Publ. RIMS, Kyoto Univ. 31 (1995), 169–178

Perturbation Formulas for Traces on C*-algebras

By

Frank HANSEN* and Gert K. PEDERSEN**

Abstract

We introduce the Fréchet differential of operator functions on C^* -algebras obtained via spectral theory from ordinary differentiable functions. In the finite-dimensional case this differential is expressed in terms of Hadamard products of matrices. A perturbation formula with applications to traces is given.

§1. The Fréchet Differential

Definition 1.1. If \mathscr{X} and \mathscr{Y} are Banach spaces, and \mathscr{D} is an open subset of \mathscr{X} , we say that a function $F: \mathscr{X} \to \mathscr{Y}$ is Fréchet differentiable, if for each x in \mathscr{D} there is a bounded linear operator $F_x^{[1]}$ in $B(\mathscr{X}, \mathscr{Y})$ such that

 $\lim_{h \to 0} \|h\|^{-1} (F(x+h) - F(x) - F_x^{[1]}(h)) = 0.$

If the differential map $x \to F_x^{[1]}$ is continuous from \mathcal{D} to $B(\mathcal{X}, \mathcal{Y})$, we say that F is continuously Fréchet differentiable.

Straightforward computations give the following result, which we list for easy reference.

Proposition 1.2. If $F: \mathcal{X} \to \mathcal{Y}$ and $G: \mathcal{Y} \to \mathcal{Z}$ are continuously Fréchet differentiable maps between Banach spaces \mathcal{X}, \mathcal{Y} and \mathcal{L} , then $G \circ F$ is also continuously Fréchet differentiable, and

Supported by SNF Denmark.

Communicated by H. Araki, April 25, 1994.

¹⁹⁹¹ Mathematics Subject Classifications: 46L99, 47C15.

^{*} Institute of Economics, University of Copenhagen, Studiestraede 6, DK-1455 Copenhagen K, Denmark.

^{**} Mathematics Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.

$$(G \circ F)_x^{[1]}(h) = G_{F(x)}^{[1]}(F_x^{[1]}(h))$$

for every x, h in \mathcal{X} .

The next result is well known to mathematical physicists, who would derive it from the socalled Dyson Expansion, cf. [10, 10.69] and [11, 1.15]. A complete and stringent formulation is found in Araki's paper [3], that "contains a powerful computational tool, which does not seem to be widely known among mathematicians." We shall only need a fraction of this tool, and include a simple proof for the convenience of the reader.

Proposition 1.3. If \mathscr{A} is a Banach algebra, then the exponential function $A \rightarrow \exp(A)$ is continuously Fréchet differentiable with

$$\exp_{A}^{[1]}(B) = \int_{0}^{1} \exp(sA)B \exp((1-s)A)ds$$

for all A, B in \mathcal{A} .

Proof. By elementary calculus we have

$$\int_0^1 s^k (1-s)^m ds = \frac{k!m!}{(k+m+1)!}$$

and we can prove either by direct calculation or by induction that

$$(A + B)^{n} - A^{n} = \sum_{k=0}^{n-1} (A + B)^{k} B A^{n-(k+1)}.$$

Combining these two expressions we establish the Dyson formula

(*)
$$\exp (A + B) - \exp (A) = \sum_{n=1}^{\infty} \sum_{k=0}^{n-1} \frac{1}{n!} (A + B)^k B A^{n-k-1}$$
$$= \sum_{k,m=0}^{\infty} \frac{1}{k!m!} (A + B)^k B A^m \int_0^1 s^k (1 - s)^m ds$$
$$= \int_0^1 \exp (s(A + B)) B \exp ((1 - s)A) ds,$$

where we rearranged the sums by setting m = n - k - 1. It is clear that the proposed expression for $\exp_A^{[1]}$ is a bounded linear operator that depends continuously on A, and by subtraction we get from (*) that

$$\|\exp{(A + B)} - \exp{(A)} - \exp{A^{[1]}(B)}\|$$

= $\left\| \int_{0}^{1} (\exp{(s(A + B))} - \exp{(sA)})B \exp{((1 - s)A)}ds \right\|$
 $\leq \|B\|e^{\|A\|} \int_{0}^{1} \|\exp{(s(A + B)} - \exp{(sA)}\| ds .$

