On Unbounded Positive *-Representations on Fréchet-Domains

By

Wolf-Dieter Heinrichs*

Abstract

Let D be a Fréchet-domain from Op*-algebra, abbreviated F-domain. The present paper is concerned with the study of positive *-representations of $L^+(D)$, of the Calkin representation of $L^+(D)$ and of bounded sets in ultrapower $D_{\rm II}$. For this the density property plays an important role. It was introduced by S. Heinrich for locally convex spaces in [2].

In the paper [3] we gave several characterizations of the density property of an F-domain D. In this work we give a characterizations of continuity of positive *-representations and Calkin representation of $L^+(D)$ by the density property of D. This generalizes the well-known result due to K. Schmüdgen, see [12]. Further we describe bounded subsets in ultrapower D_{II} . If D has the density property, then every bounded set $M \subset D_{II}$ has a simple structure: For each bounded set $M \subset D_{II}$ there exists a bounded set $N \subset D$ with $M \subset N_{II}$. S. Heinrich proved an analogous result for bounded ultrapowers on locally convex spaces.

Acknowledgements

I would like to thank Professor Dr. K.-D. Kürsten for suggesting a problems led to this work and for many helpful discussions.

§1. Preliminaries

Throughout the paper, D denotes a dense linear subspace of a Hilbert space H. We denote the norm, unit ball, and the scalar product of H by $\|\cdot\|$, U_H and $\langle\cdot,\cdot\rangle$, respectively. For a closable linear operator T on H, let \overline{T} , D(T) and $\|T\|$ denote the closure, domain, and the norm of T (provided the later exists), respectively. The set of linear operators

$$L^+(D) := \{ T \in \operatorname{End}(D) : D \subset D(T^*) \text{ and } T^*(D) \subset D \}$$

Communicated by H. Araki, February 18, 1994. 1994 Mathematics Subject Classifications: 47D40 47A67

^{*} Fakultät für Mathematik und Informatik, Universität Leipzig, D-04109 Leipzig and Institut für Analysis, Technische Universität Dresden, D-01069 Dresden, Germany.

is the maximal Op*-algebra on the domain D with the involution $T^+:=T^*|_D$. The domain D will be endowed with the weakest locally convex topology such that $D\ni \varphi\mapsto \|T\varphi\|$ are continuous seminorms for all $T\in L^+(D)$. This topology is called the **graph topology** t. Throughout this paper, we assume that D is a Fréchet space. In this case we say that D is an F-domain. These assumptions imply that there exists a sequence (A_k) in $L^+(D)$ such that the following conditions are satisfied, see [5]:

- 1. The topology of D is generated by the sequence of seminorms ($||A_k\cdot||$), i.e. for each $T \in L^+(D)$ there exists $k \in N$ such that $||T\varphi|| \le ||A_k\varphi||$ for all $\varphi \in D$.
- 2. $A_1 = I_D$, $A_k = A_k^+$, $\langle \varphi, A_k^2 \varphi \rangle \le \langle \varphi, A_{k+1} \varphi \rangle$ and $||A_k^2 \varphi|| \le ||A_{k+1} \varphi||$ for all $\varphi \in D$.

Throughout this paper, we fix a sequence $(A_k) \subset L^+(D)$ for each F-domain D such that conditions 1. and 2. are satisfied.

Let us now define a sequence of scalar products of D by

$$\langle \varphi, \psi \rangle_{l} := \langle A_{l} \varphi, A_{l} \psi \rangle$$
 for all $\varphi, \psi \in D; l \in \mathbb{N}$

and let D_l denote the unitary space $(D, \langle \cdot, \cdot \rangle_l)$. The Hilbert norm of D_l is $\|\varphi\|_l := \|A_l \varphi\|$ and the completion of D_l is the Hilbert space $H_l := D(\bar{A}_l)$. Remark that $D_1 = D$ and $H_1 = H$ are valid.

Let us consider the locally convex topology on D_l generated by the sequence of seminorms $(\|A_k\cdot\|_l)$. Since for all $k\in N$ there exists $l_k\in N$ such that

$$||A_k \varphi||_l = ||A_l A_k \varphi|| \le ||A_{l_k} \varphi||$$
 for all $\varphi \in D$,

it follows that this topology coincides with the graph topology t, i.e. D and D_l coincide as locally convex spaces. In general, $A_k \notin L^+(D_l)$, however (A_k) is an operator family in the sense of [13] (this is used in Proposition 1.1). An operator $T \in L^+(D_l)$ is called *l*-hermitian if $\langle \varphi, T\psi \rangle_l = \langle T\varphi, \psi \rangle_l$ for all $\varphi, \psi \in D$ and an l-hermitian operator T is called **positive** if $\langle \varphi, T\varphi \rangle_l \ge 0$. In this case we write $T \ge 0$.

If E and F are locally convex spaces, we denote by $\mathcal{L}(E,F)$ the linear space of all continuous linear operators mapping E into F. Let $l \in N$. We define

$$\mathscr{C}(H_l, D) := \{ T \in \mathscr{L}(D, D) : \text{There is } S \in \mathscr{L}(H_l, D) \text{ such that } T \varphi = S \varphi \text{ for all } \varphi \in D \}.$$

The following proposition is valid, see [13], Theorem 2.4.1.

Proposition 1.1. Let $l \in \mathbb{N}$. If $M \subset D$ is a bounded set, then there exists $B \in \mathcal{C}(H_l, D_l)$ such that $B \geq 0$ and $M \subset \overline{B}(U_{H_l})$.

