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Automorphisms of the Extended Affine Root
System and Modular Property for the Flat

Theta Invariants
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Ikuo SATAKE*

Abstract

We define the central extension Aut+(jR) of the automorphism group Aut+(R) of the extended
affine root system. We give the action of Aut+(.R) on the flat theta invariants (theta functions).
This describes the modular property for the flat theta invariants.
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§ 1. Introduction

(1.1) After K. Saito introduced the simply elliptic singularities in [13],
their semi-universal deformations and their period mappings were studied by
many people [5], [6], [7], [8], [12], [14], [15], [16]. We have two construc-
tions of the parameter space of the semi-universal deformation. One is geo-
metric, and the other is algebraic (using the extended affine root system). We
shall briefly explain these two constructions.

The hypersurface simply elliptic singularities were represented by the fol-
lowing polynomials:
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E6: x(x - z)(x - Az) -zy2=0 (A # 0, 1) ,

£7: xy(x - y)(x - Ay) - z2 = 0 (A ?t 0, 1) ,

£8: y(y - *2)(y - Ax2) - z2 = o (A * o, i)
By adding the "lower terms", we have

JE6 :x(x-z)(x- kz)-zy2

+ ajZ + a2x + 03j; + a4zx + a5xy + a6zj; + a7 = 0 ,

a2x + a3y
2 + a4xy + a5x

2 + a6xy2 + a7x
2y + a8 = 0 ,

a2y + a3x2 + a4xy + a5x3 + a6x
2}; + a7x4 + a8x

3}; 4- a9 = 0 .

According to a criterion [4], [17], this gives the semi-universal deformation.
We call the parameter space (A, at), the parameter space S0 of the semi-universal
deformation.

Since a simply elliptic singularity has a unique C*-action, so does its
semi-universal deformation space. Therefore the space of the semi-universal
deformation is unique up to degree 0 parameter [11]. In this case, the degree
0 parameter is A, and A is identified with the value of the elliptic modular
function /l(z) corresponding to the elliptic curve which appears when the Milnor
fiber is compactified.

On the other hand, K. Saito introduced the notion of an extended affine
root system, and he reconstructed the parameter space S of the semi-universal
deformation as a quotient space of the affine half space E by the "extended
affine Weyl group" WR. In this case, the degree 0 parameter is reBL, where
H is a complex affine half space isomorphic to the complex upper half plane.

In order to compare these two constructions, we want to define the
SL(2, Z) action on this deformation space S. Our main interest is to define
the natural SL(2, Z) action on the space S.

(1.2) SL(2, Z)-actions on E and WR invariants were already introduced
explicitly by Looijenga [7], Kac-Peterson [3] et al. for most types of extended
affine root systems. But there exist some types of extended affine root systems
on which there is only an action of a subgroup of finite index of SL(2, Z).
Also this SL(2, Z) action is not unique. This means that a bigger group
which has SL(2, Z) (or its finite index subgroup) as a quotient group, acts on
the WR invariants.

In this paper, we introduce the automorphism group of an extended affine
root system (in (3.1)), and construct its central extension by using the
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"holomorphic metric" (in (3.5)). This explains why SL(2, Z) acts on the WR

invariants, and gives the desired framework of the intrinsic and universal
theory of the group which acts on the WR invariants.

(1.3) In [16], certain WR invariants (theta functions) are specified to be the
"flat theta invariants". In Theorem 4.7, we give the modular property for these
theta functions.

The character for a representation of an affine Kac Moody Lie algebra
can be considered as a special WR invariant, therefore our result can be
considered to be a framework for the group which acts on these characters.

§2. Extended Affine Root System

We recall some notations from Saito [15], [16]. For details, one is
referred to [15], [16].

(2.1) Definition of Extended Affine Moot System

Let F be a real vector space of rank / + 2 with a positive semi-definite
symmetric bilinear form /: F x F -> R, whose radical: rad (/) := {x e F: I(x, y) =
0, Vy e F}, is a vector space of rank 2. For a non-isotropic element a e F (i.e.
/(a, a) / 0), put av := 2a//(a, a) e F. The reflection wa with respect to a is an
element of 0(F, /) := {g e GL(F): I(x, y) = I(g(x), g(y))} given by:

wa(tt):=u-/(ii, av)oc (vweF).

Then av v = a and w^ = identity.

Definition 2.1.
1. A set R of non-isotropic elements of F is an extended affine root

system belonging to (F, /), if it satisfies the axioms l)-4):
1) The additive group generated by R in F, denoted by Q(R), is a

full sub-lattice of F. I.e., the embedding Q(R) c F induces an
isomorphism: Q(R) (g)z R ~ F.

2) / ( a , j ? v )GZ for va, jB e R.
3) Wa(K) = R for va e R.
4) If R = Rl\JR2 with Rl±.R29 then either Rl or R2 is void.

2. A marking G for the extended affine root system is a rank 1 subspace
of rad (I) such that G fl Q(R) - Z.

The pair (R9 G) will be called a marked extended affine root system. Two
marked extended affine root systems are isomorphic if there exists a linear
isomorphism of the ambient vector spaces inducing the bijection of the sets
of roots and the markings. A generator of G fl Q(R) ^ Z, which is unique up
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to a sign, Is denoted by a.

G n Q(R) = Za and G = Ma .

Remark 1. For a root system R belonging to (F, I), there exists a real
number c > 0 such that the bilinear form cl defines an even lattice structure
on Q(R) (i.e. cl(x, x) e 2Z for x e Q(R)). The smallest such c is denoted by
(IR : 1) and the bilinear form (IR : 1)1 is denoted by IR.

Remark 2. wa(a) = — a. Thus the multiplication by — 1 is an automor-
phism of the extended affine root system.

Remark 3. If u e rad (/), then wa(w) = u — I(w, av)a = u. Thus the Weyl
group acts as the identity on rad (I).

