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On Unbounded Positive *-Representations
on Fréchet-Domains

By

Wolf-Dieter HEINRICHS*

Abstract

Let D be a Fréchet-domain from Op*-algebra, abbreviated F-domain. The present paper
is concerned with the study of positive *-representations of L*(D), of the Calkin representation
of L*(D) and of bounded sets in ultrapower Dy. For this the density property plays an important
role. It was introduced by S. Heinrich for locally convex spaces in [2].

In the paper [3] we gave several characterizations of the density property of an F-domain
D. In this work we give a characterizations of continuity of positive *-representations and Calkin
representation of L*(D) by the density property of D. This generalizes the well-known result
due to K. Schmiidgen, see [12]. Further we describe bounded subsets in ultrapower Dy. If D
has the density property, then every bounded set M = D, has a simple structure: For each bounded
set M < Dy, there exists a bounded set N = D with M <'Ny. S. Heinrich proved an analogous
result for bounded ultrapowers on locally convex spaces.
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§1. Preliminaries

Throughout the paper, D denotes a dense linear subspace of a Hilbert
space H. We denote the norm, unit ball, and the scalar product of H by |||,
Uy and (-, respectively. For a closable linear operator T on H, let T, D(T)
and ||T| denote the closure, domain, and the norm of T (provided the later
exists), respectively. The set of linear operators

L*(D):={T€End(D): D = D(T* and T*D) < D}
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is the maximal Op*-algebra on the domain D with the involution
T*:=T*p The domain D will be endowed with the weakest locally convex
topology such that D3¢+ |Te| are continuous seminorms for all Te L*(D).
This topology is called the graph topology :. Throughout this paper, we
assume that D is a Fréchet space. In this case we say that D is an
F-domain. These assumptions imply that there exists a sequence (4,) in L*(D)
such that the following conditions are satisfied, see [5]:

1. The topology of D is generated by the sequence of seminorms (|| 4, |),
ie. for each TeL*(D) there exists ke N such that |To| <|A4,| for
all peD.

2. Ay=Ip, A=A, L, A;¢> <P, 4+ 19> and |Ai@] <[ 4y+ 0] for all
@eD.

Throughout this paper, we fix a sequence (4,) = L*(D) for each F-domain D
such that conditions 1. and 2. are satisfied.
Let us now define a sequence of scalar products of D by

o, ¥ ={Ap, Ay  for all p,yeD;leN

and let D, denote the unitary space (D,{:,),). The Hilbert norm of D, is
lel,:=l4,¢| and the completion of D, is the Hilbert space H,:=D(A4;). Remark
that D, =D and H,=H are valid.

Let us consider the locally convex topology on D, generated by
the sequence of seminorms ([A4,']|). Since for all keN there exists
I e N such that

lAwpli= 44wl <[4yl for all peD,

it follows that this topology coincides with the graph topology 7, i.e. D and
D, coincide as locally convex spaces. In general, 4, ¢ L*(D)), however (4,) is
an operator family in the sense of [13] (this is used in Proposition 1.1). An
operator Te L*(D) is called Fhermitian if (¢, TY),=<{To,y), for all p,yeD
and an /-hermitian operator T is called positive if (¢, Tp),>0. In this case
we write 7> 0.

If E and F are locally convex spaces, we denote by L(E,F)
the linear space of all continuous linear operators mapping E into F. Let
leN. We define
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%(H,,D):={Te LD, D): There is Se £(H, D) such that
To=Se¢ for all peD}.

The following proposition is valid, see [13], Theorem 2.4.1.

Proposition 1.1. Let IeN. If M <= D is a bounded set, then there exists
Be%(H,, D)) such that B> 0 and M < B(Uy).

The algebra L*(D,) will be endowed with the topology t, of uniform
convergence on bounded sets. This topology is generated by the system of
seminorms

qs(T)=||BTB|, Be%(H,D) with 0<B
or for an arbitrary fixed /e /N by the system of seminorms
qp(T)=||BTB|,, Be%(H,D) with 0<,B.

