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Perturbation Formulas for Traces on
C*-algebras

By

Frank HANSEN* and Gert K. PEDERSEN**

Abstract

We introduce the Frechet differential of operator functions on C*-aIgebras obtained via
spectral theory from ordinary differentiate functions. In the finite-dimensional case this differential
is expressed in terms of Hadamard products of matrices. A perturbation formula with applications
to traces is given.

§1. The Frechet Differentia!

Definition 1.1. // & and ty are Banach spaces, and Q) is an open subset

of &, we say that a function F: & -+& is Frechet differentiate, if for each x

in 2 there is a bounded linear operator F^.1] in B(2£9 <&) such that

lim Ufeir^FOc + h) - F(x) - F[
x
1](h)) = 0 .

If the differential map x -» F^ is continuous from & to B(3E9 $/\ we say that

F is continuously Frechet differ entiable.

Straightforward computations give the following result, which we list for

easy reference.

Proposition 1.2. // F: X -» %/ and G: ty -> 3£ are continuously Frechet dif-

ferentiable maps between Banach spaces 3£9 <W and 3£9 then G o F is also continu-

ously Frechet differentiable, and
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for every x, h in 3C.

The next result is well known to mathematical physicists, who would
derive it from the socalled Dyson Expansion, cf. [103 10.69] and [11, 1.15]. A
complete and stringent formulation is found in Araki's paper [3], that "contains
a powerful computational tool, which does not seem to be widely known
among mathematicians." We shall only need a fraction of this tool, and
include a simple proof for the convenience of the reader.

Proposition 1.3. // at is a Banach algebra, then the exponential function
A -> exp (A) is continuously Frechet differentiable with

f 1

exp^1] (B) = exp (sA)B exp ((1 - s)A)ds
Jo

for all A, B in <$/.

Proof. By elementary calculus we have

11
ksk(l - s)mds =

Jo v ' (fc + m+1)!

and we can prove either by direct calculation or by induction that

(A + B)n -An = n^(A + B)kBAn~(k+v .
k=0

Combining these two expressions we establish the Dyson formula

(*) exp (A + B)- exp (A) = £ V —(A +
n=i fc=o nl

f 1

= exp (s(A + B))B exp ((1 - s)A)ds ,
Jo

where we rearranged the sums by setting m = n — k— 1. It is clear that the
proposed expression for exp^1] is a bounded linear operator that depends
continuously on A, and by subtraction we get from (*) that

Hexp (A + B) - exp (A) - exp^ (B)||

1

(exp (s(A + B)) - exp (sA))B exp ((1 - s)A)ds

\
J

||exp (s(A + B) - exp (sA)\\ds .
o
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From Lebesgues theorem of dominated convergence we see that the last integral
converges to zero as B -» 0. We can thus conclude that exp is continuously
Frechet differentiable with the desired differential. QED

Definition 1.4. We denote by C£(R) the set of real ^-functions f of the
form

f(t) =

where JJL is a finite, symmetric, signed measure on R, such that the moment

\ x \ d \ f J L \ ( x ) < oo.

The derivative /' of a function / in Cj-(R) is given by

f00 •f(t)= elxtixdn(x).
J-oo

Symbolically, at least, we can write p = /, so that the moment requirement
can be restated as ||/'||i < oo.

Note that C|(R) is an algebra of functions containing the Schwartz class;
so its restriction to any finite interval / is dense in Cl(I) with respect
to the C^-norm. We are indebted to U. Haagerup for suggesting this class
of functions as the most convenient carrier of a theory of Frechet differen-
tiability. Its use in the theory of unbounded derivations is evident from
[11, 3.3.6].

If j/ is a C*-algebra, and j/sa denotes the self-adjoint part of jtf, then
each bounded, continuous real function / on R defines a continuous operator
function T-»/(T) on j/sa via the spectral theorem.

Theorem 1.5. Let ^ be a C*-algebra, and take f in C£(R). Then the
function T -> f(T) is continuously Frechet differentiable on j/sa with

ix
-oo JO

for all T, S in j/sa. Moreover, the norm of the differential is ||/^1]|| < ||/'||i.

Proof. Note first that the proposed expression of the Frechet differential
certainly is bounded — independent of T— by ||/'|li, because eixyT and e

ix(l~y}T

are unitary operators. We then apply the spectral theorem to obtain
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f(T + S) - f(T) - ix\ eixyTSeix(1-*Tdy dfi(x)
-oo JO

- I ix I (eixy(T+S) - eixyT)Seix(l-y)Tdy dp(x),
J-oo Jo

where we used (*) from the proof of Proposition 1.3. The norm of this
expression is bounded by

f°° f1

J -oo Jo

and even after division by ||S|| this does tend to zero as S-»0 by Lebesgues
theorem of dominated convergence. QED

As a first application of Frechet differentiability we give the next result.
More will follow in section 2.

