
Publ RIMS, Kyoto Univ.
30 (1994), 1055-1121

Simply Typed Lambda Calculus
with First-Class Environments

By

Shin-ya NISHIZAKI*

Abstract

We propose a lambda calculus X^nv where it is possible to handle first-class environments. This
calculus is based on the idea of explicit substitution, that is; /la-calculus. Syntax of /i^t, is obtained
by merging the class of terms and the one of substitutions. Reduction is made from the weak
reduction of Acr-calculus. Its type system also originates in the one of Aer-calculus. Confluence
of /L^r is proved by Hardin's interpretation method which is originally used for proving confluence
of Acr-calculus. We proved strong normalizability of A^t, by reducing it to strong normalizability
of a simply typed record calculus. Finally, we propose a type inference algorithm which produced
a principal typing for each typable term.

§1. Introduction

Environment

In many programming languages and logical systems, we can avoid several
repetitions of writing an expression by using variables. At each position in
programs or sentences, we have an assignment of values to variables, called
an environment. We use this notion in evaluators or denotational semantics of
functional languages.

First-Class Object

In programming languages, an object which can be passed to and returned
from procedures, is said to be first-class. For example, functions are not
first-class objects in BASIC and FORTRAN. In contrast, functions are treated
as first-class object in functional languages. Programming language Scheme
[2] [1], a dialect of Lisp, is equipped with first-class continuations. This

Communicated by S. Takasu, November 25, 1993. Revised March 7, 1994.
1991 Mathematics Subject Classifications: 68N15.
Department of Information Technology, Faculty of Engineering, Okayama University, 3-1-1
Tsushima-naka, Okayama, 700, Japan.

1056 SHIN-YA NISHIZAKI

allows us to use the powerful control mechanism like backtrack and
coroutine. In many implementations like MIT-Scheme, Elk or X-Scheme, we
can also treat environments as first-class objects. The basic primitives
supporting the facility of first-class environment, are

0 (ilie-environment) which returns the current environment, and
© (eval (listy (environment}) which returns the result of evaluation of the

expression represented by (list} under (environment}.

The following is an example of these primitives:

(let ((1-inf-space
(Set ((norm (lambda (x) (max (abs(car x)) (abs(cdr x))))))

(the-enyironment)))

;;; /°° space's norm: sup \x{\

(Ilspaee,
(let ((norm (x) (4- (abs(car x)) (abs(cdr x))))))

(the-environment)))
;;; I1 space's norm: %i=i,2\Xi\

(Ilspace
(let ((norm

(lambda (x) (sqrt (+ (expt (car x)2) (expt (cdr x) 2))))))
(the-environment))))

;;; I2 space's norm: (Li=i,2\xt\
2)1/2

(print (eval '(no™1 9(3°4)) 1-inf-space))
(print (eval 9(n®rm 9(3.4)) llspace))
(print (eval '(norm \304)) llspace)))

output :
4
7
5

Variable l-inf-space9 llspace, and llspace are bound to the reified
environments in which each variable norm is bound to /°°-, I1-, and /2-norm's
procedure, respectively. We can use a desired norm's procedure by evaluating
variable norm in the environment where the norm's procedure is bound.

We next observe these primitives from the semantic viewpoint. The

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1057

following is well-known as environment semantics, where these primitives are
naively defined:

[(lambda (x)

(

[(the-enviroment)] = Ar.r

where r.x is field selection and <x = .x'|r> is record extension of record r by
label x and term x'. In the environment semantics, we observe that

® (the-environment) corresponds to an identity function,

9 (eval 'M N) to function composition

In terminology of reflective programming paradigm, primitive the-
environment reifies the current environment and eval reflects the reified
environment to the current environment.

program
J

ironment
Deification

curt

data
k

•^
*ent environn

eval
reflection

r

lent evaluator

We therefore find the following correspondence:

(the-environment) <=> reification o identity function,

(eval 'M N) o reflection ofunction composition.

We next show how to applied the idea of explicit substitution to our calculus.

1058 SHIN-YA NISHIZAKI

Explicit Substitution

Lambda calculus was proposed as the general theory of functions in
mathematical logic and has been widely used for describing, analyzing, and
implementing programming languages. In lambda calculus, we consider
lambda-terms as programs, their reduction as computation, and normal
terms as observable values. We cannot find environments in reduction
sequences, though the notion of environment is fundamental in functional
programming languages.

x[x:=Af]

= M

The reason why we cannot find environments in reduction, is that the variable
reference mechanism, i.e. the substitution operation, is defined at the meta-
level Recently, Aa-calculus is proposed by Curien et al. ([4], [12], [3], [6])
as an improvement of lambda calculus. There substitutions are treated
not at meta-level but at object-level:

x_(M/x)-id]

Comparing these two reduction sequences, we find that the term x[_(M/x)-id]
can be read as an application of a substitution [x : = M] to a variable x, and
also as the result which x is evaluated to under an environment [x ->• M].

This is one of principal ideas of ^cr-calculus identification of environment
with substitution and this allows us to investigate syntactically the mechanism
of environment.

Although it is allowed to treat environments as object-level notions in
A<7-calculus, these are not first-class objects: it is impossible to pass substitutions
as parameters. For example, the following term

henv.x[env]

is not a term of Aa-calculus since it is inhibited to occur a term in []. The
point to be stressed is that the syntactic class of substitutions is precisely

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1059

distinguished from the one of terms in Aff-calculus. Roughly speaking, the
calculus defined in this paper is obtained by integration of these two syntactic
class, as a result, the above term will be justified in our calculus and the
integration enables first-class environment facility.

Motivations

Untyped and typed lambda calculi have achieved great successes in computer
science because of their nice mathematical properties. These properties are
not always preserved when we extend them by addition of new constructs. For
example, lambda calculus with first-class continuations, which may be considered
as classical logic from the viewpoint of Curry-Howard isomorphism, is
not essentially confluent (cf. page 150 in [7]). On the other hand, strong
normalizability holds in simply typed lambda calculus with first-class
continuations (cf. [8]). This property justifies the intuition that bugs of
non-termination do not exist in the part of continuation-handling, but
anywhere else, e.g. the part of recursion. Without such theoretical background,
this intuition would be nothing but superstition.

As we know from the above example, it is important to discover fundamental
properties preserved in extending lambda calculus by adding first-class
environments.

Outline of this paper

In Section 2, we introduce a simply typed lambda calculus A,?nv with first-class
environments: its syntax, its typing rule, and its computational rule which
originates in the weak reduction of Aa-calculus. Subject reduction property
of l?nv is here proved.

Section 3 is devoted to confluence for the reduction given in Section 2.
We use Hardin's interpretation method in proving this property, similary
to the case of Aa-calculus.

In Section 4, we prove strong normalizability for &„„. First, we introduce
a simply typed calculus becord with records and show strong normalizability of
becord. Then, we derive strong normalizability of X?nv from that of /UCOrd, by
using the property that j8-steps in a reduction sequence before the translation
correspond exactly to the ones after the translation.

In Section 5, we study type inference algorithm for l?nv. First, we present
unification on types of A^y, originally developped by Jategaokar and Mitchell
for record typing. Then, we propose a type inference algorithm for i?nv and

1060 SHIN-YA NISHIZAKI

show that this algorithm is sound and gives us principal typing.

§2. Simply Typed Lambda Calculus with First-class Environment: /U^

In this section, we propose a typed lambda calculus with first-class
environments, called /UJ,y. The base of this calculus is a simply typed lambda
calculus a la Curry. We give syntax, type system, and reduction to this
calculus. Then its subject reduction property will be presented.

§2.1 Syntax of l?nv

Definition 2.1 [Types and Raw Terms]. Three countable sets

© a set TypeVar of type variables,

® a set Term Var of term variables,

m a set Env TypeVar of environment type variables, and

® a mapping P Var from EnvTypeVar to a family of finite sets of

Term Var, called prohibited variable assignment.

are given in advance. And we assume that a set PVar~ l({xl, •••,*„}) is infinite
for an arbitrary finite subset (xl5 •-,xn} of TermVar.

For each environment type variable p, we call its image P Var(p) the set
of prohibited variables of p. When we write an environment type variable,
we specify its prohibited variables by subscription. For example, we write
px, if we assume X= P Var(p).

Environment types and types are defined as

E:: = {xl:Al}"'{xm:Am}p,

and as

A :: = a\E\A-*B

respectively, where m > 0, xi e Term Var, p € Env Type Var, {xi9 • • • , xm} c p Var(p\
aeType Var, jc1? • • • ,xm are distinct with each other, i.e. WV/((1 <z<m) A(l <j<m)

We do not distinguish environment types by the order of bindings between
variables and types. For example, we identify [x : A}{y : B}p with {y : B}{x : A} p.

Type is a set of types defined as above.

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1061

We define a domain dom(E) of an environment type E={xl:Al}---{xn:An}px

by
Raw terms are defined as

M :: = x | kc.M\ MN\ id\(M/x)-N\MoN

where xeTermVar.
We call raw terms as terms simply if there is no danger of confusion. •

Intuitively, an environment type variable means a "hole" in which an
environment type may be put. Its prohibited variables specify the variables
which should not be included. For example, it is possible to substitute
{y:B}p'{y} for p{Z} in {x:A}p{Z}, but impossible to substitute {y:B}p'{y} for p{y>
in {x:A}p{y}, assuming x, y, and z are different each other.

The definition of environment type is influenced by the studies on record
calculus. Environment type variable exactly corresponds to row variables in
record typing, introduced by M. Wand [15]. The condition that each variable
in an environment type should be distinct with each other, is required for the
existence of mgu.

There are two intuitive explanations of primitive id: one is that it is the
identity substitution, which is similar to id of A«T-calculus; the other is that it
is a primitive which returns a current environment, like (the-environment) of
Scheme. In the same way, M°N has also two explanations: one is that it is
the composition of substitution M and substitution N, and the other that it
is (eval M N) of Scheme. These explanations will be justified by the reduction
given in Section 2.2.

Names of each syntax class and usages of alphabets for meta-variables are
summarized in the following table:

x,Y,x',r,

P,P,P :

type variable

prohibited variables

environment type variable

type

environment type

function type

L,M,N,-

Lx.M

MN

id

(M/x)-N

M°N

(term) variable

term

lambda abstraction

application

identical environment

environment extension

environment composition

1062 SHIN-YA NISHIZAKI

We may call two kinds of variables-type variables and environment type
variables-type variables simply, if there is no danger of confusion.