Given Be%(H,D) with 0<,B, we can define the positive operator
T:=B2+D""Y, We set y:=TgeH, for a peD, this implies =By +y.
Since p e D and B*y e D, we get ye D and Te L* (D). It follows from BTB<,I
that consequently g (T)<1.

Proposition 1.2. Suppose that D is an F-domain and [e N. Then
pi:LT(D)> T+ A}Te L™ (D)

is a continuous mapping.

Proof. Let SeL™(D)) be an [-hermitian operator. We have

(@, ALSY> =L@, Y1 =S,y 1= A} S, >

for all ,yeD. This implies (42S)* =A?S and A?SeL*(D). Since each
element TeL*(D) can be expressed through the form T=S§,+iS, with
S,,S,eL*(D) and [-hermitian, it follows that the above mapping makes
sense. It is well-known that Be%(H, D) and 0<B implies BA? € 4(H,D). It
follows that p, is a continuous mapping. <
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§2. The Density Property of an F-Domain D

The density property, abbreviation (DP), was introduced by S. Heinrich
in [2]. A lot of topological properties of the algebra L*(D) are characterized
by the (DP) of the domain D. These relationships were established in [3]
and we will repeat here some results. We start with the definition of the (DP)
for metrizable locally convex spaces.

Definition 2.1. Let £ denote a metrizable locally convex space, (Up)n
a countable base of closed absolutely convex 0O-neighbourhoods in E, and #
the system of all bounded subsets of E. Then E has the density property if
following holds:

Given a positive sequence (4,) and an ne N, there exist noe N and Me#
such that

() Ui < U, + M.

k=1

Now we give a characterization of the (DP) for F-domains D by partial
order properties of the Op*-algebra L*(D).

Theorem 2.2. ([3]). For an F-domain D, the following assertions are
equivalent.

1. D has the (DP).

2. Given a positive sequence () and an neN, there exist noe N and
Be¥(H,, D) with B>,0 such that

no
AU+B)< Y A Ay
k=1

3. Given a positive sequence (1) and an neN, there exist noe N and
Pe%(H,, D) such that P is an orthogonal projection in the Hilbert space
H, and

no
AXI-P) < Y A A,
k=1
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We denote by 1, the finest locally convex topology on L*(D) for which
the positive cone L*(D), :={TeL*(D):T>0} is normal. The topology t, is
called normal topology. Since L*(D), is t,-normal cone, we have 1, < 1,

Theorem 2.3. ([3]). For an F-domain D, the following assertions are
equivalent:

1. D has the (DP).
2. L*(D) has the normal topology, ie. t,=1,.

Commutatively dominated F-domains are of the form

[ee]

D= () D(h(T)),

k=1

where T is a self-adjoint operator on a Hilbert space H and (k) is a sequence
of real measurable functions on the spectrum (7)) of T such that

1=h(t) and Bt <h ()  ae.

for each ke N, see [8] Proposition 3.2.

Definition 2.4. We say that the functions (4,) fulfill the condition (*), if for
each positive sequence (4,) there is an ne N such that all functions (k) are
essentially bounded on

M, ={teo(T):hy(t) <Ay, h(H) <A}

Proposition 2.5. ([3]). Let D be a commutatively dominated F-domain.
Then we have the assertion:
D has the (DP) if and only if (h) fulfill the condition (¥).

The domain S(R") of tempered test functions has the (DP). One can find an
example which does not fulfill the condition (*) (and has not the (DP)) in
[11]. We will give a new example which does not fulfill the condition (*). The
example was constructed by K.-D. Kursten in [6] for the realization of the
Heisenberg algebra for systems in infinitely many degrees of freedom.

Example. Let A:={(n)2,:n;e NU{0}} be an uncountable index set and
let y: A - [0,1] be a bijection. Furthermore let H be a (non-separable) Hilbert
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space with an orthonormal basis {p,:7€[0,1]}. We define by T, :=t¢p, a
continuous, self-adjoint operator on H with spectrum [0,1]. Using real
measurable functions

) :=<1 n Zk:nj>k with (n):= ")
i=1

we obtain the F-domain D:= () D(h(T)). Suppose the functions (h,) fulfill the
k=1

condition (*¥). We set A,:=1 for all ke N. By assumption there exists an ne N
such that all functions (4,) are bounded on

N:={te[0,1]:h() <1, h(H)<1}.
We set

t1:=X((O,“',O, l ,Oa"'))
T m+1)

with /e N. If k<n, then we have Ift)=1 for all [eN, ie. t,eN for all
leN. Since h,,(t)=(1+1)""1, it follows that A, , is unbounded on N. This
contradiction implies that (k) does not fulfill the condition (*).