Remark 4. If R is a root system belonging to (F, /), then Ry :=
{av:aei£} is also a root system belonging to (F, /).

Remark 5. For a root system U belonging to (F, I), there exists a positive
integer t(R) such that

t(R) is called the tier number of R.

(2,2) The Basis «09 ... , a, for («, C?)

The image of R by the projection F -> F/rad (!) (resp. F -» F/G) is a finite
(resp. affine) root system, which we shall denote by Rf (resp. Ra). In this
paper, we assume that the affine root system Ra is reduced. (I.e. a = c(i for
a, j8 e Ra and c e R implies c e { ± 1}.)

Once and for all in this paper, we fix / -I- 1 elements:

such that their images in Ra form a basis for Ra ([9]). We shall call them
a basis for (£, G). Such a basis is unique up to isomorphisms of (R, G). There
exist positive integers n0, . . . , n z such that the sum:

(2.2.1)

belongs to rad (/). By a permutation of this basis, we may assume ([9]),

(2.2.2) n0 = 1 .

Then the images of al9 ..., az in Rf form a positive basis for Rf and the image
of — oc0 In Rf is the highest root with respect to the basis. Put
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(2.2.3) L := 0 Ra,
i=l

on which / is positive definite and KDL is a finite root system with the
positive basis al9 . . . , az.

We have a direct sum decomposition of the vector space:

(2.2.4) F = L ® rad (I),

and the lattice:

i i
(2.2.5) Q(R) = 0 Zaf © Z0 = 0 Za£ © Za © Zb ,

i=0 i=l

(2.2.6) Q(K) n rad (/) = Za ® Zb ,

(2.2.7)

Remark. The choice of the basis < x 0 , . . . , a, is done for the sake of explicit
calculation, but it does not affect the result of the present paper. A change
of the basis a0 , . . . , az induces a change (a, b) to (a, b 4- ma) for some m e Z.

(2.3) The Weyl Group WR

The Weyl group WR for R is defined as the group generated by the
reflections wa for va e R. The projection p: F -*• F/rad (/) induces a homomor-
phism p^: WR -> W^ . One gets a short exact sequence:

Here

(2.3.2) HR := (rad (/) ®R F/rad (/)) n E~l(WR)

is a finite index subgroup in the lattice (Z0© Zfc) ®z(0[=1Za£
v).

The map E called the Eichler-Siegel transformation, is a semi-group
homomorphism defined as follows ([15]):

(2.3.3) E: F ®R F/rad (/) -> End(F)

(2.3.4)

Here a semi-group structure o on F ®R F/rad (/) is defined by

(2.3.5) £ M, ® i>£ o £ HJ ® x,. := X II,- ® ^ + X w,. ® x; - £ /(i>., Wj.)tt, ® Xj .

E ( £ {, ® fy, ) (M) := 11 - £ Wfa, u) for u E F .
\ i / i
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The semi-group structure o coincides with the natural addition of vectors on
the subspace rad (I) ® (F/rad (/)) and hence on HR.

(2.4) The Dynkln Graph

To a marked extended affine root system (R, G), we associate a diagram
F(R G), called the Dynkin graph for (R, G), in which all data on (R, G) are
coded. The graph is constructed in the following steps l)-4).
1) Let F be the graph for the affine root system (jRfl, F/G), i.e.

a) The set of the vertices \F\ is {a0 ,---,aj.
b) Edges of F are given according to a convention in 4) b).

2) The exponent for each vertex oc£e|F| is defined by

(2,,, — ' - « •

where /c(a) := inf {n e N: a + na e R}.
3) Put

mm a x :=max{m0 , - . . ,mj,

4) The graph FRG is defined as the graph for |F|U|/^f|, i.e.
a) The set of the vertices \FRtG\ := \F\\J\F*\.
b) Two vertices a, j f fe | /^ j G | are connected by the convention:

a (3

O O if /(a,D = 0 (o/(&av) = 0),

O - O if /(a,n = /0? ,a v )=- l ,

O - j - O if /(a, jSv)=-l , /(J?,av)= -t,

O - 5^ - O if /(a, n = '(£ «v) = -2 .

QZZIIZZD if /(a,n = /03,av) = 2.

Fig. 1

Definition. For a marked extended affine root system (R, G), the codimen-
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sion, denoted by cod (R9 G), is defined as follows:

(2.4.2) cod (R, G) := # (0 < i < 1: m, = mmax} = #\Fm\ .

Note. The exponents m/s introduced in 2) are half integers, which might
have a common factor. We have:

The smallest common denominator for the rational numbers mt/mmax (i =
0, . . . , / ) is equal to /max + 1([15]), where /m a x :=max{# of vertices in a con-
nected component of r\Fm}.

Thus we sometimes normalize the exponents as follows:

(2.4.3)

(2.5) The Hyperbolic Extension (F,T)

There exists a unique (up to a linear isomorphism) real vector space F
of rank / + 3 with

1) an inclusion map F c F as a real vector space,
2) a symmetric form I: F x F -» R such that 7|F = I and rad (/) = Ra.
The pair (F, 7) will be called a hyperbolic extension for (F, I).
Denote by wa the reflection for a E R as an element of GL(F) and by P^R

the subgroup of 0(F, I) (where, 0(F, 7) := {# e GL(F)\I(x, y) = I(gx, gy) Vx, y e
F}) they generate. The restriction wa|F is wa. Thus we have a surjection
WR -> WR and a short exact sequence:

(2.5.1) 0-+KR$WR-*WR-+l

where K^ is an infinite cyclic group generated by

(2.5.2) k := (IR : /) 'max+1a ® 6 ,

and £: F ® F/G -> End (F) is the Eichler-Siegel transformation:

(2.5.3) £ (i 6 ® i/, J («) := H - I ^/(ij,, u) for ueF.
\i J i

HR is a subgroup of jl^ defined as a kernel of the composite map:

We have the following diagram:
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(2.5.4)

Rf = WRf

1.

