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Perturbation Formulas for Traces on
C*-algebras

By

Frank HANSeEN* and Gert K. PEDERSEN**

Abstract

We introduce the Fréchet differential of operator functions on C*-algebras obtained via
spectral theory from ordinary differentiable functions. In the finite-dimensional case this differential
is expressed in terms of Hadamard products of matrices. A perturbation formula with applications
to traces is given.

§1. The Fréchet Differential

Definition 1.1. If & and % are Banach spaces, and 9 is an open subset
of %, we say that a function F: ¥ — % is Fréchet differentiable, if for each x
in @ there is a bounded linear operator F'1 in B(%, %) such that

lim [|h]"H(F(x + h) — F(x) — Fi(h)) = 0.
h—0

If the differential map x — F!1 is continuous from 2 to B(Z, %), we say that
F is continuously Fréchet differentiable.

Straightforward computations give the following result, which we list for
easy reference.

Proposition 1.2. If F: & > % and G: % — & are continuously Fréchet dif-
ferentiable maps between Banach spaces %, % and %, then G o F is also continu-
ously Fréchet differentiable, and
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(G o F){(h) = GRL,(FL(h))
for every x, h in %.

The next result is well known to mathematical physicists, who would
derive it from the socalled Dyson Expansion, cf. [10, 10.69] and [11, 1.15]. A
complete and stringent formulation is found in Araki’s paper [3], that “contains
a powerful computational tool, which does not seem to be widely known
among mathematicians.” We shall only need a fraction of this tool, and
include a simple proof for the convenience of the reader.

Proposition 1.3. If </ is a Banach algebra, then the exponential function
A —exp (A) is continuously Fréchet differentiable with

1

exp 1 (B) = f exp (sA4)B exp ((1 — s)A)ds
0

for all A, B in 4.

Proof. By elementary calculus we have

1 kim!
k —_ m = —
L sl — 9)"ds (k+m+ 1)

and we can prove either by direct calculation or by induction that

n—1
(A+ By — A=Y (A+ BFBA"**V.

k=0
Combining these two expressions we establish the Dyson formula

() exp(4+B)—exp(4)= ), z

n=1k

A+B)kBAn k-1

§|>—n

0 1
y ﬁ(A + B)BA™ J s*(1 — s)"ds

k,m=0 0

fl exp (s(A + B))Bexp ((1 — s)A)ds,

0

where we rearranged the sums by setting m =n — k — 1. It is clear that the
proposed expression for exp{! is a bounded linear operator that depends
continuously on A4, and by subtraction we get from (*) that

lexp (4 + B) — exp (4) — exp}! (B)]

= H jl (exp (s(4 + B)) — exp (s4))B exp ((1 — s)A)ds
0

<[B! J " lexp (s(4 + B) — exp (sA)]ds .
0
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From Lebesgues theorem of dominated convergence we see that the last integral
converges to zero as B—0. We can thus conclude that exp is continuously
Fréchet differentiable with the desired differential. QED

Definition 1.4. We denote by CE(R) the set of real C'-functions f of the
form

o= | eauts,

where u is a finite, symmetric, signed measure on R, such that the moment

mw=fmmmmm<w.

— o0

The derivative f’ of a function f in CL(R) is given by

'@t = J‘w e™ixdu(x) .

— 0

Symbolically, at least, we can write u = f, so that the moment requirement
can be restated as ||f’||1 < o0.

Note that CL(R) is an algebra of functions containing the Schwartz class;
so its restriction to any finite interval I is demse in C!(I) with respect
to the C'-norm. We are indebted to U. Haagerup for suggesting this class
of functions as the most convenient carrier of a theory of Fréchet differen-
tiability. Its use in the theory of unbounded derivations is evident from
[11, 3.3.6].

If o is a C*-algebra, and 7, denotes the self-adjoint part of ./, then
each bounded, continuous real function f on R defines a continuous operator
function T — f(T) on &/, via the spectral theorem.

Theorem 1.5. Let o/ be a C*-algebra, and take f in CL(R). Then the
function T — f(T) is continuously Fréchet differentiable on o, with

© 1
A1) = I ix J TSN gy du(x)
—© 0

for all T, S in o£,,. Moreover, the norm of the differential is | ff < || /'1,.

Proof. Note first that the proposed expression of the Fréchet differential
certainly is bounded—independent of T—by ||f'|,, because T and e=1~»T
are unitary operators. We then apply the spectral theorem to obtain
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© 1 . .
f(T+8)— f(T) — J ix J e™TSe 19Ty dy(x)
— 4]

© 1
— j <eix(T+S) _ eixT —ix f eixyTSeix(l—y)Tdy> dﬂ(.’C)

— 0

© 1
— f ix J‘ (eixy(T+S) _ eixyT)Seix(l—y)Tdy du(x) ,
© 0

where we used (x) from the proof of Proposition 1.3. The norm of this
expression is bounded by

© 1
ISI f |x] J le™ T+ — e T dy d|p|(x),
—w 0

and even after division by ||S| this does tend to zero as S — 0 by Lebesgues
theorem of dominated convergence. QED

As a first application of Fréchet differentiability we give the next result.
More will follow in section 2.

