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Quotients of Abelian Surfaces

By

Hisao YOSHIHARA*

§ 1. Introduction

Let L be an abelian function field of two variables over C, and K be a
Galois subfield of L, i.e., L is a finite algebraic Galois extension of K. We
classify such K by a suitable complex representation of the Galois group
G = Gal (L/K).

Let A be the abelian surface with the function field L. Since g e G induces
an automorphism of A, we have a complex representation gz = M(g)z + t(g\
where M(g) e GL2(C), z e C2, and t(g) e C2. Fixing the representation, we put
G0 = {g eG\M(g) is the unit matrix}, H = {M(g)\g e G} and H1 = {M(g)e
H\det M(g) = 1}. Then we have the following exact sequences of groups:

1 -> G0 -> G -> H -»1,

1 -»H! -> H -i Ck -> 1 ,

where d(M(#)) = det M(#), and H/Hl is a cyclic group Ck of order fe < 12.
The quotient surface A/G0 is also an abelian surface. Note that the function
field of the surface A/G is isomorphic to K.

Definition 1.1. We call H a holonomy representation or a holonomy part
of the complex representation of G.

The holonomy part is completely determined by Fujiki [1], in which he
studies automorphisms fixing the origin. By a slightly different method from
his, i.e., by considering Sylow groups of H, we can readily show the following.

Proposition 1.2. The order of H is 5, 10 or 2m • 3", where m < 5 and n < 2.

Since the commutative group G0 is a normal subgroup of G, the following
assertion holds true.
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Corollary L3o The Galois group G is solvable.

§1 Statement of Results

The purpose of this article is to classify K by using the holonomy part
and the fixed loci of G. But we have no suitable language in the category
of fields, so we do the classification in the equivalent category, i.e., using the
language of the birational classification of algebraic surfaces. Note that in
the case of elliptic curve E the similar classification is simple, i.e., E/G is
rational if and only if H is not trivial.

Since the order of G is finite, the quotient space X = A/G is a normal alge-
braic surface. Let S be a relatively minimal model of X and F(G) denote the

set of fixed points of G. Let [a, fc] and [«, &]* denote the matrices ( ) and
\0 bj

0 b\
I, respectively. Let 12 denote the unit matrix [1, 1]. If a group is gener-

ated by gl9..., gm, then it is denoted by <0 l 9 . . . , #m>. Put en = exp (2n^/-
The main result is stated as follows:

Theorem 2.1. We have the following classification table, where n = 2, 3,
4 or 6.

H

= (U
*{12}, =#1

*Hi

structure of S

abelian surface

K3 surface

H = <[l,en]>

H = <[-!,!], [!,-!]> or
<[- 1,1]*, [!,-!]>

except the above

F(G) = 0

F(G) = 0

F(G) = finite

F(G) => curve

hyperelliptic surface

elliptic ruled surface

Enriques surface

rational surface

rational surface

Since M = M(g) defines an automorphism of A, the eigenvalues of M are
units of algebraic number fields of degree <4. Then we infer easily the
following from the theorem.

Corollary 2.2. // #H > 24 or the degree of the eigenvalue(s) of M is 4,
then S is rational.

When the degree of the eigenvalue of M is 4, A is isogenous to A(n)9
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which is defined as follows (cf. [7]): let f = en, n = 5, 8, 10 or 12. Put

'1 C C2 C3^
fl-~'i Ck C2fc c,-

where fc = 2, 3, 3, 5 corresponding to each value n respectively. Then A(n) =
C2/Qn is an abelian surface and M = [(, £k] defines an automorphism of A(n).
Furthermore in the case when n = 5, A is isomorphic to A(5), which is a
simple abelian surface and is the Jacobian variery of the curve y2 = x5 + 1.
Looking at the tables in Fujiki [1], we notice that S is rational in many
cases. But if A is simple (and 5 is rational), then there exists only one abelian
surface A(5).

Example 2.3. Note that Enriques surfaces can appear only in two holonomy
representations. Such examples are as follows:

(1) Case of the Klein 4-group.
Let A = E1 x E2 and ££ = C/(l, a)j), 3cOj > 0 and G = <0 l 9 g2y, where

(2) Case of the dihedral group of order 8.
Let A be an abelian surface with the period matrix

1 0

0 co

2 2
l+co 1 — co

where 3co > 0. Clearly A is isogenous to E x E, where E = C/(l, co). Let

> where

Note that G' = <^?,^2> is a normal subgroup of G and A/G' is also an
Enriques surface with the same representation type as in (1).

