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On the Admissibility of Singular
Perturbations in Cauchy Problems II

By

Ryuichi AsHNO*

Abstract

We shall give a new proof of the admissibility of singular perturbations, which was introduced
by the author [2], without the assumption on the characteristic roots assumed in [2] using the
method introduced by the author in [5, Appendix].

§1. Introduction

Let us consider the following linear partial differential operator of
kowalewskian type with constant coefficients containing small positive parameter
¢ satisfying 0<e<1:

LD)=¢-P,(D)+ P,(D).

Denote by m the order of P,(D) with respect to D, and by m' that of P,(D). Put
m’=m—m' and assume that m>m'>0. Then the order of L, is less than
that of L, for e#£0. Such an operator as L, is called a singularly perturbed
operator.

We shall study the following so-called singularly perturbed unilateral Cauchy
problems for L(D) in R", ={xeR";x,>0}:

(cP) { L(Du(x)=0, inR"%;

limy, o DI (S, x)=@x),  j=1,-,m,

and the following so-called reduced unilateral Cauchy problem for (CP):
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(RCP) { Lo(Du(x)=0, inR";

lims, o DI~ 'u(d, x) =@ x),  j=1,---,m.

Put @' =(@1,, @m) ¢"=(Pm+1,", @), and ¢ =(¢’,¢"). Denote by A’ the
space of Cauchy data ¢’, by A” the space of Cauchy data ¢”, and by
A=A"x A" the space of Cauchy data ¢, respectively. Hereafter, we assume
that (CP) is uniquely solvable in C(R"%) for every ¢ € 4 and (RCP) is uniquely
solvable in C(R",) for every ¢’ A’. For example, if 4=0(C"" )", where we
denote by O(C"™!) the set of entire functions defined in C"~!, then the
Cauchy-Kowalewski theorem implies that the Cauchy problems (CP) are
globally uniquely solvable. If A=F !(CQ(R"'))", where F~! denotes the
inverse Fourier transformation, then the Cauchy problems (CP) can be solved
uniquely by the Fourier transformation.

Definition 1.1. The unilateral Cauchy problems (CP) with the Cauchy
data space A4 are said to be admissible with respect to the reduced unilateral
Cauchy problem (RCP) with the Cauchy data space 4’ if every Cauchy data
@ in A, the solutions u,(x; @) of (CP) converge to the solution uy(x; ¢") of (RCP)
in C(R%).

Let the symbols of P,(D) and P,(D) be represented as

PiO= L iV

PAO= 3 P2 SOV

where p, , and p, , are non-zero constants. Put p=p, o/p; . The following
theorem has already been stated in [2] under the assumption that for the
characteristic roots of P,(£)=0 with respect to &,, which we denote ¢ (&),
j=1,.--,m’, there exists a point &, in R"~! such that

ol # o),  1<j<k<m.

But using a new expansion formula of a certain meromorphic function defined
as the quotient of two determinants, which will be stated in Proposition, we
can remove such an assumption as the above. This formula is proved by
calculating the Laplace expansions of these determinants, which was essentially
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stated in [5, Appendix]. Our aim in this paper is to give a new proof of
Theorem (based on this expansion formula).

For a complex number p, we denote by Jp the imaginary part of p and
by Rp the real part of p.

Theorem. The unilateral Cauchy problems (CP) with A=F Y(CP(R"~ )"
are asmissible with respect to (RCP) if and only if either the following conditions
(C1) or (C2) is satisfied.

cy m"=2 and p<0;

(C2) m"=1 and Sp<0.

§2. Preliminaries

We shall state here notation and lemmas without proofs. The proofs are
essentially the same as [5, Appendix]. We start with introducing general
notations.

Let n be an integer. We shall substitute » for m, m’, m”, and so on. Let
z=(zq,*+,2,) and w=(wy,---,w,) be complex variables. For a non-negative
integer /, denote a(l)(z)=((z;)';j = 1,---,n) and for non-negative integers [, -, ,
satisfying 0</, <--- <[, denote

A(lla H) ln)(z) =det(a(l,)(z), ll 1a ) f’l).

