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Auslander Modules and Quasi-Homogeneity
of Local Rings

By

Yuji YOSHINO* and Kiriko KATO**

§0. Introduction

Let (R,m,k) be a normal local domain of dimension two and assume that k
is an algebraically closed field of characteristic zero. Let us denote KR the
canonical module of R. Then from the definition of KR, there are isomorphisms:

which involves the unique existence of the nonsplit exact sequence:

The J?-module A which appears in the sequence is also uniquely determined
except for isomorphisms, and is called the Auslander module of R. (For more
details, see [13; Chapter 11].) In this paper, it is of our main interest how the
Auslander module is related to the quasi-homogeneity of a local ring. Here
recall that R is said to be quasi-homogeneous if it is the completion of a
positively graded ring, or equivalently if it has an Euler derivation, i.e. a
^-derivation A with the property that

for some system of generators Xl9X2, • • •, Xn of m and positive integers dl,d2, --,dn.
Now to fix our attention onto a ring of hypersurface singularity, we put

R = P/fP where P = k[[X, F,Z]] is the formal power series ring and
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fe nip = (X9 Y,Z)P, and assume that R is non-regular to avoid the trivial case.
First consider the case that R is quasi-homogeneous, and we shall make

it clear how Auslander module is represented. Denoting the universally finite
module of differentials of R by D = Dk(R), we may take an ^-epimorphism
d : D -» m corresponding to the Euler derivation and obtain the following:

(0.1)

(0.2) Im((5**) = m.

In fact, (0.1) is obtained from the isomorphisms

In order to show (0.2), assume the contrary. Then it would be Im(<5**) = jR,
and this together with (0.1) yeilds that D**^R2. Thus by the Zariski-Lipman
conjecture established for hypersurfaces by Scheja-Storch [9], R would be a
regular local ring, which contradicts the hypothesis.

It hence follows from (0.1) and (0.2) that there is a non-split exact sequence:

0 -» R -» D** -» m -» 0.

Therefore the Auslander module is isomorphic to D** in this case.
Martsinkovsky ([6]) have conjectured the converse of this claim:

Conjecture (0.3). The following conditions would be equivalent for R:

(0.3.1) R is quasi-homogeneous.

(0.3.2) The Auslander module is isomorphic to D**.

We remark that the above argument shows the condition (0.3.2) is equivalent
to:

(0.3.3) There exists an epimorphism D** -> m.

Meanwhile we must also remark that there are some known equivalent
conditions for (0.3.1):

(0.3.4) f€(fxJYJz)P. (cf. Saito [8])

(0.3.5) There exists an epimorphism D -> m. (cf. Scheja-Wiebe [11])

Therefore the Martsinkovsky's conjecture is reduced to the following:
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Problem (0.4). When there is an R-epimorphism /)** -» m, is there also an
epimorphism D -» m? (See also [6; Prop. 2.2].)

In this problem it is intrinsically required to get a property of D from
that of D* = Derk(R,R), hence in a sense there seems to have similar difficulty
as in proving the Zariski-Lipman conjecture.

We exhibit some types of hypersurfaces for which the conjecture is to
have an affirmative answer.

(0.5). If f is one of the following equations, then the conjecture (0.3) holds true

for R = P/fP:

(0.5.1) f=X"+g(Y9Z) (cf. Martsinkovsky [6])

(0.5.2) f=Xp+Yq + Zr + XYZ (cf. Behnke [1] or Yoshino-Kawamoto [14])

(0.5.3) f=g + H(gl where g = Xp + Yq + Zr and H(g) denotes the Hessian ofg.

In this paper we shall show these are really the cases for which the
conjecture is true. For (0.5.1), we give another proof which seems to be simpler
than the Martsinkovsky's original one. The cases for (0.5.2) and (0.5.3) will be
treated as only a matter of calculation. Yet for the rings of hypersurfaces in
general form, we have to say that the problem remains unsolved.

Martsinkovsky's latest work [7] was regarded as proving this conjecture
for all the rings of hypersurface, but the proof contains a certain serious gap
and cannot be an answer to the problem. In [7], he tried to prove it with
the help of a nonminimal free resolution over R, what we call an Eisenbud
resolution, of R/j(f), where j(f) denotes an ,R-ideal generated by all the partials

of/:

He focused on the structure of </>3, with the assumption of the conjecture, whose
cokernel is to be isomorphic to the first syzygy module f l l A of A up to a
free direct summand. While the minimal presentation matrix of &A can be
explicitly computed. It is true that, omitting a free summand from Coker(03),
&A is isomorphic to the cokernel of a map r:R4-+Rn+3, where the matrix
T has the property that the last three entries in each column are the coefficients
of relations over jR among the partials of/. On the other hand, there certainly
exists a map i:R4-^R4 whose cokernel is isomorphic to Q1^. In [7: page
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553, lines 13-17], he claims with no explanation, that also for this T, the
matrix has the same property as T. But it is not only unguaranteed, but also an
essential part to prove the conjecture. (If it were true, then our result (3.14)
or a theorem of Herzog [4] would have led us to a proof of the conjecture.)

We attempt in this paper to solve the conjecture (0.3) mainly in a vein
of commutative algebra. The homological algebra on local rings is expected
to play a central role in this problem, since, as mentioned above, it has a
resemblance to the Zariski-Lipman conjecture. From this viewpoint, we make
a translation of the conditions such as the existence of J?-epimorphism D** -> m,
or the quasi-homogeneity of R, into homological language. In consequence,
we shall get several sufficient conditions for the conjecture (0.3) being valid.

In § 1 we will exhibit, in a quite general form, those of our results which
can be discussed purely homologically and which is independent of the properties
of the module of differentials. More precisely, we show some calculations to
get the homologies of a kind of extended Koszul complex. This will be done
only by routine computation, but we include it here, because it has never
appeared in other articles.

The subsequent section §2 is devoted to rewrite the results of §1 in the
form convenient for later usage.