Note 2.4. There is an abelian function field such that it contains each
class of the function fields with Kodaira dimension 0. In fact, let A be the
abelian surface defined in (2) of Example 2.3. Then we have the following
diagram:
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The structures of the nonsingular minimal models of the above are as
follows:

A/(gly9 AKg,y9 : K3 surfaces
2 > > A/( 0i • 02 > , : hyperelliptic surfaces
?? 02 > > 4/<0i> 02> > : Enriques surfaces

Since each M e H defines also an automorphism of A, the quotient space
X' = A/H is a normal algebraic surface. By the way, let Y be a projective
nonsingular model of an algebraic surface 7, then put q(Y) = dim H1(Y, 0?)
and Pm(7) = dim H°(Y, &(mK?)\ where Ky denotes the canonical divisor on Y.

Note 2.5. We have that q(X) = q(X'\ P^X) = P^X') and Pm(X) > Pm(X').
In case G0 is trivial, then G ^ H as abstract groups. But in general Pm(X)
and Pm(Xr) are distinct from each other, especially X and X' are not birationally
equivalent. In fact, if H = <[1, ej> and F(G) = 0, then X and X' are hy-
perelliptic and ruled surfaces respectively. All the G which define hyperelliptic
surfaces are given in Suwa [5].

If K is rational, then #G > 3. Note that there is only one abelian surface
if K is rational and #G = 3. In this case it is E x E, where E = C/(l, e3)
and fl = <[*3,*3]> (ct [6]).

The proof of our results depends in many parts on the work of Katsura
[3]. The abstract of the results above have been announced in [8], but the
dihedral case of Enriques surfaces are dropped.

In the sequel we use the following notation:
Ks: canonical divisor on S
~: linear equivalence of divisors or similarity of matrices
Qj: sheaf of holomorphic p-forms on S
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§3. Proof

First we notice that q(S) < 2 and Pm(S) < 1 for all m. Moreover q(S) = 2
if and only if H = {12}. If JFf = {12}, then clearly X = A/G is an abelian
surface isogenous to A. Since G0 is a normal subgroup of G, we have that
A/G ^ B/G'9 where B = A/G0 is an abelian surface and G' = G/G0. Hence we
assume hereafter that G0 is trivial and H is not trivial. We enumerate several
lemmas, which will be needed later.

Lemma 3.1. // H ^= {12}, then the following five conditions are equivalent:
(1) />i(S)>l,
(2) P1(S)=l,
(3) H = Hi,
(4) S is a K3 surface,
(5) KS~Q.

Proof. Since 1 = P^A) > P^S) = dim H°(A, &j)G, three conditions (1), (2)
and (3) are equivalent. Owing to [1, Lemma 3.1], we see that (3) and (4)
are equivalent. Hence all the conditions are equivalent. Q

Lemma 3.2. The irregularity q(S) = 1 if and only if H has a representation
<[U e«]>> where n = 2, 3, 4 or 6.

Proof. The "if part" is clear, so we prove the "only if part". Since q = 1,
/I 0

there is a representation such that each element M e H is expressed as
\c

Let a be the generator of det H, and let M0 e H be the element such that

det M0 = a. Then b = ak for some k E N, i.e., M • MQ * = ( . , ) e H. Since
\d IJ

M-MQH has a finite order, d must be 0, i.e., M = M£. Hence H is cyclic,
this means that H has a representation <[1, a]>, where a = en. Q

Lemma 33. // M(#) has an eigenvalue 1 and g has a fixed point, then
g fixes a curve C, i.e., g is identity on C.

Proof. Since M(g) defines an automorphism of A, M(g) — 12 defines an
endomorphism. Let E be the kernel of it and £ be a fixed point of g, then
E + ^ is a desired one. Q

The following lemma is proved in [3, Lemmas 2.6, 2.7 and 2.8].

Lemma 3.4. Suppose that G has a fixed curve or A/G has a singularity
which is not a rational double point. Then Pm(A/G) = 0 for all m > 0. // the
Kodaira dimension of A/G is 0, then the minimal resolution of A/G is the
minimal model.
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Lemma 3,5. // H contains an element M such that det M = — 1 and
ord M > 3, then S is a rational surface.

