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§ 0. Introduction

A routine to construct exotic smooth actions is to proceed the following
two:

(Step I) Construction of an equivariant normal map.

(Step II) Killing equivariant surgery obstructions.

This procedure is one of the important ideas of equivariant surgery theory,
and has enabled us to construct various exotic actions (see e.g. [BMol-2],
[LaMo], [LaMoPa], [Mo 1-3], [MoU], [Pel-3], [PeR]). A method for (Step I)
was presented by T. Petrie in [Pel-3], which we call the equivariant transver-
sality construction. Roughly speaking, it is as follows: Let G be a finite group,
and let Y be a compact, smooth G-manifold. If F is a real G-module and
a : Y x F - > 7 x F i s a proper G-map then a is properly G-homotopic to /?:
Y x V -> Y x V such that j8 is transversal to Y x {0}. Then we obtain a
G-normal map f:X-+Y, where X = p~1(Yx {0}) and /= 0\x: X-+ Y. (Step II)
is to convert f\X-*Y to a G-map f':X'^>Y belonging to a prescribed
class of maps, e.g. of G-homotopy equivalences, of homotopy equivalences, of
Zp-homology equivalences, etc. If some properties of X' are specified before
the construction then it is a key to find an adequate real G-module V and
an appropriate G-map a. Modified equivariant transversality construction has
been employed in [BMol-2], [LaMoPa], [LaMo], [Mol-3], [MoU]. For
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further applications of equivariant surgery theory, in the present paper we
give improvements in the equivariant transversality construction. In subse-
quent papers, we will discuss (Step II) and applications.

Main results of the present paper are Theorems 1.3, 2.7, 2.12, and 4.4,
although Theorem 2.12 is an easy generalization of Laitinen's result [LaMo,
Theorem 1.3]. Theorem 0.1 below follows from these. In the papers referred
above, some details were omitted, for those were regarded as well-known
facts. But the current paper contains the details, because the author has been
sometimes asked to give the details (e.g. Proofs of Lemmas 4.6 and 4.7).

Throughout this paper let G be a finite group. If H is a subgroup of
G then we write H ^ G. Let &(G) be the set of all subgroups of G. When
we regard ^(G) as a G-set, the action is one defined by (g, H) i-» gHg'1 (g e G
and H e &(G)). For a G-space X let Iso (G, X) E Sf(G) be the set of all
isotropy subgroups at points in X. Let Jl(G) (g^(G)\{G}) denote the set
of all proper subgroups K never including a subgroup H such that If <a G
and that G/H is of prime power order (cf. (2.8)). We call G an Oliver group
if there does not exist a series of subgroups Po H<a G such that P and G/H
are of prime power order and H/P is a cyclic group. Let R (resp. C) be the
real (resp. complex) number field with trivial G-action. C[G] denotes the
group ring of G with coefficients in C. This is canonically regarded as a
complex (left) G-module of dimension |G|. Let C[G]m be the m-fold direct
sum of C[G]'s. If V is a real G-module and X is a G-space then let ex(V)
stand for the product bundle X x V over X with fiber V. Adopting the
notation, we have the next theorem.

Theorem 0.1. Let G be an Oliver group, and let Y be a compact, connected,
oriented, smooth G-manifold with disjoint sub-G-simplicial complexes Z1,-",Zl

(with respect to some equivariant smooth triangulation of Y). Suppose
( l \

Iso G, 7\ (J RN (Z£) E J?(G), where RN (ZJs are disjoint closed G-regular
\ *=i /

neighborhoods (being G-submanifolds of Y) of Z?s, respectively. If n1,...,nl

are nonnegative integers then there exists a G-normal map (f, b) (cf. § 3) (where
f: (X, dX) -»(Y, BY) is a G-map, and b: T(X) 0 £*(C[G]m) ->/*T(Y) 0 e*(C[G]m)
is a G-vector bundle isomorphism for some natural number m) satisfying the
following (0.1.1)-(0.1.4):
(0.1.1) Let RN (Zf) be a closed G-regular neighborhood of Zf in RN (Z£). For
every i=l,...,l, /^(RN (Zf)) is G-diffeomorphic to RN (Zf )t U • • • U RN (Z?)ni

(nrfold disjoint union of copies of RN (Zf)).
(0.1.2) Each / |RN(ZG ) j:RN(Zf)J--»RN(Zf) is the canonical G-diffeornorphism.
(0.1.3) dQg(fH:XH*^YH)= 1 whenever H E Jt(G) and YH is connected and
oriented.
(0.1.4) For each H € Ji(G\ there exists an H-normal cobordism
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/> RCSH b) ~ (JdResGy, ^ResG(r(Y)@ey(C[G]m)))

/or sufficiently large m.

Proof. By Theorem 2.7, there exists a e Q(G) (the Burnside ring of G) such
that #G(a) = 1 in the ring Z of integers and Resf (a) = 0 in Q(H) for all
HeJt(G). (The definition of %G( ) is given in §1.) Let 10 be the unity in
jQ(G). Applying Theorem 1.3 for yi = ni\Q, we obtain o>' e a>G(7) such that
Ar.zjfX) = ^s(ni^o)zl in ^SC^i) f°r a suitable natural number s, where j(y,Zl)

:

Z,--»Y is the canonical inclusion and (n£10)z. = p*(n fl f l) for p,-: Zf ->pt (see
§ 1 for details of definition of (WflflJz,)- Let co = ly — a(ly — co') and yt = 1Q —
a(lf l — n£as). Further let (^(yf)((JFf) G y(G)/G) be nonnegative integers such
that

and that for each H, either (pgfyi) or (p/^) is equal to 0. Let q*H(yi) = <Pn(yi) ~
(Pniyi)- In this case, clearly \q>H(yi)\ = max (^(7^), <pn(yt)). Then, by Theorem
4.4 we get a G-normal map (/, b) satisfying (4.4.1)-(4.4.3). By (4.4.1), forgetting
orientations, /~1(RN(Zf)) is G-diffeomorphic to

R N ( Z p ) U - - - U R N ( Z p ) ((|^(y()| + I^WIHold disjoint union).

It holds that <pG(yt) = <pG(LQ - a(lfl - ^as)) = 1 - /G(a) + n^G(a)s+1. Since
XG(«) = 1, we get <jPG(yc) = n{. This implies that ^G(yf) = n{ and ^(Vi) = 0.
Thus (0.1.1) and (0.1.2) immediately follow from (4.4.1) (in this case, Kt = G).
Suppose that H e Jt(G) and that YH is connected and oriented. It holds that
j!esj^y})(Res| co) = ^ in Q(H), and
hence degff ( j*e4 r§ (y})(Resg to)) = xH(Res| lfl - Resg a + (Resg a)/*, {,})(Resg a/)).
Since ^(Resl a) = xfl(a) = 0, it follows from (4.4.3) that deg(/H)= degH(j(*y>W)(co))
= 1. This shows (0.1.3). By Resg a = 0 for H e Jt(G\ we also have Resg (co)
= ^Resgy in co^(Res^ 7). The property (0.1.4) follows from the last statement
in Theorem 4.4. Q.E.D.

The organization of this paper should be in order. §1 is devoted to
basic facts of the Burnside ring and the equivariant cohomology theory. In
§2, we analyze Jt(G] in order to find a localizer ae£2(G) of coG(Y). In §3,
the definition of G-normal map is given and basic facts of G-normal map are
discussed. In §4, an equivariant transversality construction theorem is stated
and proved. §5 is devoted to an equivariant transversality theorem. §6 is
supplement to §3.

