, we develop \L — k\N\ = P(X) w.r.t. row i and then w.r.t. row

N+ +/. Then we obtain the equality

= [A2

(6.115)

where Q, R, S are polynomials whose coefficients remain bounded as t-*T.
Now assume both p* and pj remain bounded. Then the second and
third term at the rhs converge to 0 as t -> T, so that two roots of P(A) move
towards the imaginary axis. But P(A) does not depend on t, a contradiction.

Therefore, as f -> r— , one must have either p+-*ao, pj~-*—vo or
p* -> — oo, pj -> oo. In the first case (e.g.) the third term converges to 0,
so that exp^^K* must stay at a finite distance from 0 for t-+T— to avoid
moving eigenvalues. Since p* +/?/" and V* /VJ" remain bounded, this must
hold true for exp( — /JppF^, too. Thus for t-+T— the desired conclusion
follows. Clearly, for t-+T+ we can argue in the same way, so that we are
now reduced to showing that p* (say) has equal limits from the right and the
left. We assume that this is not the case and derive a contradiction.

To this end we recall that near t = T the integral curve is the pointwise
limit of a global integral curve of Hh(g) as g^n/nf}. From the assumption it
feadily follows that p*(g,t) has a zero at t = tg such that tg-*T for
g^n/n(3. Considering now the generalization of (6.115) to g^n/^P we arrive
at the desired contradiction: Taking t = tg and sending g to 7i//^3 the second
and third term go to 0, so that two eigenvalues of L(g, tg) move towards the
imaginary axis. Q

Of course, one has ShtP = R when N+=N_ = \. Next, we detail the
simplest case for which Qm

P is not empty: Take
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N+=2, #_ = !, A(z) = chjSz, xt = -x2

x~=p~=0. (6.116)

Then it is readily verified that a triple collision occurs at the origin after time
T>0. More specifically one finds

(6.117)

where

P0 = 2chppih-tuccihiAx + th2-/o;>l. (6.118)

Thus the collision amounts to elastic reflection of the two solitons. Note that
none of the momenta diverges for t-*T. Note also the initial point belongs
to the exceptional set Qb if and only if P0(x,p) = 3.

For 7V>4 we have no information on C™P for PeQb and h(z) nonlinear. In
contrast, for P e Q£ a quite detailed picture can be obtained, but it is convenient
to determine first the long-time asymptotics of the positions. To this end we
fix jPeQjb and proceed in the same way as for T<jc/2. Thus, (6.83) should
again be substituted in (6.16), together with (3.57). Now, we need not and
shall not consider the limit dn[ — ̂ g, as this takes us out of Ob (recall (5.90)). But
(6.85) and (6.30) are still valid, while (6.86)- (6.88) may be replaced by

(6.119)

(6.120)

Theorem 6-8. Let i = n/2, he^ and Peftf. Denote by x+ (t), x ~ (t\ t e R, the
continuous extension of the position part of the piecewise integral curve
Q\p(tHh)(P), teR\ChjP. Then the assertions of Theorem 6.2 hold true with the
following changes: dc and Sp are given by (6.119) and (6.120), in (6.46) one should
substitute
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11/2 !

[f-J 35n\ (6.121)
z

and the assertion (6.48) should be omitted.

Proof. Using (6.103) with teR\ChtP, this follows from (6.49), (6.50) and
(6.85) in the same way as before. D

Just as in the previous case, the remarks after Th. 6.2 can easily be
adapted. Here, (6.51) may be replaced by

8(z) = 2fi~ 4n(cth -J8z), z / nikft ~\ keZ, fing = n (6.122)
2

and then dc and dp are equal to Red and Imd, resp.
As we have seen at the end of Section 5B, dead breathers decouple altogether

in the case at hand. Therefore, no counterpart of Ths. 6.3 and 6.6
exists. However, in the present case three or more positions can become
equal at the same time, and we continue by shedding more light on this
multiple collision phenomenon. As announced above, we restrict our
considerations to Of. A suitable use of (6.6) then enables us to reduce dynamical
questions concerning occurrence and character of multiple collisions to a
problem that is of a kinematical nature. This problem consists in describing
the collision sets

and the possible spectra of A(v,a) on D\. Indeed, once this problem is solved,
one can use (6.6) to establish which points in

can be reached from Qz
b for the dynamics at hand.

We shall not present a complete solution to this problem. However, we
are going to show that A can have multiple eigenvalues on Z)J for any 7V>3
and /e{0,---,m}, but that certain constraints on the spectrum do occur (in
addition to (2.57), of course).

First of all, let us note that so far we have not even shown that the set

Df=\JDI (6.125)
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is non-empty. But this easily follows from Th. 6.8: choosing /z(z) = ch/?z (e.g.)
and suitable momenta, it follows upon comparing the t -» oo and t -> — oo
asymptotics that soliton/antisoliton collisions must have occurred along the
orbit (infinitely often for />0).

Fixing now PceQJ, we can also use Th. 6.8 to conclude that a suitable
choice of h ensures that the orbit of /*, defined by the rhs of (6.6),
will not remain in QJ. As a consequence there exist /ze^7, FeOf and
T>0 such that e\p(tHhtl)(P) -» P° as t-+T.

Next, we recall from Th. 6.7 that Lt remains bounded as t -> T. Thus,
there exists a sequence tn -> Tsuch that Ltn has a limit LT. Now we also have

limAt = diag(exp|>x1
+(r)], • • - , -exp[>^_(r)]). (6.126)

Moreover, we may write (cf. (2.69), (2.70))

fc +
i(-AkkLkk)

1'2

so it follows that etn has a limit eT. But now it follows from (2.7) that

T = 2eT®eT. (6.128)

Here, LT is a ^/-s.a. matrix with non-negative ((5(5)-elements and purely imaginary
(c5, — (5)-elements (recall (2.22)), and with simple spectrum in the open right half
plane, AT is a matrix of the form

diag(a1,---,aAr), a^ ••• ^aN+ >0, aN+ + 1 ̂  • • •^a j v<0 (6.129)

and erfe is given by the rhs of (6.127) with A, L-+ AT, LT, these features being
preserved under the limit tn -» T, cf. (2.70).

Conversely, assume L is a matrix with the above properties and A is a
matrix of the form (6.129); defining e by (6.127), assume in addition that L,
A, e fulfil (6.128) (with subscripts omitted). Then all assumptions of Section
2A are satisfied, so we are again lead to (2.82) with (v,0)eD.

The upshot of this train of thought is, that we obtain a well-defined surjection

^*:^-*A (A,L)^>(v,a) (6.130)

where £PS denotes the set of all pairs A, L with the above-mentioned
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properties. Later on, we shall detail the relation between Q£ and ^s, and
discuss the extent to which & fails to be injective. Right now, our aim is
still to obtain information on the possible spectra of A on Dc, and the above
developments enable us to trade this problem for the more accessible problem
of characterizing those A of the form (6.129) for which a pair (A,L)e^s

exists. (Recall that the above scattering theory argument ensures that whenever
a pair (A,L) belongs to ^s, one can find (A,LT)E^S with the same image
under &.)

As a first step along these lines, we note that pairs (A,L)E^S exist such
that: (1) ^%4,L)eDJ; (2) a(A) is simple; (3) k^l pairs of solitons/antisoliton
positions coincide. Indeed, using a by now familiar perturbation argument
the existence proof can be reduced to the case N+=N_ = 19 where we can
take (e.g.)

A = \ , L = \ I a,b,c>Q, c^2b. (6.131)1 " ' l_ib cj '

As a second step, suppose that for (A,L)e&s an eigenvalue a of A has
multiplicity n>l. Then we have Ljk(u + zk) = 2ejek for the n indices j that are
involved. Since |L|^0, we deduce a + afc = 0 for at least n — \ indices A:, and
repeating the argument for —a we deduce a-f afe = 0 for at most n+l indices
k. Therefore, the numbers c+/c_ of solitons/antisolitons involved in any
multiple collision must satisfy \c+— c_ |^l .

Finally, to show that degeneracies (and hence multiple collisions) do occur,
it suffices to prove the claim that for any N+, N- such that N++N_^3,
\N+ — 7V_ | < 1, there exist (A,L) e g?s such that \0(A)\ = 2. Indeed, using
perturbation arguments we may then conclude that in (6.129) one can have
arbitrary multiplicities subject to the constraint in the previous paragraph,
provided the distances between the positions that are involved are sufficiently
large. (Actually we believe that the proviso may be omitted; to prove this
an explicit determination of £PS is probably required.)

To prove the claim just made, it would be enough to exhibit pairs A, L
with the stated properties. However, we shall proceed differently, so as to
obtain an explicit picture of the all-in collision subset of Dc. In view of (4.19)
this amounts to an explicit description of those points (q,9) in

QEE Mft^ft-^Q) (6.132)
1 = 0
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for which J£(q,0) has spectrum {a, —a}.
To embark on this we introduce

such that (^(ft'1 (/))) = {a, -a}} (6.133)

and assert that one has

dim(n?u) = #+l, /=0,---,w, |7V+-ALK1, A^2 (6.134)

(Jnf = 0, |tf+ -#_|>1. (6.135)
*=o

More in detail, we assert that for |Af + — 7V_|^1 the points in Of11 correspond
to (#,0)e^ for which 6 l 9 - - - , 8 N are solely constrained by a certain ordering and
for which Im^^-'-Jm^ are fixed and Re^1 = --- = Re^. To prove these
assertions, we observe that points in Cl yielding spectrum {a, — a} can be
characterized by equality of <£~l and a~2j2? (since & is diagonalizable on fi),
and that <£~l can be calculated explicitly. Specifically, we have from
(3.57) -(3.60) and (Bl)

1
i Rl /3 & \
I — PI" ;' "fr)

2

(6.136)

Since the Cauchy matrix is symmetric in the present case, Lemma B2 now
leads to the striking relation

.fc (i-Ti/2). (6.137)

Consequently, the desired spectrum occurs if and only if

exp^. + 4)-(-y+fcexp2^x, x = p-1ln*. (6.138)

Taking j=k, this equality entails

qj = x + iSjn/n(mod2ni/ii), Jye{0,l}, j=l'-,N (6.139)

and then it follows that (6.138) is equivalent to (6.139) with Sj being equal to
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0/1 for j odd/even or for j even/odd. Now one infers from (4.23) -(4.24) both
choices can be made for the breather #/s. However, from (4.21) and (4.22)
one sees that k+ and k_ cannot be chosen at will. Indeed, to ensure alternation
of 0 and TE/JU both in (4.21) and in (4.22) the s and s momenta have to alternate
in the natural ordering. (If e.g. two soliton momenta occur successively, the
product in (4.21) would not change sign.) As a consequence, one cannot have
^~l=a~2<e unless \k+-k__\ = \N+-N,\^l. Moreover, the latter constraint
suffices: For \N+— N_\^l it is possible to interlace the 5- and s momenta in
the right way; taking then Re^ = x, alternation of zeros and ones in (6.139)
results for q 1 5 - - - , qk+ and for qk^ + 2i+i->""^N\ choosing finally the corresponding

alternation for qk+ + i,--,qk++i ensures (6.138). Therefore, the proof of the

above assertions is now complete.
To finish this section, we tie up some of the loose ends (creating some

new ones in the process). First, we tie up the ends of the piecewise integral
curves. Consider the set of triples (P,/z, t), P e Qb, h e #, t e R9 with the equivalence
relation

(Pl,hl9tl)^(P29h29t2)<>(tl9-t2)ER2\Chlth2tPl and

exp(-f2^2 + r1fffclXP1) = P2. (6-140)

We denote the set of equivalence classes by fi*, and inject Ob into Q* by setting
/(jP) = (P,0,0). Now fix Ae^. We are going to define a global transformation
group exp(f//J) on Os that coincides with (the image under i of) exp(tHh) on
(the image of) Ob.

