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§ 0. Introduction

The purpose of this paper is to prove that certain subquotients of the
objects of Faltings ([!]) are semi-positive. In particular, we obtain an

algebraic proof of a result (generalizing those of [5], [9]) on the semi-positivity
of the higher direct images of certain kinds of sheaves for semistable families
of algebraic varieties. Our Main Theorem, proven in §3, is as follows:

Theorem 3A Let f: (X, E) -> (S, D) be a semistable family of varieties of
relative dimension d, with S a smooth, proper scheme over a field L of characteris-
tic zero. Let (<$/, ¥^ Fl(^/)) be a globally crystalline filtered vector bundle with
connection on (X, E). Then for any nonnegative integer a, the coherent sheaf
of (9s-modules

is a semi-positive vector bundle, as are all of its tensor powers.

(The term "semistable" (respectively, "globally crystalline") is defined in §1
(respectively, §3).) In particular, this Theorem implies the following:

Corollary 3.5, Let f: (X, E) -> (S, D) be as above. Then for any non-
negative integer a, the coherent sheaf of Cs-modules

/*«!)*)

is a semi-positive vector bundle, as are all of its tensor powers.

Thus, Fujita and Kawamata proved the above Corollary in the case a = d.
Roughly speaking, the idea of the proof is as follows. We restrict to a
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curve, and consider the possibility of quotients of the bundle in question that
have negative degree. If such a quotient did exist, it would mean that we
could construct a large number of sections of a space of bounded dimension.
This concludes the proof.

Since the proof is substantially simpler and less high-powered in the case
when the fibres of /, as well as the base S, are one-dimensional and the
filtered vector bundle is trivial, we present the proof in that special case in
an Appendix (which is logically independent of the rest of the paper, except
for basic facts and definitions given in §1). We believe that this special case
sheds light on the general case. In essence, what makes the proof easier in
this case is the fact that we have a very physical and concrete realization of
1 -motives and Hodge theory (for trivial coefficients), namely, the theory of
semiabelian schemes and the Picard group. It is the lack of such explicit
tools in the higher-dimensional case with nontrivial coefficients that requires
one, if one is to carry out an analogous proof, to employ more abstract tools.

In [7], Illusie has proven similar results using essentially equivalent
techniques to our own, although from a somewhat different point of view.
Namely, Illusie works modulo p, and obtains the following result:

Theorem (given as Remark 4.18 in [7]). If f : ( X , E ) ^ > ( S , D ) is as in
Theorem 3.4, and 3? is an ample line bundle on 5, then for all i > 1, j > 0,
we have:

(In fact, as was pointed out to the author by the referee, such vanishing results
can also be proven by the same technique as that used in [2] to prove the
Kodaira Vanishing Theorem.) When the base S is projective, then Kollar (in
[10]) shows how to pass from a vanishing result such as the result of Illusie
just quoted to a semi-positivity result such as the one given in Theorem
3.4. On the other hand, if a vector bundle $ on S is found to be semi-positive,
and 3? is an ample line bundle on S, then 3F = $ <S)Gs X forms an ample
vector bundle on S. It is not difficult to see that if one applies Kodaira
vanishing to the bundle (9(1) on the projective bundle P -> S associated to ^,
one then gets a vanishing result similar to the above quoted result of Illusie,
but somewhat weaker. Moreover, when S is a curve, it follows immediately
from Serre duality that Theorem 3.4 (for the case of trivial coefficients) is
equivalent to the vanishing result of Illusie. However, in the case of higher
dimensional S, especially, when S is not projective, it is not clear to the author
what the precise relationship is between Illusie's result quoted above and
Theorem 3.4.

The author would like to express his gratitude to Prof. B. Mazur for
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reading over a preliminary draft of this paper and informing him of the above
mentioned paper of Illusie; and to Profs. J. Harris, D. Abramovich, L. Illusie,
and the referee for their comments and for pointing out some errors in early
versions of this paper. Finally, we thank Prof. A. Ogus for suggesting a
significant simplification of the original argument.