Proposition 1.6. Assume that a state cp of a C*-algebra jtf is definite on
some element T in ja/sa, i.e. cp(T2) = (p(T)2. Then for each f e Cp(R) there is
a function of:^sa^R, with \\S\\~1 of(S)-+Q as S-»0, such that

cp(f(T + S)) = f(<p(T)) + f'(<p(T))<p(S) + of(S)

for every S in ja/sa.

Proof. Let (n^ H9, x9) denote the GNS-representation of s& associated
with cp. We see from the Cauchy-Schwarz inequality that cp is definite on T,
if and only if xv is an eigenvector for nv(T), i.e. n(p(T)x(p = <^(r)xv. It follows
that <p is also definite on g(T) for each g in C(Sp(T))9 and that <p(g(T)) =
g((p(T)). Moreover,

<p(TA) = cp(AT) = <p(T)<p(A)

for every A in sf. If /e C|-(R), then we know from Theorem 1.5 that

f(T + S) = f(T) + /™(S) + \\S\\R(T, S),

where R(T,S)^>Q as S-^0. The formula given for /f1](5) shows that

q>(f(T + S)) = f(<p(T)) + eix«™ix d^(x)cp(S) + ||S|| <p(R(T, S))
J —oo

= f(<p(T)) + f'((p(T))<p(S) + of(S),
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where we define

of(S)=\\S\\<p(R(T,S))

for S in j/sa. QED

§2. Perturbation Formulas

Theorem 2.1. Let ^ be a C* -algebra, and let t -> A(t) be a continuously
differentiate function from the interval [0, 1] into jz/sa. Then we have

for each f in C>(R).

Proof. The composed map t^f(A(t)) is continuously Frechet differen-
tiable, cf. Proposition 1.2. We divide the unit interval 0 = t0 < tl < ••• < tn = 1
and write

- f(A(Q)) = £ f(A(tk)) -

k

where Kn(tfc) ^0 as tfc — tk_± -> 0. We can to each 8 > 0 find a (5 > 0 such
that ||^n(tk)|| < e for all k with tk - tk_^ < 5, cf. Theorem 1.5. The difference
f(A(l)) — f(A(0)) is thus obtained as the limit of a Riemann sum and the
assertion follows. QED

Theorem 2.2. // i is a finite trace on a C*-algebra j/? and f e Cj-(R), then

for all S, T in j/sa.

Proof. By Theorem 1.5 we have

= I \ ?(eixTS)i
J -oo Jo

-c(ixeixTS)dn(x)

since

/'(t) = I eixtix dn(x). QED
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Theorem 2.3. // i is a finite trace on a C*-algebra sf, then

for all S, T in j/sa and every monotone increasing, continuous function f on
an interval containing the spectra of S and T.

Proof. Fix an (finite) interval / containing the spectra of S and T. Define
the C1-curve

A(t) = tT + (l — t)S te [0, 1] ,

and note that A'(t)= T — S > 0. Combining Theorems 2.1 and 2.2 we get

-/(S))= f1 T(/JJj(T -S))dt-j:
-/: 1 - S)1/2f(tT + (1 - t)S)(T - S)1/2)dt

for each / in C£(R). This difference is positive, as claimed, whenever / is
increasing on I.

It thus follows that the theorem is true for any increasing function / in
C(I) that has an extension to an element in C£(R). Since Cj-(R) contains the
class of Schwartz functions, we see that the theorem holds for any increasing
function in C°°(/).

In the general case consider an increasing function / in C(I) and extend
it to an increasing function / in Cfe(R). Then with

en(t)=

define

^ f(s)en(t - s)ds = f(s + t)en(-s)ds.= f
Clearly /„ e C°°(R) and fn is increasing. Moreover, fn-*f uniformly on /.
Consequently

T(/(T) - f(S)) = lim T(/n(T) - fn(S)) > 0
n-»cx)

and the assertion is proved. QED

Theorem 2.4. // T is a normal, semi-finite trace on a von Neumann algebra
j/, then
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for all S, T in £/sa and every positive, monotone increasing function f on an
interval containing the spectra of S and T.

Proof. Take elements S, T in j/sa with S < T and fix an (finite) interval
/ containing the spectra of S and T. Possibly after translation and scaling
we may assume that / = [0, 1], and that /(O) = 0 and /(I) = 1. We set

& = {/: / -> /|/ is increasing, /(O) = 0, /(I) = 1}

and note that 3? is convex and compact. In particular, it is closed under
monotone (increasing or decreasing) limits. We consider the subset

and must show that J*. = 3F.
Let £A denote the spectral projection of T corresponding to the open

interval ]/l, oo[. If £0 e J/T, then i is bounded on the set £0j/£0, which
contains S and T. By Theorem 2.3 this implies that

But the boundedness and normality of T also implies that ^ is closed under
monotone limits, and therefore J^T = 3F.