To this end we fix a triple OPi ,Ai> r i ) - F°r t$Ch^Pl we put Q\p(tHh)(P1,h1Jl)

= (exp(tHh)(Pl)9hl,tl). Fixing now jTeQPl, one can find e>0 such that

-€,r-6^ChfPl. Clearly, the triple (F2,/72,f2) = (exp(-£//h)(/
)
1)5^ + ^^i5 l) is

equivalent to ( P l 9 h l 9 t i ) and one has T$Ch2tJ>2, Thus we may define

Now assume (/>
3,/i3,r3)~(P1,/i1,^1). Then one easily checks (Q^p(tHh)(Pl)J

/il,tl)
^(exp(tHh)(P3),h3,t3) for t$ChtPluChtP3. Consequently, fixing an equivalence

class Q of triples and fixing t e R9 there exists a non-empty subclass of triples
(in general depending on t) on which exp(tHh) is defined, yielding triples that
belong to an equivalence class Qr

The upshot is, that the partially defined map exp(tffh) on triples descends
to an everywhere defined map exp(f/f|) on Q*, and there is no difficulty in
verifying that this gives rise to a 1 -parameter group with the properties



958 SIMON N.M. RUIJSENAARS

announced above. As a result, we have now completed the piecewise flows
on Ob to global flows on the 'phase space' O*. In an obvious sense, O* is
the minimal extension of Ob serving this purpose.

However, the above construction has the advantage of theft over toil:
One really wants a concrete picture of O*, preferably as a manifold in which
Ob is dense, equipped with a symplectic structure that coincides with co on Ob.

To supply at least part of such a picture, consider first the extension Of of
Ob. The map sending the triple (P,h,t) to the point Qxp(tHhJ)(P) in Oz (cf.(6.6))
clearly descends to Of, and then given rise to a bijection between Of and O,
that intertwines the flows. Thus Of may be viewed as the manifold Oj (in
which Of is indeed dense), and the extension O* of Ob may be thought of as O.

To get a more explicit picture of all of Os, we introduce a set ^ of pairs
(A,L) which is defined just as the above pair set ^s, except that o(L) need not
be simple. Any point P = (x,p)e& gives rise to a pair (A,L) = (A(x),L(x,p))E^
for which L has positive diagonal elements, cf. (2.70). Conversely, suppose
(A,L)e^ and the diagonal elements of L are positive. From Lij(%i + %^ = 2eiej

with i=j we then infer el9~-,eN^Qi taking i^j now yields o^ + o^O; since
ILI^O, one must have strict inequalities in (6.129); thus, a unique P = (;c,/7)eOb

exists satisfying (A(x),L(x,p)) = (A,L).
To summarize: We may view Ob

s) as a subset of ̂ (s) and for any (A,L) in

^) = Wt, (6-141)

at least one diagonal element of L vanishes; moreover, for (,4,L)~PeOb one
has @*(A9L) = @(P), so & may viewed as an extension of ®.

The point is now, that there exists a quite natural correspondence between
g 6 O* and a non-empty subset A(g) of &. To detail this, let (P,/z, T) e Q. Then
this triple yields at least one pair (A,L)e0>, where L is the limit of a sequence
Ltn as considered above. Letting the sequences and the representants of 2

vary, one gets of course the same A, but if QeO*\Ob, then L can be highly
non-unique. For instance, one readily verifies that the triple collision point
in Dc^Of\Ob arising from (6.116) for f-> T yields a 1-parameter family of L
(which reflects the fact that A has a non-trivial commutant).

We now define A(0 as the set of all pairs (A,L) obtained from triples in
g via limits. Of course, one has |A(g)| = 1 for g e Ob c O*. Also, assuming
gi^gz? one §ets disjoint limit sets A(gt) and A(g2) whenever at least one
°f Si? 62 belongs to Ob. Moreover, for geO* corresponding to PeO we
clearly have
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A(2) c ®*-\<e~v(P)\ (6.142)

Thus, A(g1)nA(g2) = 0 whenever at least one of gls Q2 belongs to Q*.
Unfortunately, we have no complete proof for the obvious conjecture that

A(g1) and A(Q2) are disjoint whenever £>i / Q2. But the proof can be reduced
to showing that the snag encountered above is a phantom. More precisely,
the conjecture holds true when one can prove that for h(z) nonlinear, there
do not exist any piecewise integral curves in Qg with equal a(L) and position
parts, but with unequal momentum parts.

To explain this, suppose the triples (/^,/zf,rf)egfeQ*\Qb yield the same
pair (A,L) via sequences tni-+ Ti9 i=l,2. Then we have

A(exp(t2Hh2)(P2)) ~Ah2(t2 - tn2,exp(tn2Hh2)(P2))

h2}(P2)\ P2 EE exp( - T2Hh2

(6.143)

where the second and third similarities follow by taking n -> oo. (Note
A(e\p(tHh)(P)) is well defined even if teChP, cf. Th. 6.7.) Taking now t2 = Q in
(6.143), one infers (Fl5- r2)etf2\Q1<f,2,Fl and (P^hl9T^(P29h29T2)9 cf.

(6.140)). More generally, (6.143) says that the piecewise integral curve
exp(t2Hh2)(P2) has the same position part as cxp(t2Hh2)(P2). Obviously, the

spectra of the Lax matrix on these two curves are equal, too. Thus, if one
can show all this entails P2 = P2, then one has (Pi->hl,Tl)^(P2,h2,T2) and the
conjecture would be proved.

Apart from this open question, we do not know the answer to another
obvious question: Can one obtain any (A,L)E^ via some triple (P,h,TJ?
(We have not even answered this question for ^/, which is why we write c, not
= , in (6.142).) We conjecture that the answer is 'yes'.

At any rate, the conclusion reads: Provided the two conjectures involved
hold true, one may view Q* as ^/~, where (Al9Ll)^(A29L2) if and only if
the pairs belong to the same limit set.
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7o The Relation to Soliton Solutions Revisited

The context and the results of this last chapter have been delineated in the
Introduction. As announced there, we elaborate on the relation of the particle
systems at issue to various soliton PDEs and lattices. We shall restrict
ourselves to an explicit consideration of the particle-like solutions to the
sine-Gordon, modified KdV and KdV equations, in the form

<pyy-<ptt-sm9 = 0 (sG) (7.1)

vt + 24v2vy + vyyy = 0 (mKdV) (7.2)

ut - 6uuy + uyyy = 0 (KdV). (7.3)

However, equations in the associated hierarchies can be handled in similar
ways, just as several other soliton hierarchies related to the above particle
systems.

In fact, much of the analysis needed to handle the pure soliton case
(Section 7A) applies uniformly to the IInr and IIrel systems. (As will be briefly
recalled below, the soliton PDEs (7.1)-(7.3) all correspond to the r = 7c/2 IIrel

systems [6].) The generality thus obtained has notational advantages and it
renders the results applicable to soliton equations associated with T-values not
equal to n/2 (such as the Boussinesq and Hirota-Satsuma equations [2]).

On the other hand, we specialize to the sG and mKdV equations in
Section 7B, where the case of solitons, antisolitons and their bound states is
considered. This is because in that case a general setup would be notationally
unwieldy; moreover, a study of space-time trajectories would be forbidding
without specializing to concrete dynamics.

7 A, The Pure Soliton Case

For several reasons it is convenient to trade the symbols x+, p+ , Xs, ps of
the pure soliton case for the symbols q, 0, q, 9, resp., cf. the diagram (3.28). (For
one, this facilitates comparison with previous work [1,2,3,6].) The connection
to soliton solutions can be made via the matrix

(q,)eRNxGN (7.4)

where C is the Cauchy matrix (Bl) and
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Ik = exp(<?fc + 00 j n [1 + sin2( ]- /fc)/sh \ 0(6k - <?,-)] 1/2 (7.5)

cf. (3.1)-(3.5) and (3.57) -(3.60).
To be specific, pure soliton solutions to various PDEs and lattices can

be expressed in terms of the matrix

^(^^^(q.+a^v.t-y^-'-^ + a^v^-y)^) (7.6)

where the parameters depend on the soliton equation at hand. It so happens
that in all cases studied thus far the parameters can be chosen to satisfy

al9-9aN>09 vN<-<vl9 T = fe/2e[0,7r/2] (7.7)

(up to overall signs). In particular, for the sG and (m)KdV cases we may
(and shall) take /?=!, g = n, and

9-,N (sG) (7.8)

a . = exp 6P Vj = exp 29 p j=l9-~9N ((m)KdV). (7.9)

Then the JV-soliton solutions read [6]

(sG) (7.10)

(mKdV) (7.11)

ii = - 2d2
y Tr ln(lN + A(t,y)} (KdV). (7. 12)

(It should be mentioned that (7.10) and (7.1 1) are not universally called JV-soliton
solutions. For instance, [11] and [12] would refer to (7.10) as N-antikink
and 7V-antisoliton solutions, resp.)

Substituting (7.8) or (7.9) in (7.6) and using the canonical transformation
<f, one readily deduces

Tr Arctg,4(r,3/N £ Arctg(exp[^,j)]) (7.13)
;=i

Tr ln(lN + A(t,y)) = £ ln(l + exp[g/^)]) (7. 14)
j=i

where
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j=l,~;N (7.15)

with the space-time translation generators being given by

Tf^-TrOL + L-1), H^-T^L-L'1) (sG) (7.16)

//° = -TrL3, Hl=JrL ((m)KdV). (7.17)

(Cf. (6.5), (6.6), specialized to the case JV_=0.)
As a consequence of these formulas the study of the space-time dependence

of soliton solutions can be reduced to the study of the eigenvalues exp[^.(r,j)],
whose space-time dependence is governed by the particle Hamiltonians (7.16),
(7.17). It should be noted at this point that the above representations of
soliton solutions in terms of linear superpositions of N single soliton eigenvalue
functions differs from similar representations in terms of eigenfunctions of the
associated linear problem. (The latter have e.g. been used in [9,10] to prove
that the Ihs of (1.14)+ goes to 0 for t -» ± oo; cf. also [16] and references given
there.) This is because the latter functions are meromorphic in t and y, in
contrast to the former. Moreover, the latter representation suggests a picture
of individual solitons regaining their velocities after interaction, whereas in our
picture soliton velocities are exchanged (as is obvious from the following).

We proceed to study the eigenvalues exp[^(^,j)] of A(t,y\ without
committing ourselves to a special choice of parameters; the only assumption we
make is that (7.7) holds true. Once a choice is made, one can always define
functions H°, H1 such that the (logarithms of the) eigenvalues are given by
(7.15). However, this is not necessary for the results we shall obtain at first,
as these only involve (7.7) and Appendix C.

We begin by supplementing the definition of space-time trajectories given
in [6] with a specification of their asymptotics for £->±oo. In concrete
applications to soliton PDEs this result says that for all practical purposes
these particle trajectories coincide with the soliton trajectories, once the latter
can be read off from a plot of the solution, i.e., before and after all collisions.

Theorem 7.1. Assume (7.7) holds true and let exp[^v(f,}>)] < • • • < exp[g1(f,>>)]
be the eigenvalues of A(t,y). Then the equations

qj(t,y) = 0, j=l,-,N, rfixed (7.18)
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admit uniquely determined solutions y^(t)<"- <y\(t). These solutions ('soliton
space-time trajectories') obey the estimates

j -J-
N-j+l GJ 2

where

r i r
I - 1 H 1 +— ,b.<; *>J L 2i (7-2°)

Vj\. (7.21)

Proof. We assert that (7.7) entails

where

<j± =
m?x(o- !,-••, 0^) e (0, oo). (7.23)

This assertion will be justified shortly. Accepting it for the moment, existence
and uniqueness of the solutions y^f) to (7.18) is an obvious consequence.

Next, we prove (7.19) + . To this end we note

(7.24)

and then use (7.22) to deduce

1

To estimate the rhs we first recall exp[^(f,C7--f^O] *s an eigenvalue of
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A(t, c, + Vjt) =

(7.26)

cf. (7.6). Now let (T+eSj-1 and <T_eSN_j be permutations that put the
positive numbers ai(vl — Vj),---,tTj-l(vj-1—vJ) and the negative numbers
aj+l(vj+l — vJ),--;ffN(vN — vj) in the natural order, resp. (Note these numbers
are not necessarily distinct.) Then the matrix

E(t) = UaAs(0, gdiag(exp|> fa - Vj)f], • • -,exp[M^ - vj)f])Tl^ 1 ~ A(t,^ + of)

(7.27)

where

,i,n,j (7.28)

satisfies the assumptions of Appendix C. Here, As denotes the positive matrix
given by (2.54), (2.53) and (2.50). (Note k+=N and v~^>0 in the case at
hand.) More specifically, one has

P = l-;K (7.29)

n;1 (7.30)

and there exists an index p such that dp = Q, |/p| = l. Combining (C15) with
the cluster matrix calculations in Chapter 6 we obtain

^-)), t -+ oo (7.31)

and on account of (7.25) we may now deduce (7.19)+. The proof of (7.19)_
is similar.