§3. Positive *-Representations of L* (D)

If D has (DP), then t,=t, is valid on L*(D) and each positive
*.representation on L¥(D) is continuous. In this section we will prove that
if 1,#1, on L*(D), then there is a non-continuous positive *-representation
of L*(D). A similar assertion is true for a faithful *-representation of the
generalized Calkin algebra of L*(D).

Let D, D, be domains. By a *-representation w of L*(D) on D, we mean
a *-homomorphism of L*(D) in L*(D,) satisfying w(ldp)=1Idp,. The domain
D, will be endowed with the graph topology of the Op*-algebra w(L*(D)),
i.e. the weakest locally convex topology such that D3 ¢+ || Te| are continuous
seminorms for all Te w(L*(D)). The algebra w(L* (D)) will also be endowed with
the topology of uniform convergence on bounded sets of D,. The representation
o is called weakly continuous if for each ¢ € D, the linear functional {w()¢p, @)
is continuous on L*(D). We say w is continuous, if  is a continuous mapping
of L*(D) onto w(L*(D)). The representation w is positive, if 0<T implies
0<o(T).
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In order to define *-representations of the Calkin algebra of L*(D), we
consider an F-domain D, a free ultrafilter X on /V and the following linear spaces:

D, :={(p)eD": (¢;) is bounded},
D, ={(p)eD": (p;) is o(D,D’)-0-sequence},

Dy=Dy /Ky  Dy=Dy/(DynKy).

The elements from Dy will be denoted by (¢;)y or f and the elements from Dy
will be denoted by (), or £ The domains D, and D, will be endowed with
the topologies which are generated by the seminorms

ﬁk(((;i)u) 3=]ilfln||Ak(Pi” and p((@y) = 1iglllAk§0,-ll,

respectively. The space Dy is called (ordinary) ultrapower of D. On Dy and
D, we can define scalar products by

<((Ei)u, (‘pz)u> = H{P(‘Pia v and

L@ Wiy = li‘fxn<‘Pi> v,

respectively. It is well-known that D, and Dy are F-domains and the graph
topologies ¢ are generated by p, and p,, respectively. See [4], Satz 3.3.1. or
[9], Proposition 3.7. The formula

T edu=T o)y  TeL™(D),  (pJu€Dy

defines a positive *-representation n of L*(D) on D,. The *-representation
7 will be termed (unbounded) Calkin representation. For more details see [10],
[12] or [7]. The kernel ker = is the closed ideal ¥~ of all operators in L*(D)
which map each bounded subset of D into a relatively compact subset of
D. The quotient algebra . :=L*(D)/¥ is called the Calkin algebra of
L*(D). Let ¢ denote the quotient map of algebra L*(D) onto 7. Then
n=o0 o ¢ defines a faithful *-representation o of the *-algebra /. We endow =,
with the quotient topology of L*(D), which is generated by the seminorms
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q5(a):= | n(B)o(a)n(B)| aed, Be¥(H,D) with 0<B,

see [12], Theorem 2.1 or [4], Satz 3.3.5.
Let us now prove some preliminary lemmas.

Lemma 3.1. Suppose that D is an F-domain, ¢, €D and (¢;) weakly
converges to . Then §:=(@)y€ Dy, g:=(0;— @)yc Dy and the equation

g:mT)g)=<&MT)E)—<o,To)

is true for all Te L* (D).

