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Abstract

The types of von Neumann algebras generated by quasifree representations of infinite dimen-
sional Clifford algebras are studied in terms of spectral properties of positive operators parametriz-
ing quasifree states.

§ 1. Introduction

The type analysis of quasifree factors (i.e., factors generated by quasifree
representations) has been an interesting problem since the appearance of the
pioneering work of Araki and Wyss [4]. In the case of CAR-algebras, the
rough classification into type 1^, IIl9 11̂ , and III was obtained in late 60's
by several authors (see [6], [9] for example).

In this paper, we shall describe the fine classification of type III quasifree
factors (i.e., factors arising from quasifree representations) in terms of spectral
properties of positive operators parametrizing quasifree states (i.e., positive
operators associated to two-point functions). Roughly speaking, the essense
of our analysis goes back to the celebrated work by Araki and Woods on
infinite tensor product factors but there are two points we should take notice
of:

(i) At the starting point, we have no restrictions (such as discreteness) on
the spectrum of positive operators S. Fortunately we can modify S up to
quasi-equivalence so that it has only point spectrum as was done in [6], [9],
[10], [1]. The type analysis is achieved by studying this modified operator
based on [3] and then relating it to the original S. In this last process, we
need the duality between the T-set and the asymptotic ratio set (or more
generally the Connes' S-set) established by A. Connes.
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(ii) The approach described above is only valid when the dimension of
the kernel of S - 1/2 is even (this corresponds to the case of CAR-algebras). If
ker (S — 1/2) is odd-dimensional, we identify the quasifree factor Rs associated
to S with a crossed product of a quasifree factor of even-dimensional case by
an outer action of Z2. The type analysis is then done with the help of two
general results on types of crossed product algebras due to [Sauvageot] and
[Loi] respectively which especially make sense in the above situation.

We have clarified these two points in the present paper and obtained a
necessary and sufficient condition for quasifree representations to generate type
IIIA-factors. Since the generic quasifree factors are known to be of type III15

this provides the fine classification.
The authors are grateful to H. Kosaki and K. Saito for their interests

in the present work which has been a great encouragement in preparing the
paper.

Notation

For a self-adjoint operator S in a Hilbert space and a subset 1 of the
real line, we denote by St the self-adjoint operator cut down to the spectral
subspace corresponding to /. When / consists of one point, say a, we write
as Sa instead of S^.

A self-adjoint operator S is said to have pure point spectrum if the spectral
measure associated to S is supported by a countable (not necessarily closed)
subset of R.

§ 2. Preliminaries

In this section we collect together some of basic facts on quasifree represen-
tations of Clifford C*-algebras.

Let H be a separable infinite dimensional Hilbert space with complex
conjugation ~ (i.e., ~ is a conjugate-linear involution satisfying <J, 0> = <0, /».

We consider a *-algebra CQ(H) generated by elements in H and the unit
1 with the relations

(1) /*=/, f*g + gf* = <
It is well known that the *-algebra C0(H) is isomorphic to an inductive limit
of matrix algebras of the form M2d(C) (consider a directed system indexed by
finite-dimensional subspaces of H). In particular, there is the unique C*-norm
under which C0(H) is completed to a C*-algebra C(H), called the Clifford
C*-algebra. Let U be an orthogonal transformation in H, i.e., a unitary
operator in H which commutes with the conjugation ~. As a consequence of
the universality of construction, U is uniquely extended to a *-automorphism
i(U) of C(H\ called a Bogoliubov automorphism according to Araki.
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For feH, its C*-norm is calculated by the formula (see [2])

(2) ll / l l o = 2-1/2(||/||2 + (ll/ll4 - !</,/> |2)1/2)1/2 •

In particular the imbedding H c=-» C(H) is continuous. Given a state cp of
C(H), the two-point function of (p is, by definition, a positive hermitian form
<P(f*g) on H, which is continuous with respect to the Hilbert space norm.
Hence we obtain a (bounded) positive linear operator S in H such that
9(f*g) = </> Sgr>. From the commutation relation (1), the operator S satisfies

(3) S + S = 1 .