From Lebesgues theorem of dominated convergence we see that the last integral converges to zero as $B \rightarrow 0$. We can thus conclude that exp is continuously Fréchet differentiable with the desired differential. QED

Definition 1.4. We denote by $C_F^1(\mathbb{R})$ the set of real C¹-functions f of the form

$$f(t)=\int_{-\infty}^{\infty}e^{ixt}d\mu(x)\,,$$

where μ is a finite, symmetric, signed measure on **R**, such that the moment

$$m_1(\mu) = \int_{-\infty}^{\infty} |x| d |\mu|(x) < \infty .$$

The derivative f' of a function f in $C_F^1(\mathbf{R})$ is given by

$$f'(t) = \int_{-\infty}^{\infty} e^{ixt} ix d\mu(x) \, .$$

Symbolically, at least, we can write $\mu = \hat{f}$, so that the moment requirement can be restated as $\|\hat{f}'\|_1 < \infty$.

Note that $C_F^1(\mathbf{R})$ is an algebra of functions containing the Schwartz class; so its restriction to any finite interval I is dense in $C^1(I)$ with respect to the C^1 -norm. We are indebted to U. Haagerup for suggesting this class of functions as the most convenient carrier of a theory of Fréchet differentiability. Its use in the theory of unbounded derivations is evident from [11, 3.3.6].

If \mathscr{A} is a C*-algebra, and \mathscr{A}_{sa} denotes the self-adjoint part of \mathscr{A} , then each bounded, continuous real function f on **R** defines a continuous operator function $T \to f(T)$ on \mathscr{A}_{sa} via the spectral theorem.

Theorem 1.5. Let \mathscr{A} be a C*-algebra, and take f in $C_F^1(\mathbb{R})$. Then the function $T \to f(T)$ is continuously Fréchet differentiable on \mathscr{A}_{sa} with

$$f_T^{[1]}(S) = \int_{-\infty}^{\infty} ix \int_0^1 e^{ixyT} S e^{ix(1-y)T} dy \ d\mu(x)$$

for all T, S in \mathcal{A}_{sa} . Moreover, the norm of the differential is $\|f_T^{[1]}\| \leq \|\hat{f}'\|_1$.

Proof. Note first that the proposed expression of the Fréchet differential certainly is bounded—independent of T—by $\|\hat{f}'\|_1$, because e^{ixyT} and $e^{ix(1-y)T}$ are unitary operators. We then apply the spectral theorem to obtain

FRANK HANSEN AND GERT K. PEDERSEN

$$\begin{split} f(T+S) &- f(T) - \int_{-\infty}^{\infty} ix \int_{0}^{1} e^{ixyT} S e^{ix(1-y)T} dy \ d\mu(x) \\ &= \int_{-\infty}^{\infty} \left(e^{ix(T+S)} - e^{ixT} - ix \int_{0}^{1} e^{ixyT} S e^{ix(1-y)T} dy \right) d\mu(x) \\ &= \int_{-\infty}^{\infty} ix \int_{0}^{1} (e^{ixy(T+S)} - e^{ixyT}) S e^{ix(1-y)T} dy \ d\mu(x) \,, \end{split}$$

where we used (*) from the proof of Proposition 1.3. The norm of this expression is bounded by

$$\|S\| \int_{-\infty}^{\infty} |x| \int_{0}^{1} \|e^{ixy(T+S)} - e^{ixyT}\| dy d |\mu|(x) ,$$

and even after division by ||S|| this does tend to zero as $S \rightarrow 0$ by Lebesgues theorem of dominated convergence. QED

As a first application of Fréchet differentiability we give the next result. More will follow in section 2.

Proposition 1.6. Assume that a state φ of a C^* -algebra \mathscr{A} is definite on some element T in \mathscr{A}_{sa} , i.e. $\varphi(T^2) = \varphi(T)^2$. Then for each $f \in C^1_F(\mathbb{R})$ there is a function $o_f: \mathscr{A}_{sa} \to \mathbb{R}$, with $||S||^{-1}o_f(S) \to 0$ as $S \to 0$, such that

$$\varphi(f(T+S)) = f(\varphi(T)) + f'(\varphi(T))\varphi(S) + o_f(S)$$

for every S in \mathcal{A}_{sa} .