§ 1. Elements from the BurnsMe Ring and the Equivariant
Cohomology Theory

Let G be a finite group. Let Q(G) be the Burnside ring of G (see, e.g.
[tDl, §1.2] and [tD2, Chapter I (2.18)]). Thus, fl(G) is the Grothendieck
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ring for the category of finite G-sets. For a finite CW-complex A, let %(A)
denote the Euler characteristic of A. Then we can identify

Q(G) = {[X~\\X is a finite G-CW-complex}

where [*] = [jr]oxprH) = l(X'H} for ail H g G. (For the proof, compare
[tDl, Propositions 1.2.2 and 1.3.5] with [tD2, Chapter IV Proposition 4.6 and
Theorem 5.7].)

If H ^ G then the right coset space G/H has a canonical (left) G-action.
In particular, G/G consists of a single point and has the trivial action. The
unity 1 of Q(G) is the equivalence class of G/G. For each H g G, there is
a natural homomorphism %H: Q(G) -> Z such that for a = [A] e Q(G) (A is
a finite G-CW-complex), #H(a) = %(AH). Define Conj (G) = ^(G)/G. Namely,
Conj (G) is the set of all conjugacy classes of subgroups of G. For If ^ G,
let (H) denote the conjugacy class of H. Namely, if we regard (H) as a subset
of ^(G) then (H) = {gHg~1\geG}. We define ( H ) ^ ( K ) (H9K^G) to be
H E gKg~l for some g e G. Let ^(G) E &*(G) be a complete set of representa-
tives for Conj (G). If a e Q(G) then integers (pH(a) (H e #(G)) are uniquely
determined by

*= I <Pn(*)lG/H].
H e <f(G)

Let co|(7, Z) be the equivariant cohomology theory: If (7, Z) is a finite
G-CW-pair (that is, Y is a finite G-CW-complex, and Z is a sub-G-complex
of 7) then

co"G(Y, Z) = colim [(7/Z) A F°, (R" 0 F)']G,
F

where F = C[G]m, FB is the one-point compactification of F, and [A, J3]G

stands for the set of all base-pointed G-homotopy classes of base-pointed
G-maps A->B. Let co^(Y) = co$(Y+, +), where Y+ is the disjoint union of
Y and the reference point +. In particular, if pt is a G-set consisting of a
single point then

a)°G(pt) = colim [V° -> F°]G .
v

For each H ^ G there is a natural map degH: coG(pt) -* Z such that for a> = (fv:
Vs -* Fe)F e o>S(pt), degH (co) = deg [//: (FH)' -> (7H)']. Stabilization of the com-
position (7/Z) A Fe -»(R" © F)° -* ((R" © F)Q defines the right operation of o>£(pf)
on cug(y,Z), i.e. G)g(7, Z) x o;g(pt)-^ a>S(7, Z). Furthermore it is known that
via this operation, o>G(pt) becomes a commutative ring with the unity 1 =
(idv\ F°->Fe)F, and o)%(Y, Z) becomes an G4(pt)-module. In addition, there
is a ring isomorphism Y\ Q(G) ̂  c»G(pt) such that %H = degH o *P for all H ^ G
(see [tDl, Theorem 7.6.7] or [tD2, Chapter II Theorem 5.17 and Chapter IV
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Theorem 5.7]). Thus o)g(7, Z) is an &(G)-module. If aeQ(G) then let aY

denote the element p*(W(d)) e co^F), where p: Y-*pt denotes the trivial map.
Since the ring Z is identified with the subring Z • 1 of Q(G\ for an integer n
it is clear what nY E o^C^) stands for. If a 6 Q(G) then let a^co^y, Z) denote
the localization of cOo(Y, Z) with respect to the multiplicatively closed set
S = {a, a2, a3, ...}. For of^to^y, Z), we call a a localizer.

Lemma 1.1. Let (7, Z) fre a finite G-CW-pair, and a e Q(G). Suppose that
(1.1.1) Resg a = 0 in £(#) /or a// # 6 Iso (G, 7\Z).
Tnen the inclusion induced map a~V(*,z): a^twj^y) -» a~1co^(Z) is an vTlQ(G)-
isomorphism.

Proof. It suffices to show oL^co&Y/Z, Z/Z) = {0}. If G e Iso (G, 7\Z) then
the equality obviously holds. Otherwise, Lemma 1.1 follows from [Pe3, Lemma
1.6]. Q.E.D.

Lemma 1.2. Let (Y, Z) and a be as in Lemma 1.1. Let Z = Zt 1 1-
(disjoint union) as sub-G-complexes of Y and let o}t e &>G(Z;) (i = 1, • • • , /)•

exist a> e WG(^) a?1^ a natural number s such that j(* )Zi)(co) = asa>; /or all

Proof. There is a canonical decomposition cog(Z) = co^ZJ 0 • • • © o>£
Let jS = (c0l9 . . . , ft>z) e cog(Z), i.e. /(z.zjC^) = wr By Lemma 1.1, there exists T e
a-^gCY) such that (a~V(y,z))W = ^ in a~1og(Z). Then it holds that (a"VjlZl))W
= co^ in a~1a}g(Zf). The assertion in Lemma 1.2 follows by definition of local-
ization. Q.E.D.

Local-Global Theorem 1.3. Let (Y, Z) and a be as in Lemma 1.2. For
an l-tuple ( 7 i , . . . , y / ) of ytEQ(G), there exist coeco^Y) and a natural number
s such that 7(*r,Zl)M = ^(jtJz, ™ ^(Zt) for all i = 1, . . . , / .

Proof. Apply Lemma 1.2 for a)t = (yf)z.. Q.E.D.

When Y is a compact smooth G-manifold, Y is regarded as a finite
G-simplicial complex with respect to some equivariant smooth triangulation.

§2. A Way to Find Localizers

In applications of Theorem 1.3, it is required to find a nice a e Q(G) for
localization. This section is devoted to a theory to find such a. Original
suggestion of the theory appeared in [Mo4]. For a finite group G, a family
JiG (denoted by Jt(G] here) of subgroups of G was introduced in [Mo4,
§6]. Theorem 6.3 of [Mo4] indicated the significance of Jt(G) in equivariant
surgery theory. Subsequently, E. Laitinen defined another family J^(G) of
subgroups of G in an explicit way and proved Ji(G) = £f(G)\y?(G) in [LaMo,
§1]. This equality enabled us to handle J((G) much easier for a general
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group G. The current section is a reformulation of related ideas in [LaMo,
§1], and the proof of Theorem 2.12 is due to Laitinen's idea proving [LaMo,
Theorem 1.3].

Let S be a finite set of primes and

k s = r i p .
peS

As convention, k0 = 1.

Definition 2,1. Define Ji^(G) to be a maximal subset of ^(G) (with respect
to c) such that there exists a = a(J?s(G)) e Q(G) satisfying
(2.1.1) #G(a) = 1 mod fcs, and
(2.1.2) Resg (a) = 0 in Q(H) for all H e Jts(G).
As convention, Ji ^ =

Remark. If a satisfies (2.1.1) and (2.1.2) then am also satisfies (2.1.1) and
(2.1.2) for any natural number m. Thus, in general a = a(^s(G)) is not uniquely
determined by Jts(G).