Proof. By definition of D, and D, we get immediately ge D, and
geDy. Choose TeL*(D). Since

li&n«P.‘, To)=<Lp,Top)= liggn<<p, To,;,
it follows that

g, n(T)g)= lilrln<(<p,-— 0), T(@;— 9)>

= ligln<<pi, To;)— lilrln<so, To» —limdp, To) +<¢, Tp)

<&

Lemma 3.2. Suppose that D is an F-domain. Given a positive sequence (1)
and an me N, there exists Be 4(H,,, D) with 0<,,B such that

_ 12
{0, (1+32)—1<P>m<5 2274 Ko, Apd
k=1

for all o€ D (the value oo on the right hand side is possible).

Proof. Given an arbitrary peD with ¢ #0. We set

N

Do 1=< Z 2-(k+2)'1k—1<¢9Ak(p>> @
k=1
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(if the denominator is oo, then we set ¢,:=0). Then

© 1
"An(p0”2=< > 2""+2’l{1<¢,f1k¢>) 14,01
k=1

oo -1
S(Z 2_"‘+2’/1El<<p,Ak(p>> (P, Ay 10)
k=1

S2n+3ln+1

for all ne N. 1t follows that there exists a fixed bounded set M < D with the
property that for all ¢ € D the corresponding ¢, belongs to M. By Proposition
1.1 there exists a Be%(H,, D) with 0<,B such that M < B(Uy ). Using

sup|<yr, TY )| < | BTB|\,n for all TeL*(D)

YyeM
and taking T:=(I+B%"!, we get the inequality

Ko, I+ B?)  Loodml < 1.

We remove the normalization for ¢, and obtain

_ 1
<¢,(1+BZ)“¢>MSZ22“"/1{1<<0,Ak¢> for all peD,
k=1
hence

(qo,(1+l§2)‘1(p>m<%z 275 Yo, Aypd for all peD.
k=1

<&

Lemma 3.3. Let D be an F-domain. Suppose that for each positive
sequence (A,) and an me N there exists always a Be €(H,,, D) with 0 < ,,B such that

_ 12
(g, mop,(I+B*)Ng) <3 Y27 g n(A)gd
k=1

for all g € Dy (the value oo on the right hand side is possible). Then D has the (DP).
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Proof. Suppose that D does not satisfy the (DP). By Theorem 2.2 there
exist an meN and a positive sequence (4,) such that for each ne N and
Be¥(H,, D) with 0<,B, we can find a ¢, zeD with

1= a1+ D) 00> 3 15 O At (1
By assumption, there exist an me N and a B, e ¥(H,,, D) with 0<,,B; such that

g pull1+ B> <5 32 27 mlAQe) @
forallge Dy. ByLemma 3.2 thereis a B, € 4(H,,, D) with 0<,,B, such that

oA+ BY > <3 3 27 o o) 6

for all peD. We set By:=B?+B3e¥%(H,,D) and replace B? and B2 in (2)
and (3) by B,. Remark that the inequalities are true with B,. Using (1), we get

I 4x@n.5oll* < OB A+ 1Pn,Bo” <Akt 1

for all ne N with k+1<n. Therefore (¢,p);>; is a bounded sequence in
D. Since D is semireflexive, we obtain that the set {¢, 5,:ne N} is relatively
weakly compact in D. Thus, there exist a /o€ D and a subsequence ¥;:=@, g,

which weakly converges to ¥, Let go:=;—¥o)u€Dy Zo:=)u€ Dy,
re{l,m} and TeL*(D,). By Lemma 3.1 we get

<g03n(Ar2T)g0>=<g~0: ﬁ(AfT)g0>—<¢05Afl/]0>‘ 4

Choose now nye N such that (see (2) and (3))

_ 1 10
<80, o Pl + Bo) ™ "Igo) < Ek; 27" (8o M A0, ©)

_ 1
Yo AN+ Bo)~ lw0><2k;12_k’1k_l<l/105 Ao). (6)
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Using the equation (4) and the inequality (5) we obtain

Zo» AR+ Bo) ™ o> — (Yo, AR+ Bo) ™ ')

1 no 1 o
Sik;f"l{ o, ﬁ(Ak)§o>—§k212“‘l{ Ko, A 0)- (7

We add the inequality (6) and get
Go, HARI+Bo)™ Do) <%§12 "y Ko, A Eo>- @
Now let us construct a contradiction. Using (1) we get
<o, M(An(I+ Bo) ™ g0 =lim<si, An(I+ Bo) ™ "Y1
=1im{ @y, 5o Anl+Bo) ™" P, 5> = 1. )
On the other hand, by (1) we have