§1. Bask Algebraic Lemmas

Let A be a regular noetherian ring. Let X, S be smooth, proper schemes
over A, and let D c S, E c X be relative divisors with normal crossings over
A. Let /: X -> S be a morphism which is smooth over S — D, and such that
(schematically) £=/~1(D). Note that these assumptions together imply that
/ is, in fact, smooth in codimension one. To simplify things, we also assume
that / has geometrically connected fibres and constant relative dimension.
Then, using the terminology of log schemes as given in [8], we make the
following

Definition 1.1. We say that (/: X -»S; E; D) (or just f:X^S, for short)
is a semistable family of varieties (or just semistable for short) if, when we
give X (respectively, S) the log structure arising from the divisor with normal
crossings E (respectively, D), the morphism of log schemes induced by / is
log-smooth.

If /: X -> S is semistable, then we denote the relative sheaf of logarithmic
differentials by Ql£fs. If the relative dimension of / is d, then we denote the
dth exterior power of Ql£fs by cox/s- Note that (ox/s is the relative canonical
sheaf of X over S in the sense of duality theory.

Proposition 1.2. Suppose that A is an algebraically closed field, that S is
one-dimensional (i.e., a curve), and that & is an ample line bundle on S. Then
for any N e N, there exists a finite, flat morphism n: T-> S which has the
following properties:

(1) T is a smooth, proper, connected A-scheme;

(2) the ramification divisor R ^ S of n avoids D

(3) dimA H°(T, &T) > N.

Proof. This is the standard technique of passing to a ramified cyclic
covering, used, for instance, in algebraic proofs of the Kodaira Vanishing
Theorem (see [2]). Namely, one takes a very high tensor power of =£?, say
Jt = &®M (where we take M to be very large, and invertible in A), such that
Jt is very ample. Then there exists a section a of Jt over S whose zero
divisor is etale over A and avoids D. Then taking the cyclic covering of S'
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given by extracting an Mth root of a gives us a scheme T as above such
that the dimension of the space of sections over T of & is one greater than
it was before. Repeating this process gives the inequality desired. O

Let us go back to assuming that A is arbitrary regular noetherian ring.
We now review some basic well-known facts about blow-ups. Suppose that
we are given a ,4-flat subscheme F ^ S. Let us say that F is flatly positioned
(respectively, transversely positioned) with respect to the divisor with normal
crossings D if for any etale morphism U ->S such that D\v splits into a union
of smooth components, the schematic intersection of F\v with any irreducible
component of D\v is flat over A (respectively, and the restriction to any con-
nected component I ^ F\v of F\v of the union of irreducible components of
D\v that do not contain / is a relative divisor with normal crossings on I).

Lemma 13, Let us suppose that A is a domain, and that we are given a
section a: Spec (A) -> S whose image is flatly positioned with respect to D. Let
n: S-+S be the blow-up of S at the image of a. Then S is smooth over A,
and D = n~^(D)red <= S is a relative divisor with normal crossings over A.

Proof. Indeed, it suffices to take local coordinates x0, x l 5 . . . , x n for S
over A at some point in the image of a such that the image of a is defined
by the ideal generated by the x's, and D is defined by some product of the
x's. The result follows by direct computation. O

Lemma 1.4. Suppose that A is an algebraically closed field, and that we
are given an A-smooth curve (i.e., an A-smooth, closed subscheme of dimension
one) C c: S. Then, after applying a series of blow-ups of S at closed points,
we can obtain a birational morphism n:S-»S such that if C is the strict
transform of C in S, and D = n~1(D)red, then C is transversely positioned with
respect to D.

Proof. Clearly we can assume (by using etale localization) that D splits
into a union of smooth divisors: D = (J Dt. Now we claim that after a series
of blow-ups, we may assume that each Dt either contains C or intersects C
transversely. Indeed, if Dt intersects C at a point with multiplicity r, then a
simple calculation reveals that after blowing up at that point, the strict trans-
form of Dj intersects the strict transform of C with multiplicity < r — 1, while
the exceptional divisor intersects C transversely. Thus, repeating this process
proves the claim.