(2.6) A Family of Polarized Abelian Varieties over H

Let (R, G) be a marked extended affine root system and let (F, 7) be its
hyperbolic extension. We define complex affine half spaces as follows:

(2.6.1) E := (x e HomR (F, C); a(x) = 1 and Im (b(x)) > 0} ,

(2.6.2) E := {x G HomR (F, C); a(x) = I and Im (b(x)) > 0} ,

(2.6.3) H := {x e HomR (rad (/), C); a(x) = 1 and Im (fe(x)) > 0} ,

where dimc E = / + 2, dimc E = / + 1, and dimc H = 1. A change of the basis
a0, ...,a, does not affect the definition of the space E, E, H. The inclusion
maps: rad (I) c= F a F induce the projections:

(2.6.4) E ^ E ^ H .

Via the projection, E and E are regarded as a total space of a family of
complex affine spaces Ex := (n o TC)"~I(X) and Ex:=n~1(x) of dimension /+!
and / parametrized by x e H, and E has an affine bundle structure on E. The
action of the groups WR and WR on F and F fixes rad (/) pointwise. Hence
the contragredient actions of WR and WR induce actions on E and E respec-
tively. They are equivarient with the projections n and n (2.6.4).

Remark. The element b in (2.6.3) induces an isomorphism:

H -> J? := {z e C; Im (z) > 0}.

Thus we look on b as a coordinate function on H. When we consider b as
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a coordinate function, we use the letter i. By (2.2) Remark, i is unique up
to adding m e Z.

Lemma 2.1 ([16, p.31]).
1. The actions of WR (resp. WR) on E (resp. E) are properly discontinuous.
2. Put X := E/HR and denote by n/HR the map induced from n:

(2.6.5) n/HR:X-^H,

The fiber Xx:= (n/HR)~1(x) over xeH is isogeneous to an l-fold product
of elliptic curves of the same modulus T(X).

3. The action of HR on E is fixed point free. Put L* := E/HR. The map
n/HR induced from n:

(2.6.6) n/HR: L* -> X ,

defines a principal C*-bundle over X. Let L be the associated complex line
bundle over X, which is, as a set, a union

(2.6.7) L

The finite Weyl group WRf is acting on L and X equivariantly.
4. The Chern class c(L\Xx) of the line bundle over Xx := (n/H^'1^) for x e H

is given by

(2.6.8) c(L\Xx) = Im (H) e A Homz (HR, C) ~ H 2(XX, C) ,

where H is the Hermitian form on Vc = C ®R (F/rad (/))* given by

(2.7) A Chevalley Type Theorem

In this subsection, we recall a Chevalley type theorem (Theorem 2.2),
studied by Looijenga [6], Schwarzman & Bernstein [1], [2], Kac & Peterson
[3] and others.

Let us fix a base 1 € F\F normalized as

(2.7.1) 7(1, 6) = 1,

(2.7.2) 7(1, a,) = 0 (1 < i < I).

Consider this 1 as a complex coordinate for E, we obtain

(2.7.3) (1, fi): E ~ C x E .
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The generator k of KR acts on 1 by

(2.7.4)

Hence the complex function A on E defined by

(2.7.5) A := exp

is K£ invariant, giving a fiber coordinate for the C* bundle:

(2.7.6) (A, ft): E/KR - C* x E .

For a non negative integer fc, let

(2.7.7) Sk := F(X,

be the module of holomorphic sections of the — feth power of the line bundle
L over X defined in (2.6) Lemma 2.1. For an element 0 e Sk, put

(2.7.8) 0 := (Z)k0 .

Then 0 is an HK-invariant holomorphic function on E. We sometimes look
at an element of Sk as a function on E in this manner. The group WRf ^
WR/HR acts on L and X equivariantly. Therefore WRf acts on the space of
sections Sk (k = 0, 1, • • • ) . Put

(2.7.9) S^ := the set of WRf invariant elements of Sk.

(2.7.10) Sk
w := the set of WRf anti-invariant elements of Sk.

(2.7.11) Sw:= 0Sf.
fc=0

(2.7.12) S~w:-.

Naturally Sw is a graded jT(H, 0H)-algebra, and the grading is defined by
fc. We prepare one more concept: the Jacobian J(0l9'"90i+2) for a system
of sections 0t e Sk. (i = 1, . . . , / + 2) as an element of Sk (k = £{i? fej given by
the following relation:

(2.7.13) d01 A ••• A d0l+2 = J(0i, "- ,0i+2)(d^ A dtti A ••• A doct A dl).

The Jacobian is well defined, since a> := di A d^l A • • • A d(x,t A dl is HR-
invariant. Moreover, since the form co is WR anti-invariant and 0t e S^,
(i = 1, • • • , / + 2), thus J(6^!, •••,^H.2) ^ Sk

w (fe = Xl=i^i)' (where J = /lfcJ).
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Theorem 2.2 ([1][2][6][3]).
1. Sw is a polynomial algebra over 7"(H, <PH), freely generated by I + 1

homogeneous elements 00, ...90t of degree mt := m^-^ (i = 0,..., /),
^max

where mt (i = 0,..., /) is the set of exponents for the root system (R, G).
2. S~w is a free Sw-module of rank 1 generated by 0A := J(t, <90, • • • , <9j).

Notations. We fix a homogeneous generator system 009...,0l of the
algebra Sw = T(H, (9H)[00,..., <9J with an ordering

deg 6>0 < deg 6^ < ••• < deg 0l = /max + 1 .

(2.8) The Holomorphic Metric lw

Let us denote by (9%, O| and Der^ the sheaf of germs of holomorphic
functions, 1 -forms and vector fields on E respectively. Since E is an open
subset of a complex affine space, the tangent and co-tangent spaces of E are
naturally given by:

(2.8.1)

(2.8.2)

Thus we have the canonical isomorphisms:

(2.8.3) fl| ^ ^|, ®R (FIG) and Der^ - (9% ®R (F/G)* .