We next introduce basic notions for types and terms:

Definition 2.2 [Free Type Variable]. We call a type variable and
an environment type variable occurring in a type a free type variable and a
free environment type variables respectively, and ftv(A) is the set of free type
variables and free environment type variables. •

Definition 23 [Length of Type]. We define length length(A) of a type
A inductively as

: A,}- • • {xn: An}p) = length(A J + - + length(An] + 2,

length(oc) = l,

length(A -» B) = length(A) + length(B) +1.

Definition 2.4 [Length of Term]. We define length length(M) of a term
M inductively as

length(x) = l,

length(MN) = length(M) + length(N) +1,

length(kx.M) = length(M) x 2,

length(M°N) = length(M) x (length(N) +1),

Iength(id)=l,

length((M/x) • N) = length(M) + length(N) 4-1.

(cf. Lemma 3.3) •

§2.2. Weak Reduction of fav

In this section, we present an operational semantics of l?nv called the weak
reduction originally given to /Icr-calculus. This reduction is weaker than
jS-reduction used in usual lambda calculi: the application of a substitution N
to a term Ajc.M, (lx.M)oN can not be reduced any more in the weak
reduction. For example, (A,y.y)°((A,z.z/x)'id) is the normal form of term
(Ax.Ay.y)(Az.z) in X^nv although we can obtain "more" normal term ky.y in the
usual lambda calculi. It is therefore true that the weak reduction is weaker

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1063

than the usual ^-reduction but this kind of weakness is common to the
call-by-name strategy and the call-by-value's one, and the weak reduction is
acceptable as the computational semantics in the same reason as the case of
these evaluation strategies.

As a result of the trade-off with weakness of the reduction, we get
syntactical simplicity of the calculus. Otherwise, we had to develop a more
complex theory and gained a comparatively few advantages.

The calculus with name vs The nameless calculus

In ^a-calculus, nameless terms or also called de Bruijn terms are investigated
mainly rather than ones with name and the complication of renaming is
avoided. It is sufficient that we only study the nameless calculus because
every term can be translated to nameless terms whether typed or not. Of
course, this is true in the usual calculus but not in the calculus with first-class
environments. Consider the following term:

henv.(x°env).

The de Bruijn index of variable x is determined by the type of variable env. In
the lambda calculus with first-class environments, it is probably impossible to
give a transformation from the calculus with name to the nameless
one. Consequently, we study the calculus with name in this paper.

Definition 2.5 [Weak Reduction]. A binary relation (—)^(—) called
weak reduction, is defined inductively as follows:

[Substitution Rules]

JdL

((L/x)-M)oN^((LoN)/x)-(M°N)
-DExtn

1064 SHIN-YA NISHIZAKI

VarRef - - VarSkip

[Beta Rules]

Betal - Beta2

[Compatibility Rules]

M-+N M-+N
-AppL

(ML)->(NL) (LM)->(LN)

M->N
— Lam

M-+N M-+N
CompL CompR

M->N M-+N
^ ExtnL ^ ExtnR

-L^(N/x)-L (L/x)-M-*(L/x)-N

Later, we use the following subrelations:

® (—)-»(—): defined by substitution rules and compatibility rules.er

® (—)-^(—): defined by beta rules and compatibility rules.
P

Compatibility rules imply the following proposition.

Proposition 2.6. Let M, M' be terms andL_] a context. IfM-*M' then

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1065

Here, contexts is defined as follows:

Definition 2.7 [Contexts-Terms with holes-] A context L[] is a term
with a "hole" defined as

\bc.Ll]

We would like to show examples of the weak reduction defined above.
A term ((ky.)(.x.id)M)N corresponds to the expression of Scheme:

(((lambda (y) (lambda (x) (the-environment))) M)N)

The result of this Scheme expression is an environment in which variable x
and y are bound to N and M, respectively. This is reduced as follows:

PJC . id) o ((M/y) • id))N Beta!

id°((N/x)-(M/y)-id) Betal

IdL

The next example is more complicated. A term (Ae.(y°e))((Ay.),x.id)MN),
which corresponds to the Scheme expression

((lambda (e) (eval 'y e))

(((lambda (y) (lambda (x) (the-environement))) M) N)),

is reduced as follows:

1066 SHIN-YA NISHIZAKI

-^r(ke.(yoe))((N/x)'(M/y)-id) similar to the first example

rfr (y°e)o((((N/x)-(M/y)-id)/e)'id) Beta!

^ y°(e°((((N/x)-(M/y)-id)/e)-id)) Ass

^ yo((N/x)-(M/y)-id) Var Ref

^ yo((M/y)-id) Var Skip

rfr M VarRef

§2.3, Typing of &nv

Definition 2.8 [Type Judgement and Typing Rules]. Type judgement
E\-M: A is a ternary relation among an environment E, a term M and a
type A defined inductively by the following typing rules (sometimes called type
inference rules):

7Var
{x:A}E\-x:A

E\-M:A-*B EhN:A . {x:A}E\-M:B- -

E\~N:E' E'\-M:A~ E\-M:A E\-N:E

It is supposed that every environment type E occurring in the above
rules is syntactically valid: if E is [xl :^1}---{xM:v4M}px, then xl9 --,xn

are distinct with each other and {xl9 --,xn} c x. •

In the above definition, it is implicitly supposed that every environment
type occurring in rules is valid. For instance, x must not be bound in E in
typing rule Extn.

Definition 2.9. For an environment type E, a term M and a type A, when
a type judgement E\-M:A holds, we say that the term M has type A under
an environment type E, or simply M is typed. We call a proof tree which

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1067

derives a type judgement using the above typing rules, a type inference tree. •

We would like to show an example of a type inference tree. A Scheme
expression (lambda (x) (lambda (y) (the-environment))) is a function which
accepts two arguments through formal parameters x and y and returns the
environment where these variables x and y are bound to received
arguments. This expression corresponds to a term foc.iy.id of A^jy, which is
typed by the following type inference tree:

-Id
{y:p9x:a}p\-id:{y:p,x:<x}p

{x:*}PHly-id):p->{y:frx:x}P

p \- (Xx. ky. id): a -> ft -» {y: /?, x: a}p

Theorem 2.10 [Subject Reduction Property^ The type of each term is
preserved during weak reduction: let Mi be a term, E an environment type, and
A a type such that E\-Ml:A. If Ml-*M2for some M2 then E\~M2'.A.

Proof. We prove this theorem by induction on the structure of a
derivation tree of reduction Ml^*M2.

Since M1->M2, it is sufficient to apply one of rules of ^> to M1$

The case of M1=(LoAl)oN:

Ml is reduced to L°(MoN)(= M2). For some E' and E", M1 is typed as

: ZM : £/
iltf E'\-M:E" E"\~L:A

Therefore, M2 is typed as

E\-N\E'
E^-MoN:E" E"\-L:A

E\-L°(M°N):A

1068 SHIN-YA NISHIZAKI

The case of M1 = id°M:

Ml is reduced to M. Since M1 is actually typed as

E\-M:E' E' \-id:E'
E\~idoM:E'

M2 is typed as

:!M
E\-M:E'

The case of M1=M°id:

Ml is reduced to M. Since Ml is actually typed as

E\-id:E E\-M:E'

M2 is typed as

The case of M^

N) (= M2) and since Mx is typed as

:!L :!M
iltf E"t-L:A' E"\-M:E'

E\-N:E" E"^
) o N : { x : A ' } E r

M2 is typed as

:£A? :S/ :S/v J^M

:E" E"\~L\A' E\~N:E" E"\-M:E'
E\-LoN:A' E\-M°N:E'

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1069

The case of M1=xo((M/x)-N):

Mi-+M (= M2) and since M± is typed as

J2W J5W

E\-N:E'
:{x:A}E' [x:A}E'\-x:A

((M/x)-N):A

M2 is typed as
J Z M

E\~M:A.

The case of Ml=yo((M/x)-N):

Mi-*y°N (= M2) and since Ml is typed as
Wf

:ZM |S^
E\-M:B E\-N: [y : A } E t __

\ {x : B } { y : A } E ' {x : B } { y : A } E ' ^ - y : B
Eh-y o ((MA) • N) : A

M2 is typed as

: [y : A } E ' [y:A}E'\-y:A

The case of Mi=(LAf)oN:

Mi-^(LoM)(MoN) (= M2) and since Ml is typed as

; HL : ff->A JgfK M : B

E\-N:E' E'\-LM:A
Eh- (LM) °N : A

M2 is typed as

1070 SHIN-YA NISHIZAKI

E\~N:E' E'\-L:B-+A E\~N : E' E'\~M:B
: B

E\-(LoM)(M°N):A

The case of M^^x.MJoLjN:

M1^Mo((N/x)-L) (= M2) and since Mi is typed as

E\-L:E'
: B

E\-((lx.M)°L)N:A

M2 is typed as

JX* ;!L
E\~N:B E\-L:E' !IM

:{jf : B}Er (x:B}E'\-M\A
E\-M° ((N/x)-L):A

The case of M1=(Ax.

Ml-^Mo((N/x)-id) (= M2) and since Mx is typed as

M2 is typed as

E\-id\E
E\-(N/x)-id\ {x:B}E

The case of M±=ML, M2 = NL, and M1^*M2 by rule AppL:

The proof tree of weak reduction from Mj to M2 is as

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1071

(ML) ^ (NL).

By the induction hypothesis for M, if we suppose M is typed as

then N is also type in the same way:

Since Mx is typed as

E\~M\B—>A E HL : B

M2 is typed as

E\-N:B->A EV-L-.B

The remaining cases, AppR, Lam, CompR, CompL, ExtnR, and ExtnL,
are proved similarly to the case of AppL. q.e.d.

§3 Confluence Property

In this section, we prove confluence property of l?nv. We show that the
proof of confluence of weak /Icr-calculus in [6] can be used in A^ with almost
no change.

Lemma 3.1 [Interpretation Method (cf. page 4 in [6])].
Let ^ = ̂ ^j^2 be the union of two (binary) relations (on terms), ^ being

confluent and strongly normalizing. We denote by ^(M) the ^-normal form
of M. Suppose there is some relation $' on ^-normal forms satisfying:

W c ^* and (M^N=>

Then 0t' is confluent if and only if $ is confluent.