Proposition 1.6. Assume that a state ¢ of a C*-algebra of is definite on
some element T in o, ie. @(T?) = @(T)>. Then for each f e Ci(R) there is
a function o;: o, » R, with ||S| " 0,(S)—>0 as S—0, such that

o(f(T + 9)) = flo(T)) + f(@(T)@(S) + o/(S)
for every S in ,.

Proof. Let (m,, H,, x,) denote the GNS-representation of o/ associated
with ¢. We see from the Cauchy-Schwarz inequality that ¢ is definite on T,
if and only if x, is an eigenvector for n,(T), ie. n,(T)x, = ¢(T)x,. It follows
that ¢ is also definite on g(T) for each g in C(Sp(T)), and that ¢(g(T)) =
g(@(T)). Moreover,

@(TA) = ¢(AT) = ¢(T)p(A4)
for every 4 in /. If fe Ci(R), then we know from Theorem 1.5 that
AT +5) = f(T) + f1(S) + ISIR(T, S),
where R(T,S)—»0 as S—0. The formula given for f}!!(S) shows that

@

o(f(T +5)) = flo(T)) + f e™*Dix du(x)p(S) + Sl @(R(T; 5))

— 0

= fle(T) + f(@(T)@(S) + o4(S) ,
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where we define

07(S) = (ISl o(R(T; 5))
for S in &,. QED

§2. Perturbation Formulas

Theorem 2.1. Let o/ be a C*-algebra, and let t — A(t) be a continuously
differentiable function from the interval [0, 1] into of,. Then we have

1

f(AQ1)) — f(A(0)) = j ho(A'(0)dt

0
for each f in CL(R).

Proof. The composed map t— f(A(t)) is continuously Fréchet differen-
tiable, cf. Proposition 1.2. We divide the unit interval 0 =t, <t; <-- <t, =1
and write

fAQ) — f(4(0)) = é JlA@)) — flA(t-1))

= 3 (6~ i) URLAE) + Ry(w),

where R,(t;) >0 as t, —t,_; > 0. We can to each ¢>0 find a 6 >0 such
that |R,(t,)| < e for all k with t, — t,_; <0, cf. Theorem 1.5. The difference
f(A(1)) — f(A(0)) is thus obtained as the limit of a Riemann sum and the
assertion follows. QED

Theorem 2.2. If 1 is a finite trace on a C*-algebra of, and f € C:(R), then
t(f1(8)) = <(f'(T)S)
for all S, T in o,,.
Proof. By Theorem 1.5 we have

t(fF(8) = f ik f t(e*TS)ix du(x)dy

—o JO

2]

= J 1(ixe™TS)du(x)

— 0

=1(f'(T)9),

since

') = fw e™ix du(x) . QED

—
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Theorem 2.3. If t is a finite trace on a C*-algebra <, then
S < T=1(f(S)) < (f(1))

for all S, T in o/, and every monotone increasing, continuous function f on
an interval containing the spectra of S and T.

Proof. Fix an (finite) interval I containing the spectra of S and T. Define
the C'-curve

A®)=tT+ (1 —1)S te [0, 1],

and note that A'(f) = T — § > 0. Combining Theorems 2.1 and 2.2 we get

1

(D) — £5)) = j AT — S)at

0
= jl (T — S)f'(¢tT + (1 — £)S)(T — S)*?)dt
0

for each f in CH(R). This difference is positive, as claimed, whenever f is
increasing on 1.

It thus follows that the theorem is true for any increasing function f in
C(I) that has an extension to an element in C;(R). Since Ci(R) contains the
class of Schwartz functions, we see that the theorem holds for any increasing
function in C*(I).

In the general case consider an increasing function f in C(I) and extend
it to an increasing function f in C,(R). Then with

e,(t) = \/% exp (—nt?/2)

o

f(s + t)e,(—s)ds .

define

£t = f " JGlent — s = J

Clearly f,e C*(R) and f, is increasing. Moreover, f,— f uniformly on I
Consequently

(1) = f(8)) = lim =(f,(T) = £(S)) 2 0

and the assertion is proved. QED

Theorem 2.4. If 7 is a normal, semi-finite trace on a von Neumann algebra
o, then

§ < T=1(f(8)) < =((f(T))
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for all S, T in o, and every positive, monotone increasing function f on an
interval containing the spectra of S and T.

Proof. Take elements S, T in </, with S < T and fix an (finite) interval
I containing the spectra of S and T. Possibly after translation and scaling
we may assume that I = [0, 1], and that f(0)=0 and f(1)=1. We set

F ={f:1-1I|f is increasing, f(0)=0, f(1) =1}

and note that & is convex and compact. In particular, it is closed under
monotone (increasing or decreasing) limits. We consider the subset

F. = {fe ZI(f(9) < «((S(T)},

and must show that &, = £.

Let E, denote the spectral projection of T corresponding to the open
interval JA, o[. If E,e &/, then t is bounded on the set Ey,«/E,, which
contains § and T. By Theorem 2.3 this implies that

FNC(I) < Z,.