The vector space (F/G) carries a nondegenerate symmetric bilinear form induced
from /. By d^-bilinear extension of 7 to £2~ , we obtain a form:

•^ CO ~
where X£ (i = 1, . . . , / + 2) are a basis of F/G and co = £f- — dXt. Since Jg

C/^Lj-

is non-degenerate, the non-degenerate dual form:

(2.8.5) 7|: Derf x Dert -> 0%

is also defined. We call this (Pf-bilinear form the "holomorphic metric on

Put,

(2.8.6) Dersw := the module of C-derivations of the algebra Sw ,

(2.8.7) QSW := the module of 1-forms for the algebra Sw .
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They are dual S^-free modules by the natural pairing < , > with the dual basis:

A l rl
(2.8.8)

(2.8.9)

using a generator system of 0/s as in Theorem 2.2. Dersw and Q$w have a
graded S^-module structure in a natural way. There is a natural lifting map:

(2.8.10) SW E '^

so that the form IE induces an S^-bilinear form:

(2.8.11) Iw:Q£wxQiw^Sw.

(The values of Iw lie in SW
9 since the form /i is WR invariant.) We call this

S^-bilinear form "the holomorphic metric on QSW". We remark that this
symmetric tensor Iw e Dersw ® DQTSW is of degree 0. Let us denote by 7^ the
5^-bilinear form on the module Dersw dual to the form 7^. We use the
following Lemma in §4.

Lemma ([16, p.36]),

(2.8.12) Iw(di, d&) = K

where O e Sf and K := .
2nJ -lmmax

The proof is easy.

§3. The Automorphism Group of an Extended Affine Root System

In this section, we define the automorphism group Aut+ (R) of R, and its
central extension Aut+ (£), which act on E and E respectively. Also we show
that Aut+(#) contains WR as a normal subgroup.

(3.1) Definition of Aut+ (R)

In this subsection, we introduce the automorphism group of R.

Definition 3.1. For the extended affine root system R <^ F, put

Aut (R) := {g e GL(F)\g induces a bijection of R} .
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Proposition 3.2. The extended affine Weyl group WR is a normal subgroup
of Aut (jR), and Aut (R) is a subgroup of the orthogonal group 0(F, I).

Proof. The latter part follows from Saito [15]. The first part follows
from the formula: gw^g'1 = wga for a e R, g e Aut (R). Q.E.D.

The element g of the orthogonal group 0(F, I) induces a linear transforma-
tion of rad (/) by restriction. We denote this restriction map by p:

p:0(F,/)->GL(rad(/)),
(3.1.1)

9 •-» 0 l r a d < / ) «

Definition 3.3. T:= p(Aut (R)).

Since each y e F induces an isomorphism of Q(R) D rad (/) (Z-free module
of rank 2), the determinant of 7 equals ±1. We shall consider only the
elements whose determinant equals 1.

Definition 3.4. We define the following groups:

SL(rad (I)) := {g e GL(rad (/))|det g = 1} ,

:=mSL(rad(I)),

Aut (R, rad (/)) := Aut (R) H 0(F, rad (/)) .

The relation between the Weyl group and these groups is given by the
following diagram of exact sequences:

(3.1.2)
1 1

WR

Aut (jR, rad (/)) » Aut+ (R)

Aut (R, rad (l))/WR > Aut+ (R)/WR

1.
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(3.2) The Group Aut(R, rad (/))/FT*

In this subsection, we assume that (R, G) is reduced and not an exceptional
extended affine root system, (i.e. we exclude extended affine root systems of
type A?-»*, B<2'2)* (l>2\ C}1'1'* (/ > 2), BC\2^ (/>!), BCP'4) (/>!),
5CP'2)(1) (/ > 2), £CP'2)(2) (/ > 1)).

(See Saito [15] for these notations.)
For these cases, we give the relation between the group Aut(jR, rad (I))/WR

and the automorphism groups of the Dynkin graph of a finite and of an
affine root system in Proposition 3.5. We fix one Z-basis a, b e rad (I) fl Q(R)
such that Za = Q(R) fl G. We consider the following commutative diagram:

qi ) F/Ra

F/Rb "" > F/rad(/)

Put

(3.2.1) Ra :=

(3.2.2) Rb :=

(3.2.3) Rf := (9

(,Rfl and Rf was already defined in (2.2).)
This defines the affine root systems (JF/Ra, .Rfl), (F/Rb, Rb) and the finite

root system (F/rad (I), Ry.). Let Gfl (resp. Gb) be the automorphism group of
an affine Dynkin graph of the root system Ra (resp. Rb). Let Gf be the
automorphism group of a Dynkin graph of the finite root system Rf. Let

^a ~^ Gf9 (q4)^ Gb -> Gf be a natural homomorphism induced by g3, ^4.

Proposition 3.5. rfce group Aut (jR, rad (/))/W^ is isomorphic to the group:

(3.2.4) {(ga, gb) e Gfl x G&; (^)^J = (^),(^)} -

Proo/. An element gf e Aut (rad (/)) induces transformation of F/Ra,
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and F/rad (/). Thus we have the homomorphisms:

(3.2.5) (qJs Aut (R, rad (/)) -» GL(F/Ra),

(3.2.6) (q2)s Aut (R, rad (/)) -» GL(F/Rb),

(3.2.7) (q3 o gi),: Aut (R, rad (/)) -> GL(F/rad (/)).

Put

(3.2.8) Autfl := foyAut (R, rad (/))),

(3.2.9) Autft := fa2)<,(Aut (U, rad (/))),

(3.2.10) Auty := («3 o gJ^Aut (R, rad (/))),

and

(3.2.11) Hi:=(9i).(Wi),

(3.2.12) Wfc := («2),(Wi),

(3.2.13) W^ := («3 o q^(WR).