The algebra $L^+(D_l)$ will be endowed with the topology τ_b of uniform convergence on bounded sets. This topology is generated by the system of seminorms

$$q_B(T) = ||BTB||, B \in \mathcal{C}(H, D)$$
 with $0 \le B$

or for an arbitrary fixed $l \in N$ by the system of seminorms

$$q_{B,I}(T) = ||BTB||_I, \quad B \in \mathcal{C}(H_I, D)$$
 with $0 \le B$.

Given $B \in \mathscr{C}(H_l, D)$ with $0 \le lB$, we can define the positive operator $T := (\bar{B}^2 + I)^{-1}|_D$. We set $\psi := T\varphi \in H_l$ for a $\varphi \in D$, this implies $\varphi = \bar{B}^2\psi + \psi$. Since $\varphi \in D$ and $\bar{B}^2\psi \in D$, we get $\psi \in D$ and $T \in L^+(D_l)$. It follows from $BTB \le lB$ that consequently $q_{B,l}(T) \le 1$.

Proposition 1.2. Suppose that D is an F-domain and $l \in \mathbb{N}$. Then

$$\rho_t: L^+(D_t) \ni T \mapsto A_t^2 T \in L^+(D)$$

is a continuous mapping.

Proof. Let $S \in L^+(D_l)$ be an *l*-hermitian operator. We have

$$\langle \varphi, A_l^2 S \psi \rangle = \langle \varphi, S \psi \rangle_l = \langle S \varphi, \psi \rangle_l = \langle A_l^2 S \varphi, \psi \rangle$$

for all $\varphi, \psi \in D$. This implies $(A_l^2S)^+ = A_l^2S$ and $A_l^2S \in L^+(D)$. Since each element $T \in L^+(D_l)$ can be expressed through the form $T = S_1 + iS_2$ with $S_1, S_2 \in L^+(D_l)$ and l-hermitian, it follows that the above mapping makes sense. It is well-known that $B \in \mathcal{C}(H, D)$ and $0 \le B$ implies $BA_l^2 \in \mathcal{C}(H, D)$. It follows that ρ_l is a continuous mapping. \diamondsuit

§2. The Density Property of an F-Domain D

The density property, abbreviation (DP), was introduced by S. Heinrich in [2]. A lot of topological properties of the algebra $L^+(D)$ are characterized by the (DP) of the domain D. These relationships were established in [3] and we will repeat here some results. We start with the definition of the (DP) for metrizable locally convex spaces.

Definition 2.1. Let E denote a metrizable locally convex space, $(U_k)_{k\in\mathbb{N}}$ a countable base of closed absolutely convex 0-neighbourhoods in E, and \mathscr{B} the system of all bounded subsets of E. Then E has the **density property** if following holds:

Given a positive sequence (λ_k) and an $n \in \mathbb{N}$, there exist $n_0 \in \mathbb{N}$ and $M \in \mathcal{B}$ such that

$$\bigcap_{k=1}^{n_0} \lambda_k U_k \subset U_n + M.$$

Now we give a characterization of the (DP) for F-domains D by partial order properties of the Op*-algebra $L^+(D)$.

Theorem 2.2. ([3]). For an F-domain D, the following assertions are equivalent:

- 1. D has the (DP).
- 2. Given a positive sequence (λ_k) and an $n \in \mathbb{N}$, there exist $n_0 \in \mathbb{N}$ and $B \in \mathcal{C}(H_n, D)$ with $B \geq_n 0$ such that

$$A_n^2(I+\bar{B})^{-1} \le \sum_{k=1}^{n_0} \lambda_k^{-1} A_k.$$

3. Given a positive sequence (λ_k) and an $n \in \mathbb{N}$, there exist $n_0 \in \mathbb{N}$ and $P \in \mathcal{C}(H_n, D)$ such that \bar{P} is an orthogonal projection in the Hilbert space H_n and

$$A_n^2(I-P) \le \sum_{k=1}^{n_0} \lambda_k^{-1} A_k$$
.

We denote by τ_n the finest locally convex topology on $L^+(D)$ for which the positive cone $L^+(D)_+ := \{T \in L^+(D) : T \ge 0\}$ is normal. The topology τ_n is called **normal topology**. Since $L^+(D)_+$ is τ_b -normal cone, we have $\tau_b \subseteq \tau_n$.

Theorem 2.3. ([3]). For an F-domain D, the following assertions are equivalent:

- 1. D has the (DP).
- 2. $L^+(D)$ has the normal topology, i.e. $\tau_b = \tau_n$.

Commutatively dominated F-domains are of the form

$$D:=\bigcap_{k=1}^{\infty}D(h_k(T)),$$

where T is a self-adjoint operator on a Hilbert space H and (h_k) is a sequence of real measurable functions on the spectrum $\sigma(T)$ of T such that

$$1 = h_1(t)$$
 and $h_k(t)^2 \le h_{k+1}(t)$ a.e.

for each $k \in \mathbb{N}$, see [8] Proposition 3.2.

Definition 2.4. We say that the functions (h_k) fulfill the **condition (*)**, if for each positive sequence (λ_k) there is an $n \in \mathbb{N}$ such that all functions (h_k) are essentially bounded on

$$M_n := \{t \in \sigma(T) : h_1(t) \le \lambda_1, \dots, h_n(t) \le \lambda_n\}.$$

Proposition 2.5. ([3]). Let D be a commutatively dominated F-domain. Then we have the assertion:

D has the (DP) if and only if (h_k) fulfill the condition (*).

The domain $S(\mathbb{R}^n)$ of tempered test functions has the (DP). One can find an example which does not fulfill the condition (*) (and has not the (DP)) in [11]. We will give a new example which does not fulfill the condition (*). The example was constructed by K.-D. Kürsten in [6] for the realization of the Heisenberg algebra for systems in infinitely many degrees of freedom.

