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Representations of Unitary Groups and
Free Convolution

By

Philippe BIANE*

To each finite dimensional representation of a unitary group U(n) is associated a probability
measure on the set of integers, depending on the highest weights which occur in this representation.
We show that asymptotically for large n and large irreducible representations of U(n) the measure
associated to the tensor product of two representations, or to the restriction of a representation
to a subgroup U(m) with m comparable to n, can be expressed in terms of the measures associated
to the first representations by means of the notion of free convolution (namely additive free
convolution for the tensor product problem and multiplicative free convolution for the restriction
problem).

Introduction

Let U(ri) be the group of complex n x n unitary matrices. In the represen-
tation theory of this group two basic questions are the following.

i) Given an irreducible representation R of U (n) and m < n, decompose
the restriction of R to U(m) (embedded as a subgroup of U(n)) into irreducible
components.

ii) Given two irreducible representations R^ and R2 of U(n) decompose
the (Kronecker) tensor product representation R^ ® R2 into irreducible compo-
nents.

The first problem can be dealt with by using recursively Weyl's branching
rule, which says that given an irreducible representation of U(n) with highest
weight ( v l 5 . . . , vj (where v7- for 1 <j < n are integers and v1 > v2 > ••• > vn),
then in the restriction of R to U(n — 1) only the irreducible representations
with highest weights ( A l 9 . . . , ^n-i) satisfying vx > /Lx > v2 > ••• > /Ln_! > vn ap-
pear, each with multiplicity 1. From this one can determine the multiplicity
a"il of the dominant weight A in the restriction of the representation of U(n)
with highest weight v to U(l).
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For the second problem, Weyl's character formula for representations of
semi-simple Lie groups can be used to give an explicit formula for the multiplic-
ity a*v with which the dominant weight A occurs in a tensor product of two
irreducible representation with highest weights \JL and v (see [6]). In the case
of unitary groups the Littlewood-Richardson rule provides another approach
to this problem (see [4]).

In this paper we shall be interested in asymptotic results on these problems
when both the dimension of the group and the representations become large
(where for an irreducible representation to be large we mean that the compo-
nents of its highest weight become large). In this case the explicit formulas
for the multiplicities in both problems become quickly intractable and one
has to find other means of obtaining information on them. One way to do
this is to try to estimate the asymptotic behaviour of some linear combinations
of the coefficients. This is what we do in this paper using the notion of free
convolution of measures, introduced by D. Voiculescu in the context of opera-
tor algebras (see [1]).

We will associate to each finite dimensional representation of a unitary
group a measure on the set of integers Z in the following way: if R is an
irreducible representation of U(n) then the measure associated to R is Ji(K) —

~Z*=i ^k wkere dx is the Dirac measure at x and ^keZ are the components

of the highest weight of .R. If R = R1@ R2 decomposes into a direct sum of

representations then M(R) is the convex combination JK(R) = ——-\Jt(R^
dim (R)

2)
( 2)'

When the representation R is irreducible the measure Jt(K) determines
completely its isomorphism class. When R is not irreducible, although this
measure does not in general determine the decomposition of R into irreducible
components, it gives some partial information on the multiplicities of the
irreducible representations which occur in R.

We will show that asymptotically the map Ji converts the tensor product
of representations into the additive free convolution of measures, and that the
operation of restriction to a subgroup can be expressed through Jl with the
help of the multiplicative free convolution by a measure.

Informally the results that we prove can be expressed as follows: denote
by Jfe(R) the image of the measure JK(R) by the transformation x H» sx on
R for a small e e R+, and let R^ and R2 be two irreducible finite dimensional
representations of U(n). If n is large, such that ^(R^) and J?e(R2) are close
to some probability measures ax and a2 with compact support on [R, then
Jt*(R± (g) R2) is close to the measure a1 0 a2 which is the free convolution of
OLI and a2. In the same vein we will have that if m is an integer close to
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pn for pe]0, 1] then ^e(Ri\u(m)) (where (Ri\U(m) is the restriction of R1 to

U(m)) is close to the measure -(at ®(pdt + (1 — p)60) — (1 — p)d0) where ®
P

denotes the multiplicative free convolution of measures, and 5X the Dirac mea-
sure on x e [R.