Proof. Suppose first that 3ft! is confluent. Let MAAf and M-gM". Then

1072 SHIN-YA NISHIZAKI

by assumption, 3tl(M)iStl(M
r) and St^^St^M"). By confluence of ffl',

£&' 8R,'

there exists N such that St^M^-^N and &i(M")^*N. Since $' £ ^*5 we have

N and similarly M"^>N. Hence, ^ is confluent.J

Suppose conversely that $ is confluent. Let M-*Mr and M-+M". By

confluence of ^, these exists TV such that M'-*N and M"-*N. Then, by^? 3?
assumption, we have

AT = «1(M')-«1(^) and Af'-a^N),

and the diagram is closed. (This proof is cited from [6].) q.ead.

Later, we will prove the confluence of l^nv by setting as

and

where -> and -> are already defined in Definition 2.5 and -> is as follows:
<r 0 /?/<r

Definition 3.2 [Relation (-)->(_)].
ft/ff

For cr-normal terms U and F, C/-> F if and only if there exists a term
P/a J

N such that U-*N and F is the cr-normal term of N:

U

U ^ F .

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1073

We conclude the confluence of /^m if the following propositions are
proved:

® Reduction a is confluent and strongly normalizing; (Lemma 3.3 and
Lemma 3.5)

» If M-jfM\ then a(M)£>a(N)- (Lemma 3.6)

® Reduction ($/G is confluent on a set of cr-normal terms. (Lemma 3.15)

First, we show the confluence and the strong normalizability of a.

Lemma 3.3 [Termination of cr]. Reduction a is terminating.

Proof. It is easily checked that length(M) > length(N) if M-+N. Therefore,

(—)-?(—) is terminating. q.e.d.

Lemma 3.4 {Local Confluence of cr]. Reduction a is locally confluent.

Proof. By checking the overlapping cases. q.e.d.

By Newman's lemma (confluence = termination and locally confluence),

Lemma 3.5 {Confluence of cr]. Reduction a is confluent.

Lemma 3.6. // M-pN, then a(M)^a(N).

Proof. We prove this lemma by the induction on the lexical ordering
(depth(M), length(M)) where depth(M) is the maximum length of ^-normalization's
sequences.

M=x or M=id: This case does not happen because M-^N and x and id

cannot be reduced.

M=kx.M1: N has a form /bc.7V\ such that Ml-^N1 since the last rule for

deriving M-*N is Lam. By the induction hypothesis,

1074 SHIN-YA NISHIZAKI

Therefore,

o(M) = be . 4M1)^>Ax . 4/VJ = a(N).

= M1M2:

There are several cases according to the last rule used in M-^N.

[The last rule of M-^N is AppL]

N has a form (M'iM2) such that M\-^M'i. By the induction hypothesis,

Jfc cr(Af)i - Therefore,

= (7(M1M2) - 4M>(M2)^(j(

[The last rule of M-^N is AppR]

This case is proved similarly to the above case.

[The last rule of M-^N is BetaY]

We can assume that

N=Miio((M2/x)-Mi2).

for some Mu and Mi 2. If Mi2 is not frf, then

/lfi i)) o

Therefore,

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1075

^(a(Mu)°((<7(M2)/x)-<7(M12)))

= a(N).

<r(Mn)°MM2)/x)-a(M12) A a(a(Mi i) = (a(M, 2)/x) • a(L2)), that is,

If MI 2 is W, then

Hence,

[The last rule of M-^N is Beta2]

This case is almost same as the one of Betal.

M is a composition:

We distinguish the following subcases:

Subcase 1: M=(M1oM2)oM3

Subcase 2: M=id°M^

Subcase 3: M=Mioid

Subcase 4: M=((M1/jc)-M2)oM3

Subcase 5: M=jco((M1/jc)-M2)

Subcase 6: Af =>;o((M1/x)-M2)

Subcase 7: M=(MlM2)oN

Subcase 8: Otherwise

1076 SHIN-YA NISHIZAKI

We here prove only Subcase 1 and 7 because the other cases are similar or simpler.

[Subcase 1J: A /?-redex exists in Ml9 M2 or M3. Here, we consider the case
that the redex occurs in M2 or M3. Ml9 that is, M^M\ and N=
(M'loM2)°M3. (The cases of M2 or M3 are almost similar, therefore, we
prove only this case.)

We can apply the induction hypothesis to M1o(M2°M3)-»M/
1o(M2°M3),P

since depth(Ml°(M2^M^))<depth((M^M2)°M^). Then, we know that

Hence,

= a(N).

{Subcase 7J: Here, we may suppose that the /?-redex is in M3. The other
cases are similar and simpler. Suppose that N=(M1M2)oM'3 for some M3

such that M3-H>M'3.

By the induction hypothesis,

M'3) and o-(M2oM3)-»(j(M2oM3).

Therefore,

= <r((M1oM3))a((M2cM3))

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1077

= a((Mi°M'3)(M2oM3))

= cr((MiM2)°M3)

= a(N).

[The case that the last rule of M-^N is ExtnL]

It holds that N=(M\/x)mM2 where Ml-^M'i. By the induction hypothesis,

°(M \)p?<,a(M'i)- Hence,

Therefore,

[The case that the last rule of M-^N is ExtnK]

This case is similar to the above case of ExtnL. q.e.d.

Lemma 3.7 [Syntactical Characterization of a-normal term].
The set of v-normal terms are generated by the following grammar:

where U, C/l9 C/2, K, W are a-normal and C/2 is not id and W is not an
environment extension.

We next introduce parallel reduction for proving confluence of (—W(—):

Definition 3.8 [Parallel Reduction on a-normal Terms].
We define a binary relation (—)^(—), called parallel (weak) reduction, on

terms inductively as follows:

ParVar

1078 SHIN-YA NISHIZAKI

par _ _ pen pen ,_. .
— ParLam — ParApp

. \x.U' (UV)=*(U'V)
Ax. rc"

U=>U' V=$V
Parld HO. ZL ParExtn

(U/x)-V=$(UVx)- V

U=>U'
—— — ParLamComp

' t

W => W W is not an environment extension
pf" ParVarComp

pai ParBetal

U=>U'
^ - v- - p- - ParBeta2

The following lemma is proved by induction on the length of a term:

Lemma 3.9. If Uj>V, then U and V are o -normal terms.

Lemma 3.10 [Reflexivity of Parallel Reduction] (—)=^>(-) is reflexive,
that is, U=%.U for every a-normal term U.

The following lemma is used in Lemma 3.13

Lemina3.ll. // U^U' and V=>V then a(U°V)j>G(U'°V').

Proof. We prove this lemma by induction on length(U° V). Suppose that

U=>Ur and V=>V. (Note that this supposition implies that U, U', F, and V

are cr-normal.)

The case of U=id: a(U° V) = a(V)= V. U' is id since id is reduced uniquely
to id. Thus,

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1079

a(Ur o V') = <j(id° V) = o(V) = V

By the assumption, V^V. Therefore, a(U°V)j>a(U'°V'\

The case of U=(Ul/x)-U2: it holds that U' = (Ui/x)-U'2 for some C/t and U2

such that U^Ui and U2=>U'2 since U=>U'. And,

V).

By the induction hypothesis,

') and cj(U2

Therefore, (a(U^V)lx)-a(V2^ V)=>(a(U(oV')/x-)-ci(Uf2oV'l that is,

The case of U=x and K=(K1/x)-K2: it holds that K' = (Ki/Jc)-Fi for some Fi

and Fi such that V\^>rV'\ and F2^F2, since V=>V. Therefore,

= Vl (since Kt is a-normal)

=>Ki (by the assumption)

i) (since Fi is cr-normal)

= a(U'°V) (since x(={7) is uniquely cr-reduced to x(=U')).

The case that U=x and V=(VJy)-V2(xJ=y).
It holds that K' = (Ki/x)- Fi for some Fi and Fi such that F^Fl and F2=^rFi,
since

Fi) (by the induction hypothesis)

1080 SHIN-YA NISHIZAKI

= o(xo((Vi/y)'V2))

The case that U=x and V is not an environment extension:

) = o(x°V)

= cr(.x)o<7(F) (since F is not an environment extension)

= xoV

=>x°V (by the assumption F=>F')

The case that U is an application:

We analyze the cases of the last rule for deriving U=>U':

(Case 1: ParApp) U=U1U2 for some Ul and U2 such that U^Ui and

(Case 2: ParBetal) U=(lx.U])U2 and U' = a(Ui°((U2/x)'idf) such that

t/.^C/i and [72^f/i;

(Case 3: ParBetal) U=((lx.U1)oU2)U3 and t/' = (j(C/io((C/Vx)-t/2)) such

that Ulfg>Ui, U2=>U^ and C/3^t/3.

[Case 1J:

By the induction hypothesis, tf(^ioF)=^cr(t/i°F') and <r(U2°V)=>a(U2° V).

Therefore,

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1081

[Case 21.

By the induction hypothesis, a((kx. U^° V)=*a(()(.x. C/i)° V) and a(U2°

V'\ Therefore,

'2° V)

[Case 31:

CT(£/I)= C/i^C/i =ff(t/i). By the induction hypothesis, a(Uz° V)=%.a(U'2° V)
and <r(U3 ° K)=^ra(C/s ° V) Thus,

/io F'))).

On the other hands,

o(U'° V') =

= ff(L/lo(([/3o

= <T(ff([/i)°(Wt/3° F')/Jt)-ff(l/io F'))).

Therefore, o-(£/°F)=*ff([/'oF'). (We finished the case that U=U1U2).

1082 SHIN-YA NISHIZAKI

U=A.x.Ul: If V—id then this is evident by the induction hypothesis

o(U)=>a(U'). Thus, we suppose that

= U°V (since U and V are <j-normal)

= U'°V (by the assumption)

U=(^x.Ul)oU2 (where U2 is not K/):
U' = (Ax.Ui)°U'2 (for some C/i and U*2 such that C/^C/i and U^^U'i because

2 o K) (since C/j and U2 are a-normal)

oF) (since U,=>U{ and

U=XoW where W is not an environment extension:

It holds that U' = x°W for some W such that W=>W. Then,

q.e.d.

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1083

Definition 3.12 [Transformation [/*]. We define a transformation (—)*
from (T-normal terms to cr-normal terms inductively as:

i d* = id

x=x

where U, £/l9 (72, V, and PF are cr-normal and V is not zW and W is not an
environment extension. •

(7* of a cr-normal term 17 is a term where all beta-redexes in U are reduced
but the newborn redexes are left.

Lemma 3.13. If U=%.V then V=fcU*. Therefore, (—)=%.(—) is strongly

confluent.