Example. Let $\Lambda := \{(n_j)_{j=1}^{\infty} : n_j \in \mathbb{N} \cup \{0\}\}$ be an uncountable index set and let $\chi : \Lambda \to [0,1]$ be a bijection. Furthermore let H be a (non-separable) Hilbert

space with an orthonormal basis $\{\varphi_t: t \in [0,1]\}$. We define by $T\varphi_t:=t\varphi_t$ a continuous, self-adjoint operator on H with spectrum [0,1]. Using real measurable functions

$$h_k(t) := \left(1 + \sum_{j=1}^k n_j\right)^k$$
 with $(n_j) := \chi^{-1}(t)$

we obtain the F-domain $D := \bigcap_{k=1}^{\infty} D(h_k(T))$. Suppose the functions (h_k) fulfill the condition (*). We set $\lambda_k := 1$ for all $k \in \mathbb{N}$. By assumption there exists an $n \in \mathbb{N}$ such that all functions (h_k) are bounded on

$$N := \{t \in [0,1] : h_1(t) \le 1, \dots, h_n(t) \le 1\}.$$

We set

$$t_l := \chi((0, \dots, 0, l, 0, \dots))$$

$$\uparrow_{(n+1)}$$

with $l \in N$. If $k \le n$, then we have $h_k(t_l) = 1$ for all $l \in N$, i.e. $t_l \in N$ for all $l \in N$. Since $h_{n+1}(t_l) = (1+l)^{n+1}$, it follows that h_{n+1} is unbounded on N. This contradiction implies that (h_k) does not fulfill the condition (*).

§3. Positive *-Representations of $L^+(D)$

If D has (DP), then $\tau_b = \tau_n$ is valid on $L^+(D)$ and each positive *-representation on $L^+(D)$ is continuous. In this section we will prove that if $\tau_b \neq \tau_n$ on $L^+(D)$, then there is a non-continuous positive *-representation of $L^+(D)$. A similar assertion is true for a faithful *-representation of the generalized Calkin algebra of $L^+(D)$.

Let D, D_0 be domains. By a *-representation ω of $L^+(D)$ on D_0 we mean a *-homomorphism of $L^+(D)$ in $L^+(D_0)$ satisfying $\omega(Id_D) = Id_{D_0}$. The domain D_0 will be endowed with the graph topology of the Op*-algebra $\omega(L^+(D))$, i.e. the weakest locally convex topology such that $D_0 \ni \varphi \mapsto \|T\varphi\|$ are continuous seminorms for all $T \in \omega(L^+(D))$. The algebra $\omega(L^+(D))$ will also be endowed with the topology of uniform convergence on bounded sets of D_0 . The representation ω is called **weakly continuous** if for each $\varphi \in D_0$ the linear functional $\langle \omega(\cdot)\varphi, \varphi \rangle$ is continuous on $L^+(D)$. We say ω is **continuous**, if ω is a continuous mapping of $L^+(D)$ onto $\omega(L^+(D))$. The representation ω is **positive**, if $0 \le T$ implies $0 \le \omega(T)$.

In order to define *-representations of the Calkin algebra of $L^+(D)$, we consider an F-domain D, a free ultrafilter $\mathfrak U$ on N and the following linear spaces:

$$\begin{split} & \widetilde{D}_{\infty} := \{ (\varphi_i) \in D^{\mathbf{N}} \colon (\varphi_i) \quad \text{is bounded} \}, \\ & D_{\infty} := \{ (\varphi_i) \in D^{\mathbf{N}} \colon (\varphi_i) \quad \text{is } \sigma(D, D') \text{-0-sequence} \}, \\ & K_{\mathbf{H}} := \{ (\varphi_i) \in \widetilde{D}_{\infty} \colon \lim_{\mathbf{H}} \|\varphi_i\| = 0 \}, \\ & \widetilde{D}_{\mathbf{H}} := \widetilde{D}_{\infty} / K_{\mathbf{H}}, \qquad D_{\mathbf{H}} := D_{\infty} / (D_{\infty} \cap K_{\mathbf{H}}). \end{split}$$

The elements from $\tilde{D}_{\mathfrak{U}}$ will be denoted by $(\tilde{\varphi_i})_{\mathfrak{U}}$ or \tilde{f} and the elements from $D_{\mathfrak{U}}$ will be denoted by $(\varphi_i)_{\mathfrak{U}}$ or f. The domains $\tilde{D}_{\mathfrak{U}}$ and $D_{\mathfrak{U}}$ will be endowed with the topologies which are generated by the seminorms

$$\tilde{p}_k((\tilde{\varphi_i})_{\mathbf{u}}) := \lim_{\mathbf{u}} \|A_k \varphi_i\| \quad \text{and } p_k((\varphi_i)_{\mathbf{u}}) := \lim_{\mathbf{u}} \|A_k \varphi_i\|,$$

respectively. The space $D_{\mathfrak{u}}$ is called **(ordinary) ultrapower** of D. On $\tilde{D}_{\mathfrak{u}}$ and $D_{\mathfrak{u}}$ we can define scalar products by

$$\langle (\tilde{\varphi}_i)_{\mathbf{u}}, (\tilde{\psi}_i)_{\mathbf{u}} \rangle := \lim_{\mathbf{u}} \langle \varphi_i, \psi_i \rangle$$
 and

$$\langle (\varphi_i)_{\mathfrak{U}}, (\psi_i)_{\mathfrak{U}} \rangle := \lim_{\mathfrak{U}} \langle \varphi_i, \psi_i \rangle,$$

respectively. It is well-known that $\tilde{D}_{\mathfrak{U}}$ and $D_{\mathfrak{U}}$ are F-domains and the graph topologies t are generated by \tilde{p}_k and p_k , respectively. See [4], Satz 3.3.1. or [9], Proposition 3.7. The formula