Lemma 2.2. The following hold:
(2.2.1) Jts(G) is uniquely determined by G and S.
(2.2.2) // S 2 Sf then Jis(G) E Jis,(G\
(2.2.3) J^S(G) is G-invariant (with respect to conjugations).
(2.2.4) J(S(G) is lower closed, i.e. K e Jls(G) and H^K=>He MS(G).

Proof. (2.2.1): We show a sum property: If Jts(G)i and Ji^(G)2 are maxi-
mal subsets of y(G) as in Definition 2.1 with elements oc1 = a(^s(G)1) and
a2 = a(^s(G)2) satisfying (2.1.1) and (2.1.2), respectively. Then a = a^ satis-
fies (2.1.1) and (2.1.2) for the subset Jts(G)i U JtG(G)2 of ^(G). The assertion
of (2.2.1) follows from the sum property.
(2.2.2): The assertion follows from definition.
(2.2.3): The assertion follows from the sum property above.
(2.2.4): The assertion follows from definition. Q.E.D.

Lemma 23. It holds that

peS

Proof. By (2.2.2), J(S(G) E f) <^{j>}(G)- We Prove the other implication.
peS

For each peS, let ap = a(^(p}(G)) 6 fl(G) be as in Definition 2.1. Set

peS

Then it holds that ^G(a) = 1 mod ks and Resg (a) = 0 for all H e f)

Thus P| ^b}(G) g urs(G). Q.E.D.
peS



CONSTRUCTION OF G-NORMAL MAPS 151

Let SG be the set of primes p such that G has a normal subgroup of
index p, and let

Oliver's Lemma 2.4. Given a finite group G, there exists y e Q(G) such that
(2-4.1) *c(y) = fcG, and
(2.4.2) Resg 7 = 0 in Q(H) for all H^G.

Proof. Let (p: y(G) -» Z be as in [O, Lemma 8]. Then cp is a resolving
function in the sense of [O, p. 159]. By [O, Theorem 1], there exists a finite
G-CW-complex X such that %(XG) = 1 + kG and %(XH) = 1 for any H ^ G.
The element y = [*] - [G/G] satisfies (2.4.1) and (2.4.2). Q.E.D.

Corollary 2.5. Given a prime p not dividing kG, it holds that

Proof. Let y E Q(G) be as in Lemma 2.4. Since (fcG, p) = 1, /CG = 1 mod p
for a suitable natural number m. For such m, a = ym satisfies #G(a) = 1 mod p
and Resg (a) = 0 for all H < G. Thus one gets Jt{p}(G) = ^(G)\{G}. Q.E.D.

Corollary 2.6. // S ^ SG and S =£ 0 then Jfs(G) = JtsJ(G)\{G}.

Proof. It is clear from definition that G £ Jts(G) when S + 0. If SG = 0
then by Lemma 2.3 and Corollary 2.5, ^S(G) = ^(G)\{G} = <JfSG(G)\{G}. If
SG / 0 then by Lemma 2.3 and Corollary 2.5, JKS(G) = JfSG(G) = JtSG(G)\{G}.
Q.E.D.

Integral Theorem 2.7. For a finite set S of primes such that S 3 SG, there
exists a e Q(G) satisfying
(2.7.1) *G(<X) = 1, and
(2.7.2) Resg (a) = 0 for all H e UJTS(G).

Proof. Let a = a(^s(G)) e fi(G) be as in Definition 2.1. Then ^G(a) =
1 + a/cG for some a E Z. Let 7 e D(G) be as in Lemma 2.4. Then a' = a — ay
satisfies (2.7.1) and (2.7.2). Q.E.D.

We define

(2.8) Ji(G) = ^Sc(G)\{G} .

By Theorem 2.7, this family Jt(G] of subgroups of G coincides with the family
JiG in [Mo4, §6].

If p is a prime then let Gp be the smallest normal subgroup of G such
that G/GP is a p-group, i.e. \G/GP\ = pm for some nonnegative integer m. For
a finite set S of primes define

(2.9) &S(G) = {He y(G)\H ^ Gp for some prime p e S} .
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As convention, &0(G) = 0. In addition, define

(2.10)

Lemma 2.11. The following hold:
(2.11.1) // S 2 S' then &5(G) 2 jS?s,(G).
(2.11.2) =2s(G) is G-lnvariant (with respect to conjugations).
(2.11.3) JS?5(G) is upper closed, i.e. H e JS?S(G) and H^K^Ke &S(G).
(2.11.4) JS?S(G)= U

Proo/. Straightforward.

Laltlnen9s Theorem 2.12. Given a finite group G and a finite set S of
primes, it holds that J(S(G) =

Proof. By Lemma 2.3 and (2.11.4), it suffices to prove the case where
S = {p} for a prime p.

Jt{p}(G) H &{p}(G) = 0: Let H e &{p](G). Then H 2 Gp. Let a e fl(G) be
as in Definition 2.1. By definition, #G(a) = 1 mod p. By the Smith theory,
XG(oc) = XGP(U) = 1H(&) mod p. Thus, #H(a) cannot be 0. By definition, H $

E Jt{p}(G}\ It suffices to show that for each H E Jf = &(G)\
there exists aH e Q(G) such that XG(OLH) = 1 mod p and XH(XH) = 0. If

once this is shown then set

Since Jf is lower closed, it holds that Resg (a) = 0 for each H e Jf . Obviously
= 1 mod p. Thus JtT g ^{p}(G).

For K ^ G and a nonnegative integer g, let

) = {ae Q(G)\zK(a) = 0 mod ^} .

Let H e JT. Required aH is an element a e 0>(H, 0) such that #G(a) = 1 mod p.
If there do not exist such elements then ^(H, 0) c ^(G, p). By Dress [Dr,
Proposition 1], Hp = gGpg~1 for some g e G. Since Gp is a normal subgroup
of G, £P = Gp. Consequently H 2 Gp and If e ^{p}(G). This contradicts that
we began with H e jf = ^(G)\JSf{p}(G). Q.E.D.

Corollary 2.13 ([LaMo, Theorem 1.3]). It holds that M(G] =

. This immediately follows from Theorem 2.12.

Corollary 2.14. Jts(G) is the empty set if and only if G is a p-group for
some prime p E S.
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Proof. If part: Let G be a p-group for p G S. If a e Q(G) satisfies #G(a) =
1 mod ks then by the Smith theory, #{i}(a) = 1 mod p. Thus it does not hold
that Resf1} (a) = 0. By definition, {1} £ Jis(G\ Since Jls(G) is lower closed,
^s(G) = 0-

Only if part: If -4TS(G) / 0 then {l}e^s(G). By Theorem 2.12, {1} £
J^S(G). Thus, G = G/{1} cannot be a p-group for any prime p e S. Q.E.D.

Let each of p and q be a prime or 1. Then define 9* to be the family
of all finite groups G admitting subgroups P and H such that
(2.15) PoHoG, |P|=p s for some nonnegative integer s, \G/H\ = q* for
some nonnegative integer t, and H/P is a cyclic group.
Further set

(2.16) s« = U s;
p

#f = \J <y* (for 5 and 5' finite sets of primes) .
peS.geS'

As convention, 9S
0 = 9$ and 9% = 9?. For a finite group G, let

{H^G\HE$j}. Similarly we use 9P(G\ 9q(G\ and 9j'(G).

Proposition 2.17. For finite sets of primes S and S", G £ ^f ' if and on/j;

Proof. We prove the case S =/ 0 and S" 7^ 0. The other cases are left
to the reader.