Here S denotes the complex conjugation of S relative to ~, i.e., S — ~ o S o ~.
Generally the operator S is only a part of information of states. There

is, however, a canonical way to associate states to such operators ([!]): Given
a positive operator S fulfilling (3), there is the (unique) state (ps, called quasifree
state, determined by

(4)

(5)

where the summation is taken over permutations of {1, ...,2n} such that

o-(l) < (7(3) < < a(2n - 1) and a(2j - 1) < a(2j) for j = 1, . . . , n .

We denote by ns the GNS-representation of C(H) associated to the quasi-
free state cps and by Rs the von Neumann algebra generated by the image
Of 7CS.

We list some of basic properties of quasifree representations.

Theorem 2.1 ([1], [9]). Let S, T be positive operators in B(H) which
satisfy (3). Then two representations ns and nT are quasi-equivalent if and only
if S1'2 - T112 is a Hilbert- Schmidt operator.

Note here that a Bogoliubov automorphism r(U) is extended to an auto-
morphism of Rs if and only if US^U'1 - S1'2 is in the Hilbert-Schmidt class
and, if this is the case, the extended automorphism of the von Neumann
algebra is also denoted by TS(17). The following fact can easily be checked
with the help of the KMS-condition.

Lemma 2.2. The modular automorphism group {ofs}feR of the quasifree
state cps on Rs is given in the form of Bogoliubov automorphism:

a" = TS(S"(1 - Sr<) .

The condition for Rs to be a factor is considered in [1], [9].



36 TOSHIKI MURAKAMI AND SHIGERU YAMAGAMI

Theorem 2.3 ([1], [9]). // the kernel of S - 1/2 is even-dimensional
(including dimensions 0 and oo), then Rs is a factor. When the kernel of S — 1/2
is (finite) odd-dimensional, then Rs is not a factor if and only if S[o,i/2] is a
traceclass operator. If this is the case, Rs is isomorphic to B(K)@B(K) with
K an infinite dimensional Hilbert space.

Theorem 2 A ([8], [9]). Suppose that the kernel of S — 1/2 is even-dimen-
sional. Then the following holds.

(i) Rs is a l^-factor if and only if S[0>1/2] is a trace class operator.
(ii) Rs is a llrfactor if and only if S1/2 - (1/2)1/2 is a Hilbert-Schmidt

operator.
(iii) Rs is a ll^-factor if and only if S is a combination of (1) and (2),

i.e., S[0jC] is a trace class operator and S£(2
1/2] — (1/2)1/2 is a Hilbert-

Schmidt operator for some and hence any 0 < c < 1/2 with both of
these operators having infinite-dimensional ranges.

(iv) Rs is a Ill-factor if S does not satisfy any of the above three
conditions.

The following is obtained by modifying the proof of von Neumann's
lemma on Hilbert-Schmidt perturbation of self-adjoint operators (cf. [9, Lemma
4.3]).

Theorem 2.50 Let S be an operator in B(H) satisfying (3). Then there
exists a positive operator T in B(H) with pure point spectrum and satisfying (3)
such that S112 — T112 is a Hilbert-Schmidt operator. For any such a perturbation,
the parity of dim ker (S — 1/2) is unchanged.

We need the following criterion for the innerness of product type
automorphisms.

Lemma 2.6 ([5]). Let {<?/}/> i be a family of states on the 2 x 2 matrix
algebra M2(C) and {uj}j>1 be a family of unitary matrices in M2(C) such that
fy commutes with Uj for all j>l (i.e., if we express cpj as cpj(-) = tr (PJ-)
with PJ a positive matrix, then pjUj = ujpj for j > 1). Then the automorphism
(^)j>1Aduj in the infinite tensor product factor (X)^ (M2(C), (PJ) is inner iff

// this condition is satisfied, a unitary operator implementing this inner auto-
morphism is given by (><);>! eldjUj, where el6j is a phase factor determined by
e»><pj(uj)>0.