$$\pi(T)(\varphi_i)_{\mathfrak{U}} := (T\varphi_i)_{\mathfrak{U}}, \qquad T \in L^+(D), \qquad (\varphi_i)_{\mathfrak{U}} \in D_{\mathfrak{U}}$$

defines a positive *-representation π of $L^+(D)$ on $D_{\mathbf{u}}$. The *-representation π will be termed (unbounded) Calkin representation. For more details see [10], [12] or [7]. The kernel ker π is the closed ideal $\mathscr V$ of all operators in $L^+(D)$ which map each bounded subset of D into a relatively compact subset of D. The quotient algebra $\mathscr A_c := L^+(D)/\mathscr V$ is called the Calkin algebra of $L^+(D)$. Let $\mathfrak c$ denote the quotient map of algebra $L^+(D)$ onto $\mathscr A_c$. Then $\pi = \sigma \circ \mathfrak c$ defines a faithful *-representation σ of the *-algebra $\mathscr A_c$. We endow $\mathscr A_c$ with the quotient topology of $L^+(D)$, which is generated by the seminorms

$$q_B(a):=\|\pi(B)\sigma(a)\pi(B)\| \qquad a\in\mathscr{A}_c, \qquad B\in\mathscr{C}(H,D) \quad \text{with } \ 0\leq B,$$
 see [12], Theorem 2.1 or [4], Satz 3.3.5.

Let us now prove some preliminary lemmas.

Suppose that D is an F-domain, $\varphi_i, \varphi \in D$ and (φ_i) weakly converges to φ . Then $\tilde{g} := (\tilde{\varphi_i})_{\mathfrak{U}} \in \tilde{D}_{\mathfrak{U}}$, $g := (\varphi_i - \varphi)_{\mathfrak{U}} \in D_{\mathfrak{U}}$ and the equation

$$\langle g, \pi(T)g \rangle = \langle \tilde{g}, \tilde{\pi}(T)\tilde{g} \rangle - \langle \varphi, T\varphi \rangle$$

is true for all $T \in L^+(D)$.

Proof. By definition of $D_{\mathbf{u}}$ and $\tilde{D}_{\mathbf{u}}$ we get immediately $\tilde{g} \in \tilde{D}_{\mathbf{u}}$ and $g \in D_{\mathbf{U}}$. Choose $T \in L^+(D)$. Since

$$\lim_{\mathbf{U}} \langle \varphi_i, T\varphi \rangle = \langle \varphi, T\varphi \rangle = \lim_{\mathbf{U}} \langle \varphi, T\varphi_i \rangle,$$

it follows that

$$\begin{split} &\langle g, \pi(T)g \rangle = \lim_{\mathfrak{U}} \langle (\varphi_i - \varphi), T(\varphi_i - \varphi) \rangle \\ &= \lim_{\mathfrak{U}} \langle \varphi_i, T\varphi_i \rangle - \lim_{\mathfrak{U}} \langle \varphi, T\varphi_i \rangle - \lim_{\mathfrak{U}} \langle \varphi_i, T\varphi \rangle + \langle \varphi, T\varphi \rangle \\ &= \langle \tilde{g}, \tilde{\pi}(T)\tilde{g} \rangle - \langle \varphi, T\varphi \rangle. \end{split}$$

 \Diamond

Lemma 3.2. Suppose that D is an F-domain. Given a positive sequence (λ_k) and an $m \in \mathbb{N}$, there exists $B \in \mathcal{C}(H_m, D)$ with $0 \leq_m B$ such that

$$\langle \varphi, (I + \bar{B}^2)^{-1} \varphi \rangle_m < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle$$

for all $\varphi \in D$ (the value ∞ on the right hand side is possible).

Proof. Given an arbitrary $\varphi \in D$ with $\varphi \neq 0$. We set

$$\varphi_0 := \left(\sum_{k=1}^{\infty} 2^{-(k+2)} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle \right)^{-\frac{1}{2}} \varphi$$

(if the denominator is ∞ , then we set $\varphi_0 := 0$). Then

$$||A_n\varphi_0||^2 = \left(\sum_{k=1}^{\infty} 2^{-(k+2)} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle \right)^{-1} ||A_n\varphi||^2$$

$$\leq \left(\sum_{k=1}^{\infty} 2^{-(k+2)} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle \right)^{-1} \langle \varphi, A_{n+1} \varphi \rangle$$

$$\leq 2^{n+3} \lambda_{n+1}$$

for all $n \in \mathbb{N}$. It follows that there exists a fixed bounded set $M \subset D$ with the property that for all $\varphi \in D$ the corresponding φ_0 belongs to M. By Proposition 1.1 there exists a $B \in \mathscr{C}(H_m, D)$ with $0 \leq_m B$ such that $M \subset \overline{B}(U_{H_m})$. Using

$$\sup_{\psi \in M} |\langle \psi, T\psi \rangle_m| \le ||BTB||_m \quad \text{for all } T \in L^+(D)$$

and taking $T := (I + \bar{B}^2)^{-1}$, we get the inequality

$$|\langle \varphi_0, (I+\bar{B}^2)^{-1}\varphi_0\rangle_m| \leq 1.$$

We remove the normalization for φ_0 and obtain

$$\langle \varphi, (I + \bar{B}^2)^{-1} \varphi \rangle_m \le \frac{1}{4} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle$$
 for all $\varphi \in D$,

hence

$$\langle \varphi, (I + \bar{B}^2)^{-1} \varphi \rangle_m < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle$$
 for all $\varphi \in D$.