The proof of these results will consist in a two-step approximation argument.
In the first step one shows that, for fixed n, and for an irreducible represen-

tation R of U(n) with a large highest weight (/^,..., ^n), the operators dR(Ekl)
(where dR is the corresponding representation of the complexified Lie algebra
gln(C) and Ekl is the canonical basis of gln(C))9 considered as non-commutative
random variables, can be approximated in distribution by the components of
a random matrix with spectrum close to {fj,l9...9 fin}. This is just a simple
consequence of Kirillov's formula for the character of an irreducible representa-
tion. In fact the result that we prove could be extended to arbitrary compact
semi-simple Lie groups.

The second step consists in considering a matrix canonically associated
to any representation of U(n) by the formula C(R) = ]TH Ekl ® dR(Ekl). Using
the result of the first part of the paper, as well as results of D. Voiculescu
and R. Speicher on asymptotic freeness of large independent matrices, we show
that the matrices C(R) corresponding to independent representations (i.e. acting
on different components of a tensor product space) are asymptotically free
random variable with distribution close to Jt(R)9 and are also asymptotically
free with diagonal matrices. This asymptotic freenes allows us to link the
decomposition problems for representations with free convolution.

In fact our results show how to construct in a natural way families of
non-random matrices which are asymptotically free random variables with pre-
scribed distributions.

This paper is organized as follows. In the first part, we recall some
definitions and results and establish the notations. In the second part we use
Kirillov's character formula to give an estimate which relates traces of some
operators in an irreducible representation of U(n) with the integrals of products
of coordinate functions on the orbit of the highest weight in the coadjoint
representation. In the third part, we introduce the probability measure and
the C-matrix associated to a representation of U(n) and give some of their
properties, then we prove the main result of the paper, and we deduce from
this the results concerning the tensor product and the restriction problem.
Finally in the end we treat an explicit example.

§1
We recall here several definitions and notations.

1.1. First we deal with free families and free convolution (see [1] for
more details).
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A non-commutative probability space is a couple (X (/>) where ««/ is a unital
*-algebra and ^ a positive linear functional on sf such that ^(1) = 1. The
elements of j/ are called non-commutative random variables. Let C<>>,, }f X6/

be the free algebra generated by the symbols yl9 y*9 i e /, with the involution

yt »-» yf-
The /aw (or distribution) of a family (]QleI of non-commutative random

variables is the linear map

P ^ f ( P ( Y l 9

where elements of C(yl9y*yiel are considered as non-commutative polyno-
mials. If (Y^)^! for n e M and (Y™)lel are families of non-commutative ran-
dom variables, one says that the law of (^(n))Z6/ converges to that of (Y^\Bl

as ft -» oo if for every P e C<y / 5 y* >,e/ one has DY(n)(P) -* DYao(P).
A family (j2/,)Je/ of subalgebras of j/ is said to be free if for any k e N

and any sequence al e j/h, . . . ak e j/Zk one has ^(flj . . . ak) = 0 whenever /,- ^ /,-+!
for 7 = 1, . . . , fe — 1 and ^(^-) = 0 for all j = 1, . . . , k. A family of sets of non-
commutative random variables (Et)lel is said to be free if the family of algebras
(XzXei is fr£e where for each i, s/t is the algebra generated by the set Er

The law of a free family (Yt)lel is determined by the law of each variable Yr

A sequence of families of sets of non-commutative random variables (E("})lel

with £|n) = {Y™\a eJj is said to be asymptotically free if the law of the
family random variables (Y^n\ a € Jn i e /) converges towards the law of some
family of random variables (7J30, a e J19 1 e /) such that the sets E™ = {Y™\a e Jj
for i E I form a free family of sets of random variables.

If (X, Y) is a free family then the distribution of X + Y depends only on
the distributions of X and of 7, it is called the additive free convolution
DX+Y = DX®DY. In the same way, the distribution of X Y depends only on
Dx and DY and is called the multiplicative free convolution denoted by Dx®
DY = DXY. If j/ is a C*-algebra, X and Y are positive elements then Dx ® DY

is also the distribution of X1/2YX1/2 so that the multiplicative free convolution
of two probability measures with compact supports on IR+ is again a probabil-
ity measure with compact support on IR+.