It remains to prove our assertion (7.22). To this end, suppose
BeMN(C) is positive and has simple spectrum. Now consider

B(e) = e6DBe£D, D= --diagfo,-",^), eeR. (7.32)

For |e| small B(e) has positive simple spectrum {yi(c),-"9yN(e)} and there exists
a smooth orthonormal base {b 1 (e), • • • , bN(e)} such that B(e)bj(e) = yffibfe). Differ-
entiating the identity y/e) = (6/e), £(£)&/£)) now yields y'/e) = (^(£),5'/£)^(£)),
since B(e) is self-adjoint and bj(e) is a unit vector. Using (7.32) this entails
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2(6/0)> £6/0)) e [ - <r+ , - er-]. (7.33)

Applying this result to B = As(t,y\ (7.22) follows at once. D

Next, we determine the long-time asymptotics of the eigenvalue exp[#/f,j;)]
for arbitrary y. (Observe (7.31) specifies the asymptotics along the/h soliton
ray.) The result we are heading for (Theorem D2) can be used in applications
to soliton PDEs to obtain quite precise information on the temporal asymptotics
of pure soliton solutions, as will be illustrated for the sG and (m)KdV
equations. To ease the notation we only consider the t -> oo behavior.

We now embark on a preview of Th. 7.2 and its proof; this serves to
introduce notation and should be of help in keeping track of the overall
strategy. To determine the desired eigenvalue asymptotics, we shall exploit
Appendix C just as in the proof of Th. 7.1. Thus, fixing j e{ l , - - - , N} we are
going to consider a matrix

E(f) = n^s(0,Cj)diag(exp[(j1(Z;1 - Vj -s)f]9> • ̂ e

(7.34)

seR, t>Q (7.35)

which reduces to (7.27) for s = Q. The permutation a takes care of the desired
ordering of the numbers

dji(s) = fffct - Vj - 4 (7.36)

and (7.29), (7.30) apply again. However, the cluster number K, cluster sizes
I^/|J'"»|^JK| and permutation matrix Tlff now depend not only on j, but also on
s, in general.

To control the ^--dependence it is expedient to introduce the quantities

fc) = sgn(y - 1)[̂ ) - djj(S)l i *j (7.37)

ajs (7.38)

(7.39)

js. (7.40)

In view of our standing assumption (7.7) we have
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r, (7.41)

(recall (7.21)). Now observe that when s moves away from 0, some Fjt(s) will
decrease to 0, in general. Thus, rfa) will go to 0 and, consequently, we are
no longer entitled to invoke the estimate (C15) (with dp equal to dj3(s)
= —OjS and Cp(t)=\). Specifically, this bound can only be used for
t > Tj(s) e (0, oo ), where Tj(s) is defined by the requirement

exp[- rX*)r/y)] = C-j/3C+J (7.42)

cf. (C13). (Here, C+j/C-j denotes the maximal/minimal eigenvalue o
cf. (7.30).) Put differently, we can only use (C15) for y varying over an interval

(7-43)

around the yth soliton, where Sj is yet to be specified.
Fortunately, for y to the right/left of D7- one only needs upper bounds on

exP(#/)/exP( -#/)> resP- As it happens, these can be obtained by combining
the monotonicity of qfay) in y already proved above (recall (7.22)) with an
estimate on the difference of exp[^-(f,j)] and the asymptotic (for t -> oo) single
soliton function

~ A/0)) (7.44)
2

obtained via (C15) (taking y equal to yj(Sj9t)/yj(—Spt)).
Turning now to the details, we set

RJ = min(r p oj(vj _ ̂  - ^), oj(vj - vj + 1)) (7.45)

rj = mi^Rpmmaflvi - v^a^ (7.46)

and introduce 7^6(0,00) by requiring

j, (7.47)

Finally, we set

s^Rj/dj (7.48)
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,t) = tj + Ojt±Sjt, y°=yj(Q,t) = tj + vjt. (7.49)

From now on we use the symbol C to denote positive constants depending
only on the initial value (q,@) and on the numbers a^--,oN (such as C+J,
C-j and positive combinations thereof; in applications to soliton PDEs and
lattices one has oj = (r(6J)).

Theorem 7.2. One has

el-sj,sd (7.50)

se[_Q,Sj] (7.51)

se[-spO]. (7.52)

Now let t > f j and set qfs] = qfs\t,yj{s,t)). Then one has for any se\_—sj,sj']:

,C] (7.53)

s)&±C (7.54)

?f >)| < Cexp( - tr+(s)) (7.55)

|exp( - qj - exp( - qf> )| < Cexp( - fr;(j)). (7.56)

Furthermore,

exp(^as))<Cexp(-?JRJ.) s>s} (7.57)

<JRJ) s<-Sj. (7.58)

Proof. To prove (7.50) we should show

F^sfcfp \s\^Sj, i*j. (7.59)

Consider first

Fjl(s) = al(v,-v}) + s(aj-ffl), l<j. (7.60)

Fixing se[0,sj one has Fj^s)^rj, unless <TJ<CT,. But then one gets, using
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- vj + (Vj _ ! - Vj)(ffj - at)

= vfa - Vj_ J + afoj- 1 - VJ) ̂  (rfoj- ! - vj

(7.61)

Next, taking se[ — ̂ -,0], one has F^s^r^ unless cr^xi/. Using

l — vj)laj one then gets

= (7l
2(z;l-^)/(7^fj. (7.62)

Therefore, (7.59) holds for /</, and arguing in a similar way for

Fjk(s) = ffk(vj - vk) + s(ak - <TJ), k >j (7.63)

we obtain the same conclusion for i>j. Hence, (7.50) follows.
To prove (7.51) we should show

(7.64)

To this end we note that

F+l(S) = al(vl-vj) + S(2aj-vl), l<j (7.65)

satisfies F^(s)^rp unless 2(rj<al. But then

(7-66)

as desired. Next, consider

(7.67)

Since F^k(s)^F^S)^r^ we may now conclude that (7.64) holds true, so (7.51)
follows.

Similarly, (7.52) is equivalent to

*e[-^,0], iV7 (7-68)

and these inequalities can be verified just as (7.64).
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We proceed with the proof of the time-dependent estimates. In view of
(7.47), (7.42) and the bound (7.50) we are entitled to use Th. Cl for s e [ _ - s p S j ] ,
the matrix E(f) being given by (7.34).
Specifically, the first assertion implies (7.53) and (7.54), while (C15) entails
(7.55). Noting

|exp( - qj) - exp( - (ff)\ = exp( - qj - gj
as)|exp(gj) - exp^f )| (7.69)

and using (7.53), (7.44) and (7.55) we deduce (7.56) (note r~(s) = r+(s)-2ffjs).
Finally, since qj(t,y) is a decreasing function of y we obtain for

(recall (7.44), (7.48), (7.49))

J'frj'/)]! +exp(- ajSjt)

(7.70)

where we used (7.55) and (7.51) in the last step. Analogously, (7.58) follows
by using (7.56) and (7.52). D

We proceed by using Th. 7.2 to prove the decay bound (1.14)+ for the
pure soliton solutions of the sG and (m)kdV equations. (It will be clear from
this how (1.14)_ can be proved.) In all three cases the decay rate r is given by

--- , J R J V ) (7.71)

cf. (7.45).

Sine-Gordon. Here, (1.14)+ amounts to (cf. (7.10), (7.13), (7.44))

sup| £ [4Arctg(exp[^r,7)])-4Arctg(exp[^f(r,j)])]| = 0(exP(-rr)). (7.72)

To prove this bound, consider the jth difference. For .ye[j;°,j/] we can use
|Arctg0-Arctg£|^|fl-£| and the estimates (7.55), (7.51) to get an 0(exp( - tR$-
bound. Similarly, for y^\_yj^~\ and y<yj one gets such a bound from
(7.56), (7.52) by noting |Arctga-Arctg^| = |Arctgft~1-Arctgfl"1 |^|ft~1 -a~l\.
To estimate the tails y>yf and y<yj one need only use \a — b\^\a\ + \b\ and
\b-*-a-^\brl + \a\-\ and invoke (7.57) and (7.58), resp. Hence, (7.72)
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follows. D

Modified KdV, Here we should show (cf. (7.11), (7.13))

dy £ [Arctgfapto/fjfl^ (7.73)
j = i

uniformly in y. Note first that when the j-partial is omitted, then the bound
follows just as (7.72). Thus, the new problem consists in proving that the
^-differentiation does not alter the long-time asymptotics. Specifically, we are
going to prove

sup
yeJR chqfay) chq?(t,y)

(7.74)

from which (7.73) is immediate, cf. (7.71).
First, we observe l/ch^s(r,j) is 0(exp( — tRj)) for y>yf and y<yj due

to (7.57) and (7.58), resp. Now note the function (dyq$t,y) is bounded on
R2. (It equals -exp[0/r,j)]F/(#(f,j;)), and -TrL does not depend on (t,y), cf.
(7.15), (7.17).) Therefore, it remains to handle the interval E,- around the /h

soliton, cf. (7.43).
To this end we begin by exploiting the estimates (7.53), (7.55), (7.56), (7.51)

and (7.52), as follows:

1 1/ch 9j - 1/ch tf\ = |ch q™ -

^ 2exp( - \qj\ - ItflXlexpto) - exp(#)| + |exp( - qj - exp( - <ff)\)

< Cexp( - 2re7>|Xexp[ - fr/(j)] + exp[ - trj(s)~\)

tRj). (7.75)

Hence, we need only show that (8yqj + a^/ch qf is O(exp( — tRj)) on S7- to
complete the proof of (7.74). Since qf(t,y) has a zero on £,-, we need to
majorize 13^ + -̂1.

It would be quite awkward to do so in the general setting of Th. 7.2,
but here the particle Hamiltonians governing the space-time dependence have
a simple relation to the Lax matrix, and with due labor this yields the desired
estimate. First, since H1=TrL determines the ^-dependence, we have (using
also (7.9))
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(7.76)

Now 6j(t,y) is bounded on R2 (since the Hamiltonian Sch^-F/ is conserved),
so we need only majorize \Vf — l\/chqf and jexp^-exp^l/ch^5 on Z,..

To estimate |F/ — 1| we recall

(7.77)

cf. (1.3). Thus we have 0< F/ — 1 < F/2 — 1, and telescoping in the obvious
way we deduce

p(gj-^._ J.expfo^ t -^)) (on Z,-). (7.78)

Now from (7.53), (7.54) we have

max(exp(^. - qj_ 1),exp(gj + 1 - q$ < Cexp[ - rr/j)] (on Z,.) (7.79)

so that

r .̂) (7.80)

where we used (7.51) for J6[0,^] and (7.52) for je[ — ̂ -,0].
It remains to estimate |exp(07-) — exp(07-)| on Z7-. To this end we first study

Oj(t,yj(s9i)) as a function of t. From an inspection of A(t9yj(s9t)) (cf. (7.6), (7.9))
it follows that we may view the ^-dependence as being generated by the
Hamiltonian

Hj(s) = - TrL3 - (vj + s)TrL (7.81)

cf. (6.5), (6.6), specialized to the case at hand. Now from the definition of L
(viz., (2.70) with N+=N, x+,p+ -> q,0, /f = ̂ =l, i = n/2) one readily sees that
the following functions are bounded on I?2, viewed as functions of (t,y):

ch-(qk-qt)Lkh ch-(qj-qJdqLJk and mm(Q\p(qj_l-qj), exp(qj-qj+l))dqjLmk for

m = k and for ra,fc//. Moreover, noting Lij = Lji, one obtains

0j = {6pHj(S)} = - X LklLlmdqLmk + (Vj + ̂ 5 .̂ (7.82)
k,l,m k
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A moment's thought then shows

\0j\ < Cmax(exp(^. - q}_ l),exp(qj+1 - q$ (on Z,.). (7.83)

Next, we fix se[ — SpSJ] and combine (7.83) with (7.79) to infer

\ej(u,yfau))\ < Cexp[- IIT/J)], u>Tj. (7.84)

This estimate enables us to show that 0j(T,yj(s,T)) has a limit for
F-» oo. Indeed, since r/5)>0, the rhs of the equality

Oj(T9yj(s, T)) - 0 fay fa 0) = BfryfauWu (7.85)

has a limit for T -* oo, so that OfflyfaT)) has a limit ^-(00,5-). Furthermore,
(7.84) also entails

\ej(K,S)-efayfat))\<-^xpt-trj(s)l t > f j (7.86)
rfo)

so using (7.50) we may deduce

aptffayfa 0)] - exp^oo, *)] = O(exp[ - rr/j)]. (7.87)

Consequently, the desired estimate

exp(^|/ch ̂ s = 0(exp( - tRjf) (7.88)

follows just as (7.80) from (7.51) and (7.52), provided we can show Oj(ao,s)
equals 6j.