Let i=./—1 and x, be a real parameter. Denote e(w,x;)=(e™™';j— 1,---,n)
and for non-negative integers /;,---,/,_, satisfying 0</, <---</,_,, denote

B(lh ) ln - 1)(21 W’xl) = dett(te(waxl)’ ta(ll)(z)’ ) ta(ln - 1)(2))

Expand the determinant B(/,---,,_ )(z, w, x,) with respect to the first row. Then
B(lys -5 by )awx)= ) (= 1) AW, -, Ly )2()e™ ™,
j=1

where z(j)=(zy,-",zj-1,Zj+1, "> Z,)- Denote
C(lb ) l")(Z) =A(11a BRE) ln)(z)/A(Oa s, R— 1)(2)
and

D(lla Tty ln— 1)(stsx1)= B(lls T ln— 1)(Z,W,X1)/A(0, R — 1)(2)
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Then C(/,,---,1,)(z) is a homogeneous symmetric polynomial in Z[z] of order
Li+-+1l,—@m—1n/2 and D(,,---,1,_ Nz, w, x,) is meromorphic in z and entire
in w. Put

E@@={-10""7 [l @G-z)"" j=1-n

k#j,1<k<n

Then Efz), j=1,---,n are meromorphic in C" and holomorphic when z;#z;,
1<i<j<n. As a meromorphic function in z, we have

(21) D(lln"'sln—l)(zs W,xl)
= 3 (=) I oy )™ Ef),

Let m, m', and m"” be positive integers such that m=m'+m". Denote
2=z Zw)s Z'=Zms1>" s Zm) and z=(z',z"). Denote w=(w',w") in the
same manner. Let /;,---,/,,_; be non-negative integers satisfying 0</, <---<
l._y. Let S, be the set of all bijections p from {1,---,m—1} onto {/{,--, 1,1}

satisfying
p(1) <---<p(m); p(m’ +1) <--- <p(m—1)

and S, be the set of all bijections p from {1, ---,m—1} onto {/;, ---, 1, _, } satisfying
p(1) <. <p(m' —1); p(m’) <--- <p(m—1).

Each bijection in S, uniquely corresponds to a way of selecting m’ objects
from m—1 objects and each bijection in S, uniquely corresponds to a way
of selecting m’ — 1 objects from m—1 objects, respectively. Define the bijection
n from {,,---,1,_} onto {2,:--,m} as n(l)=j+1, j=1,---,m—1. Denote

m’ m -1

Ip)= Y, nlp())+m'(m' +1)/2; J(p)=1+ _1ﬂ(p(l))+M'(M'+1)/2-

j=1 j

For z;#z, 1<i<m', m'+1<j<m, denote

E)= I -2
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Dl(lh Tt lm— 1)(2’ W’xl)

= 2 (=DC(p(1), -+, p(m))2')

pES1
x D(p(m’ +1), -+, pm —1))(z", w", x,) E(2);

D2(115 "'alm— 1)(29 W,Xl)

= 2 (=1)"PD(p(1), -+, pm’ — D))z, W', x,)

peS2

x Cp(m'), -+, plm—1))(z") E(2).

Then we have the following new expansion formula. As the proof is
similar as that of [5, Lemma A.1], we omit it.

Proposition. For z;#z;, 1<i<m', m'+1<j<m,
Dy, Ly Nz, W, x4)

=D1(ll’ Tty Im— l)(zs wax1)+D2(lls o "lm— 1)(2, w, xl)-

Hereafter in this section, we assume that {/,,---,[,,_,}={0,---,k—1,k+1,---,
m—1}. For k=m,---,m—1, for j=1,---,m", and for peS,, denote

2"()=Cm +1> U Zmi =1 Zm 4+ 1 S Zm)

Ej(zll)={(_1)m“+j H (Zm’+j—zm'+k)}_l;

k#j{<k<m"”

Jri o@D =(=DOTTHC(p(L), -+, p(m))(2)

x Up(m’ +1), -+, plm — 1)z () Ef2")E(2);

Fk,j(z) = ka,j,p(z)-

pES]

These F,; are rational functions in z and holomorphic if z;#z; are satisfied
for 1<i<m’ and m'+1<j<m and for m' +1<i<j<m.
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Lemma 2.1. Assume that z;#z; are satisfied for 1 <i<m’ and m'+1<j<m
and for m'+1<i<j<m. Then, for k=m',---,m—1,

Dy, k—1Lk+1,---,m—1)z,w,x,)= ), F, {z)e™m 1,

ji=1
Proof. By (2.1), we have

22) D(p(m’ + 1), -+, plm— D))(z", w", X,)
= i (=D Cp(m' +1), -+, plm — )" (™™ > Ef2").