The main body of the paper is §3, in which we will show that the structure
of the Koszul homology with respect to the sequence V/=(/x,/y,/z) gives an
important information for the assumption or the conclusion of the problem
(0.4). Actually, under the assumption of (0.4), we can find an element
a = (al,a2,a3) in R3 which makes V/a nontrivial socle of H^a) (cf. (3.4)). This
sequence a looks a key to the problem. And we show several properties of
a in §3. In fact, we can show that if a gives an element of m/f^V/), then R is
quasi-homogeneous, as desired (cf. (3.12)). Furthermore, we also give, in
Theorem (3.15), some necessary conditions for the condition (0.3.2) to hold,
by which we can verify the conjecture for a given equation only through
calculating H^Vf).

Making use of these results, in §4 we shall actually verify the conjecture
for the equations in (0.5).

§1. Homologies of Some Complexes of Koszul Type

Throughout this section, let (R,m,k) be a Cohen-Macaulay local ring of
dimension d, where d is assumed to be not less than two. And let F be a free
module over R of rank d+l generated by {ei\i=l,2,"-,d-\-l}, so that
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F=Td
i+iRei^Rd+1. We take two elements a = (al,a2,--,ad+l), ft = (61 ,&2 ,--- ,

bd+]) in F satisfying the properties that:

(1.1.1) Both a = Zf=ia r .R and b = L?=/6I.jR are m-primary ideals, and

(1.1.2) As an element of R, the inner product a • A vanishes, i.e. S?= 10^ = 0.

Then, for each « (0 <«<</+!), we can consider two kinds of maps:

A f l-:/\F— >"/\V

defined by the following rules:

The complex

is the Koszul complex relative to the sequence a, whose «-th homology is
denoted by Hn(a) as usual. Similarly H"(b) is the n-th cohomology of the
Koszul co-complex:

Note that Hn(a) = Q (/z/0,1) and ^"(A) = 0 (n^d,d+l)9 since the ideals a and
b are m-primary and thus have grade cf. See [4; Prop. 1.4.4] for example.

From the definition, the equation A~A^ + A^A~ =0 is easily seen to hold.
And this enables us to define the double complex Ge« as follows

P"^ if /^>^>
pq JO otherwise

with differential maps Afl and
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We now define the complex Me that is our main concern in this section.

Definition (1.2). Let M be the module defined by the following exact
sequence:

O—^^/r— ̂ jif— >o.

The complex MQ is defined as

o -» /\d+lM -^ /\dM ^ ••• -> A1^ ^ A°M -» o.

where da is given by a similar rule as A~:

Remark (1.3). We can easily verify that Ma is well-defined as a complex.
It actually goes through as follows:

First consider the /^-modules Mn («>0) defined by the exact sequences:

Then there are natural isomorphisms of ^-modules MW^A"M for each integer
«, and under these isomorphisms, the maps da are the ones induced by A~,
that is, so as to make the diagram below commutative:

ftp A. yy,-iF

M
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Definition (1.4). In a quite similar way as in (1.3), we can define
^-modules Nn(n>G) by the exact sequences:

0 — Nn-* /\« + 1F^ /\n + 2F.

And the complex TV. is defined as:

0 -*Nd+1 ^Nd
8^ .-. -*N! ^JVo—0,

where the maps efl are the induced ones by A ~ with the commutative diagram:

/\n+1F -^ /\"F.

Remark (1.5). Note that the modules //"(£) are of finite length. Thus if p
is a prime ideal of R with p^m, then //"(£)p = 0, hence (Nn)v and (Mn)p are
free modules over Rp for all n.

Now we remark that each Nn in the complex N. is a reflexive R-module.

In fact, consider the canonical map gn : Nn -> (AQ** for each n, where ( )* denotes
the ,R-dual HomK( ,,R), and we can show from the above that Ker(gM) and
Coker(gn) are of finite length. But since we have assumed that d>2 and since
Nn is a second syzygy module, we have depth(7Vn)>2 and depth((7Vn)**)>2.
It therefore follows that gn is an isomorphism.

Note also that there is a natural map yn : Mn -> Nn for any n, which is in
fact induced by the map A^ : A"F-> A"+1F.

A simple observation leads us to the following:

Lemma (1.6).

(1.6.1) For each n, there is an exact sequence:

0 -— > //"(#) — » Mn -^ Nn — ̂  Hn+l(b) — > 0.

(1.6.2) There are the maps da:H
n + 1(b) -> H*l(b) naturally induced from A~,

they make the following diagram commutative:
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0 — H"(b) •— Mn -^ N,, — * #

0 — -H"-l(b)—^M,,_i7"-^ Nn_l — - H"(b) — - 0.

Similarly the natural maps db:Hn(a)-^Hn+l(a) (0<n<d) are induced from

Proof. The statement (1.6.1) is straightforward from the definition. To
show (1.6.2), note that the complex Gp* is the shifting of the Koszul co-complex
relative to b and that A" :Gpo -> G P _ I O gives a chain map, for every p. Thus
(1.6.2) follows by taking the homology of this chain map and by noting its
naturality. H

Corollary (1.7). There is a natural isomorphism of complexes'.

Proof. Note that the modules H*l(b) are of finite length, hence that
= 0 and Exti(#"(*),/0 = 0. It thus follows from (1.6.1) that y* is an

isomorphism for each n. Therefore, since Nn is a reflexive module by (1.5), we
have an isomorphism Nn = (Mw)** ̂  (A"M)** for each n. Furthermore we can see
from (1.6.2) that under these isomorphisms, efl = <5**. U

The next lemma will be necessary in later sections.

Lemma (1.8). The following is exact:

Proof. It suffices from (1.7) to prove that the following sequence is exact:

But this is clear since there is a commutative diagram with exact columns
and since the second and the third rows of this diagram are exact:
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0 0 0

1 i i

0- Nd -> Nd^ -+ Nd_2

I I I

0-> R = /\d+1F -» f\dF -» A'-'F

i I I

0 -» R = /\d+iF -» AdF.