 \Diamond

Lemma 3.3. Let D be an F-domain. Suppose that for each positive sequence (λ_k) and an $m \in N$ there exists always a $B \in \mathcal{C}(H_m, D)$ with $0 \leq_m B$ such that

$$\langle g, \pi \circ \rho_m((I + \bar{B}^2)^{-1})g \rangle < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle g, \pi(A_k)g \rangle$$

for all $g \in D_{II}$ (the value ∞ on the right hand side is possible). Then D has the (DP).

Proof. Suppose that D does not satisfy the (DP). By Theorem 2.2 there exist an $m \in N$ and a positive sequence (λ_k) such that for each $n \in N$ and $B \in \mathcal{C}(H_m, D)$ with $0 \leq_m B$, we can find a $\varphi_{n,B} \in D$ with

$$1 = \langle \varphi_{n,B}, (I + \bar{B})^{-1} \varphi_{n,B} \rangle_m > \sum_{k=1}^n \lambda_k^{-1} \langle \varphi_{n,B}, A_k \varphi_{n,B} \rangle. \tag{1}$$

By assumption, there exist an $m \in N$ and a $B_1 \in \mathcal{C}(H_m, D)$ with $0 \le {}_m B_1$ such that

$$\langle g, \pi \circ \rho_m((I + \bar{B}_1^2)^{-1})g \rangle < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle g, \pi(A_k)g \rangle$$
 (2)

for all $g \in D_{U}$. By Lemma 3.2 there is a $B_2 \in \mathcal{C}(H_m, D)$ with $0 \le {}_m B_2$ such that

$$\langle \varphi, A_m^2 (I + \bar{B}_2^2)^{-1} \varphi \rangle < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle \varphi, A_k \varphi \rangle$$
(3)

for all $\varphi \in D$. We set $B_0 := B_1^2 + B_2^2 \in \mathscr{C}(H_m, D)$ and replace \bar{B}_1^2 and \bar{B}_2^2 in (2) and (3) by \bar{B}_0 . Remark that the inequalities are true with \bar{B}_0 . Using (1), we get

$$||A_k \varphi_{n,B_0}||^2 \le \langle \varphi_{n,B_0}, A_{k+1} \varphi_{n,B_0} \rangle \le \lambda_{k+1}$$

for all $n \in N$ with $k+1 \le n$. Therefore $(\varphi_{n,B_0})_{n=1}^{\infty}$ is a bounded sequence in D. Since D is semireflexive, we obtain that the set $\{\varphi_{n,B_0}: n \in N\}$ is relatively weakly compact in D. Thus, there exist a $\psi_0 \in D$ and a subsequence $\psi_i := \varphi_{n,B_0}$ which weakly converges to ψ_0 . Let $g_0 := (\psi_i - \psi_0)_{\mathfrak{U}} \in D_{\mathfrak{U}}$, $\tilde{g}_0 := (\tilde{\psi}_i)_{\mathfrak{U}} \in \tilde{D}_{\mathfrak{U}}$, $r \in \{1, m\}$ and $T \in L^+(D_r)$. By Lemma 3.1 we get

$$\langle g_0, \pi(A_r^2 T) g_0 \rangle = \langle \tilde{g}_0, \tilde{\pi}(A_r^2 T) \tilde{g}_0 \rangle - \langle \psi_0, A_r^2 \psi_0 \rangle. \tag{4}$$

Choose now $n_0 \in \mathbb{N}$ such that (see (2) and (3))

$$\langle g_0, \pi \circ \rho_m((I + \bar{B}_0)^{-1})g_0 \rangle < \frac{1}{2} \sum_{k=1}^{n_0} 2^{-k} \lambda_k^{-1} \langle g_0, \pi(A_k)g_0 \rangle,$$
 (5)

$$\langle \psi_0, A_m^2 (I + \bar{B}_0)^{-1} \psi_0 \rangle < \frac{1}{2} \sum_{k=1}^{n_0} 2^{-k} \lambda_k^{-1} \langle \psi_0, A_k \psi_0 \rangle.$$
 (6)

Using the equation (4) and the inequality (5) we obtain

$$\langle \tilde{g}_{0}, \tilde{\pi}(A_{m}^{2}(I+\bar{B}_{0})^{-1})\tilde{g}_{0}\rangle - \langle \psi_{0}, A_{m}^{2}(I+\bar{B}_{0})^{-1}\psi_{0}\rangle$$

$$\leq \frac{1}{2}\sum_{k=1}^{n_{0}} 2^{-k}\lambda_{k}^{-1}\langle \tilde{g}_{0}, \tilde{\pi}(A_{k})\tilde{g}_{0}\rangle - \frac{1}{2}\sum_{k=1}^{n_{0}} 2^{-k}\lambda_{k}^{-1}\langle \psi_{0}, \pi(A_{k})\psi_{0}\rangle. \tag{7}$$

We add the inequality (6) and get

$$\langle \tilde{g}_0, \tilde{\pi}(A_m^2(I+\bar{B}_0)^{-1})\tilde{g}_0 \rangle < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle \tilde{g}_0, \tilde{\pi}(A_k)\tilde{g}_0 \rangle.$$
 (8)

Now let us construct a contradiction. Using (1) we get

$$\langle \tilde{g}_{0}, \tilde{\pi} (A_{m}^{2} (I + \bar{B}_{0})^{-1}) \tilde{g}_{0} \rangle = \lim_{\mathfrak{U}} \langle \psi_{i}, A_{m}^{2} (I + \bar{B}_{0})^{-1} \psi_{i} \rangle$$

$$= \lim_{\mathfrak{U}} \langle \varphi_{n_{i}, B_{0}}, A_{m}^{2} (I + \bar{B}_{0})^{-1} \varphi_{n_{i}, B_{0}} \rangle = 1. \tag{9}$$