// part: Suppose G e ^ f . By definition, there exists a normal series P<a
H<3 G satisfying (2.15) for some p e S and g e S'. Clearly it holds that HE
9£(G). Then by hypothesis, H e ^S,(G)\{G}. On the other hand, since G/H
is a g-group, H e &{q}(G) g JSfs.(G). By Theorem 2.12, H ^ ^S-(G), which is a
contradiction.

Onty i/ part: Let X G ^\(^(G)\{G}). Then Ke&s,(G) by Theorem
2.12. By definition, K^Gq for some q € S'. Since X e «J, H = Gqe 9$. There
exists P<3 H such that P is a p-group for some p e S and H/P is cyclic. Hence
G e #«. Thus the assumption G £ ^f ' implies 9£(G) E ^S,(G)\{G}. Q.E.D.

§3. Definition of (/-Framed Map

In the current paper, we assume that each (real) G-vector bundle over a
finite G-CW-complex is equipped with a G-invariant Riemannian metric. Let
X be a finite G-CW-complex, and i a G-vector bundle over X. For H ^ G,
TH is the ATG(H)-vector bundle consisting of all elements (in the total space
of T) fixed by H over XH. Taking the orthogonal complement TH to TH, we
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get the direct sum decomposition as NG(H)-vQCtor bundles:

As a special case, if F is a real G-module, we have the decomposition F =
VH © VH as NG(H)-modules (with respect to some G-invariant inner product
on F). If £ is a G-vector bundle over 7 and if /: X -> Y a G-map then it
holds (f*t)H = /H*(£H) for all H ^ G. For a real G-module F and a G-space
X, let ex(V) (or simply e(F) if X is clear from context) be the product G-vector
bundle X x F (with base space X and fiber F). We note that ex(V)H =
sXH(VH) and sx(V)H = exa(VH). Let biT-+£ be a G-vector bundle map of
G-vector bundles T and £ over X. If JJ g G then by Schur's lemma, b\XH:
t\XH-»i;\XH i§ decomposed to b\xn = bH@bH as NG(H)-vQdot bundle maps,
where bH: IH -» £H and bH: IH -> £H. If T£ and ^ (i = 1, 2) are G-vector bundles
and ft: T! © T2 -> £1 © £2 is

 a G-vector bundle map then we write b in the form

U11
 ft

12J where btj = b\Ti:

Let T, ^ and ^/ are G-vector bundles over X. I f b : T © ^ ^ { @ ^ i s a G-vector
bundle map then b is usually called a stable G-vector bundle map from T to
£ and one has usually abused the notation b: T -» £ if the context is clear.

A G-vector bundle map b: T -> £ is called a G-vector bundle isomorphism
if b covers idx (the identity map on X).

Definition 3.1 (n-Normal Condition), Let bit ®rj -> £©?? be a G-vector
bundle isomorphism. For a family Jf of subgroups of G, we say that b
satisfies the (Y\, 3tif)-quasinormal condition (resp. (77, ̂ -normal condition) if for
every H 6 J«f , bH\xH®riH-^£)H®riH has the form

o o
where CH:TH-+ £H and dH:i;H-»riH. In the case J»f = ^(G), the (*/, Jf )-quasi-
normal condition (resp. (77, Jf )-normal condition) is simply called the ^quasi-
normal condition (resp. rj-normal condition). In the current paper, if both b and
b' satisfy the ^/-quasinormal condition then a G-regular homotopy bt: b ~ b'
should be understood that at each level t, bt satisfies the ^-quasinormal condi-
tion.

The next lemma easily follows from the definition above.

Lemma 3»28 Let 6 : r © f / - > ^ © r / be a G-vector bundle isomorphism sat-
isfying the (f/, J^)-quasinormal condition as in (3.1.1). Then the following hold:
(3.2.1) // H, K e JUT and H ^ K then (CK)H = CH\XK.
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(3.2.2) There is a canonical NH(G)-regular homotopy

For a smooth G-manifold X, T(X) denotes the tangent bundle over X
with canonical G-action. If K ^ G and if A is a sub-X-manifold of Jf then
let v(A, X) denote the normal bundle of A in X with canonical K-action. It
holds that T(X)H = v(XH, X). If X is an oriented manifold then -X is a
copy of X with opposite orientaton to X.

Definition 33 (G-normal map). Let 2tf be a family of subgroups of G. An
^-framed G-map is a pair (/, fe) of a G-map /: (X, dX) -> (7, 37) of compact,
oriented, smooth G-manifolds X and 7 (possibly with dY = 0), and a G-
vector bundle isomorphism b: T(X) ©??->/*<!; ©T/ (where Y\ is a G- vector bun-
dle over X, and ^ is a G-vector bundle over Y) such that b satisfies the
(77, Jf )-normal condition. If ^ = &*(G) then an Jf -framed G-map is called
simply a G-normal map.

The notion of ^f -framed G-map is introduced because it fits G-surgery
on X of isotropy types (H) (H e Jf ).

Definition 3.4 (G-Normal Cobordism). A G-normal cobordism

(F: W-+(Ix 7), B: T(W) © H -» e^(IR) 0 (% o F)*£ ©H)

(where / = [0, 1] and nY: I x 7 -> F is the canonical projection) between two
G-normal maps

(/: (X, dX) -> (7, 57), 5: T(X) ® 17 -> /*£ 0 17) and

e */' -, /'*^ e ,')
is defined in a usual way. Namely, W is a compact, oriented, smooth G-
manifold such that dW = ( - X) U (fl_ Py) U X ', ( - X) fl (fl_ PF) = d( - X), X' H (5_ WO
= flA", ZnJT'- 0; F:(F^, -X,X'9d.W)-+(I x 7, {0} x 7, {1} x 7,1 x dY) is
a G-map such that F|_^ =/ and F\x, =/'; H is a G-vector bundle over PF
such that H|_x = q and H|^ = r[\ and B is a G-vector bundle isomorphism
satisfying the H-normal condition and

B\-x = ^R) © b: e_x(R) © T(-X) ®n^ s_x(R) © /*{ © rj and

= W.(R) 0 &': fi^(R) © T(-X) © 17' ^ fijr(R) 0/'*f © ̂  .

In the following two theorems, let T, ^ and ?| be G-vector bundles over
a finite G-CW-complex X.

Deformation Theorem 3.5. Let b\i ©i\ -> ̂ ®r\ be a G-vector bundle iso-
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morphism satisfying the q-quasinormal condition. Let A be a sub-G-complex of
X. Suppose b\A satisfies the r\\A-normal condition. Then there exists a G-
regular homotopy (relative to A) bt: b ~ b', t e [0, 1], (i.e. b0 = b and b^ = b')
such that b' satisfies the rj-normal condition.

This will be used to construct G-normal maps in §4. The next theorem
is not required in the current paper, but it is helpful for our understanding
the notion of G-normal map.

Luek-Madsen's Theorem 3.6. Let b\% ®Y\ -»£©?? be a G-vector bundle
isomorphism satisfying the rj-quasinormal condition. Then there exists a G-vector
bundle isomorphism b:i® %(Km) -> £ © e*(^m) (being stably G-regularly homotopic
to b) for some natural number m.

Proofs of Theorems 3.5 and 3.6 are deferred until §6.