Thus, we assume that each Dt either contains C or intersects C trans-
versely. For simplicity, by localizing, we can also assume that C fails to be
transversely positioned with respect to D at only one point. With these as-
sumptions, the only thing that could keep C from being transversely positioned
is if two or more distinct D;'s intersect C transversely at the same point. If
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this happens, then let us blow up the point. It is then easy to see that the
strict transforms of those D/s do not meet the strict transform of C. This
completes the proof. O

Now let us go back to assuming that A is a regular noetherian ring. Let
us suppose that C is a smooth, geometrically connected curve over A which
is embedded as a transversely positioned closed subscheme C £= S with respect
to the divisor D. Let us denote by Sl°9 the log scheme (see [8] for details)
obtained by putting on S the log structure associated to the divisor with
normal crossings D. Let Cvir be the log scheme obtained by placing on C
the log structure obtained by pulling back the log structure of Sl°9 to C. (Here
"vir" stands for virtual, since the log structure involves "virtual divisors" that
don't really exist on C.) Finally, let Cphs be the log scheme obtained by
putting on C the log structure obtained etale locally on C by restricting to
C only the components of D that do not contain C. (Here "phs" stands for
"physical" since the log structure arises from actual "physical" divisors on
C.) Thus, we have natural morphisms of log schemes Cvir -»Sl°9, and v: Cvir -»
Cphs. Note that v induces, via pull-back, a locally split morphism of vector
bundles v*: QCPhS/A -> QC™IA on C; let us denote the cokernel vector bundle by
ResCv*r/A. Thus, intuitively speaking, Rescvir,A corresponds to the residues with
respect to the components of D that contain C. It is easy to see that ResCVir/A

becomes trivial after pull-back to some finite etale morphism G -> C. Indeed,
one need merely take a covering G -> C on which the etale local system of
"smooth irreducible components of D that contain C" splits. On such a G,
one then obtains a global (i.e., over all of G) basis for Rescvir/A by considering
the logarithmic differentials of functions defining the various smooth irreducible
components. Thus, in the future, often it will be convenient to assume, in
this situation, that Rescvir/A already is trivial, and it is always possible to
assume this by replacing C by the finite etale cover G.

§2. Fallings9 Extension of Fontaine-Laffaille Theory

In this Section, we review the definition of Fallings' category J?&[^b](S°)
of "logarithmic crystalline filtered vector bundles with Frobenius action," and
study certain functoriality properties of this category which are not mentioned
in [1]. In this Section and throughout the rest of the paper (except the
Appendix), we adopt the following conventions: k is a finite field with q = pn

elements, A = W(k) (the ring of Witt vectors with residue field fc), and 0 <
dimA (S) < dimA (X) < p — 2 (where dimA (S) is the relative dimension of S over
A).

Let us choose an affine open U ^ S, with U = Spec (R). Let us suppose
that we are given an ,4-semilinear (i.e., with respect to the natural Frobenius
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on A) endomorphism 0: R -> R of the p-adic completion R of R that lifts the
Frobenius on R/pR and fixes the divisor D £ S. Let a, fc e N with a < fo and
b — a<p — 1. Then by definition ([1], II, c)) an object of Jt^£b}(R°) consists
of the data of a collection of finitely generated p-torsion J?-modules M, Fl(M)
(for all i G Z), together with an integrable logarithmic connection F: M ->
M®K*4lh Plus locally split JMinear injections F+1(M) -»F(M), F(M)-»M,
and ^-linear morphisms ^': F(M) ®^ # R -> M that satisfy the following
axioms:

(1) the composite of F+1(M)-»F(M) with F(M)-»M is the morphism
F+1(M)-»M;

(2) the morphism F(M) -> M is an isomorphism if i < a; Fl(M) = 0 if

(3) if we let M be the inductive limit of the diagram:

> F(M) <- F(M) -> F

where the right arrows are the morphisms in the definition and the
left arrows are multiplication by p, then we assume that the (/>l

induce an isomorphism ^: M®£t0R->Mm, (thus, here we require that

(4) the connection V satisfies Griffiths transversality, i.e., F(F(M)) c

(5) the isomorphism (f>: M ®Rt# R^» M are parallel with respect to the
connection V on M, and the connection naturally induced by V on
M®^R (as in [1], §2).