(Note that the second and the third rows are exact, because a has grade
greater than one.) H

Summing up the above results, we have the following:

Corollary (1.9). There is a commutative diagram:

0 0

Hd+1(b) -^ Hd(b) 0 0

i s i i i
i i .. i ..
0 (AdM)** -^» (Ad-1M)** -^ (Ad"2M)*

i
Hd+1(b) ~^-> fT*(A) 0

i i
0 0

where the columns and the third row are exact.

Remark (1.10). The maps da : H
n+1(b) -> //"(A) (resp. ^b : //» -» //„+ t(a))

are non-trivial only for a single value « = d (resp. n = Q). Therefore, with no
fear of confusion, we adopt the notation Ker(dfl) or Coker(fifa) as for the kernel
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or the cokernel of the map da:H
d+ l(b) -> Hd(b). Likewise Ker(rfft) and Coker(4,)

are the kernel and the cokernel of db:H0(a)-* H^a) respectively.

Now we give our main result concerning the homologies of the complex
Mo. In order to state the theorem we denote the homology of M0 by H0, i.e.

Theorem (1.11).

(1.11.1) [periodicity] There are isomorphisms of R-mo dules:

H^H^-..^H2n+,( = Hodd] for l<2« + l< r f+ l , and

H2^H4^-.-^H2n( = Heven) for \<2n<d+L

(1.11.2) If d is even, then we have:

Heven * Ker(4) ̂  Coker(^), Hodd ^ Coker(^) ̂  Ker(</J.

In contrast, when d is odd, there are isomorphisms:

Hodd ^ Coker(4) ̂  Coker(</J.

(1.11.3) [rigidity] If there is an integer i with Q<i<d+l such that U£ = 0,
then the complex M0 is acyclic.

Proof. To show the theorem we have only to calculate the spectral
sequence associated with the double complex Ge8.

For the first it is carried out with taking the row homologies to get the
El terms:

H0(a)
El

pq = Hp(Goq) =
0 (otherwise),

and note that the maps E^p -> El
pp_l are nothing but db. Thus the E2 terms are:
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H0(a) (q=p = Q)

Coker(J&) (q=p-l>0)
0 (otherwise).

Therefore the homology of the total complex of G8a is given as follows:

(H0(a) (n = 0)

Hn(G..)= \ Coker(d&) (n\positive and odd)
I Ker(4,) (n: positive and even)

On the other hand, we can calculate this homology by starting with
column homologies. We write in this case, 'E1 as the El term, and so on.

/\PM (0 = 0, Q<p<d+l)
H\b) (q=p-d>0)

Hd+1(b) (q=p-d-l>0)
0 (otherwise).

Thus,

Coker(<4) (q=p-d>0)
Ker( da) (q=p — d—l>G)

0 (otherwise).

Therefore we finally obtain another description of the homologies of the total
complex:

Hm(G..) =

Hn

Coker(da) (n>d+l and n — d is even)
Ker(Jfl) (n>d+\ and n — d is odd).

Now the theorem is obtained by comparing the above two descriptions of

Hn(Goe). (For the rigidity, we have only to notice that Heven and Hodd have the
same length by (1.11.2).) •

§2. The Case of Dimension Two

In this section we apply the results of the previous section to the case
d=2. Thus we assume that R is a Cohen-Macaulay local ring of dimension



1020 YUJI YOSHINO AND KlRIKO KATO

two with maximal ideal m. Recalling the notation in §1, we have:

Notation (2.1). Let F be a free module over R of rank 3: F=Rel®Re2

®Re3^R3, and let ® = (al,a2,a3) and b = (b^b2,b3) be two elements of F
satisfying the conditions:

(2.1.1) The ideals a = (a1,a2,a3)R and b = (blyb2,b3)R are both m-primary
Ideals of R9 and

(2.1.2) a*b = aibl+a2b2+a3b3=0.

Remark (2.2). We remark that there is an isomorphism A2F^F by the
maps: e2/\e3^-^el9 e3/\ei\-^e2 and ei/\e2\-+e3. Likewise A3Fis isomorphic to
R via e1/\e2/\e3t-*l.

In the rest of the paper, we identify these modules under the isomorphisms.
Thus notice that the Koszul complex relative to the sequence b is described as:

(2.2.1) 0-^R-^Fb~^F^R — 0.

where b x (resp. ft«) denotes the exterior (resp. inner) product between elements
of F, i.e.

/ b~> o-\ b-\ u\ u\ b')
bxx = l 2 3, 3 l, l 2

\X2 X3 X3 Xi Xi X2

and b*x = blxi+b2x2 + b3x3 for any x = (xl9x29x3)eF. Note that as ^-linear
maps, they are respectively represented by the matrices:

and

Let us make a remark that is an easy exercise of linear algebra.

Remark (2.3). Given three elements jc, y and z in F with the condition
o y = 0, we have y x (x x z) = (z«y)x. In particular, b x (a x z) = (ze b)a for any
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This property yields the following lemma that is essentially contained in
a theorem of Bruns [2]. See also Yoshino [12].

Lemma (2.4). Let x be an element of F. Adding to the assumption (2.1),
we assume that x • b = 0. Then a x x belongs to the submodule Rb of F.

Proof. It follows from (2.3) and the assumption that b x (a x x) — (x • b)a = 0.
Therefore a x x belongs to the kernel of the map b x , which coincides with
Rb. (This last holds because b has grade two, hence the complex (2.2.1) is
exact for the first two terms.) H

Remark (2.5). For an element c to F, we denote

which is sometimes called the relation module of c. By the above lemma, if
a, btF are as in (2.1), then we can define an ^-linear map Ta:Q(^)-> R by
the equation:

a x x = *¥a(x)b for any xeD,(b).

Note from (2.3) that *¥a(bxy) = a»y for any jeF.

The following lemma will be useful for later discussion.

Lemma (2.6). Employing the same notation as in §1, we have an
isomorphism M**^Q($) and a commutative diagram:

M**

«*

In particular, the images of <5** and XF a coincide with each other.