On the other hand, by (1) we have

$$\langle \tilde{g}_0, \tilde{\pi}(A_k) \tilde{g}_0 \rangle = \lim_{\mathbf{H}} \langle \psi_i, A_k \psi_i \rangle = \lim_{\mathbf{H}} \langle \varphi_{n_i, B_0}, A_k \varphi_{n_i, B_0} \rangle \leq \lambda_k,$$

too. This implies

$$\frac{1}{2}\sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle \tilde{g}_0, \tilde{\pi}(A_k) \tilde{g}_0 \rangle \leq \frac{1}{2} < 1 = \langle \tilde{g}_0, \tilde{\pi}(A_m^2 (I + \bar{B}_0)^{-1}) \tilde{g}_0 \rangle$$

and we have a contradiction with the inequality (8). Thus D has the (DP). \Diamond

We can now prove the main result in this section. The following theorem generalizes the result due to K. Schmüdgen to the case of an arbitrary F-domains, see [12].

Theorem 3.4. Suppose that D is an F-domain. \mathfrak{U} is a free ultrafilter on N and \mathscr{A}_c the Calkin algebra of $L^+(D)$. Then the following assertions are equivalent:

1. D has the (DP).

- 2. Each positive *-representation ω of $L^+(D)$ is continuous.
- 3. The faithful *-representation $\sigma: \mathcal{A}_c \to L^+(D_{\mathrm{II}})$ is continuous.
- 4. Each weakly continuous *-representation ω of $L^+(D)$ is continuous.

Proof. (1) \Rightarrow (2). Using Theorem 2.3, we have $\tau_b = \tau_n$ on $L^+(D)$, i.e. $L^+(D)$ has the normal topology. Let $\omega: L^+(D) \to L^+(D_0)$ be a positive *-representation. The uniform topology on $L^+(D_0)$ is generated by the family of seminorms

$$p_M(S) := \sup_{\psi \in M} |\langle \psi, S\psi \rangle|$$
 $M \subset D_0$ is bounded, $S \in L^+(D_0)$.

Since the set

$$U_M := \{ T \in L^+(D) : p_M(\omega(T)) \le 1 \}$$

is absolutely convex and $L^+(D)_+$ -saturated, it follows that U_M is a 0-neighbourhood in $L^+(D)$. This proves the continuity of ω .

- $(2)\Rightarrow (3)$. Note that $\pi:L^+(D)\to L^+(D_{\mathfrak{U}})$ is a positive *-representation. Since the quotient map $\boldsymbol{\ell}:L^+(D)\to\mathscr{A}_c$ is continuous and $\pi=\sigma\circ\boldsymbol{\ell}$, it follows that σ is continuous.
 - (3) \Rightarrow (1). Given an arbitrary $g \in D_{11}$, $g \neq 0$. We set

$$g_0 := \left(\sum_{k=1}^{\infty} 2^{-(k+1)} \lambda_k^{-1} \langle g, \sigma \circ \ell(A_k) g \rangle\right)^{-\frac{1}{2}} g.$$

The inequality

$$\|\pi(A_{k})g_{0}\|^{2} = \left(\sum_{k=1}^{\infty} 2^{-(k+1)}\lambda_{k}^{-1} \langle g, \pi(A_{k})g \rangle\right)^{-1} \|\pi(A_{k})g\|^{2}$$

$$\leq \left(\sum_{k=1}^{\infty} 2^{-(k+1)}\lambda_{k}^{-1} \langle g, \pi(A_{k})g \rangle\right)^{-1} \langle g, \pi(A_{k+1})g \rangle \leq 2^{k+2}\lambda_{k+1}$$

implies that there exists a fixed bounded set $M \subset D_{\mathfrak{U}}$ with $g_0 \in M$ (for all $g \in D_{\mathfrak{U}}$). By assumption, σ is continuous and by Lemma 1.2,

$$\sigma \circ \iota \circ \rho_m : L^+(D_m) \mapsto L^+(D_{\mathfrak{U}})$$

is continuous for all $m \in \mathbb{N}$, too. For each $m \in \mathbb{N}$ there exists a $B \in \mathcal{C}(H_m, D)$ with $0 \le M$ such that

$$\sup_{h \in M} |\langle h, \sigma \circ \boldsymbol{\ell} \circ \rho_m(T)h \rangle| < \|BTB\|_m$$

is valid for all $T \in L^+(D_m)$. We set $h := g_0$ and $T := (I + \overline{B}^2)^{-1}$ and get

$$|\langle g_0, \sigma \circ \mathbf{\ell} \circ \rho_{\mathit{m}}(T) g_0 \rangle| < 1,$$

$$\langle g,\pi\circ\rho_{\mathit{m}}((I+\bar{B}^{2})^{-1})g\rangle < \frac{1}{2}\underset{k=1}{\overset{\infty}{\sum}}2^{-k}\lambda_{k}^{-1}\langle g,\pi(A_{k})g\rangle$$

for all $g \in D_{U}$. By Lemma 3.3, D has the (DP).

- (2) \Rightarrow (4). According to [12], Lemma 1.4, each weakly continuous *-representation ω of $L^+(D)$ is a positive *-representation. By assumption, ω is continuous.
- (4) \Rightarrow (3). Since $\pi = \sigma \circ \iota$ is weakly continuous, it follows that π and σ are continuous. \diamondsuit

$\S 4$. Bounded Sets in the Ultrapower of D

The aim of this section is to describe bounded sets in ultrapower $D_{\rm u}$. If D has the (DP), then every bounded subset $M \subset D_{\rm u}$ has a simple structure. Namely, we can find a bounded subset $N \subset D$ such that $M \subset N_{\rm u}$, i.e. for each $f \in M$ there exist $\varphi_i \in N$ such that $f = (\varphi_i)_{\rm u}$. Remark, that (φ_i) is not a weak 0-sequence in general case. We shall show converse, too. S. Heinrich proved an analogous result for bounded ultrapowers of locally convex spaces, see [2]. We start with the definition due to S. Heinrich.