We remark that ker (gj^ Piker (q2)* = identity. Therefore we have the follow-
ing diagrams:

(3.2.14)

= ker

Aut (R, rad (/)) -̂ -> Auta

:)* (43)*

Aut, -^-

0.
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(3.2.15)

WK
 m'* > P

'2)* (43)*

0 0.

Combining these two diagrams, we have the following diagram:

(3.2.16)
0 0

K2 = K2

Aut(K,rad(/))/Hi

Kl > &utb/Wb -U Autf/Wf

0 0,

where we write Kl := ker (gj^/ker tei^n WR, and K2 := ker (^2)*/ker (^2)* n
VPi in short. The group Autfl (resp. Autb) coincides with the automorphism
group of the affine root system (F/Ea, Ra) (resp. (F/Rfc, Rb)) which preserves
the null root. The group Wa (resp. Wb) coincides with the Weyl group of the
affine root system (F/Ra, Ra) (resp. (F/Rb, Rb)).

Thus the group Auta/P^ (resp. Autb/Wb) coincides with the automorphism
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group Ga (resp. Gb) of the Dynkin graph for the affine root system (F/R0, Ra)
(resp. (F/Rfo, Rb)). Also the group Autf/Wf coincides with the automorphism
group Gf of the Dynkin graph for the finite root system (F/rad (/), Rf).

Therefore the Proposition 3.5 follows from the diagram (3.2.16). Q.E.D.

(3.3) Explicit Description of T+

We give an explicit description of F+ for each marked extended affine
root system. Fixing a basis a, b E rad (/)HQ(K) (aeGng(R)), we can repre-
sent F+ as a subgroup of SL(2, Z).

1) T+ = SL(2, Z) for the cases X\"\ Jr,(M)*, (f = 1, 2, 3).

2) r+=\\P q )eSL(2, Z)\q = Q(mod 2)> for the cases JB,(li2), C}li2),
\r si

3) r+ = < ( P q}E SL(2, Z)\q = 0(mod 3)i for the case G^'3).
(V SJ )

4) r+ = < iP q\E SL(2, Z)|r = 0(morf 2) > for the cases £,(2»1}, C,(2f 1),

Ff'^, BCP'4), BCP'2)(2).

f/P ^ 15) r+ = < r 4 e SL(2, Z)|r = 0(morf 3)} for the case G^3':).
IV'1 V J

6) F+ = < ( ) G SL(2, Z)|p = l(mod 2), q = Q(mod 2) > for the cases
V r s /

(3.4) The Action of Aut+ (R) on E

In order to define the action of Aut+ (R) on the space E, we introduce
the space F^alf as follows:

(3.4.1) F*alf := x E HomR (F, C)|<a, x> / 0, <6, x> ^ 0, Imi > O .
t \^? ̂ / J

The space Fjfalf has a C* action induced from the C* action on the complex
vector space HomR (F, C), defined by

(a/)(x) := a(/(x)) for /e HomR (F, C) , xeF, aeC*.

We consider the following diagram:

(3.4.2)

E
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The composite map of the C* quotient map and the natural inclusion E <^» F,falf

becomes an isomorphism. O+(F,1) acts on Fjfalf contragrediently, thus 0+(F, I)
also acts on Fj£lf/C*. Using the above isomorphism (3.4.2), we can define
the action of 0+(F, I) and its subgroup Aut+ (R) on E. (We call this action
"the linear fractional transformation".)

Remark. Among the element of 0+(F,/), only ±1 can be considered as
a C*-action. Therefore, 0+(F, /)/{ + !} acts on the space E faithfully. The
subgroup 0(F, rad (/)) does not contain —id., hence 0(F, rad(/)) acts on the
space E faithfully. We have the following diagram:

(3.4.3)

{±1} = {±1}

1 > 0(F, rad (/)) > 0+(F, /)/{ ± 1} —£-> SL(rad (/))/{ ±1}

1 1.

0+(F,/)/{±l} acts on E faithfully and transitively, and SL(rad (/))/{±1} also
acts on H faithfully and transitively. Hence E and H have the structure of
homogeneous spaces. These groups act on the bundle E A H equivariantly.

(3.5) The Central Extension of Aut+ (R)

In order to lift the action of Aut+ (R) on E to E, we need to construct

the central extension Aut+(R) of Aut+(.R). In Definition 3.6, we define the

central extension J|(F, /) of 0+(F,/)/{±l}. The central extension O^(F,J)

of 0+(FJ) is defined in Definition 3.7, Proposition 3.8. Aut+(K) will be
/•s^

defined in Definition 3.9 as a subgroup of 0+(F5J).
First, we define an automorphic factor. In (2.6) Remark, we looked at

b, an element of the Z-basis of rad (I)r\Q(R) (introduced in (2.2.1)), as a
coordinate function i of H. Since b is unique up to adding m x a (m e Z)
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((2.2) Remark), i is unique up to adding m e Z. Thus di is a well defined
1-form on H.

By the Remark in (3.4), h e SL(rad (/))/{ + !} induces an isomorphism of
H. Thus i o h is a function on H which is unique up to adding m e Z.
Therefore d(t o h) is a well defined 1-form on H. By the identity d(i o h) =
d(i o h) d(i o h)
— - — di. — - — is a well defined function on H.

dt di
If h e SL(rad (/))/{ + !} is represented by a matrix

eSL(2,Z)
r s

for a Z-basis a, b e rad (I) as above, then — - — is represented by (n + s)~2.
di

d(r o h)
We call the function — - — an automorphic factor for h.

di
Now, we consider the following conditions on a holomorphic bundle

isomorphism /: E -* E with respect to the affine bundle structure ft: E -> E.