Proof. We recall from (1.7) that

^ N=
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and <!>** is the restriction of A~ on N, which is denoted by sa in §1. However

note that, under the identification as in (2.2), the map A2F-+ A3F is just F-+R,

therefore AT, hence M**, is isomorphic to Q(A), We should remark that an
element x = (xi,x2,x3)eQ.(b) corresponds to x' = xlLe2/\e3-\-x2e3/\el+x3el/\e2

in N. Thus, by definition,

= — a x jt

Since we identify (/\°M)**^N0 = Rb with /?, the desired result follows. •

Remark (2.7). We denote by K(b) the image of the map bx :F-»F.
Note that K(b) is a submodule of £l(b) which is generated by the rows of the
matrix Kb and is often called the module of Koszul relations of b.

It is easy to see that *¥a(K(b)) = a, since, for example, ax(0,63, — b2) = alb
and Va((0,ft ,-6)) = fll.

Lemma (2.8), We have the equality *¥~l(a) =
Proof. Since *Ffl(a) = 0 by definition, it follows from the previous remark

that ¥~ l(a) 3 K(b) + Rn. To show the opposite inclusion, let x e T~ !(a). Since
we can find jeF with xPa(jc) = a»j, we have by definition that axx = (a*y)b
= ax(bxy). Thus x — bxy lies in the kernel of the map ax, and hence in
Ra. Therefore xeK(b) + Ra as desired. •

Next we remark on the image and the cokernel of the map
da:H

3(b)-»H2(b) defined in §1. See also Remark (1.10).

Lemma (2.9). Let a' be the ideal (5**(M**) of R. Then we have an
isomorphism Coker(^/a) = a'/a.

Proof. First of all note that, by definition, H2(b) is equal to the module
Q(b)/K(b) and Im(dJ = Ra + K(b)/K(b). On the other hand, (2.6) states that the
image of the map Wa : Q(A) -> R is just a'. Therefore the lemma follows
immediately from (2.8). H

Now changing the roles of a and A, we may consider the module Q(a)
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and the map *Fb: O(«) -> R.

Lemma (2.10). Let us denote the image of *Ffc by b'. Then we have
Ker(<4)^b'/b c H3(b)^R/b, and therefore lm(da)^R/b'.

Proof. It is obvious that H3(b) ^ R/b and H2(b) = Q(b)/K(b). Furthermore,
under this isomorphism, da: H

3(b) -> H2(b) is the map sending the class of oceR
to the class of aa in fl(b)/K(b). Thus it is enough to show that aa e K(b) if and
only if oce*F&(Q(a)).

If uaeK(b), then we have xa = bxx for some xeF. Then, by (2.3),
(a*x)b = ax(bxx) = axaa = Q, hence a« j t = 0. This implies that jceQ(a) and
that *¥b(x) = a. Hence ae*Fft(Q(«)). The converse is proved similarly. •

Together with Theorem (1.11), these results are illustrated as the following
diagram in which all the slanting sequence are exact:

0 0 0 0

\ /• \ 7

b'/b a'/a

/* \ 7 \

(2.11) — 7/0(fl) -^//!(a) —>//3(A) ̂ H2(b) —H0(a) —

\ /• \ S

R/a R/b'

7 \ 71 \

0 0 0 0

§3. Homogeneity

In the rest of the paper, (R,m,k) always denotes a complete local
hypersurface ring which is a non-regular, normal domain and of dimension
two. Furthermore we assume that k is an algebraically closed field of
characteristic 0.

In other words, R is a residue ring of the formal power series ring
P = k[[X,F,Z]] by an equation/; R = P/fP. Since R is a non-regular ring,
denoting the maximal ideal of P by mp, we must have /e trip. Also we remark
that the Jacobian ideal (/*,/y,/z)^ is an m-primary ideal, since R is normal
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hence It has only an Isolated singularity.
Following the notation in §2, we set F=R3, Vf=(fxJYJz)EF and

J=(fx>fY>fz)R- We shall apply the results in the previous sections by putting
^-V/and b=J.

Recall that the universally finite module of differentials D = Dk(R) Is given
by the exact sequence:

0 — R^F —»D—» 0.

Taking J?-dual, we Immediately obtain Derk(R,R)^D*^Q,(Vf) c p. (See
Remark (2.5) for the definition of O.)

Remark (3.1).

(3.1.1) As an Ideal of R, J cannot be generated by less than three elements.

(3.1.2) Whenever R Is not quasi-homogeneous, the ideal (f,fx*fY>fz)P of P
cannot be generated by less than four elements.

Proof.

(3.1.1) Assume the contrary, and let fz = afx + ̂ fY(<x^GR) for example.
Then the following complex:

f-fx fr 0\is exact. Indeed, since /2 = (/x?/y) = J is m-primary, a result of
\-a -p IJ

Buchsbaum-Eisenbud [3] shows that the sequence is exact. Thus it is observed
that D*^Q(V/) Is isomorphic to R2. Hence the Zariski-Lipman conjecture
which is established for hypersurfaces ([9]) implies that R would be regular.
This is against the assumption.

(3.1.2) Let Jf = (fJxJYJz)P- Then, since J=J'/fP, (3.1.1) shows dimfe(///P
-h mp/) = 3. Hence we have only to show that/<£ mP/5 for then dimfc(//m/) = 4.
But this is almost immediate, since if/emp/' then/e (/x,/y,/z)P and a theorem
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of Saito [8] shows that R would be quasi-homogeneous.

Lemma (3.2). The following two conditions are equivalent for R.

(3.2.1) There is an R-homomorphism e:D**-»jR whose image is just m.

(3.2.2) There is an element a = (al9a2,a3)£Q.(Vf) such that a = (al9a2,a3)R is
m-primary and that *Ffl(Q(V/)) = m.

Moreover if it is the case, we have a = s(D).

Proof. (3.2.1) => (3.2.2): We consider the restriction of e to D through the
natural map D q; Z>**, which we denote by y. Note that y** =e hence the image
of y is an m-primary ideal of R.