Let $\mathfrak U$ be a free ultrafilter on N and let D be an F-domain. We denote the elements of the set-theoretical ultrapower of D with $[\varphi_i]_{\mathfrak U}$ and we consider the following linear spaces:

$$\hat{D}_{\infty,\mathfrak{U}} := \{ [\varphi_i]_{\mathfrak{U}} : \text{there exists } F \in \mathfrak{U} \text{ such that}$$

$$\sup_{i \in F} \|A_k \varphi_i\| < \infty \quad \text{for all } k \in \mathbb{N} \},$$

$$\hat{K}_{\mathbf{u}} := \{ [\varphi_i]_{\mathbf{u}} \in \hat{D}_{\infty,\mathbf{u}} : \lim_{\mathbf{u}} ||A_k \varphi_i|| = 0 \quad \text{for all } k \in \mathbb{N} \},$$

$$\hat{D}_{\mathfrak{U}}:=\hat{D}_{\infty,\mathfrak{U}}/\hat{K}_{\mathfrak{U}}.$$

The elements of \hat{D}_{tt} will be denoted by $(\hat{\varphi}_i)_{tt}$ or \hat{f} . The space \hat{D}_{tt} will be

endowed with the topology which is generated by the seminorms

$$p_k((\hat{\varphi}_i)_{\mathfrak{U}}) := \lim_{\mathfrak{U}} ||A_k \varphi_i||.$$

The locally convex space \hat{D}_{ii} is called the **bounded ultrapower** of D.

Lemma 4.1. The locally convex spaces \tilde{D}_u and \hat{D}_u are topologically isomorphic. The isomorphism is

$$J: \tilde{D}_{\mathbf{u}} \ni (\tilde{\varphi}_i)_{\mathbf{u}} \mapsto (\hat{\varphi}_i)_{\mathbf{u}} \in \hat{D}_{\mathbf{u}}.$$

Proof. Taking $(\tilde{\varphi}_i)_{\mathfrak{U}}$, $(\tilde{\psi}_i)_{\mathfrak{U}} \in \tilde{D}_{\mathfrak{U}}$ with $(\tilde{\varphi}_i)_{\mathfrak{U}} = (\tilde{\psi}_i)_{\mathfrak{U}}$, i.e. $\lim_{\mathfrak{U}} \|\varphi_i - \psi_i\| = 0$. Since $(\varphi_i - \psi_i)$ is bounded in D, we get

$$\lim_{\mathbf{y}} \|A_k(\varphi_i - \psi_i)\|^2 = \lim_{\mathbf{y}} \langle A_k^2(\varphi_i - \psi_i), (\varphi_i - \psi_i) \rangle$$

$$\leq \sup_{i} \|A_{k}^{2}(\varphi_{i} - \psi_{i})\|\lim_{\mathfrak{U}} \|\varphi_{i} - \psi_{i}\| = 0$$

for all $k \in \mathbb{N}$. This implies $[(\varphi_i - \psi_i)]_{\mathfrak{U}} \in \hat{K}_{\mathfrak{U}}$, i.e. $(\hat{\varphi_i})_{\mathfrak{U}} = (\hat{\psi_i})_{\mathfrak{U}}$. Therefore J defines a linear mapping. It is clear, that J is a one-to-one mapping. Taking an arbitrary $(\hat{\psi_i})_{\mathfrak{U}} \in \hat{D}_{\mathfrak{U}}$, there exists an $F \in \mathfrak{U}$ such that $\{\psi_i : i \in F\}$ is a bounded set in D. Set $\varphi_i := \psi_i$ for all $i \in F$ and $\varphi_i := 0$ otherwise. We obtain $(\varphi_i) \in \tilde{D}_{\infty}$ and $J((\tilde{\varphi_i})_{\mathfrak{U}}) = (\hat{\psi_i})$. This implies that J is a mapping onto $\hat{D}_{\mathfrak{U}}$. According to the definitions of the corresponding topologies, J is a homeomorphism. \Diamond

Theorem 4.2. Suppose that D is an F-domain and $\mathfrak U$ is a free ultrafilter on N. The following assertions are equivalent:

- 1. D has the (DP).
- 2. For each bounded subset $M \subset \tilde{D}_{II}$ there exists a bounded subset $N \subset D$ with $M \subset \tilde{N}_{II}$.
- 3. For each bounded subset $M \subset D_{\mathfrak{U}}$ there exists a bounded subset $N \subset D$ with $M \subset N_{\mathfrak{U}}$.

Proof. (1) \Rightarrow (2). According to [2], Theorem 1.4 and Lemma 4.1, the assertion (2) is true.

(2) \Rightarrow (3). This implication is clear, because D_{tt} is a topological subspace

of \tilde{D}_{11} .