In order to prove this, we first show 0/00,5) does not depend on s. Indeed,
we have

I W JOI = E^Akl < Cmax(exp(^ - qj. J,exp(qj+ , - qj» (7.89)
k

which entails

\dyOfayj(u,t))\ < Cexp( - ffj, u e [ -spsj] (7.90)
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by virtue of (7.79) and (7.50). Integrating dyOj we deduce

\0j(t,yj(s, t)) — 0/f ,j>y)| < C\s\t Qxp(-trj) (7.91)

and since the rhs goes to 0 for t-+ oo, Oj(ao9s) is equal to 07-(oo,0).

It remains to prove 0^00,0) = 0,-. To this end we note (7.31) implies

f ( t ) = qM) = 0(exp( - trj) (7.92)

and study the rhs of

f(f) = [qpHj(0)} = X LklLlmd6jLmk-VjLjj (7.93)

for t-+ oo. The matrix elements of L(t,y$) remain bounded and the function

de.Lmk(t,y^) converges to 0 unless m = k=j, in which case it has limit exp(0J-(oo,0)),

cf. (2.70); moreover, the function L^y^) has limit 0 unless l=j, in which case

it has limit exp(0J-(oo,0)). The upshot is that we may conclude

lim/(f) = exp(30 -(oo,0)) — exp(20,- 4- 0/(oo,0)) (7.94)
t-» oo

where we used (7.9). But in view of (7.92)/(f) goes to 0 for t-+ oo, so that

the rhs of (7.94) must vanish. From this we obtain 6j = 07-(oo,0), which completes

the proof of the estimate (1.14)+ for the pure soliton solutions to the mKdV

equation. Q

KdV. In this case we should prove

N

sup| ]£ [ — 2dy ln(l + exp[^(f,^)]) 4- 2dy ln(l + exp[#js(r,j)])| = O(exp( — tr))

(7.95)

cf. (7.12), (7.14). Using (7.17) one readily verifies

^ = 2£exp(0fc + 0,)KM^;. (7-96)

Therefore, we should estimate the function
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exp(0t + 0,)F^F/ 1 Rg^)2 a] 1

4 l+exp(-,,) 2tL2l „,,! J'
(7.97)

Now the second sum can be handled in the same way as for mKdV; one need
only replace (7.75) by

(7.98)

and proceed as before. Thus, it remains to estimate the first sum in (7.97).
To this end we use (7.77) to rewrite the first sum as

- 4 Y exp(0fc 4- 6j) V^ F/ - - - - - --- - - . (7.99)

Now exp(fy)K|+ is bounded on R2, so we need only estimate T,j>kQjk, where

e^l/Sch-^,.-^)^ (7.100)

First, from (7.57) we deduce that q^ is negative to the right of Z,- for t>f^ fj9

so that

Qjk<exp(qj)< Cexp(-^-), s>sp t> fj. (7.101)

Second, we observe that the region to the left of £,- is also to the left of Sft for
t > Tjk ^ fk. Hence we may use (7.58) with j -> k to conclude that qk is positive
to the left of Z7- for t>fjk^Tjk, so that

s< -sp t>fjk. (7.102)

Finally, we estimate Qjk on Z7-.
As k^j—1, one has

9k^9j- 1 > - C+ tdjj_ j(4 se[-spsj] (7.103)

in view of (7.54). Using \qk\^qk and the bound (7.53), it readily follows from
(7.100) that
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)], sel-spsj]. (7.104)

For non-positive s this entails (recall (7.36))

rrJ)), je[-^0] (7.105)

whereas for non-negative s we get

Qjk < Cexp[ - t(Vj_ &J- ! - Vj) + s(Vj - <T;_ j))], j e [0, jj. (7. 106)

Recalling (7J- = exp(0J-)<exp(0J-_1) = (TJ-_1 and sj^vj^l—vj, (7.106) implies

g,fc < Cexp[ - f(<7,._ ̂  ! - ̂ ) + (»,•_ ! - z$*/ - */- 1))]

= Cexp[ - tafa _ ! - ^)] - <9(exp( - f /y), 5 e [0, jj. (7. 107)

Combining the estimates (7.101), (7.102), (7.105) and (7.107) we may conclude

Qjk = 0(exp[ - 1 mm(RpRk)y (7.108)

uniformly for yeR. As a result, the first sum in (7.97) has a modulus that
is bounded above by C(exp( — tr)\ where C depends only on the initial value
(q,8). Thus, the KdV 7V-soliton solutions are indeed approximated by a linear
superposition of N 1-soliton solutions according to the uniform exponential
decay bound (1.14) + . D

Before turning to the general case we add three remarks. First, we would
like to mention that the assumption (42) in our paper [2] entails the asymptotics
(43) in [2] provided that the position ^c in (43) (here denoted y to avoid
ambiguities) is assumed to be fixed. Indeed, this follows from Appendix C,
and also from Th. A2 in I, since (42) implies h'0(@l)<~-<ho(@N). However,
to obtain long-time asymptotics that is uniform in y, the key assumption is
strict monotonicity of the velocity function v(6) = h'0(6)/h\(6) (and not of /z'0(0)),
as will be clear from the above.

Second, we note that when one sets

a. = - sh GJ, Vj = cth GJ, j=l,—,N (sG; tachyons) (7. 109)
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in (7.6), then

(p = 4Tr Arctg A(t,y) - nN (7. 1 10)

solves the sine-Gordon equation (7.1), provided N is odd. (Indeed, (7.109)
amounts to taking t*->y in (7.6), as compared to (7.8).) Taking all Sj either
positive or negative, the assumption (7.7) holds true up to overall signs. Thus,
Th. 7.2 may be invoked to conclude that for odd N such solutions are
approximated by linear superpositions of N 1-tachyon solutions according to
the exponential decay bounds (1.14)±, r being given by (7.71) with 0-,- -» (0^.

Third, combining (7. 10) -(7. 17) with (7.1) -(7.3) we can derive functional
equations involving the potentials F^,---,F^. Indeed, we can evaluate the
partials in (7.1) -(7.3) by using Hamilton's equations. Doing so in the
sine-Gordon case, we obtain the functional equation

fe-^) = sin(4 Arctg(exM,)). (7.111)
2

At first sight this identity looks utterly unlikely, and indeed a direct proof
appears forbidding for N>2. It should be noted that our indirect proof hinges
on the canonicity of the pure soliton map $ established in I.

7B. S01itoo§9 Antisolitons, and Breathers

As announced, in this section we restrict attention to the sine-Gordon and
modified KdV equations. Our starting point is the matrix A(t,y) defined by
(7.6), with the parameters op vj given by (7.8), (7.9), resp., and with
(q,0)eRN x GN. Since A(t,y) -» 0 for y -+ oo, we may write

Tr Arctg A(t,y) Infll* + iA(t,y)\/\lN - iA(t,y)\) (7.1 12)
2i

provided that the logarithm is defined such that the rhs converges to 0 for
y-+ oo. More explicitly, this can be rewritten

H -liln([H- f ikSk(A(t,y))-]/c.c.) (7.113)
2 k=i

\I\=k iel iel
(7.H4)
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, (SG) (7.H5)
Iexp30 lexpfl (mKdV)

where (7.114) follows from (B4).
Consider now analytic continuation in q and 6. As long as we keep all

Ot distinct and in the strip |Im$£| < 7u/2, we encounter no singularities in Sk

and retain exponential decay for y -> oo. In particular, we may continue to
the subset & of C2* defined by (4.20) -(4.24) and (6.132). (Recall h depends on
the choice of 7V+, 7V_; as before, this dependence will be suppressed.) Fixing
PeCl, we claim that the rhs of (7.113) defines a function i//(t,y) such that 4\l//dy\l/
is a real-valued real-analytic solution to the sG/mKdV equation, resp.

To prove this claim, we first observe that A(t,y) is diagonalizable and
that we may write its spectrum as

o(A(t,y)) = {expOftf jO],• • •, -exp[*N_(f,;v)]}, x\ ^ • • - ̂ 4d, 5=+,-.

(7.116)

(Recall (4.19), (2.56), (2.57) and the paragraph containing (2.84) to verify this.)
Next, we infer from reality of a(A) that the determinants (l^ + L?! are non-zero
on R2. From the formulas (7.112)-(7.114) it is then plain that if/ is real-valued
and real-analytic on R2. Now the claim readily follows from the solution
property for points in RN x GN and real-analyticity of \//. (Note that by picking
y large enough one can stay away from singularities while analytically
continuing.)

Of course, one obtains the same solution for any two points in 5 with
the same image in O, cf. (4.19), (4.26). The solutions thus associated to points
in O are well known from the 1ST formalism. They all yield a vanishing
reflection and a transmission coefficient with N simple poles in the upper half
plane. We are going to study a slightly larger class of solutions, considering
successively the sG and mKdV cases. The details for the former case are
presented in a format that enables us to dispose of the latter by simply listing
some changes.

Firstly, we prove that for functions i//(t,y) associated to points in an open
dense full measure subset Qj^ of Qf one has
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sup|,M^)- I tfay)- I tfay)- Z ̂ n(t,
yeR i=l j=l n=l

= O(exp(-|f|r)), t-+±ao (7.117)±

where r>0 will be specified below. In the sG case 4i// is a solution, and so
are the soliton, antisoliton and breather functions 4^*, 4i//f. and 4^; in the

mKdV case the functions dy\l/, dy\l/^. are solutions. (Most likely, (7.117) holds
true for the j-partials, too, but we have only proved this in the pure soliton
case, cf. Section 7A.)

Secondly, we clarify the relation of the solutions corresponding to points
in O to the -c = n/2 flrel systems.

Thirdly, we use this relation to obtain and study a larger class of solutions
associated to arbitrary points in the phase space fib.

Fourthly, we introduce soliton and antisoliton space-time trajectories and
derive various properties therof.

Finally, in the sG case we add some comments, in particular on related
literature.

Sine-Gordon. To take the first step in the program just delineated, we fix a
point P+ in the set

(7.118)

(Note that O0^ =Q0-) To determine the long-time asymptotics for the solution
associated with P±, we follow a strategy that is an amalgam of the strategy
in Section 7A, the asymptotic analysis in Chapter 6, and some new
ingredients. We need some notation that will now be introduced and motivated.

First, note the bounds (7.50) -(7.52) in Th. 7.2 only involve properties of
the functions (7.36) -(7.40). These functions depend solely on seR and on the
positive numbers ffl9-"9(TN and the distinct numbers V N < ~ - < V I . Here, we
define numbers (<T1,v1),--,(ak++l+k_,vk++l+k_) with these properties by permuting

the pairs (chp\,thp\\ - - -.(ch-p^ cos-^th-pj), • • -,(ch/?f ,thp\ ), • • • such that

the velocities are in the desired order. Then the definitions (7.21), (7.36) -(7.40),
(7.45), (7.46) make sense and the bounds (7. 50) -(7. 52) will entitle us to invoke
Th. Cl.
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Second, we denote by T the permutation that reorders the actions (0i, •••>%)
such that the associated velocities are decreasing from left to right, keeping the
order of the two actions going with each breather. Thus we obtain a partition
of the actions into subsets Ji9~-,Jk++l+k_9 such that Jp contains the action(s)

yielding velocity vp. We define /+,/~ via (Cl), (C2), (C8) with /->/.
Third, we define asymptotic single soliton/antisoliton/breather functions.