As D is the residue module of F by a submodule RVf, we can find an
element a = (al,a2,a3)eD,(Vf) that makes the following digram commutative:

0 "R-^+F >£>—>0

'I
0—>R—>R

In particular we see that ««V/=0 hence 0eQ(V/), and moreover (a^a2,a3)R
= Im(y) is an m-primary ideal. (So the conditions (2.1.1) and (2.1.2) are
satisfied.) It is easily observed that y is equal to 5a in the notation of §1, hence
that e = <$**. Thus Lemma (2.6) yields (3.2.2).

The converse will also follow, but more easily, from (2.6). •

Note that the equality ¥a(Q(V/)) = R never occurs for any choice of
«^eO(V/). In fact, if it does, then from the same argument as in showing (0.2)
we will have Z)**^O(V/)^/?2, and it thus follows from the Zariski-Lipman
conjecture that R would be a regular local ring, contradicting our assumption.

Lemma (3.3). Let a = (a1,a2,a3) be an element in O(V/) and suppose that
a = (a1,a2,a3)R is an \n-primary ideal. Then the following two conditions are
equivalent.

(3.3.1)

(3.3.2) V/ represents a nontrivial socle element in Hl(a) = D,(a)/K(a).
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Proof. Before proceeding to the proof, we note that we may apply the
results in the previous sections to the situation a and b = Vf, hence M=D.

(3.3.1) => (3.3.2): As to the maps da:H
3(Vf) -> H2(Vf) and dvf : H0(a) -» HJa\

we have shown in (1.11) and (2.9) that Ker(rfv/)^Coker(<4)^m/a. Thus, noting
that the map dvf sends the class of 1 in R/a = H0(a) to the class of V/ in
Q,(a)/K(a) = H1(a), we see that V/ generates in H^a) the module lm(dVf)^R/m.
This shows (3.3.2).

(3. 3.2) => (3.3.1): By the condition (3.3.2) we see that the image of the map
dVf:H0(a) -* H^a) is isomorphic to R/m. Therefore it follows from (2.11) that
R/CL = lm(dvf) ^ R/m, where a' = Im((5**) as in (2.9). Thus, comparing the length
of the both sides we have Im(<5**) = m. •

We are summing up the above two lemmas to get the following:

Theorem (3.4). The following three conditions are equivalent for R.

(3.4.1) There is a surjective R-homomorphism D**-*m.

(3.4.2) There exists an element a = (a^a2,a3) of F which satisfies:

(3.4.2a) «eO(V/) and a = ̂ f=latR is an m-primary ideal.

(3.4.2b)

(3.4.3) There is an element a = (al,a2,a3) of F with the condition (3.4.2a) and
it satisfies:

(3.4.3b) V/ represents a nontrivial socle of Hl(a) = £l(a)/K(d).

Definition (3.5). For the brevity, we refer to each condition in Theorem
(3.4) as the condition (A). Moreover if a is taken as (3.4.2) and (3.4.3) are
fullfiled, then we say that the condition (A) is satisfied with a.

Recall from §0 that the conjecture (0.3) asks if R is quasi-homogeneous
under the condition (A).

Proposition (3.6). Suppose R satisfies the condition (A) with a. Then for
any x = (£,rj,£)GF where {£,rj,{,} is a system of generators for m, there exist
geF and HeEndR(F) that make the following diagram commutative:
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(3.6.1) fc| H| V/|

. By the condition (3.4.3b), all of fV/ iyV/ and (V/ belong to the
image of a x : F -»F. Therefore we have Imf*V/) ^ Im(a x). Then the
proposition is almost immediate if we notice that part 0 ->/?-> F -*• F of the
first row is exact and that the second row is a complex of free modules. •

Notation and Remark (3.7). For a given jceF as in (3.6), we denote the
rows of the matrix H by c^ cn, and cc:

H= c,

Also we denote g^g^g^gs).
The commutativity of the diagram (3.6.1) is equivalent to the following

equations:

(3.7.1)

(3.7.2)

Moreover they induce the following equations:

(3.7.3) c^xCrj=g3Vf, c^xc^giVf, c c xc

These data have good information on O(V/) as we show in the next lemma.

Lemma (3.8). Suppose the condition (A) is satisfied with a. Then under
the notation as in (3.7), fi(V/) is generated by the four elements a, c^ cn and c^.

Proof. It follows from (3.7.1) that

thus V/«c^ = 0, for ^ is a non zero divisor on R. Consequently we have
). Likewise we see that {fl,c^,c^cj c O(V/).
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We want to show that these four elements actually generate the module
O(V/). For this let jeO(V/). Then by the definition of ¥c: Q(V/)-»jR, we
have ®xy = *¥a(y)Vf. Here we note from (3.4.2b) that *¥a(y)Em. Thus we
can find a1,a2,a3ejR so that lFa(j) = a1^4-a2f/ + a3C. Then by the equations
(3.7.1) we see that axy = ax(of.1c^ + a2ct1 + ̂ 3c^ hence y — (a1c<?4-a2€?/4-a3cc)
eKer(ax) =Ra. This shows the desired result. •

More precisely than this lemma, we shall show in (3.11) that the four
elements are minimally generating O(V/). To do this, we need some auxiliary
results.

Note that it is known and is easy to see that there is an isomorphism
Hl(x) = (mP:f)/mP and the last module is isomorphic to k. This is indeed
characterizing hypersurfaces. See for instance [4, Proposition 3.3.4].

Lemma (3.9). Suppose the condition (A) is satisfied with a. Then under
the notation in (3.7), g represents a nontrivial element, hence a generator, of
H^x). Thus f is described as f=g1£+g2rj+g3£ in P up to units.

Proof. Suppose that g represents a trivial element in H^x). Then we
have gelm(jirx), and thus by chasing diagram, we can construct a chain
homotopy of the chain map (that is the transpose of (3.6.1)):

0—R-^F^^F-^R—»0

0 — , R F - F R — ^ Q

In particular there is jeF such that tVf:F-+R is a composition of xa:F-»F
with fy:F-*R. But this means that V/is in the image of ax :F-+F and it
contradicts (3.4.3b). Therefore g must be non-trivial as an element in H^x).