On the other hand, by the definition, we have

(23) DI(O,'-~,k—1,k+1,-~,m-1)(Z,w,x1)

=Y Cp(1), -, pm))2)

peSy
X D(p(m' +1), -+, plm—1))z", w", x,) E(2).

Substitute (2.2) for (2.3), and we come to the conclusion. [J

For a positive parameter 1, put t;=nz;, j=1,---,m. Denote t'=nz', t"=nz",
and t=#z.

Assumption 2.1. There exists positive numbers M, M’, ¢, and 5, with
o<1 such that for every 5 satisfying 0<#<n,, the following estimates are
satisfied:

m+1<i<j<m I<ism'm+1<j<m

Denote

M’=M’(w,x,)= Z e—SW,n.

j=m'+1

Then we have a similar results as [5, Lemma A.3] as follows. The proof is
omitted.
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Lemma 2.2. Let Assumption 2.1 be satisfied. Assume that z;#z; for
1<i<m’ and m'+1<j<m and for m+1<i<j<m. Then there exist positive
numbers Cy and C, such that for k=0, ---,m'— 1 the following three estimates hold:

(24) IDI(Os ,k—l,k+ 1, e M— 1)(23 waxl)l SclM’r’a
2.5) D50, k—1Lk+1,-,m—1)z,w,x,)

_D(Or "',k—' 1;k+ 1, "':m’— 1)(Z’a w,:xl)(tm'-*' ltm)mE(t)l

< Cymax|D(p(1), -+, pm’ — D)z, W', x1)| 7,

peS2
(2.6) ID@O, - k—1,k+1,---,m—1)z,w,x,)

_D(O: ,k— 19k+ l: "'9m,'—'1)(zl7wlaxl)(zm‘+1.'“.zm)m’E(t)|

< (CIM, + szaXID(P(l)a ) P(m' - 1))(2’7 W/, x1)|)’7

PES2
For k=m',---,m—1, the following three estimates hold:
27 1Dy, - k=1 k+1, -, m— 1)z, w, x))| SC, My ~™* 1,

(2'8) 'Dz(o,"‘,k'—l,k‘l“l,"‘,}’l’l*‘l)(Z,W,Xl)l

< C,max|D(p(1), -+, p(m' — D))z, W', x|t =™+,

peS2

2.9) [DQO, - k—1,k+1,---,m—1)z,w, x,)|

<(C, M+ C,max|D(p(1), ---, p(m’ — D)2/, W, x ))y* ™ * 1.

peS2
The bijection p satisfying
{pm' +1),--, pm—D}={m', - k—1L,k+1,--,m—1}
is uniquely determined. Call this p as p,,, Denote

pm + 1)+ -+ pm—1)—(m"—1)m"/2, forpelsS,

L"(P)={ , , ,
pm)+---+pm—1)—(m"—1)m"/2, forpesS,.
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Lemma 2.3. Let Assumption 2.1 be satisfied. Assume that z;#z; for
I1<i<m' and m'+1<j<m and for m' +1<i<j<m. Then there exist a positive
number C, such that for k=m',---,m—1 and j=1,---,m",

(2.10) |Fe (2 < Cin*;
2.11) 1Fi f2)~ S jupman@ < Cin* 1.

Proof. Note that Clp(m’ +1),---, p(m—1))(z"(j)) is a homogeneous poly-
nomial of order L"(p)+m”"—1 for peS,. This implies that in the expression
of F, (z) the largest order of C(p(m’'+1),---, p(m—1))z"(j)) is m'm"+m"—1—k
and it is attained only by p=p,..x. On the other hand, forj=1,---,m" we have

E(z")Ez)=n"""1""""E(nz")E(nz).

Hence a similar method as in the proof of (2.7) can be applied to this
lemma. For details we refer to [5, Lemma A.3]. [

§3. Proof of Theorem

To prove Theorem we need several steps. Denote the roots of L(&)=0
with respect to &; by 146, &), j=1,---,m and those of L(&)=P,(¢)=0 with
respect to &; by g(&), j=1,---,m, respectively. It is well known that (e, ),
j=1,---,m are continuous in (¢, ¢’) for e £0 and ¢ (¢'), j=1, ---,m" are continuous
in &. Put Be={|{'|<R}, p=p;.0/p1,0 0=2rg(—p), @=e""", {=&>™/"", and
=0T j=m 4, m

First let us begin with the following lemma, which can be obtained through
a similar argument as in [3, Lemma 2.2].