Although this local definition depends on the choice of our Frobenius lifting
0, it is possible to prove ([1], Theorem 2.3 — which holds since we are
assuming that p > 2) that for any two choices of 0, there is a canonical
isomorphism between the two resulting JK^tb^(R°)\ Thus, we can glue these
local categories together and thus obtain a global category, which is denoted

One natural way to obtain objects in J(^^(SQ) is by taking the higher
direct image sheaves with respect to fc° of logarithmic crystals on X. Indeed,
we may rephrase this statement in greater detail as follows. Let ff be an
object of Jt^Q^^X0). Now by regarding X and S as being endowed with
logarithmic structures arising from the divisors E and D, we may consider
(following [8], §4) the relative crystalline sites of X and S (with their respective
log structures) over A. Since $ is endowed, in particular, with a connection,
it defines a crystal on the relative crystalline site of X° over A. Thus, we
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can take the higher direct image sheaves W(fc°r)^ with respect to the morphism
of topoi fc° from the logarithmic crystalline site of X to that of S. It is then
a result of [1], Theorem 6.2, that these higher direct images W(f£)*& come
with a natural filtration and Frobenius action in such a way that we may
regard W(f°r)^ as being an object of Jl^^a+i}(S°\ as long as max (a + d,
a + i) < p — 2. A typical example is the case where $ is taken to be (9Xn =
Ox ®7jp Z/pnZ (with the obvious "trivial" filtration, connection, and Frobenius
action), and a = 0.

Later, following a suggestion of Ogus (to simplify the original proof) we
will make use of the following:

Lemma 2.1. Let (M, F(M), V, j1) be an object of Jt&£^(S°\ where S is
smooth and proper, and a < p — 2. Then every element of H°(S, M/F1(M)) lifts
to a horizontal element of H°(S, M).

Proof. This follows from the degeneration of the Hodge spectral sequence
([1], Theorem 4.1). O

This completes our review of the definition of Ji r^a%](S°). We now wish
to discuss certain functoriality properties of the category Jt2F^bV Let us
assume that we are given an y4-smooth closed, one-dimensional subscheme
C ^ S which is transversely positioned (see § 1 for a definition) with respect to
D. Let F ^ C be the divisor (necessarily etale over ,4) obtained by restricting
to C the irreducible components of D that do not contain C. (In fact, these
irreducible components may only exist after etale localization, so one may
need to apply etale descent to construct F, but this is no problem.) With
the choice of divisor F c C, we may consider the category ^^f£&](C°). We
wish to construct a restriction functor

as follows. Clearly, we can use etale descent, and thus assume that S =
Spec (R\ C = Spec (T) and that D splits as a union of smooth divisors. Also,
we use the notation of "vir" and "phs" to denote the various log structures
on C defined at the end of § 1. We start with ^-modules M, F'(M), together
with various split injections among these modules and an integrable logarithmic
connection F\ M -» M ®RQl£fA. These restrict to modules Mc, Ff(M)c, along
with various split injections and an integrable logarithmic connection V^*'.
Mc — > Mc ®r Qlc&r/A. Of course, ideally, we would like an object with connec-
tion on the log scheme Cphs, not Cvir. To obtain such an object we reason
as follows. First, by (finite) etale descent, we assume that ResCVir/A is a trivial
vector bundle, and we choose a basis of generating sections of Rescvtr/A over
C each of which is locally obtained as the logarithmic differential of a function
defining a smooth irreducible component of D, and we let s1,...,sr be the
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corresponding basis of the dual vector bundle ResCVir/A. By applying ¥£ir to
each of the sh we obtain a collection of commuting (because of the integrability
of F) 0c-linear endomorphisms Nt: Mc -> Mc, for i= 1, . . . , r. Moreover, since
they represent the monodromy of an object of MS*£^ the Nt are necessarily
nilpotent. Indeed, to see this, we reason as follows: Let N be one of the
JVf's. Note that there exists (by condition (3) above) a "Verschiebung" mor-
phism V: M -> M ®^ 0 R such that <t>a o V = pj and V o $a = pj\ where j d=
b-a. Thus, (by condition (5) above) Nj = </>a o Nj o V, so N2j = pj • (j)a o JV2j o
V. Thus, by recursion, AT2-7' = 0. This proves that the Nt are nilpotent.