Proof. Let $(\pi_{\varphi}, H_{\varphi}, x_{\varphi})$ denote the GNS-representation of \mathscr{A} associated with φ . We see from the Cauchy-Schwarz inequality that φ is definite on T, if and only if x_{φ} is an eigenvector for $\pi_{\varphi}(T)$, i.e. $\pi_{\varphi}(T)x_{\varphi} = \varphi(T)x_{\varphi}$. It follows that φ is also definite on g(T) for each g in C(Sp(T)), and that $\varphi(g(T)) = g(\varphi(T))$. Moreover,

$$\varphi(TA) = \varphi(AT) = \varphi(T)\varphi(A)$$

for every A in \mathcal{A} . If $f \in C_F^1(\mathbb{R})$, then we know from Theorem 1.5 that

$$f(T + S) = f(T) + f_T^{[1]}(S) + ||S|| R(T, S)$$

where $R(T, S) \to 0$ as $S \to 0$. The formula given for $f_T^{[1]}(S)$ shows that

$$\varphi(f(T+S)) = f(\varphi(T)) + \int_{-\infty}^{\infty} e^{ix\varphi(T)} ix \ d\mu(x)\varphi(S) + ||S||\varphi(R(T,S))$$
$$= f(\varphi(T)) + f'(\varphi(T))\varphi(S) + o_f(S) ,$$

where we define

$$o_f(S) = \|S\| \varphi(R(T, S))$$

for S in \mathscr{A}_{sa} . QED

§2. Perturbation Formulas

Theorem 2.1. Let \mathscr{A} be a C*-algebra, and let $t \to A(t)$ be a continuously differentiable function from the interval [0, 1] into \mathscr{A}_{sa} . Then we have

$$f(A(1)) - f(A(0)) = \int_0^1 f_{A(t)}^{[1]}(A'(t))dt$$

for each f in $C_F^1(\mathbf{R})$.

Proof. The composed map $t \to f(A(t))$ is continuously Fréchet differentiable, cf. Proposition 1.2. We divide the unit interval $0 = t_0 < t_1 < \cdots < t_n = 1$ and write

$$f(A(1)) - f(A(0)) = \sum_{k=1}^{n} f(A(t_k)) - f(A(t_{k-1}))$$
$$= \sum_{k=1}^{n} (t_k - t_{k-1}) (f_{A(t_k)}^{[1]}(A'(t)) + R_n(t_k)),$$

where $R_n(t_k) \to 0$ as $t_k - t_{k-1} \to 0$. We can to each $\varepsilon > 0$ find a $\delta > 0$ such that $||R_n(t_k)|| < \varepsilon$ for all k with $t_k - t_{k-1} < \delta$, cf. Theorem 1.5. The difference f(A(1)) - f(A(0)) is thus obtained as the limit of a Riemann sum and the assertion follows. QED

Theorem 2.2. If τ is a finite trace on a C*-algebra \mathcal{A} , and $f \in C_F^1(\mathbb{R})$, then

$$\tau(f_T^{[1]}(S)) = \tau(f'(T)S)$$

for all S, T in \mathcal{A}_{sa} .

Proof. By Theorem 1.5 we have

$$\tau(f_T^{[1]}(S)) = \int_{-\infty}^{\infty} \int_0^1 \tau(e^{ixT}S)ix \ d\mu(x)dy$$
$$= \int_{-\infty}^{\infty} \tau(ixe^{ixT}S)d\mu(x)$$
$$= \tau(f'(T)S),$$

since

$$f'(t) = \int_{-\infty}^{\infty} e^{ixt} ix \ d\mu(x) \,. \qquad \text{QED}$$

Theorem 2.3. If τ is a finite trace on a C*-algebra \mathcal{A} , then

$$S \le T \Rightarrow \tau(f(S)) \le \tau(f(T))$$

for all S, T in \mathcal{A}_{sa} and every monotone increasing, continuous function f on an interval containing the spectra of S and T.

Proof. Fix an (finite) interval I containing the spectra of S and T. Define the C^1 -curve

$$A(t) = tT + (1 - t)S$$
 $t \in [0, 1]$,

and note that $A'(t) = T - S \ge 0$. Combining Theorems 2.1 and 2.2 we get

$$\tau(f(T) - f(S)) = \int_0^1 \tau(f_{A(t)}^{[1]}(T - S))dt$$
$$= \int_0^1 \tau((T - S)^{1/2} f'(tT + (1 - t)S)(T - S)^{1/2})dt$$

for each f in $C_F^1(\mathbb{R})$. This difference is positive, as claimed, whenever f is increasing on I.