1.2. Let U(n) be the group of n x n complex unitary matrices and n(n)
the corresponding Lie algebra of n x n anti-hermitian matrices. Let bn be the
Lie subalgebra of diagonal matrices. The complexification of u(«) is gln(C) =
u(n) + m(n), the Lie algebra of the complex group GLn(C) and dn = bn 4- ibn

is the complexification of b(n). We call (£fcj)i<fe t<n the canonical basis of
gln(C) ~ Mn(C).

Let u (n)* be the dual space of u(n) and b(n)* the dual space of b(n)*. Let
P+ be the set of dominant weights which are the elements ^ of b(it)* such
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that f/(z°Ek k)eZ and ^(iEll) > ••• > ii(iEnn). Every irreducible representation
of U (n) (or equivalently finite dimensional irreducible representation of GLn(C))
has a highest weight with respect to the ordered basis (i£fcfe)i<fc<n of bn, which
is a dominant weight and it characterizes the representation up to isomorphism.
There is an inclusion b* c u* dual to the canonical projection un -> bn? and
elements of u* can be extended to complex linear functionals on gln(C).

For a dominant weight \JL we put |//| = supfc \n(iEkk)\. Let rjk be the
dual basis of (iEkk)\<k<n i*1 b(n)* and p be half the sum of positive roots
p = £j=1 (n - fc + l)nfe. For v e it(w)* let 0* be the orbit of v under the
coadjoint action of 17 (n).

Let Rp be a unitary irreducible representation with highest weight \JL on
some Hilbert space V. In the non-commutative probability space (&(V\ tr)
(where tr is the normalized trace on &(V)) let us consider the random variables
£fi = dR^(Ekl) (where dR^ is the corresponding complex representation of gln(C)).

The Kirillov character formula for R^ (see [2]) can be stated as

tr (i £„ «„«)) = ( 0 J?!"g"i) [ exp (f £ auo>(EH)) dco (1)
\ JJ\k<i sh&n - akfc)/ J^ \ /

exp
\

for complex numbers akl such that cnkl = azfe, and where dco denotes the normal-
ized invariant measure on 0*+p.

1.3. A random matrix is a random variable of some non-commutative
probability space of the form (MM(C) <g) L°°(&5 J^, P), tr ® P) where (Q9 ̂ , P) is
a probability space and tr is the normalized trace on Mn(C).

Let @i denote the orbit of the matrix 5]!J=1 ^£fcfc (where lk e IR for 1 <
k < n) under the adjoint action of U (n) on iu(n), with its invariant probability
measure. Let Yk\ denote the kl coordinate function on (9X. A uniform random
matrix with spectrum {/L1? ..., An} is a random matrix ^klEklHkl where the
joint law of the random variables Hkl, 1 < fc, / < n is the same as the joint
law of the random variables Ykl, I <k, I < n.

Let v G u* (n), then v is in the orbit of some element of b*(n) of the form
Zfc Vkr1k- Define the measurable maps Xkl:(@*, dco) -> C as Xkl(co) = co(Ekl). It
is easy to see that in the non-commutative probability space (Mn(C) ® L°°(0*, dco),
tr ® dco) the random variable defined as ^ Ekl ® Xkl is a uniform random
matrix with spectrum {v l 5 . . . ,v n }.

For a family v(s)seS (where v(s) = v1(s)^1 + ••• vn(s)^n) of elements of un,
in the noncommutative probability space Mn(C)(x)LQO(f|S6S d?*(s), J|seS Jco) the
elements (£ £kj ® -X'w^Xes where -X^dlses cos) = co,(^ki) f°rm a family of uni-
form random matrices with respective spectra (v^s) ... vn(s)}, and with indepen-
dent coordinates.