Conditions. For a holomorphic bundle map /: E -> E, there exists the
unique /0 e 0+(F, /)/{ ± 1}, such that

(3.5.1) 1) J t o f = f0on on E ,

(3-5.2) 2)

where J| is the holomorphic metric on Dert defined in (2.8.5).

Definition 3.6,

O|(F, /) := {/: E -> E holomorphic bundle isomorphism of TI: E -> E;

which satisfies the above conditions (3.5.1), (3.5.2)} .

From the condition (3.5.1), we can define the homomorphism:

(3.5.3) ^:Ol(F,/)-,0+(

Since - - — — satisfies the cocycle condition with respect to the group
di

SL(rad (/))/{ + !}, Oj£(F, /) has a group structure by composition.

Remark. The Weyl group WR acts on the space E faithfully satisfying
the above condition (3.5.1) (3.5.2), thus we have the natural inclusion map

i:WR-+0*(F9l).
After the preparations above, we define the central extension 0+(F, 1) of

0+(F, /). Let (p be the natural projection of 0+(F, /) -» O+(F, /)/{±l}.
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Definition 3.70

0 (F, /) := {(*, y) 6 0(F, /) x 0+(F, l)W(x) = <p(y)} .

0+(F, I) has a group structure in a natural way. We call the next two projec-
tions pl and p2'.

(3.5.4)
(x, }>) H-» (x) ,

p2:0
+(FJ)-+0+(F,I)

(3.5.5)
(x, y) H-» (y) .

'"»•' 0.

We define the action of 0 (F, 1) on E through plm

Remark. We have a natural embedding:

WR-+0+(FJ)
(3.5.6)

9 *

Hereafter we regard WR as a subgroup of O+(F, I) by the above homomor-
phism (3.5.6).

Proposition 3.8. O+(F, /) is a central extension of 0+(F, I). We have the
following diagram:

I 1

{±1} = {±1}

(3.5.7) 0 - > C - > (T+(F, /) — ̂ -> 0+(F, /)

PI

1 1.
Proof. We should only prove the exactness of the third row sequence.

The other part of the proof of the diagram (3.5.7) is automatic.
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We choose a trivialization of the affine bundle E introduced in (2.7.3):

(3.5.8) (n, 1): E - E x C .

For all /Oe 0+(F, !)/{ + !}, we must study the existence and the ambiguity of
the function g(x, i) such that

E x Ch-»E x C
(3.5.9)

(x,t) H->(/oM,0CM)),
/^/

is an element of 0|(F, I). The projection p: F -» F/rad (I) induces the homo-
morphism p: 0+(F, I) -> GL(F/rad (/)). The image p(0+(F, /)) is 0(F/rad (I), I),
where I is the bilinear form on F/rad (/) induced from /. This enables us to

reduce the condition /*/* = ^/| (3.5.2) to a total differential equation

of the type dg(x, t) = co, where a; is a holomorphic 1-form.
The action Aut+ (R) on E is a linear fractional transformation, therefore

we find that co is a closed 1-form. Since E is a simply connected space, we
know that g(x, t) always exists, and that the ambiguity of g(x, t) is described
by C, the translation of the affine bundle n: E -> E.

g(x, t) has the form of t + gi(x), therefore the condition (3.5.2) also implies
that the map (3.5.9) becomes a bundle isomorphism of 7i:E-»E as an affine
bundle. Q.E.D.

Remark 1. Y. Namikawa told the author that this technique of extending
the group action was used in the theory of symmetric domains of type IV
(cf. [10] p.148).

Remark 2. 0+(F, /) acts on E transitively, therefore E has the structure
of a homogeneous space.

Definition 3.9. The central extension of Aut+(R) is defined as follows:

Aut+(JJ):=(p2r1(Aut+(J?)).

Theorem 3.10. WR is a normal subgroup of Aut+(jR).
'•v/

Proof. For any g e 0+(F, /), we shall prove

(3.5.10) g*.0-l=#j*,

where a e JR and g = p2(g) e 0+(F, /). If the equation (3.5.10) holds, then we
have the above theorem by considering only the cases g e Aut+(R).

If we apply the homomorphism p2 to both sides of the equation (3.5.10),
then the equation p2(0w(X0r1) = P2(^a) holds by the same calculation as in
the proof of Proposition 3.2. Hence we should only prove the equation:
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(3.5.11)

In other words, we should only prove the equation (3.5.10) on E.
First, we call the inverse image of the subgroup 0(F, rad (/)) c O+(F, /)/

{±1} of the homomorphism (3.5.3) ^: ()|(F, /) -> 0+(F, /)/{ + !}, O(F, rad (I)).
This leads to the following diagram:

(3.5.12)

0(F,rad(/)) - » 0(F,rad(/))

c

SL(rad (/))/{ ±1} = SL(rad (/))/{ ± 1}

1.

By this diagram, we can reduce the proof to two parts: 1. (3.5.11) holds for

g e 0(F, rad (I)). 1(3.5.11) holds for some lifting of SL(rad (/))/{ ±1} to

Lemma 311. (3.5.11) holds for g e O(F9 rad (/)).

Proof. We prepare some notations. Fc := F ®R C. Fc := F ®M C. Re
C induces F c= Fc. 7C := the C-linear extension of 1, which gives a bilinear
form on Fc. 7C := the C-linear extension of 7? which gives a bilinear form

— /\
on Fc. We define 0(F, rad (/)) as follows:

(3.5.13) 0(F, rad (/)) := {g e 0(FC, lc); g(F) c F, gf|F e 0(F, rad(/))} .

XX '^

Since 0 e 0(F, rad (/)) satisfies the conditions of 0(F, rad (I)), we have the
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homomorphism:

(3.5.14) 0(>, rad (/)) -» O(F9 rad (/)).

For g G 0(F, rad (I)), (3.5.11) holds on F. Therefore (3.5.11) holds for
the image of the homomorphism (3.5.13). We show that 0(F, rad(/)) =
0(F, rad (/)). Since dimc rad (7) = 1, we have the following commutative
diagram:

>s.