To this end we fix l e{ l , - - - , f c + +/+fc_} and detail the three cases that may
occur.

(s) vi = thps
t (7.119)

^ = Arctg(exp[>f+- AJ+/Xf,j>)]) (7.120)

Re d(p\ - a,- i(fe)), S(z) = 21n(cth - z) (7.121)

(7.122)

(S) v, = thp] (7.123)

(7.124)

- Z Re^-flt-(fc)) (7.125)

(7.126)

(b) v, = th-pn. (7.127)

We first define real- valued functions s^(t,y\ s^(t,y) by setting

(7-128)

(7.129)
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where A' and A£ are real numbers such that

and

(7.130)
fceJj

=(tsh~pn-ych-pn)cos-dn (7.131)

pn)sin-5n. (7.132)
L L n 2

Then the asymptotic single breather functions read

(7.133)

or, equivalently,

+j±l). (7.134)i_~n ~n _i/ i_~n ' "W J/ \ ~ /

_1 _1
Note these functions correspond to points (jcnH—AJ;,yBH—A^pn,on) in the

N+=N_ = 1 manifold Bl9 cf. (4.10).
We are now in the position to state and prove the generalization of (7.72).

Theorem 7«3«, The functions i/ff., i |̂j? \l*8
bn and

^r(r,j;)= 5 Arctg(exp[^(r,j)])- J Arctg(exp[xr(r,j)]) (7.135)
i= l 7=1

associated to P^eO^ vw (7.120)-(7.122), (7.124)-(7.126), (7.128)-(7.133) anrf
(7.112)-(7.116), resp., satisfy the decay estimates (7.117)+, the decay rate r being
given by

r= min ^J»» —»J- (7.136)
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Proof. We only prove (7.117)+, the proof of (7.117)_ being similar. In
order to generalize the reasoning in Section 7A we fix Ae{ l , • • - ,&+ +/ - f&_}
and consider the eigenvalue(s) and asymptotic single particle function
corresponding to the rays (7.35) with 7 -> L The real number (A now depends
on whether one is dealing with a soliton, antisoliton or breather; specifically,

W-iA?)

(XJ--AJ) (7.137)

(*,-\*&

The definitions (7.21), (7.35)-(7.40), (7.42), (7.43), (7.45)-(7.49) will be in force
from now on (taking j -» 1, of course), the numbers C+jA/C_ A here denoting
maximal/minimal eigenvalues of the positive matrix M,(0,C^) defined via (6.14),
(2.54).

We continue by specifying the generalization of (7.34). To this end we
first set

h(z) = ch z — (VA + s)sh z. (7.138)

Then we define a permutation a via the paragraph containing (6.22) (taking
ju = l in (6.20)). Now we put

and note that E(i) is of the form (C4), with M, = M,(0,CA) in (6.24), /tMr
of the form (6.25), and dl9-~,dK defined through (6.20), (6.21).

Next, fixing se[-sA,sA] and *>fA, the bounds (7.50)-(7.52) entail that
Th. Cl applies, with Tp, rp, Q and dp equal to T^(s\ r^(s\ Q>A and du(s)= —ff^s,
resp. There are now three possibilities, namely the cases (7.119), (7.123) and
(7.127), which correspond to (6.37), (6.40) and (6.43), resp.

In the first case (6.38) applies, yielding

<(f^A(M))= -stchpl+ <9(exp(-^)), t -+ oo. (7.140)

(To check this, note that AJ defined by (6.39) and (6.119) coincides with Af
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defined by (7.121), as anticipated by our notation. Indeed, one has

I?=Jf, t7-1(/,±) = T-1(/f) (7.141)

since du(s)^d^(s) for i^L) Arguing now as in Section 7 A we obtain

|Arctg(exp[<(f,j;AfeO)])-iAst(r,3;A(^/))| < Cexp(-^A). (7.142)

In the (s) case (6.141) can be used and we readily conclude

7+(^(j,0)])- ̂ (r,^(j,r))l < Cexp(- tRJ. (7.143)

Finally, in the (b) case we deduce by comparing (7.128) and (7.129) to

\) and I

of course)

(6.44) and (6.46) (with the substitutions (6.121) and yn-+yn-^lmh'(-(pn-idn)\

| Arctg(exp[< (tjjs, /))]) - Arctg(exp[^- + (t,

- t&tjjts, 0)1 < C exp( - tRJ. (7. 144)

As before, the bound is uniform for Je[ — JA,JA], since the constants Q)A at
the rhs of (C15) do not depend on s.

It remains to estimate the relevant differences for y>yf and y<y*. We
claim that the functions x*(t,y), k = l,-~,N89 6= +, — , are all strictly decreasing
in y. Accepting this claim for a while, it follows again that the differences
satisfy uniform O(exp( — tR$ tail bounds. For reasons of exposition we
postpone the proof of the claim, cf. the paragraph containing (7.163). D

We now come to the second step in the program sketched at the begining
of this section. Fixing jPeOz, we define

(7.145)

where al9 ••• ,<% are the eigenvalues of the matrix A(t,y) associated with P. We
first assume P belongs to Of. Then one has ^(0,0)^0, so the zero locus of
3F is a real-analytic variety of dimension at most one. One can now repeat
the reasoning leading up to (6.103) to conclude
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2(t,y)~A(t9y,F)9 /> = <f,(P)eQb (7.146)

where

(7.147)

(From here on it is convenient to make the P-dependence explicit.) Furthermore,
we may and will view (x+(t,y)9x~(t,y)) as the position part of a piecewise orbit
corresponding to the commuting Hamiltonians //°, H1. Denoting the zero
locus of J^ by CP and the zero locus of

,y)= U [_xj(t,y)-xk(t,y)-]2 (7.148)

by Cp, it follows as in Section 6C that the positions are continuous on R2

and real-analytic off the multiple collision set C™ c CP.
Consider next the non-generic case FeO^Of. Then J^(0,0) = 0, so that

3F might vanish identically, a priori. We assert that this cannot happen.
Taking this for granted, it follows that one may shift the space-time origin to
some (tQ^o) where J*" is non-zero; thus we may again view the sine-Gordon
solution at hand as being associated with a point in the phase space Qb. (Of
course, the shift is not needed when one is willing to employ the extended
phase space Q*, cf. the end of Section 6C.)

To prove the assertion, we choose ueR such that the k+ + /+£_ numbers

shp\ — uchp\9'"9(sh-pl — uch-p1)cos-6l,--,shps
i— uchp\,-~ are distinct and

such that the / numbers ch-p^— ush-p^--- are non-zero. Then we apply

Th. Cl to (a similarity transform of) A(t,ut) and deduce in a by now familiar way\
that the zero locus of J* meets the ray y = ut in a discrete set.

We proceed with the third step. To this end we observe that the definition
(7.147) of A(t,y,P) makes sense for any PeOb; denoting the roots of
\A(t,y,P)-<An\ by (*!,•••,% we define functions & and 9t by (7.145) and (7.148),
and we denote their zero loci by CP and C™, resp. The arguments yielding
Th. 6.7 can now be adapted to the 2-parameter flows at issue. Thus, through
any FeQb there passes a piecewise orbit that is the limit of the global orbit
/?2-»Q, (t^^exp^HO^-yH^KP) as g^n. (The Hamiltonians /F(g) are
given by (7.16) with L = L(g\ of course.) Moreover, A(t,y,P) has real spectrum
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on R2 and simple spectrum off CP"; for (t,y)eR2\CP its eigenvalues are related
to the configuration part of the piecewise orbit via (7.116), and the position
xd

k(t,y) has a continuous extension to R2 that is real-analytic wherever the
corresponding eigenvalue is simple (in particular, off Cp). We are now in the
position to state and prove our next theorem.

Theorem 1A. The function (p(t,y) = 4\//(t,y) associated to PeOb via (7.135)
is a real-valued and real-analytic solution to the sine-Gordon equation (7.1). It
satisfies

lim(p(t,y) = Q9 lim (p(t,y) = 2n(N+ -N_) (7.149)
y-+ oo y-» — oo

and

(dy<p)(t,-)eS(R) (7.150)

where S(R) denotes Schwartz space. Moreover, the solution yields a reflectionless
potential in the sense of the 1ST.

Proof. For P e Oj all of these properties are well known, cf. the beginning
of this section. Now let PeO^. Since Qb is dense in Qp, we can find a
sequence Pn e Qb converging to P. The corresponding solutions may be written

q>J(t9y) = - 2i ln(|lN + iA(t,y,Pn)\/c.c.) (7.1 51)

or, equivalently,

cpn(t,y)= -2iln([l + ikSk(A(t,y,Pn))-]/c.c.) (7.152)
fc=i

cf. (7.112), (7.113). Since A( - , - , • ) is real-analytic and has real spectrum on
R2 x Ob, these representations entail that <pn(t,y) converges (uniformly on
compacts) to a real- valued real-analytic sG solution. This solution equals <p(t,y)
as defined by (7.135), since (7.135) entails that (p may also be written

cp(t,y) = 4Tr Arctg A(t, y, P)=- 2i \n(\lN + iA(t,y, P)|/c.c.). (7. 1 53)

Next, we choose a closed contour F in the open right half plane that
encircles the spectrum of L(P) counterclockwise. Then the functional calculus
yields
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^2mj 2
T

(7.154)

where R denotes the resolvent. Since R is continuous on F, its norm is
bounded on F. But now it readily follows that all ^-derivatives of any matrix
element M(y,P)jk have decay exp( — dy) for any d smaller than

(7_= min ReOl-f/T'p. (7.155)

In view of (7.147) the same holds true for A(t,y,P). From (7.153) it is then
clear that (dk

ytp)(t,y\ fc^O, has decay exp( — dy) for y -* oo. Rewriting <p as

,y) = 2n(N+-N_)-4 £ 8 I Arctg(exp[-*^,j;)])
6=+,- k=l

= 2n(N+ -N_)-4AYctg(A(t,y,P)-1) (7.156)

and repeating the reasoning for A(t9y9P)~l
9 we may now deduce (7.149) and

(7.150).
Finally, we claim

limim \\(pn(t,y) — (p(t,y)\dy
-»ooj

Taking this for granted, it is not hard to prove the last assertion. Indeed,
the 1ST S-matrix can be defined via a Dyson series/Volterra expansion/variation
of constants formula/product integral/time-ordered exponential (choose your
favorite), y playing the role of time. (Cf. in this connection [12], pp. 394-399,
especially Eqs. (4.1)-(4.4), (4.49), (4.52).) The crux is now that (7.157) ensures
LL(/^-convergence of the associated potential difference Vn(t, •)— V(t, •); in turn,
this entails convergence of the S-matrix, as is readily verified. Since Vn is
reflectionless, so is K.

It remains to prove (7.157). Since the integrand converges to 0 pointwise
for n -* oo, we need only dominate \(pn — cp\ by an //-function. To this end,
choose n0 large enough so that a(L(Pn)) is enclosed by F for n>n0. Then
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(7.154) holds true when P is replaced by Pn9 n>nQ. Fixing rfe(0,(7_), it now
easily follows one can find C+>0 such that \(pn(t,y)\<C+exp( — dy) for any
n>nQ and j>^0, say. Taking y -> — y in (7.154) and using the representation
(7.156), one infers in the same way \((pn — (p)(t,y)\<C-Qxp(dy) for any n>n0 and

D

We have little doubt that the class of sine-Gordon solutions obtained via
the T = 7i/2 IIrel systems coincides with the class of all real-valued reflectionless
solutions satisfying (7.149) (mod 2n, of course) and (7.150). More precisely, we
believe that any solution from the latter class whose transmission coefficient
has N poles (counting multiplicities) in the open upper half plane can be
obtained from a point in Ob, possibly after a translation of the space-time
origin. In particular, the multipole solutions [13] correspond to points in the
exceptional set Ob in this scenario (which is easily verified for N=2).