§4. Equivariant Transversality Construction of G-Normal Maps

Original ideas of the equivariant transversality construction of G-normal
maps were provided by T. Petrie [Pel-3]. Some improvements were added
by [BMol-2], [LaMo], [LaMoPa], [Mol-3], and [MoU].

If X is a compact, oriented, smooth G-manifold then — X means a copy
of X with the opposite orientation to X, and let + X = X (with the same
orientation as X). If aeO(G) and ®(a) = (<p# Oz))He#(G) is a 2|#(G)|-tuple of
nonnegative integers such that

(4.1) «= I (^(a)-^(a))[G/H],
H e # (G)

then define
®(a)X = ®+(a)X \l ®_(a)X, and

(4.2) <&«)

®+(a)X = 0 11 (±X)xG/H.

Define P0(a}x,x'- &(a)X -> X by p^(a)X,x(^ gH) = x for all xe ±X and gH e G/H.
In the current section, let Y be a compact, connected, oriented, smooth

G-manifold possibly with boundary dY. If F = C © V as complex G-modules
then define ±iv: V -* V to be the maps

©F r / = ce7 / = v
(s,t,v) ^>(±s9t,v).

This definition of ±iv depends on the decomposition V = C © F', but the
equivariant regular homotopy class of ±iv is unique. Define ±ivy. %(F) ->
ey(F) to be idy x ±iv. Furthermore, if /: X -> Y is a G-map then define +zFj/:
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sx(V)~^sY(V) to be / x ±iv. If Z is a sub-G-simplicial complex of Y (with
respect to some equivariant smooth triangulation) then let RN(Z) be a closed
G-regular neighborhood (being a sub-G-manifold of Y) of Z in Y. If Z is a
sub-K-simplicial complex of Y such that

(4.3) 0 Z n Z ^ 0 (gEG)=*gEK

then GZ (= Y) is canonically G-homeomorphic to G xKZ. In such a case
we write GZ = G XK Z.

Equivariant Transversality Construction Theorem 4.4. Let Y be a compact,
connected, oriented, smooth G-manifold. Let Z1? ..., Zl be sub-Krsimplicial com-
plexes of Y such that each (Zi9 K{) satisfies (4.3) and that GZl,...,GZl are
mutually disjoint. Let yieQ(K^ (i= 1, . . . , / ) and let CD be an element in o^(Y)
satisfying j'fces^r.zjfltes^ CD) = (yf)Zi in co^(Zf) (i = 1, . . . , I). Further let #(%) =
(tPflCyiWue <*(«,) 'be 2\m(K^\-tuples of nonnegative integers satisfying (4.1) for G
and a replaced by Kt and yt. Let RN (Zt) be Krregular neighborhoods of Z{

in Y such that G RN (Zf) = G XK RN (Zt) are G-regular neighborhoods of GZt =
G xKiZt in Y and that G RN (Zx ), . . . , G RN (Z,) are mutually disjoint. Then
there Exists a G-normal map (/ b) (where f: (X, dX) -> (7, dY), b: T(X) © ex(V) ->
f*T(Y) ® ex(V)9 V = C[G]m for some natural number m) satisfying the following

(4.4.1) Let Ui=f~1(RN(Zi)) (i = ! , . . . , / ) then Ut (= Uit+Y[Uit.) is Kr

diffeomorphic to #(%) RN (Z,) (= <P+(yf) RN (Z£)JJ*_(%) RN (Z,)):

C7, T s *+(y() RN (Z,) = LI LI ( ± RN (Z,)) x
j=l

In addition, f\v\ [7£->RN(Zj) coincides with
(4.4.2) Let z t-: SC/^F) ->• eRN(Zi)(K) be t/*e Krmaps covering f\Vi such that

tet /:/*T(Y)-> T(7) foe t/ze canonical map covering f then (/© v./Jli/, °

&l^ = 4^ f©ii-
(4.4.3) Let rH = ]Jyc

H (connected components), X? = XH^f~l(Yc
Hl and

fc
H = /lxf-*f-»*f /^ H ^ G. If YC

H is oriented then deg(/c
H) =

degH(j(*ResGy)(3;})(Resga})) /or arbitrary ye YC
H.

Moreover for every H^G such that Res| (CD) = lResGY in co^Res^ Y), there
exists an H-normal cobordism (HF, HB): (f, b) - (WResgy, Wr(Resgy) © ^£(ResGF)) /or
sufficiently large V.

The rest of this section is devoted to proving Theorem 4.4.
The outline of our proof is as follows. The element co in Theorem 4.4

provides a G-map a: Y x V -> Y x F" (F = C[G]m for some m) covering idY.
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T. Petrie proved that a is equivariantly approximated by a smooth G-map
fi: Y x V* -» Y x F° such that 0 is transversal to Y x {0}. Required /: JT -» F
in Theorem 4.3 is obtained by setting X = 0~l(Y x {0}), f = pY° 0\x: X^Y
where pY: Y x V->Y is the canonical projection.

The notion of "normal derivative" defined below is a key to this equiva-
riant approximation and also to realizing the ex(F)-quasinormal condition (cf.
Definitions 3.1 and 3.3). This is one of important ingredients found by T.
Petrie of equivariant surgery theory.

Definition 4.5 (V-Normal Derivative), Let F be a real G-module. If
o c : F x F - » 7 x F i s a G-map being smooth at x E Y x F then the V-normal
derivative vdx(%) of a at x is defined to be the composition

VGx -^ TX(Y x V)Gx «* T^(Y x V)Gx -=4. VGx ,

where Gx is the isotropy subgroup at x, and (da)x is the differential of a at x.

The next lemma was used as a well-known fact in [BMol-2], [LaMo]3

[LaMoPa], [Mol-3], and [MoU].

Lemma 4.6. Let V be a complex G-module such that K=C[G] and
y e Q(G). Let &(y) = (<pg(y)) be a 2\<£(G)\-tuple of nonnegative integers sat-
isfying (4.1) for a = y. Then there exists a base-pointed G-map h: V° -» V sat-
isfying the following (4.6.1)-(4.6.4):
(4.6.1) deg (hH) = XH(y) for all H ^ G.
(4.6.2) h is transversal to {0} in F. p±(y)

(4.6.3) fc-1(0) = fc~1(0)+]Jfc-1(0)_ such that h-1(0)±^ ]J fj ( + G/H) (as
He<#(G) j=l

G-sets).
(4.6.4) For each xe/j"1^)^, there is a Gx-disk neighborhood DX(V) of 0 such
that h(Dx(V) + x) = DX(V) and h\Dx(V}+x coincides with the Gx-diffeomorphism

In particular, the V-normal derivative vdx(h) = idVe .

Proof. Let F = C[G] 0 V, A± = {(H,j, ±)\H e <g(G\ 7 = 1,..., <ps(y)},
and A = A+\]_A_. Take distinct \A+\ G-orbits GxHJt+ and \A_\ G-orbits
GXHJ,- m V such that the isotropy subgroup at xHJt± is H. Let G XH

U(H9j9 ±) ((H9j9 ±)eA±) be disjoint G-tubular neighborhoods of the orbits
GxHJt± such that U(HJ, ±) = xHJj± + BB(V) as H-spaces, where Be(V) is an
e-ball in F centered at the origin for small s > 0. Let hHji±: G XH U(HJ, ±) -»
Fa be a smooth G-map satisfying the following (i)-(iii).
(i) hHJt±([l9u])= ±iv(u-xHJi±) for ueU(H,j, ±) close to Xflji± (i.e. 0^

(ii) ftHj,±(0) = GXHJ,± (the G-orbit containing the point xHJf±).
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XH UHJ,±)) = {°°}-
These G-maps hHJt± together are extended to a G-map h: V -> V by setting
h(v) = oo for all v $ [j G XH U(H,j, +). This map h satisfies the required

(HJ,±)eA

properties. Q.E.D.