)) > 10 > (

(3.5.15)

: » 0(F,rad(/)) > 0(F, n
1

•v

0 > C > 0(F,rad(/)) > 0(F,r<. . . ) ) —> 1 .
This implies that 0(F, rad (/)) = O(F, rad (/)).

Q.E.D of Lemma 3.11.

Lemma 3.12. (3.5.11) holds for some lifting of SL(rad (/))/{±1} to

Proof. Fixing a basis (see (2.1)), we have a trivialization:

E ~ H x Cl x C
(3.5.16)

We denote the elements of H x Cl x C by (T, z, t). One lifting of SL(rad (/))
P qY1 . . „

is as follows:r s

(3.5.17)
rr + s' ri + s' 2(n + s)/

where < , > is the C-bilinear form on C* induced from 7. (3.5.11) can be
proved for this lifting by explicit calculation.

Q.E.D of Lemma 3.12.

Q.E.D of Theorem 3.10.

Consequently, we obtain the following diagram:
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K > WR > WR

(3.5.18) 0 > C > Aut+(£) > Aut+(&)

C* > Aut+(R)/WR > Aut+(R)/WR

1 1 1

where C* was normalized such that a e C* acts on Sk as the multiplication
by afc. Aut+ (R)/WR contains C* as its center, thereby Aut+ (R)/WR acts on
Sw as a degree-preserving transformation.

§4 The Action of Aut+ (R) on the Flat Theta Invariants

In [16], Saito introduced the non-degenerate holomorphic metric J* on
the submodule 2F c Dersw, and proved that the Levi-Civita connection V on
OF with respect to J* is integrable. He called the WR invariants associated

to J*, the flat theta invariants. In this section, we study the action of Aut+ (R)

on the holomorphic metric J*, and in the Theorem 4.7, we shall describe the
action of Aut+ (R) on the flat theta invariants explicitly.

In the rest of this paper, we assume that the codimension of the marked
extended affine root system (R, G) equals one. (The notion of codimension
was introduced in §2.)

(4.1) Normalized Lowest Degree Vector Field and the Holomorphic Metric /*

In Theorem 2.2, it was shown that there exist algebraically free generators
of the algebra Sw:@0, --,0l over F(H, 0H). In the S^-graded module Ders^,
the module of the lowest degree vector fields is a free F(H, 0H)-module of

rank 1 (= codimension) generated by —-.
U&i

Multiplying by a function h e T(H, 0|), if necessary, we can take a highest
degree generator 0l which satisfies
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(4U) w^
By (4.1.1), —— is normalized up to a constant factor.

Hereafter we fix 6 > 0 , - - - , 0 Z such that 0l satisfies the condition (4.1.1). We
can define

(4.1-2) T:=lfESw ^-f

(4.1.3) Derr := the module of C-derivations of the algebra T,

(4.1.4) Qj, := the module of 1-forms for the algebra T,

(4.1.5) <$ :=

(4.1.6) & := {a> e Q^w\Ldld&ico = 0} ,

where L8/80i means the Lie derivative with respect to the vector field

There is a canonical inclusion Q? c 3F. By the above generators T, @0, ••
we can represent T, Derr, fij, ^, ^ as follows:

(4.1.7)

(4.1.8)

l-l

(4.1.9) fl£ = raT00
i=0

(4.1.10) ^=Td~ ®®

(4.1.H) j^ = raT00
i=0

The pairing Dersw x Ojjr -> S^ induces the complete pairing ^ x !F -* T,
so ^ is a T-dual module of «^.

We define a T-bilinear form:

j*. gp ^ ^r __^ j^

(4.1-12) 8 „

*\

The value ——Jw(col9 a>2) belongs to T by the condition (4.1.1). Then the next
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important fact was shown by the Coxeter transformation theory for the
extended affine root system.

Proposition 4.1 ([16, p.49]). The T bilinear form J* is non-degenerate.

Accordingly, we can also define the T-isomorphism:

j*. $;-»(§
(4.1.13)

CO \-> J*(CO, • ) ,

and the T-bilinear form J on ^:

J:^ x y^>T
(4.1.14)

(4.2) The Action of Aut+ (R) on the Holomorphie Metric J*

We shall study the action of Aut+ (R) on J*. We recall that Aut+ (R)
acts on E through p^.

(4.2.1)

- d
Proposition 4.2. The action of Aut (R) on - — is described as follows:

(4.2.2) (pi(0-% = X ( g ) - f , (9 e Aut+ (R))
\OViJ OKI,

where / is a group homomorphism'.

(4.2.3) x- Aut+ (R) -» C* .
'•̂ ^

Proof. Since the action of Aut (R) on Ders»F is a degree preserving
transformation, there exists a non-vanishing holomorphic function /(T) on H

satisfying (^(fiT1))* ( — ) = /(T)-^ for gf e Aut+ (jR). We only have to prove
\o&ij o&i

that /(T) = const. E C.
First, we notice that

for some u E T. If v e T and h(i) e F(H, 0H), then Iw(dv9 dv) and V(d(/i(T)6^), di?)
have at most degree 1 with respect to 0{. Thus

(4.2.4) ^Iw(dv9dv) = Q,
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(4.2.5)
C'C/j

We recall that

Iw(d^d0l) = K-1Ol (2.8.12),

and that

Iw(d(Pl(gr<P\ <f(Pi(ff)*W) (3-5.2) .

We apply Pi(g) on the both sides of equality (4.1.1), we have

(4.2.6) 0 = Pl(g)* \*lw(d9l9 <»,)

= /2(t)

= /2(t)

Since /(T), / (T°P(Pi(g)) \ don,t vanish; j-^ must be a constant. Q.E.D.

By Proposition 4.2, Aut+ (R) acts on T, ^ and J5".
"w

Therefore the automorphism group Aut (R) acts also on J* in a natural
way.