If E0 $ J/T, but EE e J/T for every e > 0, we may replace the interval [0, 1]
by [e, 1] to prove that

{/e#-|/(t) = 0 for t < e } c j F T .

For every / e 3F we choose an increasing sequence (/„) of functions in 3F
vanishing in a neighborhood of zero, such that /„ /• /. Since /„ 6 J^ we derive
that

and the normality of T then shows that / e ^.
In the general case let

Then t(/(T)) = oo, which makes the theorem trivially true, unless / vanishes
on [0, A]. But if it does we are back in case one, if £A e J/T, or in case two,
if £M e J/T for every \JL > /I, of the previous argument, replacing [0, 1] by [A, 1].
We conclude that / e J^ and that J\ = J^ in general. QED

Remark 2.5. In [5, 4] the previous result is obtained for continuous func-
tions using the theory of spectral domination. It is amusing to note that —
using our C*-algebraic proof above — one may conversely deduce spectral domi-
nation.
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Indeed, if S < T in a von Neumann algebra jtf, and / is an increasing
function on R, let 1A denote the characteristic function for the half-line ]/l, oo[,
and set

E,= l , ( f ( S ) ) , FA=1A(/(T)).

That f(S) spectrally dominates /(T) means exactly that £A :< FA, for all /I in
M, i.e. EA is Murray-von Neumann equivalent to a subprojection of FA, cf.
[1]. But this is immediate from Theorem 2.4, because l A o / is an increasing
function, whence

for every semi-finite, normal trace T on s/9 and thus EA < FA. For j/ = B(H)
and S < T compact operators, these relations were established by Powers
already in [9, 5.4].

§30 The Perturbation Formula for Matrices

Let T be a self-adjoint n x n matrix with (not necessarily distinct) eigen-
values /I l5 . . . , ln and let

be an orthonormal basis of (corresponding) eigenvectors, whence

T = t A^
i = l

where {ey }"_,-=! is the associated system of matrix units.

Definition 3.1. Let f be a differentiable function defined on the spectrum
of T. The Lowner matrix

is defined by setting

|7W for A; = ^,

cu = 1 /(A,) -/(A,)
— - - ^ /or 1; ̂  Aj

I Ai ~ AJ

Theorem 3.2. Let T, S be self-adjoint n x n matrices and let f e Cp (R).
Then

where we identify the Frechet differential with its matrix representation in the
basis (#) and * denotes the Hadamard product.
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Proof. By Theorem 1.5 we have

P
-oo Jo

oo /*!

for z, j = 1, ..., n. QED

Remark 3.3. The Lowner matrix — essentially due to K. Lowner — was
used in [7] to give a streamlined version of the theory of operator monotone
and operator convex functions. The key observation, [7, 3.4] is that a function
/ is operator monotone on an interval /, if and only if /[1](T) is a positive
definite matrix for every self-adjoint matrix T (of arbitrary order) with spectrum
in J. For the proof of this result we needed a lemma, [7, 3.3] which is the
finite-dimensional version of Theorem 2.1 — but phrased in the terminology of
Theorem 3.2. While essentially correct, this lemma nevertheless entails a mea-
surable selection of orthonormal bases for a curve of matrices (in order to
define the Hadamard products), and the authors feel that the present version
is less ambiguous.

Remark 3.4. Each non-constant operator monotone function / on the
interval ] — 1, 1[, normalised such that /(O) = 0 and /'(O) = 1, has the represen-
tation

f(t)=
-i

where ^ is a unique probability measure on [— 1, 1], cf. [7,4.4]. Elementary
calculations show that

Likewise, each operator monotone function /: R+ ->R+, normalised such that
/(I) = 1, has the representation

where \i is a unique probability measure on the extended half-line [0, oo].
Again we obtain the Frechet differential

A(l + X)(T

by elementary calculations.
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Remark 3.5. It is not, in general, possible to describe the differential
/^1](5) as an Hadamard product in the infinite dimensional case. However,
if H = Lj(/) for some probability measure v on / and Tcp(x) = xq>(x) for every
cp in H—so that T is "diagonalised"—then for each / in Cp(I) and every
Hilbert-Schmidt operator S on H given by a self-adjoint kernel fc, i.e.

S(p(x) = k(x, y)<p(y)dv(y) ,

we find /PCS) to be the Hilbert-Schmidt operator with product kernel /[1](T)fc,
where /[1](T) e C(I x /), given by

r f'(x) for x = y

x-y

The computations are straightforward and left to the reader.
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