Thus, the Nt define a filtration with r indices, which we call the monodromy
filtration on Mc, and which we denote by:

Now let GrjEt(Mc) denote the graded object associated to the monodromy
filtration. It is clear that the filtration Fl(M)c defines a natural filtration
F'(Gr^(Mc)) on GrM(Mc), and that Vg* induces a connection Vgr\ Gr^(Mc) ->
Gr^Mc) ®T Q%!LIA, as desired. It is easy to see that (GrM(Mc), F(GrM(Afc)), Fgr)
satisfy all the necessary axioms for an object of ^^fl^5](C°), and all that
remains to do in defining p is the construction of the Frobenius action on
Gr,(Mc).

First of all, because of our assumption that C is transversely positioned,
one sees easily that (after possible further etale localization) it is possible to
choose a Frobenius lifting @:R^>R that not only fixes D, but also fixes C
(and F). Thus, 0 restricts to a Frobenius lifting @c: T-» f, so that tensoring
(j> over R with T (via the natural projection R -> T) gives an isomorphism
(j)c: Mc ®r> 0c T ^ (M ®R 0 R) ®R T -> Mc. Since this Frobenius action on Mc

clearly commutes with the Ni9 it follows that the Frobenius action on Mc

induces a Frobenius action on Grj[i(Mc). One checks easily that the Frobenius
that we obtain on Gr^(Mc) is independent of the choice of 0 (as long as we
deal with 0 that fix C and D): indeed, the morphism a constructed in the
proof of [1], Theorem 2.3, is easily seen to commute with restriction to
C. Finally, it is easy to check that this Frobenius action satisfies all the
remaining properties in the definition of the category J13FV\ Indeed, this
follows from using the fact that Jt3F (i.e., the category of [1], §2, that is
similar to J13FV , but lacks the datum of a connection) is abelian ([1], Theorem
2.1, Corollary). This completes the definition of the functor p.

Now we wish to note that functoriality also holds for blow-ups n:S^>S
at a section a: Spec (A) -» S which is flatly positioned. The procedure is the
same as in the previous paragraph: one pulls back the necessary modules,
morphisms, and connection in the obvious fashion; the only trick is pulling
back the Frobenius action. The key is to note that since a is flatly positioned,
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one can choose the Frobenius lifting 0:R^>R in such a way that not only
D, but also a is fixed by 0. It is then easy to see that the Frobenius action
on R extends to a Frobenius action on the p-adic completion of S in such
a way as to be functorial with respect to n. It remains to check that n* is
independent of the choice of Frobenius lifting 0. But the only thing which
is unclear is whether or not the Frobenius action depends on 0, and this
follows from restricting to a dense open subset of S over which n is an
isomorphism. Thus, we see that we get a natural functor

as desired.

Now let C -» Spec (A) be a proper, smooth curve, with geometrically con-
nected fibres, and let F £ C be an etale divisor over A. Let us suppose that
we are given a finite morphism \//:C-+S. Then we shall say that if/ is
admissibly factorizable if it factors into the composite of the following form:

(1) we have a morphism i/^: S ->S, which is the composite of a sequence
of blow-ups at ^-sections that are flatly positioned over A; let D =

^Wrei,

(2) for some C' -> Spec (A) (also a smooth curve with geometrically con-
nected fibres) and some F' <= C' (an etale divisor over A)9 we have a
closed immersion \l/2'. C ' <=L^S such that C' is transversely positioned
with respect to 5, and F' is the restriction to C of the components
of D that do not contain C"; we also assume that C is not contained
in any of the exceptional divisors of the morphism i/^;

(3) we have a morphism ^3:C-»C' such that \lt^(F')red<^F and \//3 is
etale outside of F with tame ramification at F;

so that ij/ = \l/1 o \l/2 o \l/3.