Proof. Let g e G be an element satisfying M = M(g). Then it is sufficient

to show that A/(g) is rational. We may assume that M = \a, — L where

a T£ ±1. Since det M = —1, the fixed points of g correspond to the non-
rational double points of A/(g). Since q(A/(gy) = 0, it is rational by Lemma
3.4. n

Now, let us prove Theorem 2.1. The proof of the case of K3 surfaces
is clear from Lemma 3.1, so we treat the case H / H1 hereafter. If q(S) = 1
and F(G) = 0, then A is an unramified covering of S, hence S is a hyperelliptic
surface (cf. [5]). On the contrary, if F(G) / 0, then G fixes some curve by
Lemmas 3.2 and 3.3. Then by Lemma 3.4, S is a ruled surface with q = 1.
Moreover we now show that it is also an elliptic surface. Let 3? be the
lattice defining A, and let hz = (M(g) — I2)z be an endomorphism of A. Put-
ting «£?' = h<e = {(en - 1K2IVi> ^2) e ^}, we see that E = C/3" is an elliptic
curve with an automorphism defined by a multiplication en. Since each irre-
ducible component of fixed curves of G is a nonsingular elliptic curve and
they are disjoint, the surface A/G is smooth. Cleary there are no ( —l)-curves
on A/G, hence S = A/G. Thus we have a morphism cp: S -» £/<O = P1. By
the Stein factorization theorem we have a fiber space cp: S-> C, whose general
fiber is an elliptic curve. Moreover we infer from the canonical bundle formula
for an elliptic surface that C = P1.

Finally we treat the last case. The surfaces not considered above satisfy
that P1 = q = 0, hence they are Enriques or rational surfaces. Hereafter we
assume that S is an Enriques surface. Then we get the following assertions
from the inequality 1 = P2(S) < dim H°(A, (Q2)®2)0:

f(i) det M = ± 1 for each M G H ,
{(ii) there is an M e H such that det M = — 1 .

First we show the following:

Claim 1. H is a 2-group, i.e., #H = 2m.

Proof. Suppose that n = 2 in Proposition 1.2. Then the 3-Sylow group
of H has a representation <[1, e3], |>3,1]>, because it has no irreducible
representation of degree 2. This contradicts (i) above. Next suppose that
n = 1. Then there are two elements M(gl\ M(g2)eH such that M(gl)^
[^3^3] and M(g2) ~ [1, —1] by Lemma 3.5. So that we have a represen-

tation as M(g2) = [1, -1] and M(g1) = where ab = —-, since
4



QUOTIENTS OF ABELIAN SURFACES 141

l,-1] -[!,-!]. Let g2z = [1, -l]z +I(cl9 c2). Since q\ is an iden-
tity, we have that t(2c1,0)e^f. Moreover since M(g1) defines an auto-
morphism of A, we get that M(gi)-

t(2cl9 0) e <£?. Hence we have that
r(cl5 -2ac!)6 JSf, this implies that F(g2) ± 0. By Lemmas 3.3 and 3.4, A/G
is rational, which is a contradiction. Therefore If is a 2-group. Q

We will complete the proof of the theorem by examining the following
cases separately:

Case (1): H is commutative.
Case (2): H is not commutative.
First we consider the case (1). Suppose that there is an element M with

ord M > 3. Then by Lemma 3.5, det M = 1, moreover ord M = 4 by Claim
1 and Lemma 3.5. In fact, if ord M = 8, then det M = — 1. Hence there are
two elements [e4, — e4] and [1, —1], since H is commutative. Then there is
an element [e4, e4] e H, which is a contradiction by Lemma 3.5. Therefore
H is generated by [ — 1, 1] and [1, — 1],

Next we consider the case (2). Note that the holonomy representation
H is irreducible, because H is not commutative. Since H is a 2-group and
the element of order 2 in H^ is unique, i.e., it is [—1, —1], the subgroup H^
is one of the following (cf. [2, Theorem 12.5.2]):

(2-1) a cyclic group,
(2-2) the quarternion group.
First we prove that the case (2-2) cannot occur. Suppose that Hi corre-

sponds to this case. Then, we may assume that Hl = <Ml9 M2>, where ord Mi

= 4 (i = 1, 2). We take a representation such that M = [l, — 1] e ff. Then,
since M £ -M~[1, — 1] by Lemma 3.5, we obtain that Mf = [a,-, ftf]*, where
a-fo. = — 1 (i = 1, 2). Since M2-M1 = Mf-M 2 , we can write M2 = [e4, — e4]-
Mx. Hence Hl 3 [e4, — e4], i.e., H 3 [e4, e4~]. This is a contradiction by Lemma
3.5. Therefore Hl must be a cyclic group and #Hl = 2 or 4, which means
that #H = 4 or 8. Since H is not commutative, we have that #H = 8. Let
M1 be a generator of Hlf Then H is generated by M1 and M2 = [1, —1].
Since M\ -M2 ~ M2, we have that M1 = [a, ft]*, where aft = —1. Thus H is
a dihedral group of order 8, which has an equivalent representation: Mx =
[—1, 1]* and M2 = [1, — 1]. Consequently If has a representation <([—!, 1],
[1, -1]> or <[-!, !]*,[!, -1]>. Since Ha[-l, -1], F(G) is a non-empty
finite set.