Proof. By the structural induction on derivation tree of U=%.V. We
would like to show only two cases of U=((^x.Ui)oU2)U3 and U=(Ul/x)-U2

since the other cases are similar to them.

The case of U=(Ul/x)-U2

The derivation tree of U=>V has a form

By the induction hypothesis, we know that

/f and Vv&l

1084 SHIN-YA NISHIZAKI

Thus, (VJx)-V2=>r(lfi/x\U*2 holds, that is, F=>t

The case of U=((lx.Ul)oU2)U3:

The derivation tree of U=> V has a form

By the induction hypothesis, we know that

, and

Thus, (V3/x)- V2=>(Ui/x)- t/|. By Lemma 3.1 1,

that is, Vj>U* by the definition of (—)*. q.e.d.

Lemma 3.14. ^a^=>^^ holds.

Proof. p / > ^ j > , i.e. if M^M' then Mjj>M' for any M and M':

This is straight-forwardly proved by induction on length(M).

=> ^ ^>, i.e. if M=>M' then M^M' for any M and M':

This is also straight-forwardly proved by induction on length(M). q.e.d.

Lemma 3.15. ^is confluent.

Proof. Let

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1085

M

I

i
M2

By Lemma 3.14 and Lemma 3.13,

M •-

By Lemma 3.14,

M

•i 4

M2 ft '" ft M'.

Therefore, M^^M' and M2^>M'. q.e.d.

By Lemma 3.1, Lemma 3.3, Lemma 3.5, Lemma 3.6, and Lemma 3.15,
we obtain the following theorem:

Theorem 3.16. ^ is confluent.

§4. Strong Normalizability

In this section, we would like to show the strong normalizability of)^nv. We
will not prove this property directly for &nv\ First, we prove strong
normalizability of a (Church-style) simply typed lambda calculus Record with
records. Second, we give a translation from type inference trees of X?nv to

1086 SHIN- Y A NISHIZAKI

(explicitly) typed terms of /UCOrd. Then, we know that A^y has no infinite
reduction sequence since neither has becord.

„ -» Translation
^env ^ ^tecoid

infinite reduction infinite reduction
® _> ® _> ... — > •_> •__» . . .

«/ «•/ lecoid recant

SN <= SN

Let us begin with the definition of simply typed lambda calculus Record with
records.

§4.1. Simple Record Calculus Record

Definition 4.1 [Type of /UcorJ. Given a countable set Type Var of type

variables, types of becord is defined inductively as

where n>Q.
Type Var may differ from the one of A?nv, however, we assume that Type Var

is same as the one of &?„„ since it will be more convenient when we interpret

^record tO Aenv- •

Definition 4.2 [Raw Terms of becord]. Given a countable set Term
Var record of term variables and a countable set Label of labels, we define terms
of Record inductively as

where x E Term Varrecord and /e Label.
In the sequel, we do not interpret each variable in A^ as a variable in

becord, but a label Therefore, we assume that Term Var of Xmv and Term Varrecord
are disjoint and suppose that the following injection is given in order to
interpret variables as labels:

4-] : Term Var (of A?nv) c> Label.

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1087

We assume that a superfix A is unique for each variable XA. When there is
no danger of confusion, we will omit variable's superfixes. •

Definition 4.3 [Typing Rules of becord]. A sequence xl:Al-"Xn:An is
called a type assignment when n>0, each xt is a variable of becord, and each
A{ a type of becord. We use F, F '--- as metavariables on type assignments.

Type judgement of Record is a ternary relation whose domain are type
assignment, terms, and types, defined inductively by the following typing
rules. This relation is written T \-M\A for a type assignment F, a term M,
and a type A.

-Var\
x 'A "-X 'A \— X-AI'J

x:A T\-M:B

rP<>T{}Nil-

* "'

Notation 4.4 [^rr] We abbreviate a record type {li:Al9--9li-i:Ai-i9li+i:

Definition 4.5 [Reduction of becord]. Reduction (—)re^rd(—) is defined

inductively as follows:

1088 SHIN-YA NISHIZAKI

Beta
-» [N/x]M

lecoid

Re/Hit RefSkipJ = M\N>.l ->M <l'=M\N>J -+.N.I
lecoid lecoid

I* I'
RestHit - RestSkip

'= M\N>\l -*.N <l'=M\N>\l .leiota lecota

.lecoid . T lecord A n- AppL -- AppK
'f\T S jf AT v h Jl AT'MN-^M'N MN-^MN

ie i OKI iccoid

rLam
i^^Xx:A.M'

tecotd

T^ r lecoid — nExtnL ExtnR
= M\N> -> t<l = M'\N> <l = M\N> .

tecoia lecoia

— RefHit — Rest.
M.I —> M.I M\l ->,M'\/

ie(Oid record

This reduction is extended by adding rules for records, i.e. RefHit and
Rest. M

We can derive easily the following proposition from the compatibility rules:

Proposition 4.6, Let M,M' be terms and L[] a context. If Mre-$rdM' then
L[M]re^rrfL[M']. As a corollary, subterms of any strongly normalizable term
are strongly normalizable.

Proposition 4.7 {Subject Reduction Property of Arecor/|. (— \^rd(—} is
subject reduction, that is, for every term M typed as Y \-M\A, if Mr^rdM

r then
it holds that

Proof. The subject reduction property of becord is proved in the same
way as /UL. q.e.d.

We will show the strong normalizability of /Uco>-d. This calculus seems
to be a variant of the simply typed lambda calculus with (non-surjective)
pairing. The difference between Record and the calculus with pairing is the
method of reference to fields: the former is by name and the latter by

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1089

integer. The reader who thinks that the normalizability obviously holds, may
skip the following definitions and proofs.

We follow the outline of Girard's proof in [7] from page 42 to 46.

Definition 4.8 [Reducible terms Red(v4)]. For each type A, we define a
set Red(;4) of reducible terms of type A by induction of type A:

Red(a) = SN(a);

Red(,4 -> B) = {M e Term(^ -> B) \ VN e Red (A) . (MAO e Red(£)};

Red({}) = SN({})

^

and MViERe^li'.A.J^A^for i=l,--,n}

m

Definition 4.9 [Neutral Term]. A term is called neutral if and only if it
is of the form x, MN, <>, M./, or M\/. B

Definition 4.10 [Measure v]. For each normalizable term M, v(M) is
the maximal length of normalization sequence of M. •

Lemma 4.11. M is strongly normalizable if and only ifv(M)<co.

Proof. <=) Immediate.
=>) By Konig's lemma. q.e.d.

Lemma 4.12. (CR1) //Me Red (,4) then MeSN(^).

(CR2) //Me Red (,4) and Mre-^rdN, then

(CR3) If M is neutral and it holds that NeRe&(A) whenever Mre-^rdN9 then

MeRed(v4).

As a special case of the last clause.

(CR4) If M is neutral and normal then MeRed(^).

Proof. We prove this lemma by induction on length (A).

1090 SHIN-YA NISHIZAKI

(CR1)(CR2): Evident by the definition of Red(a).
(CR3): The same way as usual: we prove by induction on v(M) that all terms
M' such that Mr^$rdM' and M'^N, are strongly normalizable:

M -> N

I I
M' -> 9.

We can use the induction hypothesis on M'r^*rd*.

(CR1) (CR2) (CR3): Similar to the above case.

(CR1) : Let Me Red({/j : ,4 15 • • • , / „ : An}). Then, M. ll e ReA(A J. By the induc-
tion hypothesis on Al9 M.^eSN^). Hence, MeSN^l^A^'-'J^A^) by
Lemma 4.6.
(CR2): Let MeRed^ :Ai9 • • • , / „ :An}) and Mre-$rdN. Then, for any i, Af./4e

Red(^,) and MV^Red^ : ̂ ,:%/n: ̂ }). M.l^N.k and M\lire7*rdN\lt

by reduction rules RefHit and jRgjf. By the induction hypothesis on M.It

and M\/£, AU<e Red(^^) and N^^T^A^A^.J^A^). Therefore, N is

reducible.

(CR3): Let M be neutral and suppose that all the M ' such that Mr^*rdM' are

reducible. Then, M' .lt are also reducible. Since M is neutral, no redex occurs
at the root of M.li9 hence, results of one-step reduction of term M.lt corresponds
to these reducible terms M'./f. Therefore, by the induction hypothesis, M.l{

are reducible. Similarly, M\l{ are reducible. Thus, M is reducible.
A = B -» C: We omit this case because the proof for this case is same as [7].

q.e.d.

Lemma 4.13. // Me Red(A) and Ne Red({/! :Al9—,ln: An}), then

Proof. First, we show that (l0 = M\Ny.l0eRed(A). By (CR1), M and
N are strongly normalizable. Thus, we can use the induction on v(M) + v(N).

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1091

</0 = M|TV>./0 is reduced to

• M, which is reducible by the assumption.
• </0 = M'|TV>./0, with Mre-£rdM'. From (CR2) and M^M', it is

derived that M' is reducible. By v(M') + v(N) < v(M) + v(N) and the
induction hypothesis on v(M') + v(TV), </0 = M'|TV>./0 is reducible.

• <70 = M|TV'>./0, with N -> TV'. Similar to the above case.
record

Next, we show that </0 = M|#>•//£Red(^4) (/VO). We use the induction
on v(M)4-v(TV) similarly. </0 = M|^V>./y is reduced to

• TV./;. TVeRedd/i ̂ 19 • • - , / n : ̂ J), therefore, AT./.eRed^) by the defini-
tion of reducible terms.

• </0 = M'|TV>./, with M -*,M'. Similar to the second case in thex u ' ' J record

former.

• </o = Af|J/V
7>./.- with N -> TV'. Similar to the third case in the former.J record

The rest of this proof is on </0 = M|TV>\/0eRed({/1 :Al9 • • - , / „ : A n }) and

</0 = M\Ny\ljeRed({/0:AQ^.Jn'. An}) (j/O). We omit its proof since the way
of proving is almost same. q.e.d.

Lemma 4.14. <>eRed({}).

Proof. <>eSN({}) = Red({}). q.e.d.

Lemma 4.15. If [_N/x]M is reducible for all reducible TV, then lx:A.M
is also reducible.

Proof. The proof is similar to [7]. q.e.d.

Lemma 4.16. Let M be any term (not assumed to be reducible), and suppose
all free variables in M are among x^--,xn of type A^--,An. If TV1? • • •, TVM are
reducible terms of types A^--,An then [_Nl/xl,---NJxn]M is reducible.