For later use, we rewrite this result into the following form. Suppose
that a positive operator S satisfying (3) has pure point spectrum and the
kernel of S — 1/2 is even-dimensional. Then S is decomposed as
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(6) s = £ {tjEj + (i

where 0 < ^ < 1/2 is the half of eigenvalues of S and Ej (j = 1, 2,...) denote
mutually orthogonal one-dimensional projections.

Corollary 2.7. // S takes the form in equation (6) and dim (ker (1/2 - S))
is even, then the modular automorphism a?s (t e R) is inner if and only if

(7) ]T .̂(1 — cos [t(log £j — log (1 — £/))]) < co .

Proof. This is definitely well-known but for the sake of completeness,
we recall the points of arguments. Let fj9 fj (j > 1) be an orthogonal basis
corresponding to the decomposition 1 = Z/>i(£/ + Ej) (fjeEjH). Then we
can define a family of mutually commuting 2 x 2-matrix units {^|"}}n>i by

p(n) _ f f* p(n) _ f On-l /I _ Of* f \
ell — JnJn J €12 — Jn[ lr=l V1 <4/r Jr) J

p(n) _ f*rTn-l/l _ 9f*n ^n) — f*fe21 ~~ J« I lr=l I1 4/r Jr/ » e22 ~ Jn Jn

and C(H) is identified with the infinite product C*-algebra ®r,>iM2(C). With
this identification, the quasifree state cps is regarded as the product state
(x)j>i q)j with

- 6 0

o 6
J 1- 1.- ^ t l f i - t t °and the modular automorphism \>Qj>\Aa\

V 0 Ci
Now applying Lemma 2.6, one sees that t e R is in the T-set for Rs if

and only if

By a direct computation of the absolute value of 1 — ̂  + {jr(l — £j)~"£j, the

summand in the above condition takes the form 1 — y/1 — 2^(1 — ̂ -)(1 — cos 9j)
with 9j = r(log £j — log (1 — £)j)\ The assertion is then obtained from 1 — x <

yjl — x < 1 — x/2 for 0 < x < 1 (the factor 1 — ̂  is omitted because 0 <
^•<V2). D

Corollary 2.8. Let S be a positive operator which satisfies (3) and has
pure point spectrum. Let U e B(H) be a unitary operator which can be diago-
nalized in the following form:

00u = Z UJEJ + UJEJ -
7=1



38 TOSHIKI MURAKAMI AND SHIGERU YAMAGAMI

(Noted that U commutes with S and u-s are complex numbers of modulus
1.) Then the Bogoliubov automorphism i(l/) of Rs is inner if and only if

£ ( l - l fa - 1)6+1|) < + o o .
j=l

Proof. With the same notation in the proof of Corollary 2.7, the
Bogoliubov automorphism TS(17) is identified with

and we can apply Lemma 2.6 again. Q

Since the quasifree state cps with S given by (6) is a product state, we
can talk about the asymptotic ratio set of cps. Recall the definition of
asymptotic ratio set in our context (see [3] for the original definition): Let
£ = {£/}/>i be a sequence of positive numbers with <^ < 1/2 for j > 1. For a
finite set / consisting of positive integers, let {0, I}1 be the set of functions
on I with values in {0, 1}. For an element s in {0, 1}J, set

where ^ = 1 - ^ and ̂  = ̂  and, for a subset E c {0, I}7, define f (E) by

The asymptotic ratio set r^ of { (or Rs if £ is the sequence in (6)) is the
totality of non-negative real numbers r such that there is a sequence of mutu-
ally disjoint finite sets /„ consisting of positive integers, a sequence of subsets
En c= In, and a sequence of injective mappings (j)n\ En -> {0, l}/n\£M with the
properties

and
FM (P\\

= 0.
n -* oo E e En

Note that accumulation points of the sequence {£,./(! — ̂ -)}j>i are con-
tained in the asymptotic ratio set of Rs except for 0. From this simple
observation, we have the following ([!]):

Lemma 2,9. Suppose that S is given by (6).
(i) // the sequence {£/}7->! has (at least) two accumulation points {A/(l + A),

u/(l + u)} (0 < A, ju < 1) such that A is not a rational power of u, then
Rs is a IIIi~Jactor.