Let us suppose that \j/ is admissibly factorizable. Then by the functoriality
considerations reviewed above, it is clear that by composition we obtain a
functor

(Indeed, only for morphisms like i^3 did we not discuss functoriality; but
functoriality for morphisms of this type is the most obvious.) It remains to
see that if/* is independent of the factorization ij/ = ^ o \j/2 o ̂ 3. This is clear
for all the data involved except (perhaps) for the Frobenius action and the
formation of GrM( — ); but this follows, as usual, by restricting to the open
dense subset C — F, where the fact that the Frobenius action and the formation
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of GrM( — ) are independent of the factorization is clear. We thus summarize
our findings in the following

Proposition 2.2. For all admissibly factorizable morphisms \I/:(C9F)-+
(S, D), we have a canonical functor

for all b - a <p - 1.

§3. The Main Theorem

Before stating and proving the Main Theorem of this paper, we need to
introduce some new definitions. Unfortunately, these definitions are somewhat
ad hoc, but at least they allow us to prove a theorem with a somewhat
broader range of applicability than previous statements of such results (as
given in [5], [9]).

Let L be a field of characteristic zero. Let X be a proper, smooth
L-scheme; E ^ X a divisor with normal crossings. Fix a e N. Let us suppose
that we are given a vector bundle &f on X together with a filtration Fa(j/) £
Ff l~1(j/)c---F1(j/)^F°(j/) = sf by subbundles such that all the inclusions
are locally split, and a connection V^ with logarithmic poles at E. Then we
make the following

Definition 3.1. (i) Suppose that L is a number field (i.e., a finite extension
of Q). Let (9L be its ring of integers. Then for some positive rational integer
N, the objects X, E, jj, and V* are defined over R=f fl^JV1] and satisfy
the same hypotheses as they did over L (i.e. being proper and smooth, being
a relative divisor with normal crossings, being a vector bundle, being a locally
split inclusion, being a connection with logarithmic poles at E, etc.). Let us
fix such models XR, ER, <z/R, and (7^)R over R9 and denote by means of a
subscript the result of base-changing these objects from R to some J^-algebra.
Then we shall say that (j/, f7^, F'(J/)) is globally crystalline if for almost all
primes & of L, when we base-change from R to the completion A& of GL

(the ring of integers) at p, the resulting filtered vector bundle with connection
arises from an inverse system of objects {^p,n}neN (where ^,M is flat over
Z/p-Z) of

(ii) If L is any field (of characteristic zero), then we say that (<*/, F
is globally crystalline if there is a finitely generated Q-subalgebra R c L over
which X, E, j&9 V^, and the F^jtf) are defined and satisfy the same hypotheses
as they did over L (i.e. being proper and smooth, being a relative divisor
with normal crossings, being a vector bundle, being a locally split inclusion,
being a connection with logarithmic poles at E, etc.) such that at all closed
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points of Spec (R) (whose residue fields and necessarily number fields), the
restricted filtered vector bundle is globally crystalline (as in (i)).

Note that if (sf, F^, Fl(s/)) is globally crystalline, then the &x-dual of si,
which we denote by <s/v, endowed with the dual filtration (shifted over a
places) and connection, gives rise to a filtered vector bundle with connection
(j/v, P^v, P(j2/v)) which is again globally crystalline. Continuing with our
field L of characteristic zero, suppose that X is proper and geometrically
connected, and that we are also given a smooth, proper, geometrically con-
nected L-scheme S and a divisor with normal crossings D ^ S, plus a morphism
f : ( X , E ) - + ( S , D ) which is semistable in the sense of Definition 1.1.