Proof. We prove this lemma by induction on M. We abbreviate [TVn/;cJ
for

1092 SHIN-YA NISHIZAKI

M=Q:

M=</=M1 |M2>: By the induction hypothesis, [NJx^}Ml9 _NJxn]M2 are
reducible.

By Lemma 4.13, this is
reducible.

M=M1.h By the induction hypothesis, [NJxn]Ml is reducible. By the
definition of reducible terms, lNJxn]Ml.l is reducible. And, this is equivalent

to

M=M1\l: Similar to the above.

the other cases: Similar to [7]. q.e.d.

Theorem 4.17 [Strong Normalizability of becord]. Record has strong

normalizability with respect to reduction (—)r£%rd(—).

Proof. Variables xl9--9xn are reducible. Therefore, this theorem is the
special case of the above proposition with Nl=x1, --,Nn = xn. q.e.d.

§4.2. Translations of /UL into becord

Definition 4.18 [Translation [v4]]. We define a mapping [—] from types
of KZnv to types of Record as:

Definition 4.19 [Translation [M]*(L)]. We define a mapping from each
pair of a type inference free T\-M:A of ^nv and a term L of bec0rd to a term
OI ^record aS.

where x' is a fresh variable in L and M.

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1093

[£h MN: *]*(£) = [M]*(L)[A1*(L)

We will abbreviate \T\-M :A\L to [M]L, when there is no danger of
confusion. •

The following lemma is immediately checked by straightfoward observation:

Lemma 4.20. IfE\-M : A in &nv and h L : [£] in Record, then h [M]*(L) :

^ ^record-

Lemma 4.21. IfM^rM' then [M]*He^[M']*(^) or [M]*(e) = [M']*(e)/or
variable e of becord. Moreover, reduction rules of h&lv in the proof tree for
-jftAf, are respectively translated into the ones of Record, which derive \M~*(e)r£$rd

as follows:

M-+M'
wr

Ass

IdL

IdR

DExtn

DApp

VarRef

VarSkip

Betal

Betal

AppL

AppR

Lam

CompL

CompR

[Mf (e) ^ iM'l*(e)

iMl*(e} = iM'l*(e}

[Af]*(e) = [̂]»

iMl*(e) = iM'l*(e)

M*W = [A/']*W

lM]*(e)^iM'l*(e)

Re/Hit

RefSkip

Beta

Beta

AppL

AppR

Lam

AppL

AppR

1094 SHIN-YA NISHIZAKI

Lemma 4.22. If there exists an infinite reduction sequence of reduction

(—)-»(—), then it includes infinitely many Betal or Betal.

Proof. It is evident from Lemma 3.3. q.e.cL

Theorem 4.23 [Strong Normalizability of A^J. Reduction (-)-»(-) is

strongly normalizable.

Proof. Suppose that there exists an infinite reduction of A^y:

vor wr

Let e be a variable in krecord. The above reduction sequence is mapped into

^record-

[AfJ*(e) A [M2]*(£?) A [M3]*(£?) A
L 1JJ V 'record"- 2JJ V 'record1 3JJ V 'record

By Lemma 4.22, the former reduction sequence includes infinitely many Betal
or Betal. Hence, the latter sequence includes infinitely many Beta. Therefore,
this is an infinite reduction sequence in Arecord. This contradicts the strong
normalizability of hrecord. q.e.d.

§5. Type Inference Algorithm and Principal Typing

§5.1. An Overview: Type Inference Algorithm as Automatic Proving

In this section, we will develop an algorithm which verifies typability of a
given lambda-term and gives us its type if it exists, which is called type inference
algorithm. First of all, we would like to present an overview of the type
inference algorithm.

The type of a term is determined by some type inference tree which built
of typing rules, and the type inference algorithm decides whether the type
judgement about the given term is provable from the typing rules, or not. We
therefore consider type inference algorithm as a prover for "logic" of typing
rules, which is actually Prolog.

Prolog is a high-level programming language but also considered as

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1095

automatic prover for a subsystem of first-order logic. Programs are sets of
restricted formulas which are called Horn clauses. A Horn clause is a logical
formula whose shape is restricted to p <- ql9---,qn or p <- where p->q^--,qn are
atomic predicates where free variables may occur like p(xi9-",xl).

An input for a program is given as a formula called goal whose shape
is <- g. In Prolog, computation is proving process under SLD-resolution and
an output is an assignment which refutes formulas given as a program and
an input. If a goal 4- g is given and Prolog interpreter terminates successfully
then we can reconstruct the proof tree for its negation g <-. Therefore, we
may think that

• a program is a collection of non-logical axioms,

• an input is a formula to be examined its provability, and

• an output is a signal of unprovability or the proof tree proving the
input's formula.

Many notions in mathematical logic and computer science, can be formalized
by Horn clauses. Inference rules of Gentzen's sequent calculus, type inference
rules of typed lambda calculi, Plotkin's structural operational semantics and
Kahn's natural semantics of functional programming language all of these rules
are defined as

(upper expression) l, • • • (upper expression)n

(lower expression)

or

(lower expression).

It is evident that these are Horn clause if we write them as

(lower expression) <- (upper expression)^--, (upper expression)„.

and

(lower expression) <-.

respectively.
The typing rules given in the former section are also Horn closes. For

example, typing rule Extn is written as

(E\-MN:B) <- (E\-M\A -» B\(E\-N\A)

1096 SHIN-YA NISHIZAKI

where ((—)!-(—):(—)) is a ternary predicate on environment types, terms, and
types.

We obtain a type inference algorithm by giving a (Prolog's) variable to
the first argument of a goal <-((—)!-(—).'(—)), a term which should be tested
typability and searched its type to the second, and a (Prolog's) variable to the
third. After execution of this goal, the first and third argument are unified to
environment type and type respectively, which satisfy a type judgement if the
goal succeeds under the Horn clauses derived from typing rules. In this
situation, we can build up a type inference tree from the SLD-resolution tree,
i.e. the trace of the computation of this goal in prolog. The soundness and
completeness of the type inference algorithm are merely corollaries of the ones of
SLD-resolution. And existence of principal type is also obtained by the most
generality of SLD-resolution tree.

This explanation gives us a clear view. However, there hides a
trick. Terms are defined exactly by first-order terms with equality usually
used in prolog and the unification on the second argument is usual first-order
unification which finds the most general unifier if it exists. On the other hand,
environment types are not a first-order term in the strict sense: An environment
type

{x:A}{y:B}p

represents a collection of functions which correspond a variable x to a type
A, y to B, and z to C. Hence, an environment type

{x:A}{y:B}{z:C}p'

is included in the environment type {x:A}{y:B}p if we identify environment
types to collections of functions.

This situation is very similar to type inference in record calculus since a
record type (with a row variable) also represents a collection function from
labels to types. A unification algorithm of record types with raw variables was
proposed by Mitchell Wand [15] and corrected by Jategaonkar and Mitchell
[11]. This algorithm gives us the most general unifier if some unifier exists.
Based on this result, we present the existence of principal type of l^nv.

§5.2. Preliminary

In the following several lines, we introduce a few basic notions.

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1097

Definition 5.1 [Substitution]. A substitution on type variables and
environment type variables is a function which maps each type variable a to
a type A and each environment type variable p to an environment type
{xn:An}pf, such that

PVar(p) <= PVar(p'\

and {x^-,xn}^PVar(p').

and the domain of substitution 6

dom(9) = {ae TypeVar|oc* ̂ a} u {p e EnvTypeVar|p*

is only finitely many.
A substitution 9 on (environment) type variables is extended uniquely to

a function 9 : Type -> Type as:

In the following part of this paper, we will identify a substitution 9 and its
extension 9 since 9 is extended conservatively to $ and will call it a substitution
simply. •

The side condition on environment type variables which occurs in a
substitution, is necessary for the following proposition:

Proposition 5.2. Let E be an environment type and 9 a substitution. Then,
Ee is an environment type. •

Without the side condition of the definition of substitution, for example, a
substitution

is allowed, and consequently, this causes an illegal environment type

1098 SHIN-YA NISHIZAKI

A substitution preserves the validity of a type judgement:

Proposition 5.3. Let 6 be a substitution. If E\-M:A, then E0\-M:Ae.

Proof. This proposition is proved straight-forwardly by structural
induction on E\-M:A. q.e.d.

Definition 5.4 [Principal Typing]. Let E be an environment type, M
a term, and A a type such that EhM:A. The typing E\-M:A is called principal
if there exists a substitution 9 such that Ee = Ef and Ae = Af for any environment
type E and any type A such that E'\-M:A'. •

In the definition of the usual principal typing, we compare a typing
E\-M:A with E'\-M\A', after restricting E' on dom(E) since we cannot change
the number of the entries in E by any substitution. However, this is not
necessary in our calculus, because we can add entries by substitution. For
example, consider two typings p\-kx.x: a -* a and {y: f$}p'\-kx.x: a -> a. Here,
it holds that P

0 = {y:p}p' by 0 = [p\->{y:p}pr].

Definition 5.5 [Restriction and Extension]. Let i^ be a set of (environ-
ment) type variables and 0 a substitution.

A restriction 9\^ on f of 0 is a substitution which is same as 0 except
that it acts identically on i^.

T is an extension of 9, or 0 is extended to t, if 9 = T\dom(oy •

§5.3. Unification on types

In this section, we introduce a unification algorithm which computes a most
general unifier for a set of type equations. This algorithm is originally developed
by Mitchell Wand for record types. This algorithm has an error, however,
Jategaonkar and Mitchell corrected it later.

We start with definitions of basic notions:

Definition 5.6 [Unifier]. A unifier 9 of type A and B is a substitution
such that A0 = B0.

A set $ of unordered pairs of types will be called a set of type equations^

often written A ^= B for types A and B. A set of substitutions which unify every

pair in $ is written as

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1099

Definition 5.7 [Generality of Unifier and Most General Unifier]. Let
9 and T be unifiers of type A and B. We say that 9 is more general
than T if there exists a substitution T' such that T = 9t '.

A unifier 9 of type A and B is called the most general unifier, or ragw, if
9 is more general than any unifier of A and B. •

Notation 5.8. We abbreviate ^ : 1 : y 4 1 -

~-9A'p=A'p to Ap^A'p, and {xls •",*,} to {x^}. •

In advance of definition of the unification transformation, we prepare a
fundamental notion for it, which specifies a successful case of normal forms
of this transformation.