Petrie's Lemma 4.7 (cf. [Pe3, Theorem 2.8], [Pel, Chapter II]). Let A
be a sub-G-simplicial complex of Y. Let a: Y x V -» Y x V be a G-map such
that u(y, oo) = (y, oo) for all y e Y and that a(dY x V) E dY x V. Suppose
that oc is a smooth map in a neighborhood of (A x V)r\aTl(A x {0}), and that
tt\Axy is transversal to Y x {0} in A x V in such a way that for each xe
vTl(A x {0}), the V-normal derivative vdx(x) is the identity. Then oc is G-
homotopic (relatively to a neighborhood of (A x V')U(Y x {oo}) to a G-map ft
satisfying the following (4.7.1)-(4.7.4):
(4.7.1) fi(dY x F')i37x V.
(4.7.2) ft is a smooth map in a neighborhood of j$~l(Y x {0}), and /? is transver-
sal to Y x {0} in Y x V.
(4.7.3) j5|5yxr: dY x V-> dY x V° is transversal to dY x {0} in dY x V
(4.7.4) At every point in fl~l(Y x {0}), the V-normal derivative of /? is the
identity.

Lemma 4.7 is an analogue of [Pe3, Theorem 2.8]. Methods and argu-
ments of the proof of Lemma 4.7 are same as those of [Pe3, Theorem 2.8].
But the proof of [Pe3, Theorem 2.8] is not given in [Pe3] and it is not easy to
understand Lemma 4.7 from [Pel]. Thus, for the interested reader, we give
a proof of Lemma 4.7 in §5.

Proof of Theorem 4.4. In order to show (4.4.3) after the construction of
/, we now choose and specify points yH c e YC

H for all possible (H, c\ H ^ G.
Let

JH,C = 78te.gr.{,Hie})(ResS Q))efl(X), where K = G y f f c .

Adding these ({yHtC},yH,c) to the giyen family {(Zi9yt)}9 we are allowed to
assume that
(4.8) yH,c e (Z1 U • - • U Z,) fl YC

H for all H ^ G and connected components YC
H.

This assumption is made for calculation of deg (fc
H) by a straightforward

method. There is another method to calculate deg (fc
H) without the assump-

tion (4.8), although we do not discuss this method. Thus, the reader may
remember that the assumption (4.8) is inessential.

Set Z = GZilJ- '-JjGZi. The given element coEat^Y) corresponds to
a base-pointed G-map cp: Y+ A F°-»FB, where F=C[G]m for some natural
number m. Define a G-map a: Y x V -> Y x V° covering idY by a(y, t;) =
(y, (p(y, v)) for (y, v) e Y A V. Note that a(y, oo) = (y, oo) for all y e Y.



160 MASAHARU MORIMOTO

Now we consider this correspondence in the opposite direction for Y
replaced by RN (Zt) (i = 1, . . . , /). By Lemma 4.6, each yt e O(Kt) (i = 1, . . . , / )
provides a self Krmap /z£ :F°-»F9 having the properties (4.6.1)-(4.6.4). The
map af = iWRN(Zi) x h{\ RN (Zt) x V -» RN (Zt) x F° corresponds to (<yi)RN(zi) in
co|t(RN (Zf)). Since RN (Z{) is Krhomotopy equivalent to Z£, it holds that
J&e8jir,RN(zl))(Res^a)) = (yf)RN(zi)- Thus we may suppose a|RN(Zi) = iWRN(Zf) x ht.

By Lemma 4.7, a is G-homotopic (relatively to (Y x (oo})U(RN(Z) x F°))
to a G-map /? satisfying (4.7.1)-(4.7.4). More strictly to say, we should apply
Lemma 4.7 to the G-map a|rxF. (where Y' = Y\Int (RN (Z))) relatively to
(F x {oo})U(Sr x Fe). Thus, it holds that jT^r x F°) i Y' x F° and
jT^RN (Z) x Fe) E RN (Z) x F8.

Let Z = p-l(Y x {0}) and / = pY o 0\x: X^Y, where pY: Y x F -» 7 is
the canonical projection. Clearly, ^ c Y x F. The first half of (4.4.1) that

is the union of the two spaces

.+ = U U (±RN(Z,))xK,/H
He^(Ki) j=l

follows from (4.6.3). The latter half of (4.4.1) that f\Ut = p^^RNcz^RNcZf) follows
from (4.6.4). Recall the assumption (4.8). By (4.6.4), the map'//: Xf -> YC

H

is transversal to {yH,c}- Thus deg (fc
H) is computable as follows. Suppose

{yn,c}
 E Zt- Then, deg (fc

H) is the sum of the signs s(x) of fc
H at points x 6

fcH~\yH,c)- This sign e(x) is defined to be 1 (resp. —1) if /C
H preserves

(resp. reverses) the orientation at x. By (4.6.3), the set fc
H~l(yH,c) ^s the union

of /C
H "1(j;HjC)± which are identified with

irJJL H

By (4.6.4),

e(x) = 1 on [j Jj' (KJH'f, and

e(x)=- l on TT n'(-K f/H')H.
H'e%?(K ) /=!

It follows that

deg(//) = U (^/Vy - LI U (-KJH'
j=l H'eViKJ j=l

This shows the property (4.4.3).
Next we see the existence of b stated in Theorem 4.4. Let vx =

v(X, Y x V) and vy = v(Y, Y x F). Let pv\ Y x V-* V be the canonical
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projection, and -t: vx -+ vy a standard G- vector bundle map covering f: X -*Y,
namely

x F)|x -£* T(Y x 7)|y -^4 Vy .

Define T':vx->/*Vy by T'(VV) = (TI(W), T(W)) for w e vx , where 7r:vx->Jf is the
projection. By the equivariant covering homotopy property, there is a metric-
preserving G-vector bundle isomorphism y: a*(p?(T(F))) s ^*(p?(T(y))). Then
it holds that

(4.9) T(X) © sx(V) = T(X) © f*sr(V)

= T(X)®f*vY

^T(X)®vx (via id© r'-1)

= T(Y x F)|x

= P$T(Y))\x®ex(V)

®*x(V)

0 ex(F) (via y|x ©

© /

© j

= P*(p$(T(Y))®pt(T(V)))\x

= /*(T(y x F)|y)

= /*(T(y)©vr)
= /*(r(y))©/*(vy)
= /*(T(y))0/*(8r(F))

where = (resp. =, ^) should be read "isomorphic (via a canonical isomorphism)
to" (resp. "isomorphic (via a metric-preserving isomorphism) to", "isomorphic
to"). Let b: T(X) ® sx(V) ^ f*(T(Y)) ® sx(V) be the composite of these
isomorphisms. By (4.9) defining fe, the property (4.4.2) follows from (4.6.4).
Recall that the F-normal derivatives vdx(j8)'s (x e X) are the identities. By
straightforward observation of the each isomorphism in (4.9), we can check that
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b satisfies the ex(F)-quasinormal condition. By Theorem 3.5, we can arrange
b so that it satisfies the ex(F)-normal condition.