It is known that the last statement follows from the first. See [4, Prop.
1.5.4]. •

Remark (3.10). Under the situation as in (3.6), if we are given another
expression f=gf'X=gf

l^+gf
2ri+g'^ in P, we can take g' in place of g with

taking another H'eEnd^F) instead of H.

Proof. The assumption g'»x=g»x in P is equivalent to saying that
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g— g=x xy in P3 for some ye P3. (Note that {£,??,£} is a regular sequence on
P.) Considering the matrix H' = H + lya on R, we have

and H'Kfl=HKfl. Hence we may replace g with g1. •

As for the number of generators of O(V/) which is four at most by Lemma
(3.8), we show it is precisely four.

Proposition (3.11). Suppose the condition (A) is satisfied with a. Then
{ajC^c^cJ minimally generates Q(V/).

Proof. First we show that a is part of minimal generating system of Q(V/).
Suppose the contrary, and assume that

(3.11.1) « = 0i

for some ^1,jS2,j53ejR. Then applying x c% on both sides, we get from (3.7.1)

and (3.7.3) that £= -g3/?2+£2/?3- Since /emp and since f=g^+g2^l+g3^ up
to units, for one of the choices we may take g as gemF. Thus by Remark
(3.10), replacing g if necessary, we may assume that gt e m (1 < / < 3). Therefore
one of j82 and /?3 has to be a unit. Actually, if not then <!;= — g3/?2+£2/?3em2

?

contradicting that £, *?, £ minimally generate m. Without loss of generality we
assume jS3 is a unit. Then operating ax on the both sides of (3.11.1), we get
0 = j81^4-j62^ + jS3£, and thus Ce(^,^)^, a contradiction.

Now we prove the proposition. For this, we consider the map

¥fl® Rk : 0(V/)/mQ(V/) -> m/m2,

which is surjective by the condition (A). Since *Ffl(0) = 0 by definition and since
dimfc(m/m2) = 3, we see from the above claim that dimfc(Q(V/)/mQ(V/)) > 4. This
shows that O(V/) never be generated by less than four elements. Thus the
proposition follows from (3.8). •

Making thorough use of the properties of differential modules, we may
give a sufficient condition for R to be quasi-homogeneous.

Theorem (3.12). Suppose the condition (A) is satisfied with a. And
suppose that a represents an element ofmH^Vf). Then R is quasi-homogeneous.
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Proof. Recall that Hl(Vf) = Q,(Vf)/K(Vf). Therefore the assumption says
that a e mO(V/) + K(Vf). Thus we may write a = a' + V/x y for some of e mO(V/)
and yeF. Here we also may assume that jefc3, because F=mF+k3 and
V/x mF c mQ(V/).

Now we show that one can take a' = Q. In fact, it is easily observed that
*Ffl = *Fa, + *Fv/Xj?, and that *Fa,(Q(V/))em2 (by the remark after Lemma (3.2)).
So the condition (3.4.2b) implies

m = T ( Q V cz *F x (V) + m2.

Consequently, *FV/ x ,y(Q( V/)) = m by Nakayama's lemma. Thus the condition
(3.4.2b) is satisfied with a = V/xj, and in this case a represents a trivial element
of Htff).

To show that the three components of V/x y generate an m-primary ideal,
we denote y = (k^k2,k^ with A t-e&. We remark that j^O, since otherwise
¥V/X>,(Q(V/)) = 0. Now take a 3x3 matrix

whose entries are in k and such that A is symmetric and invertible.
Change a system of generators for m = (X,Y,Z)R = (U,V,W)R so as

(V,V,W) = (X,Y9Z)\ in F. And note that (fxJyJzJ^fvJvJw)1^ and for
elements (x,y,z), (u,v,w)eF with the relation (u,v9w) = (x9y9z)\, we have

=ufu + vfv-}-wfw. Therefore,

\ xfx +yfY + zfz = 0}

After all, changing variables from X, Y,Z to [/, F, H7, we may take
(05/z?—/y) — V/x (1,0,0) as Vfxy. And by the above equality, we have
m = (fY,fz):fx. From this we can easily see that {/y,/z} generate an m-primary
ideal of R. Indeed, if (fy,fz)R were contained in a prime ideal p of height one,
then that fxm ^ (fy>fz)R — P would imply that fx e p, and this contradicts the
fact that {fx,fy>fz} generate an m-primary ideal of R.

Therefore we conclude that the condition (A) is satisfied with Vfxy, thus
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we may assume that a = Vfxy with j = (l,0,0)efc3.
For simplification, we introduce the notation kx, &y, kz for three generators

of K(Vf\ that is, *x = V/x(l,0,0) = (0,/z,-/y), *y = V/x(0,l,OM-/z,0,A) and
&z = V/x(0,0,lH(/y,-/x,0) as elements in F.

Now proceed with our argument in setting

(3.12.1) <* = kx, hence a = (fYJz)R9

and in supposing that R is not quasi-homogeneous. We aim at deriving a
contradiction from this situation.

First we write part of the diagram in (1.9) as follows:

D — > a — »0

I 1

(A2/))**— D** — >m — »0

I 1

i i

0 0

where the middle row is exact. (To get this daigram from (1.9) note that
Im(<5a) = a and Im(<5**) = m from (3.4) and identify //<(V/) with #3~'(V/) for
0<z<3.) It follows from this that there is an exact sequence:

> m / a — 0.

Note however that H0(Vf) = R/J and that the map da sends the generator of

^o(Y/l to tne class of a i*1 Hfflf), tnus ^ follows that da = Q, since we have
assumed a = kx that is trivial as an elements of H^Vf). As a consequence
we have

(3.12.2) /^(V/^m/a.

On the other hand, since R is assumed to be non-quasi-homogeneous, it
is known from (3.1.2) that the ideal (/,/x5/y5/z)^ °f P i§ minimally generated
by four elements. Thus the Artinian ring R/J=P/(f,fx,fY>fz)P is an almost
complete intersection. It then follows that the canonical module KRfJ of R/J
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is obtained as the Koszul homology H^Vf).
Combining this with (3.12.2), we consequently have

(3.12.3) KR/J^m/a.