1.4. Following results of D. Voiculescu (see [7]), R. Speicher proved that
the trace of the spectral measure of the sum of two large symmetric matrices
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is given asymptotically by the free convolution of their spectral measures, for
almost all choices of the matrices with given spectrum (see [5] part 3 for the
precise statement of the theorem). If one looks carefully at his arguments one
can see that they imply the following result. Let nm be a sequence of positive
integers such that nm -> oo as m -> oo, and for each m let X (m, s)seS be a family
of uniform random nm x nm matrices with independent entries and with respec-

tive spectra {/^(m, s)...An(m, s)}. Suppose that the measures — Zfc=i ^k(m,s)
^m

converge weakly to some measure a(s) with compact support on [R. Let
D(t, m)teT be families of nm x nm diagonal matrices which have a limit distribu-
tion as m -» oo, and such that supm \\D(t, m)\\ < oo for all t e T. One considers
the matrices D(t, m) as random matrices with constant entries. Then (X(m, s)S6S,
{D(t9 m)teT})m>o is an asymptotically free family of sets of random variables.

§2

2.1. Let \JL e P+ and R^ be as in 1.2. In this section we will prove a
technical estimate which relates the moments of the random variables f fi and
Xlip defined in 1.2 and 1.3. We denote by E the expectation on the (commu-
tative) probability space L°°(0*+p, dco).

Proposition 1. There exist constants Cr depending only on r such that for
any sequence (fe l 9 /J, ... (kr, lr) in [1, ri\2 one has

< 6nC,(\n\

Proof. We first give a series of lemma.

2.2. Lemma 1. For every sequence ( k 1 , l 1 ) 9 ...(kr,lr) in [1, n]2 one has

and

Proof. The norm of dR^(Ekl) on V is less than |/x| so that the first
inequality follows. For the second, one has |^+p| <\p + p\ <\u\ + n on ®*+p

hence the second inequality.

Let us notice that the function FIfe<z-r7^ - ^^ of the variables afek hasl l f e< 's/i(an-a f c f c)
a convergent power series expansion in a neighbourhood of zero.

Lemma 2. Let f ( a l 9 . . . an) for al9 ... ane N be the coefficient of aj^ ... a^

in the expansion of l\k<l ^l~*kk .. One has \f(al9 ... aj| <
—
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Proof. One has -- = £?=o ( - l ) V * t i _ where E2k+l are Euler's

numbers counting the number of alternating permutations, and £2fc+i ^ (2& + !)•

hence the absolute value of the coefficient of xuyv in -— - - is - — u+v+1 -- ^
sh(x-y) (u + v+l)l ulvl

when u + v is even, and 0 if u + i; is odd. This coefficient is thus smaller

than - - and hence smaller than 2U+V. We conclude from this that the
ulvl

coefficient of aj\ ...aj; in Y\k<i-rr - ^ *s smaller in absolute value than
— afcfe)

that of all . . . o£ in n*<i Z« Z-aj^'afi = 0* (1 - ^r^1'. But this last co-

efficient

(11 + v)l

efficient is equal to ]~|fc 2
flk k and we can use the elementary inequalities

ulvl
< (ev)u for v > 1, and 2e < 6, to obtain the result.

Lemma 3. For any permutation o of 1, . . . , r one /ias

Proof. Let T be a transposition of the form (7, j +1) for 1 < j < r — 1.
One has

since dR^ is a Lie algebra representation

<2|,u| r~1 by Lemma 1 .

Since every permutation is a product of at most - such transposi-

tions, the lemma follows.

2.3. We can now prove Proposition 1.
Thanks to the estimates of Lemmas 1 and 2 we can expand the two sides

of Kirillov's formula (1) as power series of the variables akl in a neighbourhood
of zero and equate the coefficients of both sides. Let a = (aki)i<k,i<n be a
sequence of nonnegative integers then the coefficient of Y\ki awkl in the left side
of (1) is equal to
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where the sum is taken over the set &a of all sequences ((ul9 v±\ ... (ur, vr))
such that the number of occurences of each pair (fc, /) is exactly akl (so that
Zfc* aki = rX an(l tne numbers j8((Ml5 i^), ... (wr, t;r)) are some positive universal
coefficients. Moreover, one has

kl

In the right hand side of the formula, the coefficient of Y[u MM l i§ eclual to

for l<k<n

It follows that

(2)

is equal to

not all bfcfc = 0

which is, according to Lemmas 1 and 2, less in absolute value than

X (M + nr **" n
0<bkk<akk k

not all bkk=Q

In this expression one has (|//| + n)r~^k5kfc(6w)^kbkk < 6n(\n\ + 6n)r~1 since the
bkk are not all zero, so that it is less than

(a kk

* /, , c » 1 ITT ( "$ l \= 6n(|/*| + 6n)r 1 FT Y —
t \w=ow!/

e

since there are at most r numbers akk ^ 0 .