Lemma 3.1. For every positive number R, there exist a positive number
eg With eg<1 and continuous functions t;,(e,&), j=1,---,m on [0,ex] x By
satisfying

lim sup Irj,l(s’ il)l =0’ ]= 19 M
e} 0 &eBr

such that for m'+1<i<j<m and for 1 <i<m', m'+1<j<m

Ti(e’ é’) # Tj(es él)> on (07 SR] x BR5
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and
146, &)=08)+14(, ), for j=1,-,m';
116, &) = O || £ () 461 T (5, E),
for j=m'+1,---,m. Here
10(8)=1,0P2,1() —P1.1(E)P2,0)/(M"P1,0P2,0);

which is a polynomial of & whose order is at most one.

Remark. Put n=¢'™’, z=1, and t=#z, then Lemma 3.1 implies
Assumption 2.1.

Put b(t)=(v/";jl1,---,m) and ¢;=(0;,; k|1, ---,m), where ¢, , is Kronecker’s
delta. Denote by Yie,x,£), j=1,---,m the fundamental solutions of the
following ordinary differential equation with parameter (g, &'):

Le(Dhél)Y(a:xl’él):O;

(ODE) { _
D,i IY(gaoaf’)=5j,ka jskzl,"'am~

We shall use the following abbreviation: t(e,{)=1;j=1,---,mand t1=(1y, -+, T,,).
Then Cramer’s formula implies that if 7;#7;, 1<i<j<m then

det(b(t,), -+, Bt 1), s D(Th 1 1), -+, B(1,))
det(b('i]), "'5b(Tm))

m
Y]’(E) xlaél) = Z eitk)q
k=1

_det'(‘a(0), .-+, "a(j — 2),'e(x, x),'a(j), - -+, "a(m — 1))
B AQ,---,m—1)

=(= 1D, -+, j =2, - m— 1)1, Txy), j=1, e m.

But the last representations remain valid without any restriction on 1,
j=1,---,m. For, since B(l,,---,1,_)z,2,x,) is an entire function of z and
vanishes on the zeros of irreducible polynomials z;—z;, (1<i<j<n),
B(,, -, 1,_ )z zx,) is divided by A(0,---,n—1)(z) in the ring of entire functions
and consequently D(/y,---,1,_,)z,z,x,) is also an entire function.

Using Lemma 2.2 and Lemma 3.1, we can prove the following two lemmas

in a similar manner as in the proof of [5, Lemma 3 and Lemma 4].
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Lemma 3.2. Let e be the same as in Lemma 3.1.

(1) For every positive number R, there exists a positive number Cg such that

(.1) sup [ Yi(e, xy, &) < Cr,

0<e<er,0<x1<T,|¢|<R

for j=1,---,m'.
(2) Let either (C1) or (C2) be satisfied. Then, for every positive number
R, there exists a positive number Cg such that

(3.2) sup e~ UmmIm | ¥ (e, x4, &) < Ch,

0<e<er,0<x;<T.¢|<R

for j=m'+1,--,m.

Denote by y(x,,£), j=1,---,m’ the fundamental solutions of the following
ordinary differential equation with parameter &':

(RODE) {Lo(Dl, ey, €)=0;

Di™'9(0,8)=6;,, jk=1,---,m.

As we have already shown in the case of Y(e, x,¢&),

(.3)  yix, E)=(=1Y"'DO,--,j=2,j,-,m—1)o,0,x,), j=1,---,m,
where o;=0{(¢), j=1,---,m" are the roots appearing in Lemma 3.1 and

02(015 "'aom')'

Lemma 3.3.

(1) Let eg be the same as in Lemma 3.1. Then
(34) Yj(s,xl,f')—)y](xl,f'), J:. l,-..’m’

uniformly on [0, T] x By when ¢|0.
(2) Let ex be the same as in Lemma 3.1 and either (C1) or (C2) be
satisfied. Then

(35) Yj('g’xl’él)_’oa j=m’+1,--~,m

uniformly on [0, T]x By when ¢|0.
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Denote
M, =max{3(O7);j=m'+1,---,m}; M_=min{I(O1);j=m"+1,---,m}.