Lemma 3.2. We denote by d the relative dimension of X over S. Suppose
that (eC/, Fjf, Fl(£#)) is globally crystalline. Then for any i > 0, the de Rham
cohomology R^^//^)*^? ^\ together with the Gauss-Manin connection, and
the Hodge filtration (induced by Fl(j/)) constitute a globally crystalline object
on (S, D). Let (8, V& F(J')) be the dual object to this crystalline object on
(S, D). Then,

Proof. This follows from [1], Theorem 6.2, and Grothendieck-Serre dual-
ity applied to the morphism / (for which o}x/s is the dualizing sheaf). O

Lemma 3.3. Assume that L is algebraically closed. Suppose that we have
a vector bundle "with connection (<$#, V^) on a X with logarithmic poles at E.
Then dimL H^R(X, j/) < rank (s£\ where by the subscript "DR" we mean the
horizontal global sections.

Proof. By formal integration using the connection, and the fact that in
characteristic zero, the exterior derivative vanishes only on constant functions,
it follows that a horizontal global section is determined by its value at a
single point. O

We now review some basic definitions about semi-positivity from [5]. Let
V be a projective variety over a field L. Then a line bundle 3? on V is
semi-positive if for any finite morphism g: C -> V9 where C is a smooth, projec-
tive curve, the degree of g*& is nonnegative. If S is a vector bundle on F,
then $ is semi-positive if the 0(l)-bundle on PK(<f) is semi-positive. It follows
immediately from the definitions that if <f is semi-positive and & is an ample
line bundle, then $ ®GV <£ is an ample vector bundle on V.

We are now ready to state the Main Theorem of this paper. Various
forms of this theorem were proven previously by Fujita ([5]) and Kawamata
([9]). Moreover, as Viehweg remarks in [11], §1.21, the techniques of J.
Kollar, when taken with the results of Deligne on the degeneration of the
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Hodge-Deligne spectral sequence, constitute an algebraic proof of this sort
of result. Strictly speaking, the result given here does not quite imply
Kawamata's result because our definition of semistability (involving a geometric
condition on the divisors at infinity, as opposed to a monodromy-type condi-
tion) is stronger than Kawamata's. (Kollar uses a similar definition to our
own.) Finally, as mentioned in the Introduction, there is the paper [7]. The
proof given here is a simplification of the author's original proof, following a
suggestion of Prof A. Ogus.

Theorem 3.4. Let /: (X, E) -» (S, D) be a semistable family of varieties of
relative dimension d, with S a smooth, proper scheme over a field L of characteris-
tic zero. Let (<*/, F^, Fl(s/)) be a globally crystalline filtered vector bundle with
connection on (X, E). Then for any nonnegative integer a, the coherent sheaf
of @s-modules

is a semi-positive vector bundle, as are all of its tensor powers.

Proof. First of all, by Lemma 3.2, since taking de Rham cohomology
and tensor products does not take us out of the category JHF* \ we may
assume that / is the identity, and we may prove the result for the "first tensor
power," i.e., the original globally crystalline object. Also, without loss of gener-
ality, let us assume that L is algebraically closed. Let & be the vector bundle
(J//F1 (sf)) v . Let r = rank (sf).

Let us assume that &* is not semi-positive. Then there exists some
smooth, proper, connected curve C over L, together with a finite morphism
i//: C -» S and a nonzero morphism ^c -> 9,, where J is a line bundle of negative
degree. By Proposition 1.2, after replacing C by a finite covering of C, we
may assume that h°(C, J"1) > 1 + r. Thus, by dualizing the morphism <?c-+
J, we see that fc°(C, ̂ c

v) > 1 + r. On the other hand, by Lemma 1.4, there
exists a birational map n: S -* S obtained as a sequence of blow-ups at closed
points such that the morphism C -> S (obtained from if/ by the valuative
criterion of properness) factors through a smooth, proper, connected curve C
embedded in S: that is, we have a finite morphism \l/1 : C -> C and an em-
bedding il/2:C

fc^S whose composite is the morphism C->S. Moreover, by
Lemma 1.4, we can assume that the image of C is transversely positioned
with respect to D = n~1(D)red. It thus follows that by spreading out, specializ-
ing, completing, we obtain objects CA, SA, DA, etc. over a ring A satisfying
the hypotheses given at the beginning of § 2, together with a divisor FA c CA