Definition 5.9 [Solved Type-equation]. A type equation a ±A (or p ^= E)

is called solved in a set of $ of type equations, if a (or p, resp.) does not occur
anywhere else in & . This a (or p resp.) is called solved variable. 8 is called
solved if all its pairs are solved.

If 8 is solved, it is clear that S has a form:

where a1 , - -- ,am ,p1 , - -- ,pm are distinct with each other and any o^ and PJ does
not occur anywhere else except themselves.

Therefore, we make the following substitution from g\

We identify this substitution to S itself. B

Definition 5.10 [Unification Transformer]. Next, we define a transfor-
mation (<y,TH=>(<r,T^') which maps each pair of a set g of type equations
and a set if of variables occurring in <f , to a pair of g' and if' of the same
kind respectively, as follows:

TrTvarTvar (<fu{a^a}, if)

1100 SHIN-YA NISHIZAKI

TrTvarType

where a ̂ A is not solved in $ u (a ̂ A], and a £ftv(A).

TrFunFun (gv{A ^B±C-+D], f)

^>(gv{A±C,B±D}, -T}

TrEvarEvar (<?u{p=ip}, "T)

=*(<?, -T)

TrEvarEtype

where p^E is not solved in

[/ji->.Zr] is a valid substitution, and p£ftv(E)

Tr Etype Etypel (S u {{xp:Ap}p^{xp:A'p}p},

Tr Etype Etype2 (<f u {{xp: Ap} {yq: Bq}p = {xp: A'p} (zr: Cr}p'}, "T)

where p¥^p', p"^^,

P Var(p") = P Var(p)vP Var(p'\

P Var(p) n {^} = 0, P Var(p') n {Yq} = 0,

Vk(p jftv(Bk))\IMj(P' JMCjf), and

0 = [p (-. {zr : C/"'"5^5""1}/?" '̂ ̂ {yq : ̂ ^K^p'ijp"]

It is evident that V includes every variable occurring in $' in any

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1101

The following rules are special instances of Tr Tvar Type and Tr Evar Etype,
respectively:

Tr Tvar Tvar Coalesce (g u {a ̂ Jg}, TT)

=>((?[«"flu{a=M}, TT)

where a,/?e/b((f) and a^/?,

Tr Evar Evar Coalesce (<Tu{pip'}, iT)

=>(^^'3u{pip'}, TT)

where p,p'e/fv((f) and p^p'.

In transformation Tr Etype Etype2, the readers should be note that the
existence of p" is guaranteed by the condition that a set P Var~1({xl,-"9xn})
is infinitely many for a given {jcl9 • • -9xn}, in other words, we can get a fresh p".

The last rule Tr Etype Etype2 seems to be complicated and unnatural,
however the following lemma reveals the secret of its complication.

Lemma 5.11. Let a rule Tr Etype EtypeO be

r u {{xp: Ap} {yq :Bq}p^ {xp: A'p} [zr: Cr}p'},

• (g u {A^A'ppl [z,: Cr}p\p' ± [yq: Bq}p"},

<") = PVar(p)uPVar(p').

Tr Etype Etypel

then

TV Etype EtypeQ Tr Evar Etype

Proof. Let (g^^) be

: ̂ p} {yq: J?> ^ {xp: A'p] {zr:

1102 SHIN-YA NISHIZAKI

satisfying the side condition of Tr Etype Etype2.
We can apply Tr Etype EtypeO to (^1,̂ 1) because the side condition of

Tr Etype Etype2 includes the one of Tr Etype EtypeO. The result is as follows:

If p = [zr: Cr}p" is not solved in £2* ̂ en this pair is transformed to

±A'°l,p±{zr: Cr}p",p'^{yq:B^}p"}, -fu{p"}\

where 0! = [>i-»{zr:Cr}p"].

Otherwise, p^={zr: Cr}p is solved, then p does not occur anywhere else

except in this pair. Therefore, <f2 = ̂ 3-
Similarly, (<f3,f"3) is transformed to or equivalent to

"» iyij^.p ̂ {zr: C^}p",p' 1 {yq:

where 02 = [,o'^{^:B^V"]-
Noting that Vk(ptftV(Ck)),Vj(p'tftv(Bj)), and Vk(Ptftv(Bk))VVj(p'tftv(Cj»,

we know that

/^02 — f~*Q ariH<Uj, — Vx r , diiu.

Therefore,

(^i> ̂ i) => =* (
Tr Etype EtypeO Tr Evar Etype

and to,^) => (^TTJ. q.e.d.
Tr Etype Etype2

By this lemma, we know that the rule Tr Etype Etype is derived from
Tr Etype EtypeO. The reason why we introduce Tr Etype Etype rather than more
intuitive Tr Etype EtypeO is that length of & does not decreases strictly in
Tr Etype EtypeO but do in Tr Etype Etype. This is shown in Lemma 5.18.

SIMP. TYP. LED. CALC. WITH FIRST-CLASS ENV. 1103

Lemma 5.12. If (S^) => (K2^2\
 then ®(#\) ^ ®W-

Proof. We prove this lemma by the case analysis on =>.
The cases of Tr Tvar Tvar, Tr Tvar Type, Tr Fun Fun, Tr Evar Evar, and

Tr Etype Etypel are easy.
The case of Tr Etype Etype2:

Suppose that

Tr Etype Etypel

By Lemma 5.11, this sequence is decomposed to

(<i,^i) => (SIW ^ (*2,TT2)
Tr Etype EtypeQ Tr Evar Evar

<W(%) 3 *(e?2) holds by the result of the case already proved.
is clear. q.e.d.

The following lemma shows us syntactical characterization of normal
forms in this transformation

Lemma 5.13. If $ is solved or consists of the following type equations,
then any rule cannot be applied'.

« ot^=A where aeftv(A);

p—E, not satisfying the side condition of Tr Evar Etype',

• {xp: Ap} {yq: Bq}p = (xp: A'p}{zr: Cr}p'

where Tr Etype Etypei is not applicable and the side condition of Tr Etype Etype2

is not satisfied.

Proof. It is clear by observation of the definition of unification
transformation. q.e.d.

1104 SHIN-YA NISHIZAKI

Corollary 5.14. Suppose that no rule is applicable to O^^o)- If <^o i§

unifiable then <f0 is solved.

Proof. This is clear, noting that the four cases in the above lemma are
not unifiable. q.e.d.

Lemma 5.15. Let <f0 be solved. Then, <f0, which is regarded as a
substitution, is the most general unifier of $Q.

Proof. It is evident that a substitution <f0 unifies a set (f0 of type
equations. Next, we prove that <^0 is the most general.

Let 9 be a unifier of <f0. Then, it holds that 6 = ̂ 0 by the following
reason: for each type variable a, if a is a solved variable of <f0, then

oce=A9 (because

otherwise, i.e. a is not a solved variable,

a0 = (a^°)0 (because the substitution <f0 maps the a to itself.)

Therefore, for every type variable a, a9 = a(<f °0). Similarly, for every environment
type variable px, pe

x = p(x°e)-
Thus, 6 = ̂ 0. This shows that e^0 is more general than 6 and that ^ is

the most general. q.e.d.

Lemma 5.16 [Soundness]. If (<?,Tn=>(#0»'^o) aw(^ <^o « w/verf,

substitution 4> w a unifier of $.

Proof. By Lemma 5.12, it holds that ^(<f) 2 *(^>). And by Lemma 5.15,
<f0). Hence, ^06^(^). q.e.d.

Definition 5.17 [Length of a Set of Type Equations]. A length for a

set {y41i^1--->4 l l^jB l l} of type equations is defined as

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1105

length({A ! i 2?, - 4, i Bn}) = length(A t) • length(BJ +•••+ length(An) • length(Bn),

especially,
length(9) = Q. •

Lemma 5.18 ^Terminating Property of Unification Transformation]. The
transformation is noetherian: there is no infinite sequence like

for any $ and any 1^ .

Proof. Consider the dictionary ordering on pairs like

^number of unsolved variables, lengthffiy.

Then, in each rule of the transformation: ($,i^)=>($',y\ $ is strictly smaller
than $ ', therefore, the sequence of the transformation must terminate, q.e.d.

We should note that the length does not decrease for Tr Etype EtypeQ
while it decrease for Tr Etype Etypel. This is the reason why we adopt
Tr Etype Etypel as a rule instead of Tr Etype EtypeQ.

Lemma 5.19. Suppose that (<r1,-rl)=>(<f2,ir2). If ^e^^) satisfies
dom(6l) <= T^i, then there exists an extension 62 of Ol which unifies $2

 and
satisfies dom(62) £= i^2.

Before starting the proof, we make a comment to this lemma: for the
usual unification transformation for first-order terms, more simple statement
holds:

if 06^0^) then 0e^(<f2), that is, ^(^) c ^(<f2).

The reason why this statement does not hold is that the unification
transformation studied here may introduce fresh variables. The difference of
this lemma to the above statement is due to this point. The reason why
61e^(S>

2) does not hold is that <f2
 may include fresh type variables during

the transformation. For example, consider

1106 SHIN-YA NISHIZAKI

: «}p{jc) ̂ (y: P}pf
(y}}9 {a,frp{x},p'(y}})

{P{X} ^ {y '• P}p"[X,y}>P{y} - {* ' x}P'\X.y}}>

A substitution

unifies &± but does not S2.

Proof. We will prove this lemma by case analysis on the transformation.
In the cases of TrTvarTvar, TrTvarType, Tr Fun Fun, TrEvarEvar, and

TrEvar Etype, 62 is actually 6i itself and the proof is easy.
The case of Tr Etype Etype is more complicated than the other cases since

a fresh variable is introduced in this step:
Suppose that

:Ap} {yq : Bq}p ± {xp : A',} {zr : Cr}p'}

Tr Etype Etype2

and

dom(9l) c 1T^.

We next try to construct 02e^(^2) satisfying 01=62\dom(dl), from
Since 0l

From the second equation, both of (yq\B
e
q

l}(pei) and {zr: Cr
01}(p'01) have

the same form

where E is an environment type.
Let 02 = 01[p'W-»£]. noticing that p\^4do

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1107

Here, remind that

is decomposed to

by Lemma 5.11. It is now clear that 62 e ̂ (^3) and 6^ = 02\dom(6l) by observation
of the definition of Tr Etype EtypeQ. 02eW(g>

4) and therefore 02e^r(<f2) are
derived from the former case of this proof.