Both the maximum and the minimum are attained by one j or two j’s. Denote
R_={xeR;x<0}. Then the following four cases can be considered:
(1) Case 1: If m—m'>=3 or if m—m’'=2 and p/|p|= —0O*e C\(R_uU{0}),
then M, >0 and M_<O0.
(2) Case 22 If m—m'=2 and p<0 or if m—m'=1 and peR, then
M,=M_=0.
(3) Case 3: If m—m'=1 and Jp=3(—0O)>0, then M, =M_<0.
4) Case & If m—m'=1 and Ip=3J(—0O)<0, then M, =M_>0.
The condition that (C1) or (C2) is satisfied corresponds to Case 2 or Case
4. Note that in either case J(@1})>0 holds for j=m'+1,---,m.

Lemma 3.4. Let R and ¢ be the same as in Lemma 3.1. Then
(1) (The case that M _ is attained by only one element of {3(©1));j=m"+1,
"')m}! say, S((‘31'-;))
(3.6) limsupe™ ™~ V" | D (0, -+, m—2)(z, T, x,)eS@DPI " 1
g0l0
—F,_, ,_m,(r)ei“+5(@‘D(|"V"”m”’“|=0,
where the supremum is taken for 0<e<gy, 0<x,<T, |&|<R for
arbitrary positive numbers ¢, and 6 with ey<eg and §<T.
(2) (The case that M_ is attained by two elements of {3(O7));

j=m'+1,---,m}. In this case we may assume that these are J(Ot))
and 3(07}, ), and that R(O1)=—R(O7},,).)

(3.7) limsupe ™™~ 1/m"| D (0, ---,m—2)(z, T, x,)eS DI/ %1
£0l0

- ", ,(T)eirx+S(®ri)(|pl/e)”'"”x1
m—1,t—m

_ i1 ()e'™+1 +3(@z)(|pl/e) /™" xy [=0
m—1, —m >

where the supremum is taken for 0<e<eg, 0<x,<T, |E'|<R for
arbitrary positive numbers ¢, and § with ey <eg and 6<T.



1050 RyuicH1 ASHINO

Proof. Put z=w=1t and k=m—1 in Lemma 2.1. Then
(3:8) D0, m=2)(t,7,x))= Y. Fpey (1)
i=1

Put n=¢'™", nr=ck™ , and t=nt. As Assumption 2.1 is satisfied, (2.10) implies

that
IFm— l,j(T)I < Clg("'_ 1)/m”’ ]:' 1: "',m”-
Lemma 3.1 implies that

(3_9) |e<itf+ me +3(@t))(|p|/e) /™ )xs | < £SO T4 m)(P|/E)/™ — Sto— Stj e, Dx1

Assume that either j+m' #/ in the case of (1) or j+m'#[L 1+ 1 in the case of
(2). Then I(O(1;—1}+,))<0. Since |I7(¢) and | 31,4, 4(e, &) are bounded,
we have, for d <x, <T, the right-hand side of (3.9) tends to zero as ¢,]/0. Thus
we come to the conclusion. []

Put, for j=1,---,m",

m’'—1
Aj=(=1)fEme ¥ 1m0 f(@[p| Gy T (109,

k=1

which are non-zero constants depending only on p and j.
Lemma 3.5. Let R and By be the same as in Lemma 3.1. Then

(3.10) mF,_, (e ™= =4, j=1,.-,m",
el0

uniformly on By.
Proof. Since
C(m’a"‘,m‘—z)(zﬂ(l))=(zm'+1""'Zm'+j—1'zm'+j+1""'Zm)"'1,
we find
S Lispman@) = (= ) DT N g ez Z g 2™

x E{(z")E(z).
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Put n=¢'"" and t=nz. Then
Jm- l,j,pm,,x(z) =fon- 1,j,p,,.,,x(t)”lm_ !
=(— 1)femad T L dym= gy e S R S tm)m'E,{t")E(t}

Hence

WSy 1 j e (HTX@ [ [
10

n
= (= ) emad T e T T 1 T
XE(Ty 415 T E (0, -0, T 15 -+, )
= (= 1)/ CmaD TN gy T EO, 4, 0,80 4 1,00, Th)
X (T;n’+j)_m’Ej(r;n'+ 17 T
Since (tThy 41 T E0, -++,0, 7,11, T,)=1 and