$&o, HAWE0> = 1i111n<l/Jia AW =1ilfln<§0n,,soa AP, B> < s

too. This implies
L& kot - 5 1 5 (42 B\ 1\a
52 2 o W ADEo) < < 1= (o, AL+ Bo) o)
k=1
and we have a contradiction with the inequality (8). Thus D has the (DP). <
We can now prove the main result in this section. The following theorem
generalizes the result due to K. Schmiidgen to the case of an arbitrary

F-domains, see [12].

Theorem 3.4. Suppose that D is an F-domain. W is a free ultrafilter on N
and o4, the Calkin algebra of L* (D). Then the following assertions are equivalent:

1. D has the (DP).
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2. Each positive *-representation w of L*(D) is continuous.
3. The faithful *-representation o:.of.— L*(Dy) is continuous.

4. Each weakly continuous *-representation w of L*(D) is continuous.

Proof. (1)=>(2). Using Theorem 2.3, we have 1,=1, on L™ (D), i.e. L*(D)
has the normal topology. Let w:L*(D)— L*(D,) be a positive *-representa-
tion. The uniform topology on L (D,) is generated by the family of seminorms

PrlS):==sup|<y, Sy M < D, is bounded, SeL*(D,).
yeM

Since the set
Uy ={TeL*(D):ppa(T)) <1}

is absolutely convex and L*(D),-saturated, it follows that U, is a
0-neighbourhood in L*(D). This proves the continuity of w.

(2)=(3). Note that n:L*(D)— L*(Dy,) is a positive *-representation.
Since the quotient map ¢ : L*(D) — o/, is continuous and n=go¢, it follows
that ¢ is continuous.

(3)=(1). Given an arbitrary ge Dy, g#0. We set

N

o :=< Y 27*k*pn ‘<g,aoz(Ak)g>) g
k=1

The inequality

-1
(4 )goll? =< 212_”‘“)/1{ 1<z>’,7t(Ak)g>> In(4)g]?

) -1
S( x27e ”/1,?1<g,7r(Ak)g>> (gom(Ays )g> <220y,
k

=1

implies that there exists a fixed bounded set M < D, with goe M (for all
geD,). By assumption, o is continuous and by Lemma 1.2,

Go ‘Opm:L+(Dm)’_)L+(DU)

is continuous for all meN, too. For each meN there exists a Be¥(H,,D)
with 0<,,B such that
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sup|<h,o ¢ ¢ o p,(THh)| < | BTB],,

heM

is valid for all Te L*(D,). We set hi=g, and T:=(I+B?~! and get
|<g096° COPM(T)g0>|<1,

_ 12
(gymo pu((I+B%) Ngd < 5,; 2749 e, (A gy

for all ge Dy, By Lemma 3.3, D has the (DP).

(2)=(4). According to [12], Lemma 1.4, each weakly continuous *-
representation w of L*(D) is a positive *-representation. By assumption, w
is continuous.

(4)=(3). Since n=0o ¢ is weakly continuous, it follows that = and ¢ are
continuous. <

§4. Bounded Sets in the Ultrapower of D

The aim of this section is to describe bounded sets in ultrapower D,. If
D has the (DP), then every bounded subset M < D, has a simple
structure. Namely, we can find a bounded subset N < D such that M < Ny,
ie. for each fe M there exist ¢;e N such that f=(¢),. Remark, that (¢, is
not a weak 0-sequence in general case. We shall show converse, too. S.
Heinrich proved an analogous result for bounded ultrapowers of locally convex
spaces, see [2]. We start with the definition due to S. Heinrich.

Let U be a free ultrafilter on N and let D be an F-domain. We denote
the elements of the set-theoretical ultrapower of D with [¢;], and we consider
the following linear spaces:

Do u= {[®]y:there exists Fell such that

sup||4,¢;] < oo for all ke N},

ieF
Ry= {[(Pi]uEDAw.uﬂiLf[n”Ak(/’i” =0 for all ke N},
ﬁu :=ﬁw,u/ku.