For any sequence (k l3 /x ), . . . , (fcr, /r) which belongs to &a one has

y Lemma 3'
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(3)
tl

From the majorizations of the quantities (2) and (3) it follows that

< r(r - IJI/il'-1 + El
kl

< r(r - I)!/!!1"1

and Proposition 1 follows easily from this estimate.

2.4. We have the following corollary of Proposition 1.

Corollary. Let nm be a sequence in P+ and em a sequence in R+ such
that em -> 0 and em^m -> v e b* as m -> oo. T/zen t/ze family of random variables
fon£kT)i<M<n converge in distribution to (^)i<k,i<n as m^oo.

Proo/. It is enough to prove that for any sequence ( k ^ . l ^ ) , . . . (kr,lr) in
[1, n]2 one has

as m-»oo. From Proposition 1 we have

and the expression on the right goes to 0 as m->oo. Moreover

co(Ek ,)... co(Ek i )da>
I V K i l l / V Krlr/

J0* m+, „

and since em/im -» v this last expression converges as m -> oo to

Jo*

This proves the corollary.
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§3

In this section we will let the dimension n go to infinity.

3..L Let R be a finite dimensional unitary representation of U(n). We
will associate to R two objects, namely a probability measure on Z and a
non commutative random variable.

We define the measure J((R) in the following way, if R is irreducible

with highest weight \JL = £ AW* then ^(K) = - £k <$Mk- If R can be decomposed

into a sum of two subrepresentations R = R1 ® R2 then Jt(R) is the convex

combination J((R) = im , Jl(R<) + ™ , \ Jf(R2). Thanks to the com-1 ; dim(R) v i; dim(K) v 2)

plete reducibility of representations of U(n), there is a uniquely defined map
JR i— > ^t(R) from finite dimensional representations of 17 (n) to probability mea-
sures on Z satisfying these requirements.

Let F be the space of the representation of R, which is a Hilbert space.
The C-random variable associated to R is the element of the non-commutative
probability space (Mn(C) ® &(V), tr) (where tr is the normalized trace) defined
as C(R) = Y,kl Ekl (g) dR(Ekl) where dR is the representation of the Lie algebra
gln(C) corresponding to R. We use the letter C because of the obvious relation
with Casimir operator.

It is easy to see that C(R) is a self-adjoint element of MB(C) ® &(V\ hence
it has a distribution which is given by a probability measure on R, which is
a finite convex combination of Dirac measures. It turns out that this measure,
although not equal to Jf(R) is closely related to it. In fact it follows easily
from the corollary of Proposition 1, proved in Section 2 that if /im is a sequence
in P+ and em a sequence in R+ such that em -> 0 and emju

m -> v e b* as m -> oo
if #m is an irreducible representation with highest weight ^m then the distribu-
tion of emC(^m) and the measure J£Em(Rm) converge to the same limit which

is „%****'

3o28 The explicit distribution of C(R) can be obtained. Indeed, the com-
putations of Zelobenko (see [8] Ch IX, 60) show that the operator C(R) has
the eigenvalues kj = fy + n—j for 7=! , . . . , n the multiplicity of A, being

Another method of obtaining this result was communicated to us by
Patrick Polo [3] and is as follows. On the space C" ® V let U(n) act by the
representation #: g h-» g (x) R(g). A simple computation reveals that the matrix
C(R) commutes with all the operators of this representation. The representa-
tion i is the tensor product of the representation R and of the conjugate of
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the basic representation of U (n). It is well known (since the highest weight
of the conjugate representation is a minuscule weight) that this representation
decomposes into a sum of the irreducible representations with highest weights
V — rjk for the numbers fc e {!,...,«} such that \JL — rjk is a dominant weight.
From this we conclude that each of the subspaces of these representations is
an eigenspace for C(R). The corresponding eigenvalue can be computed by
evaluating the image by C(R) of a highest weight vector.