Secondly we claim that

(3.12.4) Soc(R/a) = J/a and l(J/a)=l,

where Soc denotes the socle of a module and / denotes the length. To prove
this, let us notice that the canonical module is a faithful module, hence using
(3.12.3) we see J=annR(KR/J) = annR(m/a) = (a:Rm). The first equality of (3.12.4)
follows from this. On the other hand, it is known that R/J and KR/J have the
same length, and thus l(R/J) = /(m/a). Since there are inclusions a c= / <= m a R,
it follows that /(//a)=l.

Note that (3.12.4) means exactly that R/a is a Gorenstein ring whose
one-dimensional socle is //a. Since we have assumed that d = (fY,fz)R9 we must
have

(3.12.5) //a is generated by the class of fx.

Therefore fx is to generate the socle of R/a = R/(fYJz)R = P/(fJYJz)P. On the
other hand, since {/,/y,/z} is a regular sequence in P, it is known by [10,
Korollar 4.7] that the socle of P/(f,fY,fz)P is gotten by their Jacobian:

fx fr fz

/YX /YY /YZ

fzX fzY fzzl

=fx
JYY f\YZ

Since fx itself is the socle, the determinant

JZY JZZ

/YY /YZ

mod a.

must be a unit in P. But
fzY fzz

this determinant is the Jacobian of the system of parameters {X,fY,fz} relative
to the variables {X, Y,Z}9 thus it is concluded that mP = (XJYJz)P. As a result,
P/(fY,fz)P = k[[XJ] is a principal ideal domain. Therefore any ideal of P
containing (fY,fz)P is generated by at most three elements, in particular
(f>fx*fr>fz)P is- This contradicts the Remark (3.1.2), hence the proof is
completed. •

For a finitely generated jR-module M, we denote by p(M) the minimal
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number of generators for M. The Proposition (3.8) shows that ^(H^Vf)) is at
most four.

Proposition (3.13). Suppose the condition (A) is satisfied with a. Then
the following equation holds:

where the integer s(a) is defined as:

0 (if a represents an element in

1 (otherwise).

Proof. Let / be the ideal *¥Vf(Q,(a)) c R. Applying (2.11) to b = Vf, we
obtain the exact sequence as below:

(3.13.1) 0 ->/?// -> H^Vf) -» m/a -> 0.

(Note that b' = /, a' = m and that there is a natural isomorphism H2(Vf) = H^Vf).)
Notice that the map R/I-^H^Vf) sends the class of 1 to the class of a

in Hfflf). Therefore if the class of a lies in mH^Vf), then (3.13.1) shows
that fj(Hl(Vf)) = i4m/a)9 and otherwise

As a corollary of this, the following is of particular importance:

Corollary (3.14). Suppose the condition (A) is satisfied. Then the
following two conditions are equivalent:

(3.14.1) R is quasi-homogeneous.

(3.14.2)

Proof. First we note that R is quasi-homogeneous if and only if m = a
for some choice of a with which the condition (A) is satisfied.

Actually, if R is quasi-homogeneous, then we have an Euler derivation A
on R. Considering a = (A(X),A(Y),A(Z))EF, we see that «eQ(V/), furthermore
by the property of Euler derivation, a( = (A(X),A(Y),&(Z))R) = m. Conversely if
m = a for some a e O(V/), then we see that da : D -> R has the image m. But
this implies that R is quasi-homogeneous by [11; Satz 5.5].

Now we prove the corollary. If R is quasi-homogeneous, then by the
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above we have ]u(H1(Vf)) = s(a)<\ for some a. But we know that
hence the inequality must be an equality. On the contrary, suppose that R is
not quasi-homogeneous. Then by Theorem (3.12) we see that a would represent
one of minimal generators of H^a), hence s(a) = 1. Since /(m/ct) > 0 as remarked
above, it follows from (3.13) that

The following theorem will be useful in actual computation in the next
section.

Theorem (3.15). Suppose the following two conditions for R hold.

(3.15.1) /errtjL (So the multiplicity of R is not less than three.)

(3.15.2) M#i(V/))<3.

Then the following condition also holds if the condition (A) is satisfied.

(3.15.3) (JP:Pf)f$m2
PJPin P. (Recall that JP = (fxJYJz) P.)

Proof. We assume that the condition (3.15.3) does not hold, i.e.

in P,

and we shall prove the theorem by showing the contradiction from the condition
(A).

Before proving the theorem, we first claim that under the conditions
(3.15.1) and -,(3.15.3), we have a I-6m2( l<z<3) for any choice of a = (a1,a2,a3)
with which the condition (A) holds.

To show this we note that there is an exact sequence:

which is induced from the exact sequence of Koszul complexes: 0 -* K*(Vf\ P)

£>K9(VfiP)-*KQ(VfiR)-*Q. Thus cp is defined as follows: For any x

= (x1,X2,x3)eQ(V/), taking a lifting ^ of each x{ to P, we have
£i/Ar + £2/y + £3/z = ̂ /f°r some txeP, since *«V/=0 in R. Then cp sends the
class of x in H^Vf) to tx (mod JP) in P/JP, which is easily seen to be independent
of the choice of liftings. Considering the image of the class of a, we have
ta€(Jp\Pf) hence tafempJP by -,(3.15.3). Therefore we can find a[
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( l</<3) so that taf=ocr
lfx + a'2fY-i-oc'3fz. Let a'^^ (mod fP)eR and let

af = (a'1,a'2,a'3)EF. Note that aJ-Em2 (l</<3). Since the classes of a and a
go to the same element ta under the map cp, and since cp is injective, we can
find yeF such that a = a' + Vfxy. Note from (3.15.1) that each component of
V/is in m2. Therefore the above equality implies 0£em2 (l</<3), establishing
the above claim.

Now return to the proof of the theorem. First suppose that R is
quasi-homogeneous. Then, since /e/P, we have JP:Pf=P, thus it follows from
-.(3.15.3) that /e nip /p, which is a contradiction, because fe mp JP — m2/P by
using the Euler derivation. Whence we may assume that R is non -quasi-
homogeneous.