Proposition 4.3. The action of Aut+ (R) on J* is described as follows:

(4.2.7)

J>i, o)2)] =

/or (»!, co2
 E ^r-

Proof. It's easy to see from Proposition 4.2, and the transformation
property (3.5.2) of I. Q.E.D.
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(4.3) The Levi Civita Connection for the Holomorphie Metric /*

We define the Levi Civita connection V on 3F with respect to J*. Then
the Proposition 4.4 asserts that the connection V is integrable.

Proposition 4.4 ([16, p. 5 8]). There exists a unique torsion-free, integrable,
metric (w.r.t. J*) connection V on 3F as a T-module:

V\ Derr x & -» & ,
(4.3.1)

0,o>)i

I.e.
0) The map 7da) is T-linear in 6 and satisfies the Leibniz rule:

(4.3.2) F,(/o>) = S(f)a> + /P,a> for feT.

1) (integrability) For V(5, <i; e Derr,

(4-3.3) [F,, Pe] = Ptftei .

2) (torsion-freeness) The following diagram commutes:

(4.3.4)

& A

3) (metric) For d e Derr and a)l9 a>2£

(4.3.5) (5J*(co

Remark. The torsion-freeness implies that a horizontal section a* e &
(with respect to F) is a closed form.

Proposition 4.5. The action of Aut+(£) on V8a> is described as follows:

1

2j

//K>r r\ s\( n ( si\\\~^
; e Derr, co 6 3F.

Proof. This follows from Proposition 4.3 and the formula:

2J*(7t(olt oi2) = W*^!, co2) + <cu1; [J*(c»2

- <c»2, [J*K), «

for <5eDer r, tu1; co2 e &. Q.E.D.
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(4.4) Modular Property for the Flat Theta Invariants

We rewrite the degrees 0, m 0 , - - - , m z of T, @0,--,@l as follows:

(4.4.1) 0 = m0ii = ~' = m0tno<mltl = --- = m1 > W i <m 2 > 1 = •••

m = • • • = m < mk+ l t l

such that mt = mptq when i = q + Xj=o nj- By ^e assumption, codimension =
1, nk+l = 1 and the duality of the exponents holds for cod(K, G) = 1, i.e.

(4.4.2) nf = nfc+1_f (0 < i < k + 1) .

Hereafter we fix one Z basis a, b e rad(/)nQ(K) (a e G f l (?(#)), thereby
we also fix the coordinate function T e /"(H, 0H). We represent p o n(g) e F+

by a matrix

(4.4.3) ((pon(g))b,(pon(g))a) = (b,a)
\r s

Theorem 4.6 (^at thcta invariants [16, p. 63]). Jw ^e module Sw, there
exists a unique complex graded vector space V oj rank I + 2, whose weights
are 0 = m0 j l , m l f l , .

(4.4.4) 7= 0 1^ wfcerc dim Vi = ni (0 < i < k + 1) ,
i=0

swc/i t/zat
1. F0 = C-T
2. S^ = T(H, ^PH) ®C[T] S[K], w/i^re S[F] is the symmetric tensor algebra of V.
3. dVc: Q^w becomes the set of horizontal sections of ^ with respect to the

connection V . In particular, <h and KJ*(di) = - — are horizontal. (K is the
cOi

non-zero constant defined in (2.8.12).)
4. J* defines a non-degenerate C-bilinear form on V using the inclusion map:

V c+ dV c Q^w

(4.4.5) J*:Fx K - > C ,

in particular J* defines a complete pairing of Vi and Vk+1-i (0 < i < k + 1):

(4.4.6) J* : r ,xn + 1 _, ->C.

VKe caH the elements of V the flat theta invariants.

Theorem 4.7 (modular property for the flat theta invariants). The action
of Aut+(R) on the flat theta invariants is as follows:



30 IKUO SATAKE

(4.4.7)

(4.4.8) Pl(g)*v = — — ,4,.(<r> for all veVt, (l<i<k),
i T ~i o

(4A9,

Also At has a duality with respect to J*:

(4.4.10)
1)./*^ t>k+i-,) /or a// 1;, e Vt , (1 < i < k)

1. ^4f: Aut+(.R) -> GL(P^) is a group homomorphism.
2. {0Q9 ..., 02_i } is t/ze union o/ a foasis qf @?=i FJ, &\ is the element of

Vk+1 which satisfies - — &l = 1, where -r— - was defined and fixed by
o0l o©l

(4.1.1).
3. K is the non-zero constant defined in (2.8.12).

Proof. Let a) = dv for veVt (i = 1, . . . , k — 1). Then CD is a horizontal
section of V of degree < mt. By the fact that

(4.4.11)

(since the degree of (L.H.S) is negative) and by Proposition 4.5, we have

(4.4.12) V6 dfaWv) + - l(8f)d(Pl(g)*v) + <5, d(Pl(g)*v»dn = 0 ,

where / = r (t ° P(/?I(^ ) = (rr + s)2. We find that <L/f is horizontal (The-

orem 4.6-1). Thus V*d{J~f(pi(g)*v)} =0 for all ^eDerr. This implies that

•^/f(pi(g)*v)e Vt. A cocycle condition with respect to the group Aut+(i^)
satisfied by ^/f implies that A{ is a group homomorphism.

The duality (4.4.10) is a direct consequence of the Proposition 4.3 and
the equation (4.4.6).

By Theorem 4.6-3, it is possible to take 0l e Vk + 1 such that fy satisfies

The element of the automorphism group g e Aut+(K) acts on J as follows:
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(4.4.13)

Applying (4.4.13), (4.4.8) and (4.4.10) to

1-1 / 3 d \ - ~ f d d
(4.4.14) J= X -M— , —

we get formula (4.4.9) up to addition of constant. The gradation on T kills
this ambiguity and we obtain the formula (4.4.9) exactly. Q.E.D.
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