We could have defined the measure Jf(R) as being the distribution of
C(R), and the theorem that we prove in Section 3.4, as well as Proposition
3 would be true and have simpler proofs. However, the formula giving the
law of C(R) is complicated so that we have preferred the simpler definition
of Jf(K) given in the text.

We will not use the result of this section in the sequel.

3.3. We shall now prove the following proposition which deals with the
case when the dimension goes to infinity and the representations are allowed
to be reducible.

Proposition 2. Let nm be a sequence of positive integers such that nm -» oo.
For each m > 1, let Rm be a representation of U(nm). Let em be a sequence

in [R+ such that
i) sm(nmY^Q for allreN

U) there is a constant c such that for every m and every highest weight
\JL occuring in the representation Rm one has £m\^\ < c

Hi) the measures <J£em(Rm) have a limit a as m -> oo,
then the distribution of smC(Rm) converges to a as m -> oo.

Proof. First remark that by condition U) the distribution a must come
from a probability measure with compact support on [ — c, c].

We must show that for all r e N, tr((smC(Rm))r) -> xra(dx).
J R

For each m let Rm = R(^ © R™ © • • • © R%m} be a decomposition of Rm

into irreducible components with highest weights ^ for w = 1, . . . , um, then
C(Rm) = nlC1n1 + ••• + nUrnCUmnUm where the TTW are orthogonal self-adjoint

projections of trace tr(nw) = — — ;— ̂ r-, and each Cw is an operator with the
dim (KJ

same distribution as C(R$?\ and so tr(C(RJf) = £"W"LI A._™ tr(C(R™n
dim (RJ

dim
Since Jf(Rm) = £wm=i T — -^-J£(R%}) it is enough to show that for each WE

dim (Km)
[l,um] one has Br

m\tr(C(R^)r) - JR x"Jf(R™)(dx)\ < vm where vm does not
depend on w and converges to zero as m -> oo.
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One has

1 wtr(C(R(w)Y} — — V tr (f^m ^m ^m }tr(^(^m))- L r rwlC f e l f e 2Cfe2 f e 3 . . .CM lJnm l<ki,...,kr<nm

where trw is the normalized trace on the representation space of RjJ°.
Let MA|VJ+P = J]H£wXjp+p where Xff+p are as in 1.2.
When computing £[fr(CMjiw+p)r] one can expand the trace with respect

to the variables X*jr+p to get the expression

V EYyPm+PyAtm+P ym+P\
— 2. ^1AM2 ^2*3 "-^Mi >•

It follows then from Proposition 1 that

Since M^+p is a uniform random matrix with spectrum (^(iEjj) + nm —
j + I,; = 1, . . . , nm\ and since ^(#£°) = £,- 5^^), using the elementary
inequality \(a + b)1" - ar\ < r\b\(\a\ + \b\Y~1 for a, fe 6 R one has

rr((M^+p)0 = - X (Mm(^) + nm -;' + l)r = f x'<L*(RZ)(x) + ^(m, w)
Wm J J R

with |gf(m, w)| < rnm(\^\ + n,,,)1""1. We see that for every w

< £m(nmr^(6nmCr(c + 68mnm)-1 + mm(c + a,^)-1) .

This quantity is independent of w and goes to 0 by hypothesis i). This
finishes the proof.

3.4. We say that a family of representations R(s) (indexed by some finite
set S) of U (n) on a finite dimensional space V is independent if there exists a
tensor product decomposition V = F0 ® (®ses K) such that for every t e S and
geU(n) one has R(t)(g) = IdVQ®(®s±Jdv)® R(t)(g) where R(t) is a represen-
tation on Vt.

For independent representations one has [dR(s)(Ekl\ dR(s')(Ek,l)~] = 0 for
all fc, /, kf, lf if s 7* s', and the trace factorizes:

v , seS

where £s belongs to the algebra generated by the operators dR(s)(Ekl).
We are now in position to state and prove the main result of this paper
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Theorem. Let S be a finite set. Let nm be a sequence of positive integers
such that nm -> oo. Let, for each m > 0, Rm(s), s G S be a family of independent
isotypic representations of U(nm) (i.e. the representations Rm(s) are irreducible),
and let em, m > 0 be a sequence in R+ such that

i) for every r e N £m(nm)r -> 0
ii) there is a constant c such that em|ju

m(s)| < c for all m e f ^ , se S where
Hm(s) is the highest weight of Rm(s)

Hi) there exists probability distributions a(s) such that JPErn(Rm(s)) -> a(s).
Let furthermore D(t,m)teT be families of nm x nm diagonal matrices which

have a limit distribution as m-»oo and such that supm \\D(t, m)\\ < oo for all
t e T. We consider them as elements of Mnm(C) ® &(V) by tensoring with Idv.