Recall from (3.11) that O(V/) is generated exactly by four elements, while

the assumption (3.15.2) obliges that Q,(Vf)/K(Vf) is generated by at most three
elements. Hence there is an element k e K(Vf) such that k $ mQ(V/). Since R
is non-quasi-homogeneous, note from (3.12) that a must be a minimal generator
of //\(V/), therefore we can take {a,k,x,y} (for some x9yeF) as a minimal
system of generators of O(V/). As xFa : Q(V/) -> m is a surjective map from the
condition (A), and as v¥a(a) = Q, we must have that {¥fl(ft), ¥„(*),¥,();)} is a
minimal system of generators of m, in particular *¥a(k)$m2.

On the other hand, we may write k = clkx + c2kY + c3kz for some c^R
(l</<3). And noticing that axkx = alVfso on, we have *¥a(k) = clai + c2a2

+ c303, which is in m2 by the above claim. Thus we have a contradiction.

§4. Examples

As we mentioned in §0, we shall now look into some special cases where
the conjecture (0.3) is true. Following the notation in §3, we set
feP = k\_[X, r,Z]] and R = P/fP. Moreover we assume that k is an
algebraically closed field of characteristic 0.

Example (4.1). (See also [6].) Let f be of the form g + Xn where

geA;[[y,Z]] and n>2, and suppose that R = P/fP is a normal domain. In this
case, if R satisfies the condition (A), then R is quasi-homogeneous.

Proof. For the convenience, denote 2 = &[[7,Z]] and S=Q/gQ^
Pi (X,g)P. We also write J' = (fJx,fY,fz)P = (Xn-\gygY,gz)Py Jg = (gY,gz)S and

We prove the above only in the case/emp1 (i.e. n>3 and ge(X, F)30,
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and leave the other (easier) cases to the reader.
Notice that R is quasi-homogeneous if and only if S is. Thus, in the rest,

we assume that S is not quasi-homogeneous (i.e. gi(gY,gz)Q), an^ we would
like to derive a contradiction.

First we note that R/J=P/Jr^(S/Jg)lX']/(Xn~i), hence that R/J is a flat

Secondly there is an isomorphism of Koszul homologies:

(4.1-1)

In fact, we have exact sequences which are the same as the sequence in the
proof of (3.15):

0— Htff; R)—»P/(Xn-\gY,gz)P-^P/(Xn-\gY,gz)P,

Noting here that P/(Xn~ \gY,gz)P^(Q/(gY,gz)Q)iX-]/(X"- '), we obtain Htff\ R)
^H^VgiS^X^X"-1) and this shows (4.1.1).

Thirdly we show that Hl(Vf) = H1(Vf',R) is generated by two elements.
For, since (g,gy,gz)2 is an ideal of Q of height two, we have its free resolution
as follows:

(4.1-2)\ / I / i ,
\« *1 «2

Note that all the entries of the matrices in the sequence are non-units, since
we have assumed that g<£(gY,gz)Q hence that (g,gY,gz)Q is minimally generated
by those three elements. See (3.1.2). It is easy to see from this sequence that
H^Vg',8) is generated by the classes of (al,a2) and (a\9a'2)^S2. And carefully
looking at the isomorphism (4.1.1), one can show that H^Vf) is generated by
the classes of ( — ttX,al,a2) and ( — (x.'X,ar

l9a'2).
Finally we shall show a contradiction. Since the condition (A) is assumed

to hold, we can take aeF with the conditions in (3.4). From Theorem (3.12)
we show that a represents one of minimal generators of H^Vf). Thus by the
above, we can take ( — aX,al,a2) + k as a, where aL9al9a2e(Y,Z)Q and keK(Vf).
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The equality in (3.13) together with the above claim implies that
tt(m/a) = Li(Hl(Vf ))-!<! for this a. Further this shows that

(4. 1.3) dimfc(« + m|/m|) > 2.

Note that — ocX and any components of k are in m2, since we have assumed
that/entjL Thus (4.1.3) shows that <z l 5 a2 are linearly independent as elements
of ntp/ntp. But at e Q, and we can claim from this that {a1 ,a2} generates ( Y,Z)Q.

Therefore from (4.1.2), we see that a^ -- \-a2 — gives a derivation on S=Q/gQ
dY dZ

and its image is just the maximal ideal. Hence it follows from a theorem of
Scheja and Wiebe [11] that S is quasi-homogeneous. That is against the first
assumption. •

Example (4.2). Suppose f is of the form Xp+Yq + Zr + XYZ with
p>q>r>3. Then if the condition (A) is satisfied, R is quasi-homogeneous.

Proof. It is known that R is always a normal domain. While we can
see from an easy computation that R is quasi-homogeneous (i.e. /e JP

= (fx>fY>fz)P) if and only if - + - + ->!. Furthermore we can verify that
p q r

rrip/c jp for any choice of/?, q and r. Therefore the Koszul homology //i(V/)
is given as follows:

(4.2.1)
if

Note from the assumption that /^m 2 . Therefore whenever /£/P, we have
that /x(//1(V/)) = 3. Applying Theorem (3.15), we have only to show that
(Jp'-pf)f— trtp/p when R is not quasi-homogeneous. But in this case, we have
Jp:pf=mP as remarked above. Thus it is enough to show that all of Xf, Yf
and Zf belong to ntp/P. But this last is easily checked by some
computation. •

Example (4.3). Let f be of the form h + H(h) where h = Xp+Yq + Zr with
p>q>r>3 and H(h) denotes the Hessian of h. Then if the condition (A) is
satisfied, R is quasi-homogeneous.
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Proof. As in the previous example, it is known and easy to see that R

is always a normal domain and that R is quasi-homogeneous if and only if

__l—|—>i. Furthermore we can also prove that /P:P/2 mp and the same
p q r

equality as (4.2.1) holds. Therefore if R is not quasi-homogeneous,
then JP:Pf=mP and in,(Hl(Vf)) = 3. Thus to apply Theorem (3.15), it suffices
to show that /mp c mp/p. But an easy computation shows that each of Xf,
Yf and Zf is indeed in m|/P. •
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