But the boundedness and normality of 7 also implies that &, is closed under
monotone limits, and therefore & = &£.

If E, ¢ o/, but E, € &° for every ¢ > 0, we may replace the interval [0, 1]
by [e, 1] to prove that

{feZ|ft)=0 for t<e}cZ,.

For every fe % we choose an increasing sequence (f,) of functions in &
vanishing in a neighborhood of zero, such that f, » f. Since f, € #, we derive
that

©(£(8) < 1((fT))

and the normality of 7 then shows that fe Z.
In the general case let

A=inf{u|E, € o7} .

Then t(f(T)) = oo, which makes the theorem trivially true, unless f vanishes
on [0, 4]. But if it does we are back in case one, if E; € &, or in case two,
if E, € o/* for every u > A, of the previous argument, replacing [0, 1] by [4, 1].
We conclude that fe #, and that & = % in general. QED

Remark 2.5. In [5, 4] the previous result is obtained for continuous func-
tions using the theory of spectral domination. It is amusing to note that—
using our C*-algebraic proof above—one may conversely deduce spectral domi-
nation.
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Indeed, if S< T in a von Neumann algebra ./, and f is an increasing
function on R, let 1, denote the characteristic function for the half-line ]4, oo,
and set

E,=1L(f(), F.=1(f(T).

That f(S) spectrally dominates f(T) means exactly that E, <F,, for all 4 in
R, ie. E; is Murray-von Neumann equivalent to a subprojection of F,, cf.
[1]. But this is immediate from Theorem 2.4, because 1, o f is an increasing
function, whence

©(E;) < t(F)

for every semi-finite, normal trace t on ., and thus E;, <F,. For &/ = B(H)
and S < T compact operators, these relations were established by Powers
already in [9, 54].

§3. The Perturbation Formula for Matrices

Let T be a self-adjoint n x n matrix with (not necessarily distinct) eigen-
values 4;,..., 4, and let

(#) (ela-'-7en)
be an orthonormal basis of (corresponding) eigenvectors, whence
n
T= Z A€
i=1
where {e;;}7 ;-; is the associated system of matrix units.

Definition 3.1. Let f be a differentiable function defined on the spectrum
of T. The Léwner matrix

ST = i Cij€ij

i,j=1

~

is defined by setting

f(4) for A= A
Ci= 1 f(&) = f(&)
——)-i =7 for A #

Theorem 3.2. Let T, S be self-adjoint n x n matrices and let f e CL(R).
Then

+1(S) = fUNT)* S

where we identify the Fréchet differential with its matrix representation in the
basis (#) and * denotes the Hadamard product.
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Proof. By Theorem 1.5 we have

© 1
e f[1(S)e; =-[ J e;e™TSe™ 1™ M e, dy ix du(x)

—o JO

© 1
=J‘ J e e 1M hix dy dy(x)e;Se;

—w JO0
= C,]elsej
for i, j=1,...,n. QED

Remark 3.3. The Lowner matrix—essentially due to K. Lowner—was
used in [7] to give a streamlined version of the theory of operator monotone
and operator convex functions. The key observation, [7, 3.4] is that a function
f is operator monotone on an interval I, if and only if f1*)(T) is a positive
definite matrix for every self-adjoint matrix T (of arbitrary order) with spectrum
in I. For the proof of this result we needed a lemma, [7, 3.3] which is the
finite-dimensional version of Theorem 2.1—but phrased in the terminology of
Theorem 3.2. While essentially correct, this lemma nevertheless entails a mea-
surable selection of orthonormal bases for a curve of matrices (in order to
define the Hadamard products), and the authors feel that the present version
is less ambiguous.

Remark 3.4. Each non-constant operator monotone function f on the

interval ]—1, 1[, normalised such that f(0) = 0 and f'(0) = 1, has the represen-
tation

flt) = f t(1 — at)~'du(),

-1

where u is a unique probability measure on [ —1, 1], cf. [7,4.4]. Elementary
calculations show that

f18) = Jl (1 —aD)7'S(1 — aT) " du(@) .

-1

Likewise, each operator monotone function f: R, — R,, normalised such that
f(1) =1, has the representation

©t(l+ 4
o= [ D,

where u is a unique probability measure on the extended half-line [0, co].
Again we obtain the Fréchet differential

0

fHIS) = J AL+ (T + A)7IS(T + A)tdu(A)

0

by elementary calculations.
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Remark 3.5. It is not, in general, possible to describe the differential
fE1(S) as an Hadamard product in the infinite dimensional case. =~ However,
if H = L2(I) for some probability measure v on I and To(x) = x¢(x) for every
@ in H—so that T is “diagonalised”—then for each f in Ci(I) and every
Hilbert-Schmidt operator S on H given by a self-adjoint kernel k, i.e.

So(x) = fk(x, ne(y)av(y) ,

we find f11(S) to be the Hilbert-Schmidt operator with product kernel f1)(T)k,
where f1(T)e C(I x I), given by

f'(x) for x=y
U(T)(x, y) = _
ST, y) f();)_i(y) for x%y.

The computations are straightforward and left to the reader.
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