We leave the proof of the existence of H-normal cobordism (HF9 HB) to
the reader, since the proof is quite similar to the above arguments and there
are no additional difficulties. Q.E.D.

§§„ An Equivariant Transvarsality Theorem

Let (X, X0) (resp. (7, 70)) be a compact G-CW-pair such that Xi = X\X0

(resp. Y1 = Y\Y0) is a smooth G-Riemannian manifold (i.e. G-manifold with G-
invariant Riemannian metric). For xe Xl9 a map /: X -> Y such that /(x) e Yi
is said to be smooth at x if / is smooth in a neighborhood of x. For A ii Xl9

a map /: X -» Y such that f(A) E Y1 is said to be smooth on A if / is smooth
at every point in A. If f:X-> Y is smooth at xe J^ (/(x) e Yi) then dfx:

-* 7}-(JC)(Yi) denotes the differential of / at x.

Definition 5.1 (Transversality), Let L be a compact submanifold of Y1

(possibly with boundary) with normal bundle v(L, Yi), and let A E X. A map
/: X -> 7 with f ~ l ( L ) c ^ is said to be transversal to L on A if / is smooth
on 4 n/'^L) and pro/ o d/x: i;^) -> 3}(jc)(Yi) -> v/(je)(L, 7J is surjective for all
xe^n/'HL).

Remark 5.2. The transversality is an open property. Namely, if / is
transversal to L on A then so is / on a neighborhood of A.

Let V and W be real G-modules with G-invariant inner product, i'.sXl(V)-*
T(Xi) a metric preserving, G- vector bundle monomorphism (covering idXj)9

and TT: T(Y{) -^sYi(W) a G-vector bundle epimorphism (covering idYl).

Definition 53 ((i, n)-Normal Derivative). Let x e Jfl5 and let /: Jf -> 7 be
a G-map smooth at x (/(x) e 7J. Then the (z, n)-normal derivative vdx(f): VGX~*
WGx of f at x is defined to be the composition

wK (K = G X ) .

If Xj = A x F and Yi = B x W (as G-Riemannian manifolds) and if

'•• SA XK(^) - TM x V) = p5r(X) © p$ev(V) , and

TC: T(B x W) = pjr(B) © pfre^WO -» eBx^(^)

are the canonical maps (i.e.

/((a, 4 »') = (0(8>1F), ((a, »X (», «'))) ((«, ») e A x F, »' e V) , and

B((Z, ((ft, w), (w, w'))) = ((ft, w), w') ((ft, w)eBxW,ze (p$T(B))\(b^, w' e
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then the (z, 7c)-normal derivative is called the (V, W)-normal derivative. Further-
more if V = W then (V, FK)-normal derivative is simply called the V-normal
derivative (cf. Definition 4.5).

Let rj:V-+Wbea G-epimorphism (i.e. an epimorphism being a G-map).

Definition 5.4. In the situation of Definition 5.1, further suppose that L
is a compact smooth G-manifold, (Yl9L) = (L x W, L x {0}) as G-Riemannian
manifolds, and n: T(Y1) -+eYi(W) is the canonical map. A G-map f:X-+Y
with f~l(L x {0}) c: Y1 is said to be (i9 n; rj)-transversal (or simply rj-transversal
if the context is clear) to L x {0} on A if / is transversal to L x {0} on A
and if the (/, 7i)-normal derivative vdx(f) of / coincides with rjGx at every
xeAHf-^L x {0}).

In the following, let Y possess a G-invariant distance function d: Y x 7-»

Equivariant Transversality Theorem 5.5. (In the situation of Definition 5.4.)
Let A be a sub-G-CW complex of X such that A ^:X0UdX1. Suppose that
f(X0) i 70, that f(dXJ i dYi(= dL x W), and that f is rj-transversal to L x {0}
in Y1 on A. If £ > 0 and a sub-G-CW-complex B 2 A then there exists a
G-homotopy (relative to A) ft\ f ~ f (/0 = /, /i = /', and at each level t e [0, 1]
ft:X—> Y) satisfying the following conditions:
(5.5.1) d(ft(x\ f(x)) < s for all t E [0, 1] and xeX.
(5.5.2) /' is (z, n; rj)-transversal to L x {0} on B.

Lemma 5.6. Suppose the situation in Theorem 5.5. Then the following
hold:
(5.6.1) / -MLxlO})^^ .
(5.6.2) There exists a compact sub-G-manifold of Z a X^ such that Int (Z) ID

Since the proof is easy, we omit it.
Let K be a compact subset of X± . ^(X, 7; K) be the set of all (continu-

ous) maps h: X -> Y such that h(K) c= 7X and h is smooth on K. The %JrfX

topology on the set &(X, Y; K) may be defined as follows. Let {U^} be a
finite coordinate covering of K with coordinate maps hx: Ux -» R" (or R+ x
IR""1, where R+ = {x e R|x ^ 0}), and let {Ca} be a compact refinement, of
{l/a}, covering K. Let k e ^(X, Y; K). For a positive constant d > 0, define
a subset N(k, d\ K\ of ^(X, Y; K), consisting of all maps g:X-+Y such that
d(g(x\ k(x)) < d for any x e X, and

at all points in /ia(Ca fl K), where ga = no g oh~l and i = 1, . . . , n. If we take
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the sets N(k9 S; K) (6 > 0) as a base of neighborhoods of fc, the resulting
topology is called the %W,K topology.

Proof of Theorem 5.5. Set T = f~\L x {0}). By Remark 5.2, (5.6.2),
and the equivariant smooth approximation theorem, there exists a closed G-
invariant subset A' of X and a G-map /" such that A E A', that a neighbor-
hood of dX1 E A'9 that X2 = A\\Int (A') is a compact sub-G-manifold of X1

with boundary X2HA', that f"\A=f\A, that /" is smooth on X2UT9 that
/" e N(f, e/2; 0), and that /" is ^-transversal to L x {0} on A'. We may
proceed the proof replacing A and / by such A and /". Thus we regard
A' = A and /" = /. Note that X2 = X^lnt (A) is a finite sub-G-simplicial
complex of X^. Let {Hl9...,Hm} be a complete set of representatives for
Iso(G,X,)/G such that (Ht) ^ (Hj) (subconjugate) => j £j. Since X = AU
m

(J G(X* 0, it suffices to prove Theorem 5.5 in the case where B = A U G(Xj)
i=l
such that Xl^A for all K ^ H. Let Z = Xj . Then Z is a free IV/H-manifold
with boundary Z fl A9 where N = NG(H).

Note that there exists a positive number d' < e/2 such that if a G-map
h: X -> 7 with A e JV(/, (5'; JT2 U T) then A is G-homotopic to / and h is transver-
sal to L x {0} on A. In the following, deformation of / should be understood
to be done within ^'-approximations, and let 6 = d'/m for a large natural
number m.