QUASIFREE REPRESENTATIONS 39

(ii) // Rs is of type III0, the accumulation points of the sequence {£/}/>i
are contained in the set {0, 1/2}.

§3. Type Analysis — even-dimensional case

In this section we assume that dim (ker (1/2 — S)) is even.

Definition 3.1. Let 0 < A < 1. A sequence {ttj}j>i of positive integers is
called a ^-sequence if there exist a disjoint sequence {/„} of finite subsets in
N, a sequence of subsets En c {0, l}/n, and a sequence of injective mappings
fa:En^Q,i»\En such that

(8) £ X(En) = +0) ,
«>i

(9) IA,(fi)l - |e| = 1 for V n > l , Ve e En .

Here |e| = XeO")=i nj (*ne summation is taken over j e In satisfying s(j) = 1) and

Lemma 3.2. Assume that ^j = Anj/(l + /L"J) with {n7-} a sequence of non-
negative integers. Then Rs is of type IIIA if and only if {raj is a ^-sequence.

Proof. This is just a restatement of the definition, n

Theorem 3.3. Suppose that dim (ker (1/2 — S)) is even. For 0 < A < 1, Rs

is a IIIrjactor if and only if the following holds:
(i) The spectrum of S is discrete.
(ii) Let {£/}/>i be a mutually orthogonal sequence of spectral projections

of rank 1 for S with 0 < £7- < 1/2 the corresponding eigenvalues. Then
there is a 1-sequence {H/}J>I such that

1/2 2

Proof. By Lemma 3.1, the conditions in (i) and (ii) are sufficient to insure
that Rs is of type IIIA.

Conversely assume that Rs is a IIIA-factor. Let T be an operator in
Theorem 2.5. By Theorem 2.1, Rs and RT are isomorphic and hence RT is
of type IIIA. Then the accumulation points of the spectrum (counting multi-
plicity) are contained in the set {0} U {A"/(l + &")'•> n e Z}. Since the essential
spectra of S and T coincide, this implies that the spectrum of S is discrete
and accumulates at most in {0} U {A"/(l + A"), 1/(1 + A"); n = 0, 1, 2,...}. In
particular, we have the expression for S as in (6).
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For each j > 1, define an integer n7- and a real number —1/2 < a,- < 1/2
by £j/(l - £j) = knJ+*j. Since 2n/k is in the T-set of Rs, Corollary 2.7 shows
that

i.e.,

£ A"'(sin no,)2 < +00 .

Since \20/n\ < |sin 0\ < \9\ for -n/2 < 9 < n/2, this is further equivalent to

(10) I ^f <
7=1

Now define S0 e B(H) by

The positive operator S0 satisfies (3) and we can show that

l/2 / in, \ 1/2X2
l/2 cl/2,12 --&o liH.s.-

/2

converges. In fact, for the convergence of the first summation, we deduce as
follows:

/2_
+ *ni+*j m

- 1)2 .
7>1

(Here ^a^ ~ ^7-fc7- means that X7fl7 < +°o if and only if ^fy < +00.) Since
(Ax — I)2 < /T1 |log /l|x2 for — 1/2 < x < 1/2, the last summation converges due
to (10). (We have in fact showed that the summation in (ii) converges for
{rij} just defined.) Similarly for the second summation.
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In this way, we showed that cps and cpSo are quasi-equivalent. Then from
the assumption, RSo is of type IIIA. Since the half of the spectrum of S0 is
given by the sequence {/L"V(1 + Aflj')}J-^1, {rij} is a A-sequence by Lemma 3.1. Q

Corollary 3.4. // S is invertible, then Rs is a Hl^-factor with 0 < A < 1
if and only if

(i) the spectrum of S is discrete and
(ii) with the same notation as in the theorem (ii), there is a bounded

sequence (nj of non-negative integers such that the greatest common
divisor of the values which appear in the sequence with multiplicity
infinite is equal to 1 and

1/2 2

< +00

Proof. Suppose that Rs is of type IIIA and let {n^} be a /l-sequence which
is assured in the theorem. Since S is assumed to be invertible, the sequence
{nj} is bounded. Let {m l 5 . . . ,md} be the set of values which appear in {ft,-}
infinitely many times. Let m be the common divisor of {m1,...,md}. Since
the values of finite multiplicity have no effect on the type of generated von
Neumann algebras, the asymptotic ratio set is contained in the set of integer-
powers of /lm. Thus m = 1.