It thus follows that the theorem is true for any increasing function f in C(I) that has an extension to an element in $C_F^1(\mathbb{R})$. Since $C_F^1(\mathbb{R})$ contains the class of Schwartz functions, we see that the theorem holds for any increasing function in $C^{\infty}(I)$.

In the general case consider an increasing function f in C(I) and extend it to an increasing function \tilde{f} in $C_b(\mathbf{R})$. Then with

$$e_n(t) = \sqrt{\frac{n}{2\pi}} \exp\left(-nt^2/2\right)$$

define

$$f_n(t) = \int_{-\infty}^{\infty} \tilde{f}(s) e_n(t-s) ds = \int_{-\infty}^{\infty} \tilde{f}(s+t) e_n(-s) ds$$

Clearly $f_n \in C^{\infty}(\mathbb{R})$ and f_n is increasing. Moreover, $f_n \to f$ uniformly on *I*. Consequently

$$\tau(f(T) - f(S)) = \lim_{n \to \infty} \tau(f_n(T) - f_n(S)) \ge 0$$

and the assertion is proved. QED

Theorem 2.4. If τ is a normal, semi-finite trace on a von Neumann algebra \mathcal{A} , then

$$S \le T \Rightarrow \tau(f(S)) \le \tau((f(T)))$$

for all S, T in \mathcal{A}_{sa} and every positive, monotone increasing function f on an interval containing the spectra of S and T.

Proof. Take elements S, T in \mathscr{A}_{sa} with $S \leq T$ and fix an (finite) interval I containing the spectra of S and T. Possibly after translation and scaling we may assume that I = [0, 1], and that f(0) = 0 and f(1) = 1. We set

$$\mathscr{F} = \{f: I \to I | f \text{ is increasing, } f(0) = 0, f(1) = 1\}$$

and note that \mathscr{F} is convex and compact. In particular, it is closed under monotone (increasing or decreasing) limits. We consider the subset

$$\mathscr{F}_{\tau} = \{ f \in \mathscr{F} | \tau(f(S)) \le \tau((f(T))) \}$$

and must show that $\mathscr{F}_{\tau} = \mathscr{F}$.

Let E_{λ} denote the spectral projection of T corresponding to the open interval $]\lambda, \infty[$. If $E_0 \in \mathscr{A}^r$, then τ is bounded on the set $E_0 \mathscr{A} E_0$, which contains S and T. By Theorem 2.3 this implies that

$$\mathscr{F}\cap C(I)\subset \mathscr{F}_{\tau}$$
.

But the boundedness and normality of τ also implies that \mathscr{F}_{τ} is closed under monotone limits, and therefore $\mathscr{F}_{\tau} = \mathscr{F}$.

If $E_0 \notin \mathscr{A}^{\mathfrak{r}}$, but $E_{\varepsilon} \in \mathscr{A}^{\mathfrak{r}}$ for every $\varepsilon > 0$, we may replace the interval [0, 1] by $[\varepsilon, 1]$ to prove that

$$\{f \in \mathscr{F} | f(t) = 0 \text{ for } t \leq \varepsilon\} \subset \mathscr{F}_{\tau}.$$

For every $f \in \mathscr{F}$ we choose an increasing sequence (f_n) of functions in \mathscr{F} vanishing in a neighborhood of zero, such that $f_n \nearrow f$. Since $f_n \in \mathscr{F}_{\tau}$ we derive that

$$\tau(f_n(S)) \le \tau((f_n(T))),$$

and the normality of τ then shows that $f \in \mathscr{F}_{\tau}$.

In the general case let

$$\lambda = \inf\{\mu | E_{\mu} \in \mathscr{A}^{\tau}\}.$$

Then $\tau(f(T)) = \infty$, which makes the theorem trivially true, unless f vanishes on $[0, \lambda]$. But if it does we are back in case one, if $E_{\lambda} \in \mathscr{A}^{\tau}$, or in case two, if $E_{\mu} \in \mathscr{A}^{\tau}$ for every $\mu > \lambda$, of the previous argument, replacing [0, 1] by $[\lambda, 1]$. We conclude that $f \in \mathscr{F}_{\tau}$ and that $\mathscr{F}_{\tau} = \mathscr{F}$ in general. QED

Remark 2.5. In [5, 4] the previous result is obtained for continuous functions using the theory of spectral domination. It is amusing to note that—using our C^* -algebraic proof above—one may conversely deduce spectral domination.