If there exists /' as in Theorem 5.5 then for xeZfl/'"1^ x {0}),

K/M ° dfx: TX(X') = TX(Z) ® vx(Z, U)^W=WH®WH, (U = X^lnt (A))

must be surjective. Thus we first achieve the surjectivity of TX(Z) -> VH and
next obtain the surjectivity TX(X')H -> WH. By ordinary transversality theorem,
there is a smooth JV-homotopy yt: f\z ~ ^! (at each level t e [0, 1], yf: Z -»
(L x P^)H) such that yt e N(f\z, d; Z), and yl is transversal to (L x {0})H in
(L x W)H on Z. For sufficiently small d, there exist a compact AT-submanifold
Z' c: Z and an AMiomotopy fct: f\z ~ h1 such that ht e N(f\Z9 26; Z), ht\dz = /|5Z

and hi is transversal to (L x {0})H in (L x PF)H on Z'.
We regard 6^(7) E T(XJ via z. In particular sz(VH) i (r(^)|z)H. Define

nht'' GZ(VH) -* fi(Lxmfl(^fl) by fatfo y) = (^W' ̂ H^)) for xeZ and y e VH-
Clearly [^Jx: ^-^ WH] = Y\H and this is a surjective map. Take a smooth
Af-equivariant extension /lr: Dr -> v((L x FF)H, L x pf^) of yy fc t, where Dr =
Dr(v(Z9 U)) the closed disk bundle with radius r > 0 associated to v(Z, 17).

Let Exp: T1^!)--*^! be the exponential map. Without loss of generality,
we may suppose Exp(Df)c: U. Let Exp':Dr-»l7 be the restriction of Exp.
By equivariant tubular neighborhood theorem, if r > 0 is sufficiently small
then Exp' becomes an iV-embedding and E = Im (Exp') is a closed AT-tubular
neighborhood of Z in 17. We may suppose that g e G and gE fl E ^ 0 =>
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g e N. Let exp: v((L x W)H, L x W) -> L x FK be the exponential map. Then
we have an JV-homotopy kt = exp o At o Exp'"1 (at each level r, kt: E-+ L x W).
By construction, kt\z = ht, and fcx is Resjj ^-transversal on Z. If we take
sufficiently small r > 0 then fct|s+E e N ( f \ d + E , 3d; d+E)9 where d+£ = Im (Exp'|az).
Thus, if we take d > 0 and r > 0 so small then there exists a smooth JV-
homotopy k't:f\E~k\ (k't:E->Lx W) such that d(k't(x)9f(x))<4S for all
xe£, that k't\d+E = f\d+E, and that k\ is ResG ^-transversal to L x {0} on Z.
The homotopy /UUfe ' f : /Uu£ ^ / I^Ufc ' i (t e [0, 1]) is uniquely extensible to a
G-homotopy /V/UuGE ~/"i ( /V^UGE->7 at each level t). Take a G-
homotopy ft: f ~ A (/t: * -> 7) such that d(/t(x), /(x)) < 5(5 and /tUUG£ = /"t.
Then /, and /' = /i are desired ones. Q.E.D.

Proof o/ Lemma 4.1. Let 7'= 7Uay(-7) be the double of Y. Then
G' = G x <cr|cr2 = 1> acts on Y' in a canonical way. Namely cr\Y: Y-* — Y
and a _y: — 7-» 7 are the canonical maps. The G-module V can be regarded
as a G'-module where a acts trivially. Let a': Y' x F° -> 7' x V be the G'-map
canonically obtained from the G-map a: 7 x V -> 7 x F*. Note that if a' is
transversal to 7' x {0} in 7' x F° then oc'|ey = a|5y is transversal to 37 x {0}
in 57 x K'. Thus apply Theorem 5.5 to the G'-map a' and obtain a G'-
homotopy (relative to (A x 7") 11(7 x {oo})) af': a' - j8' such that f}'\ 7' x F' ->
7' x F8 is (i's TC'; zWK)-transversal to 7' x {0}, where i': er XF(F) -> T(7' x F) and
n': T(Y' x F)^e rxF(F) are the canonical maps, and idv: V -> V is the identity
map on F. Then /? = P'\Yxv: Y x F" -^ 7 x F" is a desired map. Q.E.D.

§ 6. Supplement

We begin this section with preparing notation. If T is a G-vector bundle
over X and xe X then let tx be the fiber of T at x. If U and F be real
G-modules then GLG((7, F) is the space of all G-linear isomorphisms U -» F.

Proo/ o/ Theorem 3.5 => Theorem 3.6. By Theorem 3.5, we may suppose
that b satisfies the ^/-normal condition. Since X is a finite G-CW-complex,
there exists a real G-module F such that ex(F) E f/. For such F, the canonical
stabilization of b satisfies the ej(F)-normal condition. Thus we may suppose
v\ = sx(V), and in addition dim FG ^ dim X + 1. A G-vector bundle isomor-
phism b as in the conclusion of Theorem 3.6 is obtained by the argument in
the proof of [LiiMa, Appendix Proposition (A2)] (for !Rm = FG). We give
here an outline of the argument, and the interested reader can find the details
in [LuMal, pp. 524-525]. Let IRm = FG. The usual cell-by-cell construction
of b is applicable. Thus suppose that bA was already constructed over a
sub-G-complex A of X. Let B = A U (G/H x Dl) be a sub-G-complex of X. In
order to obtain bB, it suffices to extend Af-equivariantly ResG bA (N = NG(H))
over JV-spaee 7 = A U (N/H x Dl\ Take a point x e H/H x Int (D1). The ob-
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struction to extending Resjj bA to bY over 7 such that bY ® idSY(VH) = bH\Y lies in

nt(<p: GLH(T? © VG, g ® VG) -> GLH(rf 0 VH, g © VH)) (i ̂  dim XH) ,

where cp adds the identity along VG. There is a homotopy equivalence

GLH(i* © VH, <Jf © FH) - 0(dim tf + dim VH) .

Thus, (p is (dim if + dim VG — l)-connected. Since dim rf 4- dim VG — 1 ^
dim A", stated homotopy group vanishes, consequently the obstruction van-
ishes. Q.E.D.

If U, V, and W are real G-modules then let GLG(U, V, W) be the space
of all G-linear isomorphisms b:U®W^Y@W having the form

f ) (c:U-+V9d:U-+W).
0 idw) v ;

The subspace DLG(U, V, W) of GLG(U, V, W) is defined to be the space
consisting of all b: U ® W -* V® W having the form

(c: 17 -^ F) .
0 l ;

It is clear that the canonical inclusion DLG(U, V, W) -> GLG(U, V, W) is a
homotopy equivalence.

Proof of Theorem 3.5. A required G-regular homotopy bt = bx^t is con-
structed by the cell-by-cell construction as usual. Thus it suffices to prove
Theorem 3.5 in a special case where X = A U (G/H x Dl). As in the previous
proof, let 7 = Resjj A U (N/H x Dl) (N = NG(H)). Then it suffices to find an
JV-regular homotopy (relative to Resjj A) bYtt: b\Y ~ bY (te [0, 1]) such that bY

satisfies the Resjjf/ly -normal condition. Fix a point xeH/H x Int(D'). Then
Tx © nx is the direct sum tf © ixH © ?/f © rjxH as real A/-modules. Required
bYtt must satisfy bYtt\A = b\A for all t e [0, 1]. Thus set bAtt = b\A. The obstruc-
tion to extending bAtt to bYjt: b\Y ~ bY (t E [0, 1]) over Y such that bY satisfies
the Res^ly-normal condition lies in nt((p) for the canonical inclusion

<p: GLH(t* © ^, ff © if) x DLH(cxH9 £xH,

f © iyf , £? © ijf ) x

Since 9 is a homotopy equivalence, the stated homotopy group vanishes,
hence the obstruction is trivial. This proves Theorem 3.5 in the case X =
A U (G/H x Dl). The general case can be proved by induction on sub-G-com-
plexes of X. Q.E.D.
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