Conversely suppose that we can find a sequence of integers {/i , . . . , /d}
such that I1m1 + "- + ldmd = 1. We may assume that /x > 0,..., lk > 0, lk+1 <
0,..., lk+f < 0, and lk+f+1 = -- = ld = Q. Since each m,- is of infinite multiplic-
ity, we can find a disjoint sequence {/„} of sets consisting of positive integers
such that mj appears in /„ with multiplicity \lj\. For each n, define an element
ene{0, I}1" by

[0 if HJ is in {m1 , . . . ,mk}
£nUJ~|l otherwise.

Let En = {sn} and define ^n: En -> {0, l}In\En by

1 if ^ is in {mfc+1, . . . ,md}
0 otherwise.

Then |^n(en)| — |ej = 1 while the summation of

for n > 1 diverges. Thus {n^ is a A-sequence. Q
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§4 Type Analysis—odd-dimensional case

In this section we exclusively deal with the case ker (S — 1/2) being odd-
dimensional. In that case we can find a real (i.e., / = /) normalized vector
/ in ker (S — 1/2) and, if we let S0 be the restriction of S to the orthogonal
complement H Q C/, then ker (S0 — 1/2) is even-dimensional. The unitary u =
ns(^/2f) in Rs is self-adjoint and implements the Bogoliubov automorphism
T(—1) on RSo. Thus Rs is identified with the crossed product algebra RSo x
Z2. Note that T(—1) is outer if Rs is a factor (if T(—1) = Adv on RSo with
vERSo, then M"1!? is in the center of Rs).

Since the classification of von Neumann algebras into types I, II15 11̂ ,
or III is preserved under the crossed product by finite groups (cf. [13], §22.7),
we have

Theorem 4.1 ([8], [9]). Suppose that the kernel of S — 1/2 is odd-dimen-
sional. Then the following holds.

(i) Rs is a direct sum of two l^-factors if and only if S[0)1/2] is a trace
class operator.

(ii) Rs is a llrfactor if and only if Sl/2 - (1/2)1/2 is a Hilbert-Schmidt
operator.

(iii) Rs is a 11^-factor if and only if S is a combination of (I) and (2),
i.e., S[0jC] is a trace class operator and S^l/2] — (1/2)1/2 is a Hilbert-
Schmidt operator for some and hence any 0 < c < 1/2 with both of
these operators having infinite-dimensional ranges.

(iv) Rs is a Ill-factor if S does not satisfy any of the above three
conditions.

Since cps is invariant under Adu, we have the following (cf. [11], [12]).

Lemma 42. The Takesaki dual Rs x f f 9 sR is *-isomorphic to (RSo xfffPSQR)
x Z2 where the Z2-action on RSo x R is defined as the extension of T(—1) so
that it fixes point-wise the l-parameter group of unitaries implementing afs°.

For the description of T-sets of crossed products, we recall the result due
to Sauvageot.

Proposition 43 [11, Proposition 3.9]. Let M be a factor and (ag: g E G}
be a discrete abelian automorphism group on M. Let cp be a state on M and
t e R. Then the following conditions are equivalent:

(i) teT(MxaG).
(ii) There exist an element g0 e G and a unitary operator v in M such that

a? o a9o = Ad (v)
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and

(Dcp o ag : Dcp) = xg(v)v* (g e G) .

Here we calculate the T-set of Rs.

Lemma 4.4.

T(RS) = T(RSo) U {t e E; i(- l)of s° is inner} .