However, having a proof is far better than having no doubt. We expect
that a proof would reveal features of the exceptional set and of the multipole
solutions that are hard to arrive at when one stays within one of the two
contexts that are involved.

We now come to the fourth item announced above, viz., soliton and
antisoliton space-time trajectories. To define these, we introduce the trajectory
function

(7.158)

Obviously, ZT is real-analytic on J?2xQb. Since A(t9y,P)->Q for j-» oo, one
has y( - , • 9P) + 0. Thus, the zero locus TP of y{ • , • 9P) is a real-analytic variety
of dimension at most one, just as the zero loci CP and C™ of the functions
& and 3 defined by (7.145) and (7.148), resp.

We shall now study the trajectory set TP in more detail, in particular as
concerns its relation to the collision sets CP and CP. Before embarking on
this, let us specify the local structure any of these varieties VP can have, a
priori: A point (t09y0) e VP can be either isolated or belong to finitely many
real-analytic curves, some of which may end at (tQ9y0). (This readily follows
from the Weierstrass preparation theorem.)

We begin by noting that the trajectory sets are Lorentz equivariant. That
is, we have actions of the Lorentz group R both on space-time R2 (sending (t,y) to
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9y ychO-tshO)) and on Ob (sending P = (x,p) to P(0)
= (X,PI +6,--,px _+$)), such that the image of TP under the former action

equals TP(_ey (Indeed, this is clear from F((t,y)B,P) = 3r(t,y,P(6)\ cf. (7.158),
(7.147), (2.70).) For space-time translations the situation is different, since H°
and H l give rise to collisions. However, when we employ the extended phase
space Q*, we do obtain an /^-action Q^Q(a) = Qxp(a0H°$-alH^)(Q). For
points in Q*~Q it is then not hard to establish Poincare equi variance, but
for <2^n* we get trouble with Lorentz boosts. Indeed, it is clear how the
latter should be extended from Qb to Q, and they also have an obvious (and
compatible) definition on the pair set ^, viz., (A,L)\-*(A,eeL). But when <j(L)
is not simple, we cannot be sure that the latter definition gives rise to an
action on Q*, cf. the open questions discussed at the end of Section 6C. This
is immaterial for what follows, however.

Next, we define

max Re/l-ReA'1 / ^ i c m
V±" min *6 (~U ) ( ]

and consider rays (tQ,y0) +
 r(c^s £,sin £),r e [0, oo), in the four regions complement-

ing the two lines (t0,y0)-\-^(l9v±), JUG/?. For rays in the region containing the
point (t 0,y0 + 1) we may use the functional calculus as in the proof of Th. 7.4
to conclude A(t0 + rcosl;,y0 + rsin?;,P)-+Q for r-»oo. Similarly, along rays
in the region containing (t&yQ — l\ the matrix A~l vanishes. Therefore, as
t-+±ao, the set TP n {(t, y)\y e R] moves into any open timelike cone that
contains the closed timelike cone spanned by the above two lines, and, a
fortiori, into the forward and backward light cones as t -+ oo and t -> — oo,
resp. Moreover, recalling (7.116), we deduce

lim xd
k(t0 + uy,y)=+ao, we[-l,l]. (7.160)

» ± oo

Fixing (t0,u)eRx [—1,1], we now claim that the functions y \-* xd
k(t0 + uy,y)

are strictly decreasing. We have already made this claim in a special case,
cf. the end of the proof of Th. 7.3. Accepting it a little longer, we may invoke
(7.160) to infer that the equations

(7.161)

admit unique solutions y*(t) and yj(t\ which we shall refer to as soliton and
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antisoliton space-time trajectories, resp. In addition, it now follows that we
may write

Tr = U U {(t,/k(t))\teR} (7.162)
8=+,- k = l , - - - , N 6

and that trajectory tangents cannot be spacelike.
At last, we prove our claim. First, we note it suffices to show x8

k(t0 4- uy,y)
is decreasing in y. (Indeed, the assumption xd

k(tQ + uy,y) = c on a ^-interval
entails that the line {(dec,y)\y E R} belongs to the zero locus of the function

)l contradicting A-+Q for j;->oo.) Suppose xd
k(t0

for y\~>yi- Choose a sequence tn -»t0 such that
each of the lines {{tn + uy,y)\yeR} meets CP in a discrete set. From Hamilton's
equations one has

dy(x
d
k(t + uy,y)) = l(u shpd

k - chp*) Vft(t + uy,y) < 0, (t + uy,y) e R2\CP

(7.163)

so that x*(tn + uyl,yl)<x%.(tn + uy2,y2)' But then it follows by continuity that
xfttQ + uy^yJ^x&tQ + uy 2^2)9 a contradiction. Hence, the claim is finally
proved.

Returning now to our study of the trajectories, consider the zero locus
of the real-analytic example function

E(t,y) =y(sh2y + (t 4- r)3)(sh2j; - (t - T)3), T> 0. (7.164)

It has all of the properties of TP established thus far, so we need additional
arguments to exclude the contingency that there are fewer than N trajectories
for a non-zero time interval (a phenomenon that would correspond to resonances,
physically speaking).

We conjecture this behavior never occurs, but have not found a complete
proof. As will be clear from what follows, it would suffice to show that the
multiple collision set C™ is discrete for any PeO17. (We believe this is true.)
Before studying the general case in some detail, let us mention that the special
point P given by (6.116) yields C™ = {(T90)} for P0(x,p)^3 and a discrete Cp1

on the f-axis for P0<3. It is obvious that the antisoliton trajectory is given
by the r-axis. Moreover, the three trajectories meet only in C™ and the soliton
trajectory tangents are lightlike in the triple collision point(s). (The verification
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of these assertions is straightforward.)
We shall now elucidate the local structure of the 'regular collision' set

Rp = CP\C^ PeQb. (7.165)

To this end, let b = (^Jo) e ^P- We assert that the intersection of RP with a
sufficiently small disc around b consists of / spacelike curves meeting at b,
where /e{l,---,m}. Taking this assertion for granted, it follows that TP can
meet RP only in a discrete set. (Indeed, as shown above, trajectory tangents
can only be timelike or lightlike.) In particular, it follows that whenever C™
is discrete, there are N distinct trajectories for any bounded time interval, except
possibly for a finite set of times.

We now prove the assertion about beRP. We begin by noting there are
at least one pair and at most m pairs of soliton and antisoliton positions
coinciding at b. Let x*(t,y), xj~(t,y) be one of these pairs. Since a(A(b)) is
simple, x* —xj is real-analytic at b. Now choose a line segment

S={b+s(cos^smQ = bs\se(Q,6)} (7.166)

such that S does not meet CP. (Using real-analyticity of ^(t,y) and CP^R2

one sees that such an S exists.) Then we have from Hamilton's equations

dtlx+(t,y)-x7(t,y)-] =(shp+ V+ -sh^r Vj)(bs\ (t,y) = bseS. (7.167)

To get information on the limit of the rhs as s -» 0 (which exists, since the Ihs
is smooth at b), we exploit Th. 6.7 with h(z) = cos £ ch z — sin £ sh z. First, we
use (6.112) to infer that the limit of the rhs is finite. Thus the gradient of
x* — x~j~ does not vanish at b, entailing that the zero locus of x* — x]~ is a
smooth curve through b (sufficiently near 6, of course).

It remains to prove that the tangent at b to this curve is spacelike. To
this end we rewrite (7.167) as

-sh/>r VJ(\ - niVjW>& (7.168)

Now from (1.3) and (1.4) one reads off V*/Vj~ -> 1 as s-*Q. Combining this
with (6.112), it follows that the second term at the rhs goes to 0 as
£-»(). Telescoping dy(x* — xj) in the same fashion, we readily deduce
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s (-ll). (7.169)

From this it is plain that the tangent at b is spacelike, so our assertion is proved.
We are now prepared to study the local structure of TP. Fixing

b = (t0,y
d

k(t0)), there are three possibilities. First, no xk{t,y) other than xk

vanishes at b. Then one can find £>0 such that no position but xd
k vanishes

on the disc with radius e around b, and such that xd
k stays away from the

other positions on this disc. Since xd
k is strictly decreasing in y and real-analytic

on the disc, its zero locus (t,yk(t)) in the disc is a real-analytic curve. We
claim that this curve is timelike.

To prove this, we assume first b$CP. Then we may use Hamilton's
equations

M(£) = (shAW), (dyxi)(b)=(-chpiVtm (7-170)

to infer that (dyd
k/dt)(t0) = thpd

k(b), so the curve is timelike at b. Next, assuming
6eCP, let S be a line segment of the form (7.166) which is not in CP. On S
one has (7.170) with b -»6S; since x{ is real-analytic at b and Vd

k(x(b^) has the
finite limit V{(x(b)) as j->0, it follows that pd

k(bs) has a limit pd
k(b)ER; hence,

we arrive at the same conclusion as for b£CP.
The second possibility is that both xk and some xk,

8 vanish at b, but no
other position does. Then the corresponding eigenvalues are simple at b and
hence remain simple on a disc around b with sufficiently small radius
c. Eventually shrinking e, we may assume no other position vanishes on this
disc. Thus we obtain two real-analytic curves (t,yk(f)), (t,yk>\i)) in the disc
that have at least one point in common, namely b e CP. Choosing a segment
5 of the form (7.166) that is not in CP, we have (7.170) with b-*bs. Exploiting
now Th. 6.7 in the same way as before, it follows that the curves have lightlike
tangents at b with opposite slopes. In particular, the curves separate as t
moves away from t0.

The third case is that more than two trajectories meet at b, implying
b e CP. Whenever b is an isolated point of CP, it follows from the above that
all of these trajectories separate as t moves away from t0. (But we have no
general information on slopes. Are there always lightlike tangents at b, just
as for the point (6.116)?) However, since we have not succeeded in proving
non-existence of non-spacelike curves in C™, some trajectories might coincide
as t moves away from t0.

We conclude our study of the trajectories by adding some observations
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that have a bearing on this 'multiple trajectory' phenomenon. Firstly, if it
exists at all, it is non-generic. For instance, one can consider along with P
the points P(d) obtained from P by translating all positions over the distance
d. Since the union of the sets TP(d} as d varies over R is equal to R2 (recall
(7.158) and (7.147) to see this), and since one clearly has C™(d) = Cp, it follows
that multiple trajectories can only occur for a discrete set of d.

Secondly, for PeQ^ with image PeO^ it is readily seen from the proof
of Th. 7.3 that for t -* + oo one gets N distinct trajectories, save for the
times at which the soliton and antisoliton in any of the / breathers
collide. More specifically, one infers (cf. e.g. (7.140)) that for t-*5co one gets
k++k_ trajectories at the extremum of the functions y*-+dyil/*..(t,y) given by
(7.120) and (7.124), and two trajectories associated with each ^J8

bn(t,y), whose

location follows from (7. 128) -(7. 13 3) (up to an exponentially small error).
An interesting (and puzzling) feature of the two breather trajectories is

that their maximal distance has a finite limit as d goes to its minimum — n. To
be specific, for a breather with p = 0 (corresponding to its rest frame) one easily
checks that the maximal distance between the trajectories reads

(7.171)
cos(c>/2)

Thus, <4iax decreases monotonically from oo to 2 as d goes from 0 to — n. It
is to be noted that rfmaxcos 6/2 equals the distance between the two underlying
point particles at their turning point and that the oscillation periods of the
breather solution and of its associated trajectories and particle motion are
equal (viz., 27t/|sin <5/2|).

We conclude our account of the sine-Gordon case with several remarks.