such that \//A: (CA, FA)^>(SA, DA) is admissibly factorizable (in the sense of the
definition given directly before Proposition 2.2). Thus, for the rest of the
proof, we shall work over A, and omit the subscripts for all the objects that
have been base changed into objects over A.
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Thus, in summary, we have an admissibly factorizable morphism i/r.
(C, F) -> (S, D), such that /z°(Q, 5^) > 1 + r, where K, as usual, is the quotient
field of A. Now recall that &?y = £//Fl(jtf). Let us consider the inverse
system (M, FM, F(M), ^) of objects of je&£Qta}(S°) associated to (X F^, Fj(j/))
whose existence is guaranteed by the fact that (j/, P^, FJ(J/)) is globally
crystalline. (We shall regard this inverse system as a single object, which
is flat over Zp.) Let us apply the pull-back functor of Proposition 2.2 to
(M, FM, P(M), ^f) to obtain a Zp-flat object (actually, an inverse system) (N, VN,
Fl(N), i/O of -4r#"£ifl](C

0). Now since fc°(CK, ̂ ) > 1 + r, and N/Fl(N) is a
direct sum of subquotients of the monodromy filtration on ̂  = ̂ *(M/F1(M)),
we thus obtain that

h ° ( C K 9 ( N / F l ( N ) ) K ) > l + r .

By Lemma 2.1, this implies that dimK H%R(CK, NK) > 1 + r. Since r is the
rank of the vector bundle M, and hence also of the vector bundle N, we thus
conclude from Lemma 3.3 that we have a contradiction. This completes the
proof. O

In particular, let us consider (under the hypotheses of Theorem 3.4) the
globally crystalline triple (*, F(J>), V^ (on (S, D)) given by R2d~i(/^)*(^),
together with its Hodge filtration and the Gauss-Manin connection. Let
(*/, F{(^\ Vj) be the triple obtained from (J*, ¥\$\ V®) by shifting the filtration
down by d — i places. Just as in Lemma 3.2, we see that

Thus, if we apply Theorem 3.4 to (X Ff(j/), V^} and the identity morphism
on S, we see obtain the following:

Corollary 3.5. Let /: (X, E) -> (S, D) be as above. Then for any non-
negative integer a, the coherent sheaf of (9s-modules

is a semi-positive vector bundle, as are all of its tensor powers.

Appendix: The Case of One-Dimensional Fibres

Let f:X-*S, D, and £ be as in § 1, with / semistable and of relative
dimension one, and suppose that S is a curve. Let us assume that the ring
A in § 1 is an algebraically closed field k of characteristic zero. Then we have
the following

Theorem. The vector bundle f*a}x/s
 on S is semi-positive in the sense that

there do not exist nonzero morphisms $'- f*o)x/s^> J, where £ is a line bundle
on S of negative degree.
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Proof. Let us assume that such a <j> exists. By Proposition 1.2, we may
assume that dimk H°(S, J"1) > g + 1, where g is the genus of the generic fibre
of /. Thus, by considering $v: J'1 -> R1/^, we see that dimk H°(S, R1/^) >
g + 1. By the Leray-Serre spectral sequence for / applied to the sheaf GX9

we see that we have, in fact, dimk H
l(X, @x)>q + g+l, where q is the genus

of S. On the other hand, since we are in characteristic zero, dimkH
1(X9Ox)

is exactly the dimension of Pic° (X) over k. Thus, we see that dimk (Pic° (X)) >

q + 9 + l >
Now we recompute the dimension of Pic° (X) by means of /-adic cohomo-

logy to see that this is absurd. Indeed, by applying the Leray-Serre spectral
sequence for fet to the etale sheaf Qz(l), we see that dimQi H

l(Xet, Qj(l)) <
2q 4- 2g. On the other hand, Kummer theory tells us that rfimQj H

i(Xet, Qz(l))
is equal to twice the dimension (over k) of Pic° (X) (since Pic° (X) is an abelian
variety over k). Putting this together with the inequality derived in the first
paragraph, we obtain a contradiction. O
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