(3) \Rightarrow (1). The proof is shown in similar to the proof of (3) \Rightarrow (1) in Theorem 3.4. Given an arbitrary $g \in D_{\mathbf{H}}$, $g \neq 0$. We set

$$g_0 := \left(\sum_{k=1}^{\infty} 2^{-(k+2)} \lambda_k^{-1} \langle g, \sigma \circ \boldsymbol{\epsilon}(A_k) g \rangle\right)^{-\frac{1}{2}} g,$$

too. There exists a fixed bounded set $M \subset D_{\mathfrak{U}}$ with $g_0 \in M$ for all $g \in D_{\mathfrak{U}}$. We choose an $m \in N$. By assumption, there exists a $B \in \mathscr{C}(H_m, D)$ with $0 \leq_m B$ such that $M \subset (\bar{B}(U_{H_m}))_{\mathfrak{U}}$, i.e. there exists a sequence (φ_i) with $\varphi_i \in U_{H_m}$ and $g_0 = (\bar{B}\varphi_i)_{\mathfrak{U}}$. We have

$$|\langle g_0, \pi \circ \rho_{\mathsf{m}}(T)g_0 \rangle| = |\langle (\bar{B}\varphi_i)_{\mathfrak{U}}, (A_{\mathsf{m}}^2 T\bar{B}\varphi_i)_{\mathfrak{U}} \rangle|$$

$$=\lim_{\Pi}|\langle \bar{B}\varphi_{i}, T\bar{B}\varphi_{i}\rangle_{m}| \leq \|BTB\|_{m}$$

for all $T \in L^+(D_m)$. We set $T := (I + \bar{B}^2)^{-1}$ and obtain

$$\langle g, \pi \circ \rho_m((I+\bar{B}^2)^{-1})g \rangle < \frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \lambda_k^{-1} \langle g, \pi(A_k)g \rangle$$

for all $g \in D_{II}$. According to Lemma 3.3, D has the (DP). \diamondsuit

Proposition 4.3. Suppose that D is an F-domain and $\mathfrak U$ is a free ultrafilter on N. If D has the (DP), then $D_{\mathfrak U}$ also has the (DP).

Proof. Since D has the (DP), it follows by Theorem 2.2 that the following assertion is true: Given a positive sequence (λ_k) and an $n \in \mathbb{N}$, there exist $n_0 \in \mathbb{N}$ and $P \in \mathcal{C}(H_n, D)$ such that \bar{P} is an orthogonal projection in the Hilbert space H_n and

$$A_n^2(I-P) \le \sum_{k=1}^{n_0} \lambda_k^{-1} A_k.$$

The *-representation π is positive. Hence we have

$$\pi(A_n)^2 - \pi(A_n^2 P) \le \sum_{k=1}^{n_0} \lambda_k^{-1} \pi(A_k).$$

Remark that $(\pi(A_k)) \subset L^+(D_{\mathfrak{U}})$ is a sequence which satisfies the conditions 1 and 2 in section 1. Using Lemma 1.2, we get $A_n^2 P \in L^+(D)$. Let us consider the map

$$\bar{\pi}(T) := (\bar{T}\varphi_i)_{\mathbf{II}} \qquad T \in \mathscr{C}(H_n, D), \qquad (\tilde{\varphi_i})_{\mathbf{II}} \in (H_n)_{\mathbf{II}}$$

which is an extension of π . It is easy to see that $\bar{\pi}$ is an element of $\mathscr{C}((H_n)_{\mathsf{II}}, D_{\mathsf{II}})$, where $(H_n)_{\mathsf{II}}$ is a Hilbert space. We obtain

$$\pi(A_n)^2 - \pi(A_n)^2 \bar{\pi}(P) \le \sum_{k=1}^{n_0} \lambda_k^{-1} \pi(A_k)$$

and the assertion follows from Theorem 2.2. \diamondsuit

Problem 4.4. Is the assertion "If D_{tt} has the (DP), then D has the (DP)" true?

References

- [1] Bierstedt, K.D. and Bonet, J., Stefan Heinrich's Density Condition for Fréchet Spaces and the Characterization of the Distinguished Köthe Echelon Spaces, Math. Nachr., 135 (1988), 149-180.
- [2] Heinrich, S., Ultrapowers of Locally Convex Spaces and Applications, II., Math. Nachr., 118 (1984), 285-315.
- [3] Heinrichs, W.-D., The Density Property in Fréchet-Domains of Unbounded Operator *-Algebras, *Math. Nachr.*, **165** (1994), 49-60.
- [4] Kürsten, K.-D., Lokalkonvexe *-Algebren und andere lokalkonvexe Räume von auf einem unitären Raum definierten linearen Operatoren, Dissertation B, Universität Leipzig, 1985.
- [5] ——, The Completion of the Maximal Op*-Algebra on a Fréchet Domain, Publ. RIMS, Kyoto Univ., 22 (1986), 151-175.
- [6] ——, On topological linear spaces of operator with a unitary domain of definition, Wiss. Z. Univ. Leipzig, Math.-Naturwiss. R., 39 (6)(1990), 623-655.
- [7] Kürsten, K.-D. and Milde, M., Calkin Representations of Unbounded Operators Algebras Acting on Non-Separable Domains, *Math. Nachr.*, **154** (1991), 285-300.
- [8] Kürsten, K.-D., On Commutatively Dominated Op*-algebras with Fréchet Domains, J. Math. Anal. Appl., 157 (1991), 506-526.
- [9] ———, On unbounded Calkin Representations, Funkt. Anal., proceedings of the Essen conference edited by K.D. Bierstedt, 150 (1991), 307-327.
- [10] Löffler, F. and Timmermann, W., The Calkin representation for a certain class of unbounded operators, Rev. Roumaine Math. Pure Appl., 31 (1986), 891-903.
- [11] Schmüdgen, K., On topologization of unbounded operator algebras, *Rep. Math. Phys.*, 17 (1980), 359–371.
- [12] ———, Topological Realizations of Calkin Algebras on Fréchet Domains of Unbounded Operator Algebras, Z. Anal. Anwendung, 5 (6)(1986), 481-490.
- [13] ———, Unbounded Operator Algebras and Representations, Akademie-Verlag, Berlin, 1990.