Proof. Since cps is T( — l)-invariant, we need to check that, when at or
T(— l)at is inner, their implementing unitaries are fixed under T(— 1), which
follows from the fact that the implementing operators are limits of even
elements in RSo as seen in Lemma 2.6. Q

We also need the following stability theorem of types under crossed
products by finite groups, which would be well-known. Since it is contained
in the Loi's work [7], we just cite it here (when the acting groups are abelian,
the Takesaki's duality gives a simple proof).

Lemma 4.5. Let N be a type Ill-factor and G be a finite group. Let
a: G-+Aut(N) be an outer action. Then N x G is type III0 (resp. type IIIJ
if and only if the same holds for N. If N is of type IIIA with 0 < A < 1,
then N x G is of type III^ with q a positive rational number.

Lemma 4.6. Suppose that RSo is a III j-f actor with 0 < /I < 1 and let {n/}j->i
be the associated ^-sequence in Theorem 3.3. Then we have

T(R } =
s

f (™/l°g 4 n e Z} if ^^ < +0)
|{2n7i;/log /I; n e Z} otherwise .

Here the sum in the if-part is taken all j such that n^ is even.

Proof. Suppose that T(— l)crr is inner on RSo. Since T(— 1) and at com-
mute, cr2t = T(— l)cr fT(— l)crt is inner as well. Hence Lemma 4.4 shows that
T(RS)= T(RSo) or T(RSo)/2, the latter case occurs if and only if T(-l)<7f is
inner for t = n/log L By Corollary 2.8, this is equivalent to

Since ^ = knj/(l + Anj), the summation in the left hand side is given by

/ t-t-jy^A 2^

YV 1+A" J / n j =Yvenl+^'

proving the assertion. Q

By Lemma 4.5 and Lemma 4.6, we finally have the following:
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Theorem 4.7, Suppose that RSo is a III ^f actor (0 < A < 1) with {fl/}j
the ^-sequence assured in Theorem 3.3. Then Rs remains to be a III ^-f actor if

(11) £ ^ = + 0 0 .

Otherwise Rs is a lll^-factor.

References

[ 1 ] Araki, H., On quasi-free states of CAR and Bogoliubov automorphisms, Publ. RIMS.
Kyoto Univ., 6 (1970/71), 385-442.

[ 2 ] , Bogoliubov automorphisms and Fock representation of canonical anticommutation
relation, Contemp. Math., 62 (1987), 23-141.

[ 3 ] Araki, H. and Woods, E. J., A classification of factors, Publ. RIMS. Kyoto Univ., 3
(1968), 51-130.

[4] Araki, H. and Wyss, W., Representations of canonical anticommutation relations, Helv.
Phys. Acta, 37 (1964), 136-159.

[ 5 ] Connes, A., Une classification des facteurs de type III, Ann. Sci. EC. Norm. Sup., 6 (1973),
133-252.

[ 6 ] Dell'Antonio, G. F., Structure of algebras of some free systems, Comm. Math. Phys., 9
(1968), 81-117.

[7] Loi, P. H., Sur la theorie de 1'indice et les facteurs de type III, C.R. Acad. Sci. Paris,
305 (1987), 423-426.

[ 8 ] Moore, C. C., Invariant measures on product spaces, Proc. Fifth Berkley symposium on
math, Vol II-Part II (1967), 447-459.

[ 9 ] Powers, R. T. and St0rmer, E., Free states of canonical anticommutation relations, Comm.
Math. Phys., 16 (1970), 1-33.

[10] Rideau, G., On some representations of anticommutation relations, Comm. Math. Phys.,
9 (1968), 229-241.

[11] Sauvageot, J.-L., Sur le type du produit croise d'une algebre de von Neumann par un
group localement compact, Bull. Soc. Math. France., 105 (1977), 349-368.

[12] Sekine, Y., Flow of weight of crossed product of type III factors by discrete groups, Publ.
RIMS, Kyoto Univ., 26 (1990), 655-666.

[13] Stratila, S., Modular Theory in Operator Algebras, Abacus Press, 1981.