(i) The asymptotic behavior detailed in Th. 7.3 is in accordance with
pp. 429-431 in [12]. More precisely, our decay bounds do not contradict
I.e. Eq. (5.151), the qualification being necessitated by the fact that the analytical
meaning of Eq. (5.151) is left unspecified. (From the arguments presented on
pp. 133-134 of [12] it does not even follow that the Iks of (1.14) goes to 0
for t -* ±00.)
(ii) The above trajectories can also be viewed as trajectories associated to
singular solutions of the sinh-Gordon equation, cf. the review [17] and references
therein. (This was pointed out to us by Pogrebkov [20].) Indeed, taking

in (7.4) -(7.6), one obtains A(t,y) -> iA(t, y). Combining this with
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(7.146) and (7.153), one infers that the function 2ln(\lN + A(t9y,P)\/\lN-A(t,y9P)\)
solves the sinh-Gordon equation. Clearly, this solution is singular along
isolated trajectories, cf. (7.158). (But singularities might cancel when multiple
trajectories do occur.) Possibly this perspective is useful in answering the
questions left open above.
(iii) Consider once more the representations (7.10), (7. 11 2) -(7. 11 5) of the pure
soliton sG solutions, but now allow arbitrary analytic continuations in q and
9 (as opposed to continuing to the subsets ft c C2N with 7V_=0S1,--- ,JV).
Taking @19~-,SN distinct (mod 2ni), this yields sG solutions with non-real values
and with singularities, in general. However, the analytic continuations to ft are
not the only ones yielding real-valued real-analytic solutions, as will now be
illustrated.

Start from (q, 6)<=RNx GN and take 0k -> Ok + in for k = N+ + 1, • • -Jf. Then
the resulting matrix A(Q,Q) equals the Lax matrix (2.70) with /? = /i=l, i = n/2,

the real numbers />!",•••,/>*_, *iV •-,**_ being given by ql9~-,qN, 6i9'~,&N,

resp. Moreover, the space-time dependence of A(t9y) is governed by the
Hamiltonians H° = Tr(A + A~ l)/2, H1 = tr(A -A~ l)/2, cf. (2.6) with \JL = I . Since
Ob is manifestly left invariant by the space-time flow (t,y)\-+exp(tH° — yfi1),
the spectrum of A(t,y) stays in the right half plane. Thus it follows from
(7.112) that one obtains a real-valued real-analytic sG solution in this way.
(iv) It is not obvious, though true, that the solutions described in the previous
remark are not new. In particular, the solution we have detailed can also
be obtained by taking qk -» —qk + in for k = N+ + !,-••,# (which yields a point
in 50, cf. (4.20) -(4.22)). The crux is, that the rhs of (7.113) is left invariant
(mod 7T/2) under the simultaneous continuations # /-> —q^in, @j->@j + in.

This invariance property seems to have escaped attention, so we add a
proof, taking y=l to ease the notation. First, rewrite the rhs of (7.113) as

= arctg X. (7.172)
-2 + 4-

Second, rewrite (7.114) as

\I\ = l & jel
h$I

Third, note the 7'=! substitutions amount to
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«!->-!/*„ c l t-*l/c l t. (7.174)

Fourth, verify that these replacements entail

Sl - S3 + S5 • • • -> - (1 - S2 + S4- • -)/C

)/C (7.175)

where

C=e,llcu. (7.176)
k > l

Hence,

arctg^-» arctg(-l/X) = SLYctgX-n/2 (modn) (7.177)

completing the proof.
(v) On QQ the Hamiltonians of remark (iii) are the pullbacks under <D0 of
the Hamiltonians

j=l fc*j _/ = # + + ! fc^j

A = ch,sh, 0 = (x-,A ? = (/,/) (7.178)

on Qfc, cf. (3.57) -(3.60), (4.20) - (4.22), (4.25), (4.26). (Note that the set of (0,0)
thus obtained may be viewed as Qb.) From a phase diagram for the reduced
N=2 case one reads off that the H° and Hl flows do not leave QQ invariant:
Generically, the trajectories pass through Q,\, where A~L has non-real
spectrum. Correspondingly, the flows generated by the Hamiltonians (7.178)
are incurably incomplete on QQ for N—2.

It is highly plausible that the same incompleteness phenomenon occurs
for N>2, too. (To prove that it does occur, one needs more information on
the geometry of the connected components of QJJ vs. those of Of, /=l , - - - ,m.)
Note that from a physical point of view the instability is no great surprise,
since (7.178) says one is dealing with negative rest mass particles.

All the same, our conclusion is, that sG solutions containing N+ solitons
and N_ antisolitons can be related not only to N+ particles and 7V_ antiparticles
(having the same positive rest mass), but also to N+ positive rest mass and
N_ negative rest mass particles.
(vi) For distinct points Pl9 P2 in Qb one obtains distinct solutions from (7.153)
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and distinct trajectory sets from (7.158), provided that P1 and P2 belong to
Q£ and have images Pl9 P2 in Q_t under the action-angle map <E>. (Indeed,
this follows from Th. 7.3 and its proof; specifically, one can read off Pt from
the t -» oo asymptotics.) The natural conjecture is, that the proviso may be
omitted, but a proof (or counterexample) has not materialized,
(vii) It should be stressed that the (eventual) pathologies and open questions
encountered above all have to do with sets of measure zero. In classical
mechanics such sets are among the most interesting ones and should not be
ignored. Recall however, that as a rule of thumb measure-zero phenomena
are washed away under quantization. In fact, there is mounting evidence that
the classical particle-soliton correspondence (which is particularly transparent
for the open dense full measure set Q^) turns into physical equivalence for the
quantum version of the i = n/2 IIrel particle systems and the sine-Gordon
quantum field theory, cf. [3] and papers to appear.

Modified KdV. As announced at the beginning of this section, the mKdV
case can be handled in much the same way as the sG case. The analog of
the distinct velocity subset (7.118) reads

£2,* = {PE n,|exp2/Ji, • • -,exp2/4 + ,exp2/7si, • • -,exp2/?f _,

exppi cos-^/cos-d^-'-jCxp/^ cos-<5//cos-dldistinct}. (7.179)

In this case, the positive numbers aj and distinct numbers vj are obtained by

permuting the pairs (exp/7s
1,exp2/?s

1),---,(exp-/71cos-(51,exp/71cos-51/cos-^1),

• • - , (exp/7i,exp2/7j),•••. Note the curious fact that b velocities vary over J?,
whereas s and s velocities vary over (0,oo).

To obtain the analog of Th. 7.3, we need the following changes in the
formulas (7.119)-(7.134):

(7.119) -> (s) v, = exp2/7? (7.180)

(7.122) ->./; = fexpSrf-^exptf (7.181)

(7.123) -*(i)^ = exp2JpJ (7.182)

(7.126) -+/J = f exp3/;J-j>exp/>j (7.183)
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(7.127) -» (ft),A = e x p / 7 n c o s n / c o s B (7.184)

(7.131) ->/n
+ =tenp-pncos-Sn-ye\p-pacos-dtt (7.185)

jL Z* 2* £

(7.132) -»/„- = -texp-pnsin-dn+yexp-pnsin-dn (7.186)

Theorem 7.5. With the above changes understood, the assertions of Th. 7.3
hold true.

Proof. Replacing (7.138) by

1
/z(z)=-exp3z — (z^ + ^expz (7.187)

3

and taking chpf -> exppf in (7.140), the proof of Th. 7.3 applies verbatim; the
monotonicity claim will be proved below. D

Following the reasoning of the sG case, the second item of the program can
be disposed of when (7.147) is replaced by

A(t,y, P)=A(P)e\p[tL(P)3 -yL(P}]. (7.188)

The third one amounts to the following analog of Th. 7.4.

Theorem 7.6. The function v = dy\l/(t,y) corresponding to PeQb via (7.135)
is a real-valued real-analytic solution to the modified KdV equation (7.2), satisfying

v G S(R). The solution yields a reflectionless potential in the sense of the 1ST.

Proof. Replacing (7.154) and (7.155) by

0 ., -_ , (7-189)
2m

r

a_= min ReA (7.190)
Ae<r(L(P))
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the reasoning in the poof of Th. 7.4 can be followed. Q

Finally, we come to the topic of space-time trajectories. Again, the trajectory
set Tp defined via (7.158) cannot be equal to R2, since A(t,y,P)-+Q as
y -» oo. More generally, setting

max Re/I3 / - r icm
^ -in <7'191)

the discussion below (7.159) applies, provided the adjective 'timelike' and the
remark on light cones are omitted. In particular, it follows that (7.160) holds true
for u = 0.

Replacing (7.163) by

(t,y)eR2\Cp (7.192)

it now follows as before that the functions y^>x^(t 0 ,y) are strictly decreasing.
Then (7.160) with w = 0 suffices to conclude that (7.161) yields unique solutions
yd

k(f), and as a consequence (7.162) holds true.
We leave a study of the local structure of the trajectories to the interested

reader. To conclude our account of the mKdV case, we observe that, for points
in the open dense full measure distinct velocity subset of Ob, the trajectory
asymptotics for t-+ ± oo agrees with a plot of the solution, in the same sense
as for the sG trajectories.

Appendix Aa Pseudo-self-adjoint and Pseudo-unitary Matrices

Throughout this appendix / denotes an operator on an AT-dimensional
(complex) Hilbert space ffl , which is both unitary and self-adjoint. Thus ffl and
/ can be written

jf = jf+e^f_, jf^/Vf, 6=+,- (Al)

/ = P+-P-, (A2)

where /*+,/*_ are uniquely determined orthogonal projections. We denote
dim Jjfd by N6. By definition, an operator L on Jf7 is pseudo-self-adjoint w.r.t. /
(abbreviated ,/-s.a.) if it satisfies
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L*-/L/ (A3)

(where * denotes the Hilbert space adjoint), and an operator £7 is pseudo-unitary
w.r.t. / (abbreviated /-unitary) if it satisfies

U*/U=/. (A4)

In this appendix we collect some material concerning /-s.a. and /-unitary
operators. In essence, all of what follows has been known for many decades, cf.
e.g. [21] and references given there. However, we present simple proofs for three
results we have occasion to use, since we have not found a reference from which
a proof can be gleaned without undue effort.

We begin with a few Facts that are easily verified.
(1) /-unitaries form a subgroup of GL(3$f);
(2) If L is /-s.a. and U is /-unitary, then U~1LU is /-s.a.;
(3) L is /-s.a. if and only if L/ is self-adjoint;
(4) The spectrum of a /-s.a. operator is symmetric w.r.t. the real axis;
(5) If q>ly cp2 are eigenvectors of a /-s.a. operator with eigenvalues A.itA2

such that A27^ Il5 then cpl and cp2 are /-orthogonal (i.e., ((p^/(p^ = 0)i
(6) If cp e J#*d and L is /-s.a., then (<p, L<p) e /?;
(7) If SeGL(Jtf), then S*/S has N+ positive and JV_ negative eigenvalues

('Sylvester').
We continue with some results whose proofs are less immediate.

Proposition AL Suppose A is /-s.a. and such that B=A/ is positive. Then
A is diagonalizable and has N+/N_ eigenvalues in [C_, C+]/[ — C+, — C_], where
C+/C_ denotes a maximal/minimal eigenvalue of B. Moreover, any non-zero
vector (p+/(p- in the positive/negative spectral subspace of A satisfies S((pd, /<p5) > 0,
5=+,-.

Proof. Since A equals B/, A is similar to the self-adjoint operator
C=Bi/2/Bl/2 and hence diagonalizable. Also, C has N+ positive and N_
negative eigenvalues by virtue of Fact (7). These lie in the intervals specified
above, since \\C\\ ^\\B\\ = C+ and HC^K H^1!! = 1/CL. Finally, if A<p = l<p
with (?7^0, then k(<p,/q)) = ((p,/B/(p)>§, from with the last assertion follows.