Hence, we know that 62 is an extension of 91 (from 92E%($2) and
n _ n I \
^1 — U2\dom(ei))'

The rest of the proof, dom(62) <= i^2, is evident since dom(02) = dom(61)

v {p"xvx-} and TT2 = ̂ u {pn
x^x}. q-e.d.

Theorem 5.20 [Completeness of Unification]. If there exists a unifier 6
satisfying dom(6) c iT, then any sequence of unification transformation,

eventually terminates in (c^^o) where ^0 is solved. And in this case, <f0|^ is
more general than any unifier 9 of $ satisfying dom(6) c if,

Proof. Termination of the transformation is proved in Lemma 5.18.
Next, let us prove that ^0 is solved: By Lemma 5.19, we can extend 0

to a unifier & of ff such that 0 = 6'\dom(0Y ^ can not be transformed any more.
By Corollary 5.14, <?0 is solved.

Finally, we will show that a unifier made from <f0|r is more general than
any 9 of £ satisfying dom(9) c y\ By Lemma 5.19, there exists a unifier 6'
such that 0 = 0'\dom(ey

Junify Junify

n Lemma5.19 Lemma5.19 n0 _ > . . . _ > ^ '

Since substitution <?0 is the most general unifier of <f0 by Lemma 5.13, there
exists a unifier T such that 0' = <f0T. By the definition of 0',

1108 SHIN-YA NISHIZAKI

q.e.d.

§5,4. Type Inference Algorithm

In this section, we present a type inference algorithm which finds the
principal type for a given term. The algorithm consists of two parts: one is
the unification algorithm and the other the transformation which generates a
set of equations from an ordered sequence of "type judgements" which should
hold after some suitable substitution. More accurately, the algorithm receives
an ordered sequence / of triples of an environment type, a term, and a type,
and returns a set g of type equations. And if there exists the most general
unifier 0 for g, then each entry (E9M,A) in the sequence / becomes a valid
type judgement E?\-M:Ae by applying the substitution 6 to the set /. In the
following of this paper, we will call the triple (E,M9A) a typing candidate:

Definition 5.21 [Typing Candidate: E\>M:A], Let E be an environ-
ment type, M a term, and A a type. A typing candidate E\>M: A is a triple of E,
M, and A. •

Definition 5.22 [Equation Extractor: (/, f")^, 1 '̂)]. We define induc-
tively a transformation, called an equation extractor,

which maps each pair (/9Y) of an ordered sequence / of typing candidates
and a set V of (environment) type variables, to a pair (S,i^'} of a set g of
type equations and a set Y' of (environment) type variables, by the following
rules:

—Eq Ex Empty
(Empty Sequence,

where Empty Sequence is the empty sequence.

-EqExVar

-Eq Ex Lam
((E\>lx.M:

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1109

,1 , , , AJba t,x ADD

-EqExId

et,q Lx Lxtn

Eq Ex Comp

Lemma 5.23 [Decidability of Equation Extractor]. Given an ordered

sequence / of typing candidates and a set i^ of (environment) type variables
occurring in /, then we can find a finite set $ of type equations and a set f '
of type variables and environment type variables such that (/,

Proof. It is proved straight-forwardly by induction on length(/} of a
sequence / of type candidates, noting that the following assertion holds:

((E\>M\A)':./^)^(g'^') is determined only by the shape of M.

q.e.d.

length(/) is defined as follows:

Definition 5.24 [Length of /: length(/)~]. For each finite ordered-
sequence / of typing candidates, length(/) is defined inductively as

length(Empty Sequence) = 0;

length((E\> M:A)::/) = length(M) + length(/). •

Lemma 5.25. Let / be a finite ordered sequence of typing candidates,
V and i^' sets of type variables and environment type variables, $ a finite set

of type equations, satisfying (/,Y~)\^($,y'\

If there exists a unifier 0 for g, then ff\-M : Ae holds for each E\>M:

1110 SHIN-YA NISHIZAKI

Proof. The proof is straight-forward if we use structural induction on
derivation tree of equation extractor (— ,—)4>(— , —). q.e.d.

We next obtain a type inference algorithm from the preceding lemmas:

Definition 5.26 [Type Inference Algorithm: Typelnfer].

Input: a term M.

Step 1: introduce an environment type variable p and a type variable a;

Step 2: find $ and V satisfying

((p>M : a) :: Empty Sequence, {p a}) (g, V\
V V

Step 3: apply the unification transformation to (g,i^) as many as
possible:

Step 4: if gQ is solved then output //° and af° else halt with failure.

Theorem 5.27 [Soundness of Typelnfer}. Type inference algorithm
Typelnfer terminates, and if it succeeds, then p*0\-M:<x?° holds for outputs p*°
and a*°.

Proof. The former assertion, the termination of this algorithm, is derived
by the decidability of equation extractor (— ,— H>(— ,—) (Lemma 5.23) and the
termination of unification transformation (Lemma 5.18).

And, the second assertion, pe\-M: of, is derived from Lemma 5.25 and 5.16.0
q.e.d.

Lemma 5.28. Suppose that (/, ^KK<f, ̂) and V includes every type
variable and every environment type variable occurring in a sequence / of typing
candidates.

If we are given a substitution 6 such that, dom(9) <= i/" and Ee\-M:Ae for
each typing candidate E^>M:A in /, then we can find an extension 6' of 9
which unifies $ and satisfies dom(6') c i^'.

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1111

Proof. This is proved by structural induction on a derivation tree of type
extractor. We here show the case of rule EqExComp: Suppose that

j7
Eq Ex Comp,

and there exists a substitution 9 such that all typing candidates in
Et>MoN:A::/ holds by 0 and dom(0) c <T.

Ee\-N:E' and E'\-M:Ae hold since E0hMoN:Ae. We can extend 0 to 0'
by appending a new correspondence [p H-> £"]. Then, (El>N: p) :: (p>M: >4) :: ,/
holds by 0'. And, rfom(0') = i^u{p}. Therefore, by the induction hypothesis,
there exists an extension 0" of 0' which unifies $ and dom(0") c f ' q.e.d.

Theorem 5.29 [Completeness of Type Infer and Principal Type~\. If a
term is typed then the type inference algorithm always succeeds and gives a principal
type.

Proof. First, we will prove that the type inference algorithm terminates
successfully.

Suppose that a term M is typed with E\-M:A and ((p >M:a)::
Empty Sequence, {p ,a})O((f,f). Let a substitution 0 be [pi-»/s,ai— »^4]. Then by
Lemma 5.28, there exists an extension 0f of 0 which unifies $:

((pp> Af : a) :: Empty Sequence,
| unify | unify
(9 -> 0'

extend
by Lemma 5.28

By Lemma 5.19, the successive application of the unification transformation
terminates in a solved form, hence, the type inference algorithm succeeds.

Next, we will present the principal typing property. Suppose that M is
typed as E\-M:A. Let 0 = [p \-* E,x\-* A~], then by Lemma 5.28, we know
that 0 is extended to 0f which unifies g and satisfies dom(0f) c ir. Note the
former part of this proof:

: a},{p .a

1112 SHIN-YA NISHIZAKI

existing a solved SQ.

By Lemma 5.20, 4)Lm«n is more general than 0', i.e. there exists B" such that

Since 6' is an extension of 0,

0 = ®

From these two, it follows that

0 = ($0\d

for some substitution 0'". Therefore,

E=f)9= n(S°\doF0 Fo

and

This shows us that p^°\-M:^° is principal. q.e8de

Last, we present an overview of the above proof as follows:

tholds

= [p0^^ a -+ ,4] - > 0' unify
extend

restrict

restrict

§5.5. Examples

We present examples of the type inference algorithm introduced in the

former section. The examples showing in this section are generated by the

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1113

prototype implemented on programming language Prolog.
We start with the simplest example, the typing of term id. The following

type equation is extracted from typing candidate ppt>id:aa:

This unification problem is solvable and we get the solution as

As a result, we obtain typing pp\-id\pp.
Next, we try the more complex case of term f(x ° env)(y ° env\ which

corresponds to Scheme's program (f(eval 'x env)(eval 'y env)). The type
equations extracted from typing candidate ppt> f(x°env)(y°env).\%a is

This set of type equations is solved by the following unifier:

P9t->{env:{x:<*2}{y:xi}p12}pll

1114 SHIN-YA NISHIZAKI

Consequently, we get the principal typing

: afl

Last, the following example is a variant of the Scheme program in the
introduction.

(U-inf-space.Ulspace.U2space.id)

((A,norm.id)(Ax.max(abs(car x))(abs(cdr x))))

((Anorm.id)(A,x.plus(abs(car x))(abs(car x))))

((^norm.id)(lx.sqrt(plus(expt(car x)two)(expt(cdr x)two))))

Its corresponding Scheme's program:

(let ((l-inf-space

(let ((norm (lambda (x)(max (abs(car x))(abs(cdr x))))))

(the-environment)))

(llspace

(let ((norm (lambda (x)(+ (abs(car x)) (abs(cdr x))))))

(the-environment)))

(llspace

(let ((norm

(lambda (x)(sqrt (+ (expt (car x) 2)(expt (cdr x) 2))))))

(t he-en vlronment))))

(the-environment))

We can use here primitives (e.g. max or cdr) by replacing them
with variables. Then, we obtain the typing in the followings.