Then (C(Rm(s))seS, {D(t,m)teT}) is an asymptotically free family of sets of
random variables.

Proof. As in [7] we can assume that the matrices D(t,m)teT form a
multiplicative semi-group and that the identity is among them. We will study
the asymptotic evaluation of quantities like

tr(D(tl9 m)(smC(Rm(s1))^...D(th m)(smC(R(Sl)rD(tl+l9 m))

for tl9 ..., tl+1 e T, sl9 ..., Sj e S and r1 ... rl e N.
Expanding this trace as in the proof of Proposition 2, and using the fact

that the representations Rm(s) are independent we see that it is equal to

X d(u)H(u)
ue^

where ^ is a certain set of maps of S U T into sequences of the form

((MI(S), Vi(s)) . . . , (wz(s)(s)? vz(s}(s)))

so that z(s) = £Sk=s rk forse^ and z(t) = ̂ tk=t 1 for t e T, one has card

= n n *>(*> m)uh(t)vk(t)teT fe=l

and
HdA — FT tr (p ^Mm(s) p £f*rn(s) \
** W - 1 I trvWmSuiWvtto ' ' ' 8mCMz(s)(s)t,z(s)(s)j •

seS

Let M^m(s)+p be independent random matrices as in the proof of Proposi-
tion 2. Expanding the trace in the expression

(Si)+p)ri ...D(tl9 m)(emMMm(Sz)+p)rzD(tz+1> m))

we see that it is equal to

X d(u)G(u)
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where G(u) is the expression obtained from H(u) by replacing <^m(s) by M^m(s)+p.
Using the estimates of Proposition 1 and Lemma 1 in the same way as in
the proof of Proposition 2, and the fact that sm\um(s)\ < c and supm \\D(t, m)\\ <
c(t) for some constants c(t\ we can see that \H(u) — G(u)\ is bounded by £mKm

where Km is a polynomial in nm whose degree and coefficients depend only
on c, I, rx . . . rl and the constants c(t). Details are straightforward and left
to the reader. We deduce from this that

£ d(u)\G(u) - H(u)\ < em<1 + -+rz+l+1Km
ueSf

and by hypothesis i) this quantity goes to zero as m -> oo.
Thanks to the result of Section 1.4, the expression

tr(D(tl9 m)(emM^m(Si)+pr . . . D(tl9 m)(emMlimw+ppD(tl+l9 m))

has a limit which is

where (X(s) s e S, {D(t\ t e T}) is a free family in some non commutative proba-
bility space (j/, ^) and the law of X(s) is a(s), the law of {D(t\ t e T} is the
limit of the law of {D(t, m), t e T}. So we have proved that

tr(D(tl9 m)(smC(Rm(Sl)r...D(tl9 m)(£mC(R(Sl)rD(tl+1, m))

also converges towards

t(D(t1)X(sJ'D(t2)...X(slY>D(tl+1))

and this finishes the proof of the theorem.

We will now apply the preceding theorem to the problem of decomposi-
tions of tensor products and of restrictions.

Proposition 3. Let nm be a sequence of positive integers such that nm-> oo.
For each m > 1 let Rm(l) and Rm(2) be two irreducible representations with
highest weights /im(l) and jum(2), such that J?Em(Rm(s)) -» a(s) as m -> oo for
s = 1, 2, where a(l) and a(2) are two probability measures with compact support.
Suppose that the sequences em|^m(s)| are bounded.

Then Jt*™(Rm(\} ® Rm(2)) -+ a(l) 0 a(2).
Put Rm = Rm(l) and a = a(l). Let qm be a sequence of integers such that

qm < nm and — ^pe]0, 1], and call Tm the restriction of Rm to the subgroup
nm

U(qm) °f U(nm) (imbedded as acting on the qm first vectors of the canonical
basis of C"m).