D

Proposition A2. Suppose L is /-s.a. and suppose a /-unitary U exists such
that U~ 1LU commutes with /. Then L is diagonalizable and has real spectrum.
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Proof. The assumptions entail

so that L is similar to a self-adjoint operator. Q

From now on we identify ffl with CN equipped with its standard scalar
product, and we take

N

„ J+,N_^L (A5)
— IR

The third and last proposition is concerned with a ^-s.a. operator L whose
spectrum is simple. By virtue of Fact (4) this implies

l=N. (A6)

Proposition A3e /« (A6) one has

k^\N+—N,\, /<min(7V+,7V_). (A 7)

There exists a /-unitary U such that

D+ 0

R I
(AS)C/"1Lt/=

S ^

D-

Here, one has

D+ =diag(/7l9 •••,/?fe+), D_ =diag(«l3 • • • , « f e _) (A9)

^ = diag(pl5 - - -, pJ, I = diag(zcr1, • - •, Wj) (A10)

k++k_=k, k++l=N+, l+k_=N_ (All)

^•••^*+}^{«i»" '»«fc_} = {'Ii»"sM- (A12)

Proof. Let <p£ and ^ denote eigenvectors corresponding to the eigenvalues
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ri and Pj + iddp resp., and set

Since a(L) is nondegenerate, the above Fact (5) implies

S*/S=dmg((<pl,f<p1),-,(<(>h/(pk),M1,-,Ml) (A14)

where

o (
1

Moreover, since S is regular, one has (cp^^cp^ (\l/d
j9/\l/^

d)^Q. Via a scaling we
can therefore arrange

i> j ,-, 9-', (A 16)

= 1-, 7 =!,-,/, « = + , - •

Next, we introduce

rsCoK^.-.^x^xr.-.^.^) (AH)
where

Then (A 16) implies

,...,j jk,l,-l,... ,!,-!). (A19)

By virtue of Fact (7) the sign + ( — ) must occur JV+(JV_) times at the rhs, so
that (A7) follows.

Now we partition the real eigenvalues as in (A 12), such that the eigenvectors
<pl,--,(pk+ and (?r, ••-,(?," corresponding to pl9~',pk+ and nl9 • • - , / i k _ , resp.,

satisfy ( ( p f , / ( p f ) = ± l . Then (All) follows from the above sign count, and
setting

. .^^+
+ ,x1^••^%^Zl^••^%^^l^••^^~) (A20)

it follows that U is ^/-unitary. Moreover, (A8) is readily verified, using



1000 SIMON N.M. RUIJSENAARS

U-1 =/V*/9 LX
dj = pjXdj + mjX^ (A21)

cf. (A18). D

Note that it follows from Prop. A2 that L cannot be diagonalized by a
^/-unitary whenever />0. The normal form derived here may be viewed as
'next best'; it appears to date back to the 19th century. Note it implies that for
^-s.a. operators with simple spectrum any eigenvector cp corresponding to an
eigenvalue reR satisfies either (cp,/(p)>Q or (y,/(p)<Q. We shall refer to r
as a positive/negative signature eigenvalue in the first/second case.

Appendix B. The Cauchy Matrix Revisited

In this paper it is convenient to work with the Cauchy matrix

-

(El)

where the rhs is defined in the obvious way when P = Q. Compared to our
previous paper I, this amounts to adding exponentials, a reparametrization and
a slight generalization: Here, the case q^p naturally arises. Setting

Xj = e*plP(pj + - i>g)], yk = exp[j%fc - - ivg}] (B2)

in Cauchy's identity

1
Vvj "VM\J J J W CR1)

\_Xj-jfej j xj~yj j<k (xj~~yk)(yj~xk)

one obtains

sh(-zj^g)
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sh - Pfa -pk)sh - P(qj - qk)

n -—^
3 < k sh - pfa -qk + i^g)sh - 0(qj -pk -

This entails a positivity property that plays a crucial role in this paper.

Lemma Bl. Let \JL ,g > 0, j? e [0, 27c/#g) arc d let pj -ph / 0,y / fc, |Im^| < /ig/2,
j,k=l,"-,M. Then C(f$,n,g\p,p) is positive.

Proof. The assumptions entail not only that the matrix C=
is self-adjoint, but also that C has positive principal minors; indeed, the latter
property can be read off from (B4). Thus, the polynomial |A1M + C| has positive
coefficients, so cr(C)c:(0, oo). Q

We continue with an observation that will be exploited in Chapter 6: Up
to left and right multiplication by diagonal matrices, the inverse and the
transpose of C are equal. This fact also plays a key role in the treatment of
Sutherland type systems [22].

Lemma B2. Let (^^,g,p,q)eC3 + 2M be such that C= Qfi,ii,gip,q) belongs
to GL(M, Q. Then one has

...^^ (B5)

where

sh-p(pj-qn + ivg)

0 - -- (B6)

1 1
exp[- p(qj —pjf] sh - /?(#; —pn — ifj,g)

=——^—n—^ • (B?)
" "*J *h-P(qj-qJ
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Proof. Setting

(B8)

and using (El) we may rewrite (B4) as

9b (B9)
i U

From this we obtain

of Ckl)/\C\

cuc« n signo-^^-p,) n signo--

i ^ f c

•[Ctt 0 Ckif(Pk-p3]-lCkl[_Cn\\ Q,/^-?,)]-1. (BIO)
i?tk i?t|

Using (Bl) once more, this yields (B5)-(B7). Q

Appendix C. Spectral Asymptottcs Revisited

Partition the integers {1, ••-,#} into A^ subsets Ii,-'JK by setting

/p = K-i + l5"-^}5 P = l,-s^ (Cl)

where

Q = n0<nl<--<nK = N, 1<K^N, (C2)

and let / p(t) be \Ip\ x \Ip\ matrices satisfying
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/p(t)eU(\rp\), /,(/)* = /,«, We*, Vpe{l,-,K}. (C3)

This appendix is concerned with the spectral asymptotics for \t\ ->• oo of N x N
matrices of the form

E(t) = M diatfexp^J/iW, • • •, exp(^K) A(0) (C4)

where
M>0 (C5)

(C6)

Introducing

C+E=||M||, C.^IIM-1!!"1, (C7)

one clearly has cr(M)c:[C_,C+]. Setting

/;={!,- -,Hp-i}, /; = {/!, + !,. »,#}, p=l,-,# (C8)

we denote by Mp /M~ the matrices obtained from M by discarding the rows and
columns whose indices belong to I P / I P . Then a(Md

p)a [C_, C+], so that Md
p is

invertible and positive. We denote by ((M^)"1)^ the \Ip\ x \Ip\ matrix obtained
from (Md

p)~
 1 by retaining only the \Ip\ last/first rows and columns when d equals

+/— . Setting now

5=+9- (C9)

it follows that mp are positive \Ip\ x \Ip\ matrices with spectrum in [C_,C+].
In the special case K=N, /p(t)= 1, the asymptotics of a(E(t)) follows from

Theorem A2 in I. Returning to the general case, we introduce the cluster
matrices

cd
p(t)^m8

p/p(t\ p = l-,K, 6=+,-. (CIO)

By virtue of Prop. Al these matrices are diagonalizable and have real eigenvalues

cji(0^-^cj|ip|(0 satisfying

cJXOe[-C+,-C_]u[C.,C+], y=l,-,l/pl, P=1,-A «=+,-• (Cll)

Likewise, £(f) is similar to a self-adjoint and invertible matrix and hence has real
and non-zero eigenvalues a^),---^^). Setting
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rl=d1-d2,rK = dK_i-dK,rp = mm(dp_i-dp,dp-dp + l),p = 2,'--,K-l (C12)

we are prepared for the following theorem, which reduces the spectral
asymptotics of E(f) for r-» ±00 to that of the cluster matrices c^(t).

Theorem Cl. Fix p e { 1,- • -,K} and define Tp > 0 by

exp(-r/p) = C_/3C+. (C13)

Choosing ±t>Tp, the matrix E(t) has \Ip\ eigenvalues a^(0 ̂  • • • ̂  <xp]ip\(t) obeying

j= l,.-.,|/p|, (C14)

I/*! eigenvalues with moduli ^C+ exp(£rfp±1)<-C_ exp(tdp) and |/*| eigenvalues

8
with moduli ^C_ exp(frfpq:i) — C+ exp(^p±1)> -C+exp(rrfp). Moreover, one has

p, (5-+,- (C15)

Proof. Using the reversal permutation matrix, the case —t>Tp is easily
reduced to the case t>Tp. Therefore, we take t>Q from now on. Consider
the auxiliary matrix

(C16)

Setting

l,»vK: (C17)

it satisfies (recall — denotes similarity)

,4(0 ~ M^diag^O/^V • -, /p(0, 0, • • -,0)M1/2

4- M1/2diag(0,- - -A ̂ p + ! (0/p+i (0,- ' %%(0 A(0)M1/2 = 5(0 + S(r). (CIS)

In order to study the spectrum of the 'big' (for f-»oo) matrix B(f) we introduce
the npxnp matrix
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and observe that

(C20)

Therefore, B(t) has N—np zero eigenvalues, the remaining eigenvalues being
those of F(t)~l. To obtain information on the latter, we first note

;r 1/2diag(0,- • .,0,

w- '/!«,• • •*P-i(trls,-i(tWK.Mtr 1/2 =#« + m
(C21)

and then observe

H(t)~\ ^ , . (C22)o ( m l

Therefore, H(f) has np_l zero eigenvalues, the remaining \Ip\ eigenvalues being
those of (mp)~l/p(t). But the latter matrix is similar to the inverse of the
cluster matrix Cp(t\ so that

<7(//«)\{o} = «!«- v • -^wr '}• (C23)
Having disposed of the algebra, we are prepared to handle the

analysis. First, we observe that the definitions (C19) and (C21) of F(f) and
V(t) entail

(C24)

) (C25)

resp. Choosing T~ such that

^-1(r-)-
1 = C_/3C+ (C26)

the latter estimate implies

||F(OII<1/3C+, W>r-. (C27)

Now from (Cll) we have

1,-,I/P|. (C28)
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Combining this with (C23), (C21) and (C27), and recalling the bounds (C24)
and (C25), we deduce that for any t>T~ the matrix F(t) has np_v eigenvalues
with modulus < l/C_ep_1(r)<l/3C+? the remaining ones having modulus in
the interval (2/3 C+, 1/C_]. Moreover, denoting the latter by (ppj{t) and
requiring cppiW"1^ •"^(Pp|ip|(0~1? we may combine (C21), (C23) and (C25)

with the min-max principle to infer

(C29)

Clearly, these bounds entail

}- lc+
pj(f)\/C_ep_,(t)p j _ p

W>r-. (C30)

Recalling now (C20), we deduce that for any t>T~ the matrix B(f) has |/~|
zero eigenvalues, \Ip\ eigenvalues with moduli ^C_ep_1(/)>3C+, and \Ip\
eigenvalues (ppj(i)~

l having moduli in [C_,3C+/2) and obeying (C30). Next,
we consider the matrix S(i) defined by (CIS). It satisfies

p+1(t) (C31)

so that we obtain

||5(OII <C_/3, Vt>T+ (C32)

provided T+ is defined by

ep+l(T
+) = C./3C+. (C33)

Since we have (cf. (C13))

,r+), (C34)

it follows that for any t>Tp the matrix A(f) has |/~| eigenvalues with moduli
<C+ep+1(0<C_/3, |/p

+| eigenvalues with moduli >C_ep_1(0-C+ep+1(0>
8C+/3, and |/p| eigenvalues with moduli in (2C_/3,2C+). Moreover, denoting
the latter by ypj(f) and requiring ypi(0^p"^7p|/p|(0? a second application of

the min-max principle yields
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\ypj(t) - 4<OI ̂  MO - 9PJ(i) ~
 1 1 + \<ppj(t) ~

 1 - 4(01

<5C2
+/2C_exp(frp) Vt>Tp. (C35)

Recalling (C16), the theorem now follows. Q

The result just obtained can be rephrased as follows. For long times the
matrix E(t) has K disjoint clusters of eigenvalues associated with the distinct
numbers d^"-,dK via (C15). The cluster corresponding to dp is isolated for
7X — Tp and 7> Tp, but will collide with the remaining eigenvalues for \t\ < Tp, in
general. (For instance, collisions clearly occur for diagonal M.)

Notice that the upper bound 2Tp on the collision period is not optimal,
the reason being that all collisions may take place long before or long after
t = Q. To take this into account, consider the matrix

MW^Mdia^expC^)!,^,,--.^^^)!,^,. (C36)

Denoting the maximal and minimal eigenvalues of M(f) by C+(t) and C_(0,
resp. (so that Q(0) = Q, cf. (C7)) we may use Theorem Cl to infer C_(t)/C+(t)-*Q

for |f|-»oo. Hence the function t h-»C_(0/3C+(0 attains its supremum ^e(0,-]

on a compact set B. If 0^5, then the upper bound 2Tp can be decreased to
— 2r~1 \ns by changing the time origin to some teB, cf. (C13).
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