{max : a38 -» a38 -> a14}{afo : a44 -> a38}

{car : a45 -> a44}{crfr : a45 -> a44}

{plus : a38 -> a38 -> <*37}{sqrt : a37 -^ a36}{expr : a44 -> a43 -^ a38}

h

(U-inf-spaceM\space.U2space.id)

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1115

((knorm.id)(kx.max(abs(car x))(abs(cdr x))))

((Anorm.id)(Ax.plus(abs(car x))(abs(cdr x))))

((Xnorm.id)(Ax.sqrt(plus(expt(car x)two)(expt(cdr x)two))))

{Hspace : {norm : oc45 -> a36}

{max : a38 -» a38 -> ct14}{abs : a44 -> a38}

{car : oc45 -> a44} {cdr : a45 -> a44}

{/?te : a38 -> a38 -> a37}{j0rf : a37 -> a36}{ex^ : a44 -^ a43 -> a38}

^93}

: {norm : a45 -> a37}

38 -> a38 -> a14}{afo:a44 -» a38}

: a45 -> a44}{crfr : a45 -> a44}

:a38 -^ a38 -> a37}{^rr:a37 -> a36}{^/?r:a44 -> a43 -> a38}

{l-inf-space : {norm : a45 -> a14}

{max : a38 -^ a38 -^ a14}{flfo : a44 -> a38}

{car : a45 -> a44}{cdr : a45 -»• a44}

{/7/W5- : a38 -> a38 -> a37}{^rf : a37 -» a36}{ex^ : a44 -* a43 -> a38}

;: a38 -> a38 -» a14}{afo: a44 -» a38}

{car: a45 -» %44}{cdr: a45 -» a44}

{/7/Mj:a38 -> a38 -> a37}{^r^:a37 —> a36}{ex/7^:a44 -> a43 -» a38}

If we assume that

max:int -> mr -* m£

afe \int -^ int

car', int List —> z«f

cdr: int List-> int

plus\int-+ int -> r«r

1116 SHIN-YA NISHIZAKI

sqrt :int -* real

expt : int -> int -» int

two : int,

then the former typing can be read as

{max : int — * int -> ini]{abs : int -»• wif}

{car : int List -* int}{cdr : int List -> /«*}

{/?/H5 : wif -> wf -> int} {sqrt : m£ -* real} {expt : w£ -» z>i£ -» w

{^wc? : int}p93

\-

(U-inf-space.Ulspace.U2space.id)

((hnorm.id)(kx.max(abs(car x))(abs(cdr x))))

((knorm.id)(kx.plus(abs(car x))(abs(cdr x))))

((knorm.id)(lx.sqrt(plus(expt(car x)two)(expt(cdr x)two))))

: {I2space : {norm : int List -> rea/}

{max : int -> iwf -> /wf}{afo : m? -* int}

{car : iwf Lis^ ->• int}{cdr : int List -» m^}

f : m? -> real} {expt : int

{llspace : {norm : int List —> int}

{max : int -> int -> int}{abs : int -* m?}

{car : /nf Lis^ -* int}{cdr : int List -» zwf}

{/?/M^ : //i / -> 7/if -* int} {sqrt : int -* real} {expt : int ->•

{rwo : wf }

^93}

{l-inf-space : {worm : 7«f Lw/ -> /w/}

(mfljc : /w^ -» 7«^ -> int}{abs : int -> /«/}

{car : mr Lwf -* int}{cdr : iwf Lw^ -* m^}

{/7/wj1 : int -> int -> int} {sqrt : int -> real} {expt : int

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1117

{two:int}p93>}

{max: int -> int -> int}{abs: int -> int}

{car: int List -> int}{cdr: int List -> int}

{plus: int -»int -»int}{sqrt: int -»rea/}{^x/?^: /«/ -> int -> /«£}

{£H>0: int}p93

§ 6. Conclusion

We proposed a simply typed lambda calculus ^nv with first-class
environments, where we adopt the idea of explicit substitution: the formal
treatment of environments with substitutions. The integration of the terms
and the environments gives us first-class environments. We then showed several
fundamental properties of this calculus: subject reduction property, confluence,
and strong normalizability with respect to weak reduction. Moreover, we
developed a type inference algorithm which gives us principal typing.

§7. Related Works and Future Studies

§7.1. Aa-calculus and Categorical Combinator
^nv and A<7-calculus seem to be similar to each other, since Aor-calculus is the

origin of ^nv. On the other hand, the integration of terms and substitutions
distinguishes ^nv from Aa-calculus. Although we obtain first-class environments
due to such an integration, alternatively, we lose the nameless transformation:
it is possible to transform a term with names to a nameless one in lambda
calculus and in Aa-calculus even if the term is untyped, but in our calculus,
it is impossible. Consider a term henv.(x°env): An environment where variable
x is bound, is passes to this term as an argument and then the binded value
to the variable x in the passed environment, is returned. The de Bruijn index
is the "address" of the binding of x in the environment given as the
argument. We can know what bindings are located in the environment, only
at execution time, and therefore, it is impossible to know statically the de
Bruijn index of x. Our ^nv is neither superior nor inferior to Acr-calculus: these
are only different.

In spite of such a difference, some properties in Atr-calculus also hold in
^nv. Readers can find the similarity of the confluence proof between ^nv

and Acr-calculus, if they read [6]. The reason may be that Aa-calculus has
its origin in categorical combinatorial logic [5], where environments and terms

1118 SHIN-YA NISHIZAKI

are uniformly treated and as a result, there implicitly exists first-class
environments. Therefore, some properties of categorical combinatorial logic
still remain in Acr-calculus and also in h^nv.

§7.2. Record Calculi

Lambda calculi with records, so-called record calculi, is studied by many
researchers in order to enable us object-oriented programming in functional

programming paradigm ([15], [10], [14], [13], [11]). Records and environ-
ments resemble each other in their structure: both of them are assignments
which associate each name with a value. However, we should note the
difference between them. Names used in records, called labels, are only for
records. In contrast, names in environments, i.e. variables, do not only occur
in environments but also in lambda abstraction.

The proof of strong normalizability gives a view of the relation between
them. We proved the strong normalizability by interpretation of)^nv to
Record- Variables are not translated to variables but to labels of records, and
environments to records. Primitive id receives a record which is an
interpretation of an environment, and returns it without any change:

\id*(Env) = Env.

In the computation of primitive M°N, term N is first computed and a record
is obtained as a result, then M is evaluated under the record which denoted
an environment:

Therefore, we can say that

9 records are reified data of environments, and

» primitives id and (—) ° (—) accomplish the reification and reflection of
environments, respectively.

Many fruitful results in record calculus will be applicable to our calculus.
The unification on environment type is also a topic related to this

correspondence. It is shown in the former section that the unification algorithm
developed in record calculi play an important role also in our type inference
algorithm. And, to tell the truth, side conditions in the definition of environment

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1119

types are appended in order to make the unification algorithm work. The
former version of A?nv does not have any environment type variable. These
notions are borrowed from Wand-Jategaonkar-Mitchell's record calculus.
Although we imposed a strong restriction on environment types, we think that
this restriction will be indispensable to ensure the existence of the most general
unifier since the mutual distinction of field's labels is very essential in Wand-
Jategaonkar-Mitchell's unification. Therefore, if we had a unification algorithm
without this restriction on labels, we would obtain the type inference algorithm
without such a restriction.

§7.3. De Bruijn Indexing

We have already made a comment on the nameless transformation, i.e. de
Bruijn indexing, in the previous section. In this section, we would like to
continue discussing de Bruijn indexing of ^nv.

The method of de Bruijn indexing is convenient for formalizing lambda
calculus on a proof checker because we can avoid the treatment of a-equivalence
by using this indexing. In Categorical Abstract Machine (CAM), this method
plays an important role in compiling variable reference operation. In the
usual lambda calculi (and Acr-calculus), we can transform terms with names
to nameless ones, even if they are untyped. (Note that all untyped terms are
"typable" under universal typing: all terms have unique one type U and
U=U-+U.) As widely known, a type inference tree includes information on
de Bruijn indexing (cf. Section 3 in [9]):

2 1
Lambda Term with Names: Nameless Lambda Term

(with de Bruijn index):

1120 SHIN-YA NISHIZAKI

-1
X

~Appx:uJ:a- _,
App

f:a -> a ->• a h kx.fxx\u -> a
X

Type Inference Tree

This relation holds if we suppose that variable-type pairs in the left side of
h cannot not be permuted each other. However, variable-type pairs in
environment types in l^nv

 are commutative, therefore, we cannot extract a
nameless term from a type inference tree as usual: consider the following example

Subterm (Xx.Xy.id) is typed as a -»/?-»{>>: /?}{jt:a}p and subterm (ly.Ax.id) is
typed as /?' -> a' -> {:*: : a'} {y: /?'}/?. Without the commutativity between j : /? and
x : a or between x : a7 and jy : /?', we cannot unify these two types and therefore,
this term is not typable.

Our problem seems to be related to the record compilation method [13]
from the viewpoint in Section 7.2.

Acknowledgements

The author wishes to thank his friend, his colleagues, his parents, and
his co-supervisors: Prof. Satoru Takasu and Prof. Masami Hagiya. Thanks
are due also to Prof. Pierre-Louis Curien, Prof. Atsushi Ohori, and the referee
for discussions, comments, and pointing out of errors in the draft.

References

[1] MIT Scheme Reference Manual, MIT.
[2] Abelson, H. and Sussman, G.J., Structure and Interpretation of Computer Programs, The

MIT Press, 1985.
[3] Curien, P-L., An abstract framework for environment machines, Theoretical Computer

Science, 82 (1991), 389-402.
[4] , Categorical combinators, Information and Control, 69 (1986), 188-254.
[5] , Categorical combinators, sequential algorithms, and functional programming,

Birkhauser, second edition, 1993.

SIMP. TYP. LBD. CALC. WITH FIRST-CLASS ENV. 1121

[6] Curien, P-L., Hardin, T. and Levy, J-J., Confluence Properties of Weak and Strong Calculi
of Explicit Substitutions, Rapports de Recherche 1617, INRIA, February 1992.

[7] Girard, J-Y., Taylor, P. and Lafont, Y., Proofs and Types, Cambridge Tracts in
Compu. Sci., 1, Cambridge University Press, 1989.

[8] Griffin, T.G., A formulae-as-types notion of control, Conference Record of the Seventeenth
Annual ACM Symposium on Principles of Programming Languages, 1990.

[9] Gunter, C.A., Semantics of programming languages', structures and techniques, The MIT
Press, 1992.

[10] Jategaonkar, L.A. and Mitchell, J.C., ML with extended pattern matching and subtypes,
Proceedings of the 1988 Conference on LISP and Functional Programming, (1988), 198-211.

£li] 5 Type inference with extended pattern matching and subtypes, Fundamenta
Informaticae, 19 (1993), 127-166.

[12] Abadi, M., Cardelli, L., Curien, P-L. and Levy, J-J., Explicit substitutions, Proceedings of
the Seventeenth Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, San Francisco, California, January 1990.

[13] Ohori, A., A compilation method for ML-style polymorphic record calculi, Conference
Record of the Nineteenth Annual ACM Symposium on Principles of Programming Languages,
(1992), 154-165.

[14] Remy, D., Typechecking records and variants in a natural extention of ML, Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages,
(1989), 60-67.

[15] Wand, M., Complete type inference for simple objects, Proceedings of the Second Annual
IEEE Symposium on Logic in Computer Science, (1987), 37-44.