Then J?Em(Tm) converges towards the measure -(a(x)(p<51 + (1 — p)<50) —
P

(1 — p)<50), where ® denotes the free multiplicative convolution.
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Proof. The representations Km(l) ® Id and Id ® RTO(2) acting on the space
of the representation Rm(l) ® Rm(2) are independent representations, so that
the random variable C(Rm(l) (x) #m(2)) can be written as Cm(l) + Cm(2) where
smCm(l) and ewCm(2) have the same distribution respectively as smC(Rm(l)) and
smC(Rm(2)) and are asymptotically free by the preceding theorem. We deduce
from this that the law of emC(Rm(l) ® Rm(2)) converges towards the free convo-
lution of a(l) and a(2). Applying Proposition 2 to the sequence of random
variables emC(#m(l)(x) Rm(2)) we see that the sequence Jf£m(Rm(l) ® Rm(2)) con-
verges towards a(l) © a(2) (we can apply Proposition 2 because all the highest
weights occuring in -Rm(l) (x) Rm(2) have components smaller than |/zm(l)| +

Let D(m) be the diagonal matrix £k=i Ekk then D(m) has a limit distribu-
tion which is (1 — p)80 + pd1 and by the theorem it is asymptotically free with
the random variable emC(.Rm). Now we see that D(m)C(.Rm)D(m) is the upper
left corner embedding of the matrix C(Tm) (which lies in Mqm(C) ® &(V)) in
the space Mnm(C) ® &(V). We deduce from this that the distribution of C(TJ

can be obtained from that of D(m)C(Rm)D(m) by substracting ( 1 -- - <50 and

then multiplying by — . But the limit distribution of D(m)C(Rm)D(m) is the
qm

free multiplicative convolution of (1 — p)50 + p81 and a, so the result follows
again by an application of Proposition 2.

3.5. We will now give an explicit example. Let us consider the group
17 (n) and the dominant weight (K, . .., K, 0, ..., 0) where the first / coordinates
are K's and the remaining are O's. Proceeding recursively, and using Weyl's
branching rule, we see that for m smaller than I and n — /, the restriction of
the corresponding representation Rm to U(n — m) is the sum of the representa-
tions with highest weights (K, . . . , K, cp1? . . . cpm, 0 . . . , 0) where K > (p± > - • • >
cpm > 0 and there are K's on the first / — m coordinates and O's on the last

n — I — m, these representations occurring with multiplicity Y[k<i ~ — r^ - •
/ K

This fact can also be established by decomposing the restriction of the represen-
tation to the subgroup U (m) x U(n — m) a U(n).

1 m
If n -> oo and — > p e [0, 1], -- » q e ]0, 1], and Kn~r -> 0 then the measure

n n
J?1/K(Rn) converges to (1 — p)80 + pd± and by Proposition 3, the mea-
sure J?1/K(Tn), where Tn is the restriction of Rn to U (n — m) converges
towards

P)<50 + P*i) ® (^o + (1 - q)Sl) - (1 - q)80] .
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In particular let us take n = 21 = 2m then the limit measure ( - <50 + - d1

I -§0 + -^ ) S0 is the arcsine law given by the distribution function F(t) =

- Arcsine J~t on [0, 1] (see [1] Example 3.6.7). Since we have convergence
71

of all moments and the limit distribution function is continuous, we have
convergence of the distribution function of the measure Jf1/K(Tn). The distri-
bution function of the measure JP1/K(Tn) can be computed. Indeed, we know
that Tn decomposes into the sum of the irreducible representations of highest

weights (<pl9 ..., <pm) with multiplicity Y\i<k<i<m~—p—r • BY Weyl's for-

mula, the dimension of this representation is also n i<fc<z<m & '
I rC

and the dimension of Rn is Oi<M<m - j — r — > hence
III ~T~ * »V

h l-k

m + I - k
Since Kn 3-»0 one has Oi<fc z<m /—r ~ & m (Y\i<k,i<nm + I ~~ k)

K + m + / — k
as n = 2m -> oc and the convergence of the distribution function shows that
for every t e [0, 1]

£></>!> • • •>(? m >0

K™2 V2. . r .
-Arcsine Jt + o(

as m -» oo.
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