The elements of Dy will be denoted by (¢;)y or 7 The space D, will be
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endowed with the topology which is generated by the seminorms
Pk(((ﬁi)u) 3=1ilrln||Ak‘Pi”-
The locally convex space Dy is called the bounded ultrapower of D.

Lemma 4.1. The locally convex spaces Dy and Dy are topologically
isomorphic. The isomorphism is

J: ﬁu 3 (‘5;)11 — (‘ﬁi)u € ﬁu-

Proof. Taking (@)y (F)ueDy with @ =) ie. lil?ﬂ‘(Pi_‘pi":O-

Since (@;—y;) is bounded in D, we get
]ign”Ak((Pi— V> = 1i1§n<Af((p,~ =¥ (@i— V>

< s‘%P”AJ%((Pi“‘pi)”lil?’”(#’i‘“wi” =0

for all ke N. This implies [(¢;— ¥ )]y € Ry, i.e. (0)u=()y. Therefore J defines
a linear mapping. It is clear, that J is a one-to-one mapping. Taking an
arbitrary (if;)y€ Dy, there exists an Fell such that {i;:ie F} is a bounded set
in D. Set ¢,:=y, for all ieF and ¢,:=0 otherwise. We obtain (¢)e D and
J(@))=0F). This implies that J is a mapping onto D,. According to the
definitions of the corresponding topologies, J is a homeomorphism. ~ <&

Theorem 4.2. Suppose that D is an F-domain and W is a free ultrafilter on
N. The following assertions are equivalent:
1. D has the (DP).
2. For each bounded subset M < Dy there exists a bounded subset N = D
with M < Ny

3. For each bounded subset M < Dy there exists a bounded subset N < D
with M < Ny,

Proof. (1)=(2). According to [2], Theorem 1.4 and Lemma 4.1, the
assertion (2) is true.
(2)=(3). This implication is clear, because D, is a topological subspace
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of Dy.
(3)=(1). The proof is shown in similar to the proof of (3) = (1) in Theorem
3.4. Given an arbitrary geD,, g#0. We set

1

B -2

2o ;=( Y 2“"”’/1,:1<g,0°¢(Ak)g>> g
k=1

too. There exists a fixed bounded set M < D, with g,e M for all ge D,. We
choose an meN. By assumption, there exists a Be%(H,,,D) with 0<,,B such
that M < (B(Uy, )y, ie. there exists a sequence (p;) with @€ Uy, and

g20=(Bo)y. We have
1<€0>7 ° Pu(T)Z0 2| = K(BO ) (AR T B )|

=1i1§nl<B<P.-, TB¢;),| < |BTB|,,
for all Te L*(D,). We set T:=(I+B*~! and obtain
_ 12 .. _
(gmopu((I+B*)™gd <3 2 274 el )g>
k=1

for all ge D). According to Lemma 3.3, D has the (DP). <

Proposition 4.3. Suppose that D is an F-domain and W is a free
ultrafilter on N. If D has the (DP), then Dy also has the (DP).

Proof. Since D has the (DP), it follows by Theorem 2.2 that the
following assertion is true: Given a positive sequence (4,) and an
neN, there exist noe N and Pe%(H, D) such that P is an orthogonal
projection in the Hilbert space H, and

no
AX(I—-P)< Y A M4,
k

=1
The *-representation 7 is positive. Hence we have

n(A,)? —m(A2P)< nzo Ax n(Ay).
k=1
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Remark that (n(4,)) = L*(D,) is a sequence which satisfies the conditions 1
and 2 in section 1. Using Lemma 1.2, we get A2Pe L*(D). Let us consider
the map

T-E(T) = (T(Px)u Te (g(HmD)’ (Q;i)u € (Hn)u

which is an extension of m. It is easy to see that % is an element
of ¥((H,)y, Dy), where (H,), is a Hilbert space. We obtain

A, — A AYAP)< S A 7l Ay)

k=
and the assertion follows from Theorem 2.2. <

Problem 4.4. Is the assertion “If Dy has the (DP), then D has the
(DP)” true?
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