Lemma 3.6. T/ze surface S is an Enriques surface if and only if the
following conditions are satisfied:

(a) H has a representation <[-!, 1], [1, -1]> or <[-!, 1]*, [1, -1]>,
(b) #F(G) < oo.

Proof. We have proved the "only if part", so we prove the "if part". By
taking a suitable basis, we may assume in the latter case of (a) that G = <0
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such that

' f l f !Z=[ - l , l ]*Z

g2z= [1, -l]z + c,

where z =f (zl9 z2) and c =t(cl9 c2). Since we have assumed that G0 is trivial,
we have that g\z = z. Hence f(2cl5 0) e =£?, where <£ is the lattice. Putting
GI = <0iX G2 = <#!> and G3 = <#?,02>, which are normal subgroups of G,
we have normal algebraic surfaces Xt = A/Gt (i = 1, 2, 3). Let Sf be a relatively
minimal model of Xt. By definition Sx is a Kummer surface. The 02 induces
an automorphism g2 of Xl9 which permutes the singular points of X^. Note
that 02 has no fixed points, otherwise there exists £ e A satisfying g\g2£ = £•
Then g\g2 fixes a curve by Lemma 3.3, which contradicts (b). Since the
singular points of X1 are only rational double ones of type Al9 g2 can be
extended to an automorphism q>2 of S^. Therefore Sl/(p2 is an Enriques sur-
face, since q>2 has no fixed points. It is clear from Lemma 3.4 that S1/(p2 ^ S3.
The group G whose holonomy part is the Klein 4-group is regarded as G3,
so we have proved the former case of (a).

Note that F(gi) c F(g\\ *F(9i) = 4 and *F(gt) = 16. Of course g2(F(gl))
= F(gl) and g2(F(gJ) = F(gJ.

Claim 1 If £e F(g\\ then g2$*gl$ and g2£ / g*t.

Proof. Suppose the contrary. Then </20if = 5 or 929i£ = £> §ince 9\£ =
£. By Lemma 3.3, F(G) contains a curve, which is a contradiction. D

By this claim g2 induces an automorphism g2 of X2, which permutes the
singular points of X2. Clearly 6 [resp. 4] pieces of the singular points of
X2 are rational singularities of type A1 [resp. >43].

Claim 3o The automorphism g2 of X2 can be extended to one ^ of S2.

Proof. It is sufficient to consider g2 near the singular points P and P
of type A3. Since these singularities are rational double ones, g2 can be ex-
tended to an automorphism of S2. In another way, we can show this directly
as follows. Letting (x l 9x2) and ( x ' l 9 x 2 ) are local coordinates of P and P'
respectively, we can express as g2(xly x2) = (x(9 x'2)9 where x( = x2 and x'2 =
— x1. Each singularity is isomorphic to one defined by ^2 = ^1^3- Such a
singularity is resolved by M(2, 2, 2), (see, [4, Ch. II]). Expressing M(2, 2, 2)
by local coordinates, we infer that locally $2

 can be extended to an iso-
morphism between M(2, 2, 2). The minimal resolution of X2 coincides with
the minimal model of it by Lemma 3.4, so ^ is an automorphism of S2. Q

The \j/ has no fixed points and has order 2. Therefore S2/\l/ is an Enriques
surface, which coincides with S. Thus we complete the proof of Theorem
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2.1. Since #Hl < 24 (see the next Note 3.7), Corollary 2.2 is easily deduced
from Theorem 2.1. For the proof that the surfaces in Example 2.3 are Enriques
surfaces, it is sufficient to check #F(G) < oo by Lemma 3.6, i.e., F(g) = 0 if
det M(g) = -L

Finally we mention the structure of complex tori with the automorphism

Note 3.7. Let T be a complex torus of dimension 2. Suppose that T
has a finite automorphism group G satisfying H = H 1^{ + 12}. Then H is
isomorphic to one of the following:

(1) cyclic group of order n = 3, 4 or 6.
(2) binary dihedral group (2, 2, 2) or (2, 2, 3), or binary tetrahedral group

(2, 3, 3).
In the case (1), T is isomorphic to C2/Q such that

^0 1 — y x + kyj

where (x, y) E C2 — R2 and k = — 1, 0, 1, according to n = 3, 4, 6, respec-

tively. In this case H is generated by Mk = ( 1. We can show, by
\ — 1 kj

considering the Riemann conditions, that T is not algebraic if x and y do
not satisfy equations f(X, Y) = 0, where f(X, Y) e Q [X, 7] and deg / < 2.
Putting y = 0, we see that, for any elliptic curve E, the abelian surface A = E x
£ admits the action Mfe. In the case (2), T is not an algebraic surface or a
singular abelian surface, see Fujiki [1, Proposition 3.7 and Lemma 5.6].
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