(T;n’+j)—MIEj(T;n'+ 1 T
m’—1

=(=nm ATyt k]:[1 (1=

=(@!pll/m”)m— lAj/(_ I)I(pmax)+ 1 +j,

(2.11) in Lemma 2.3 implies (3.10). [
Proof of Theorem. 1t is well known that the solution u,(x ; ¢) of (CP) satisfies
(3.11) ulx; Q) =j§1F§_'—l+x'( Yi(e,x,, N0 (£)
and that the solution uy(x;¢’) of (RCP) satisfies
(3.12) uo(x; )= JiFE L fx 1, E)PAL,

where ~ denotes the partial Fourier transformation with respect to x', & denotes
the dual variable of x', and F;1, denotes its inverse Fourier transformation.
Put
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0,030, 0)= 3 FE Lol 30, 0,80

w5 0.00)= 3 FetuYfex, O04)

Then u,(x; @)=u, (x;(¢’,0))+u, (x;(0, 9")).

First we shall show the sufficiency of (C1) or (C2) for the admissibility.
Since p e F~(CF(R"™ ")), there exists a positive number R such that supp §; <
By, j=1,---,m. By (3.1), Lebesgue’s bounded convergence theorem can be
applied to (3.11) when ¢]0. Then (3.4) implies that

imu, e5(9',0) = 3 Fi L (im0, £)08)

£l0 J £l0
=Y Fol o (x1, E)AEN =uo(x; 0),
ji=1

which remains true even when neither (C1) nor (C2) is satisfied. Hence (3.2)
and (3.5) imply that

limu, (x;(0,9")= Y. Fplo(limYfe x,,&)@AE)=0.
el0 10

j=m'+1 £

Thus lim,ou,(x; @)=ue(x; ¢"). Since this convergence remains true in C(R"),
(CP) are admissible.

Next we shall show the necessity of (C1) or (C2) for the admissibility. It
is enough to show that if M _ <0 then there exists a Cauchy data @ such that
the solutions u,(x; @) diverge in C(R",). Choose $=(0,---,0, ¢,,), where ¢, #0
and put

va,l(x > q’m) = Fﬁ—’—l'x’(( - l)m - 1DI(O’ e, Mm— 2)(7"9 T, xl)g’bm(é’)),
for /=1, 2. Then
ua(x 5 (’b) =F€_’-l*x’( Ym(gﬂ X15 él)(‘pm(if)) = vs,l(x; ¢m) + Ve,Z(x; §0m)

Since (2.8) in Lemma 2.2 implies that lim, v, ,(x;¢,)=0 in C(R"), it is enough
to show that v, ,(x;¢,) diverge when ¢/0. Put
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-
Wil @m) = ), Fel d(— 1" Fpy f0)e™ ™ DI
i=1
x el +m' = Orillplie) ™ gy (1)

Then Lemma 2.1 implies that
Ve (65 0m)= Y, Fo b o(= 1)1y (1) 519,(E)
j=1

—1)/m" i@} t/m .
= glm—1)/m"” ,i®zi(|p|/e) x'WE(X,QD,,,)-

(1) The case that M _ is attained by only one #(®1}). Lemma 3.1, 34,
and 3.5 imply that

limws(x; (pm) =(_ l)m_ lAl—m'Fi_’ix'(eim({')n(’pm(é’))a
el0
in C(R%).
(2) The case that M_ is attained by two J(®71) and I(O71},,). Put
L=R(O1;,,) and &,(x,)=|p|/{n(n+(n—1)/m"(Lx,)"'}"", for every
integer n. Then L>0, R(®1)=—L, and

eZiL(|p|/g"(x1))1/nI”x1 ={m" ! =A[—m’/Al+ 1-m'"
Hence Lemma 3.1, 3.4, and 3.5 imply that

hm we,.(x > (pm) = ( - I)M - 1F§_'—1-»x’(Al - m’ei[O({’)xl(‘bm(ﬁl)

ntoo

+ Ay (" TG, ()
=2= 1" A Fp L e™9,(2)),

in C(R%).

In either case, lim,; , w, (X;¢,) is a non-trivial real analytic function in
R.. On the other hand, for x,>0, gm~Dm"®tillpla!™ s diverge when
€l0. Thus v, ,(x;¢,,) diverge in C(R") when nfoo. [
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