Indeed, if $S \leq T$ in a von Neumann algebra \mathcal{A} , and f is an increasing function on **R**, let 1_{λ} denote the characteristic function for the half-line $]\lambda, \infty[$, and set

$$E_{\lambda} = 1_{\lambda}(f(S)), \qquad F_{\lambda} = 1_{\lambda}(f(T)).$$

That f(S) spectrally dominates f(T) means exactly that $E_{\lambda} \leq F_{\lambda}$, for all λ in **R**, i.e. E_{λ} is Murray-von Neumann equivalent to a subprojection of F_{λ} , cf. [1]. But this is immediate from Theorem 2.4, because $1_{\lambda} \circ f$ is an increasing function, whence

$$\tau(E_{\lambda}) \leq \tau(F_{\lambda})$$

for every semi-finite, normal trace τ on \mathscr{A} , and thus $E_{\lambda} \leq F_{\lambda}$. For $\mathscr{A} = B(H)$ and $S \leq T$ compact operators, these relations were established by Powers already in [9, 5.4].

§3. The Perturbation Formula for Matrices

Let T be a self-adjoint $n \times n$ matrix with (not necessarily distinct) eigenvalues $\lambda_1, \ldots, \lambda_n$ and let

$$(\#) \qquad \qquad (e_1,\ldots,e_n)$$

be an orthonormal basis of (corresponding) eigenvectors, whence

$$T=\sum_{i=1}^n \lambda_i e_{ii}$$

where $\{e_{ij}\}_{i,j=1}^{n}$ is the associated system of matrix units.

Definition 3.1. Let f be a differentiable function defined on the spectrum of T. The Löwner matrix

$$f^{[1]}(T) = \sum_{i,j=1}^{n} c_{ij} e_{ij}$$

is defined by setting

$$c_{ij} = \begin{cases} f'(\lambda_i) & \text{for } \lambda_i = \lambda_j \\ \\ \frac{f(\lambda_i) - f(\lambda_j)}{\lambda_i - \lambda_j} & \text{for } \lambda_i \neq \lambda_j \end{cases}$$

Theorem 3.2. Let T, S be self-adjoint $n \times n$ matrices and let $f \in C_F^1(\mathbb{R})$. Then

$$f_T^{[1]}(S) = f^{[1]}(T) * S$$

where we identify the Fréchet differential with its matrix representation in the basis (#) and * denotes the Hadamard product.

Proof. By Theorem 1.5 we have

$$e_i f_T^{[1]}(S)e_j = \int_{-\infty}^{\infty} \int_0^1 e_i e^{ixyT} S e^{ix(1-y)T} e_j \, dy \, ix \, d\mu(x)$$
$$= \int_{-\infty}^{\infty} \int_0^1 e^{ixy\lambda_i} e^{ix(1-y)\lambda_j} ix \, dy \, d\mu(x)e_i S e_j$$
$$= c_{ij}e_i S e_j$$

for $i, j = 1, \ldots, n$. QED

Remark 3.3. The Löwner matrix—essentially due to K. Löwner—was used in [7] to give a streamlined version of the theory of operator monotone and operator convex functions. The key observation, [7, 3.4] is that a function f is operator monotone on an interval I, if and only if $f^{[1]}(T)$ is a positive definite matrix for every self-adjoint matrix T (of arbitrary order) with spectrum in I. For the proof of this result we needed a lemma, [7, 3.3] which is the finite-dimensional version of Theorem 2.1—but phrased in the terminology of Theorem 3.2. While essentially correct, this lemma nevertheless entails a measurable selection of orthonormal bases for a curve of matrices (in order to define the Hadamard products), and the authors feel that the present version is less ambiguous.

Remark 3.4. Each non-constant operator monotone function f on the interval]-1, 1[, normalised such that f(0) = 0 and f'(0) = 1, has the representation

$$f(t) = \int_{-1}^{1} t(1 - \alpha t)^{-1} d\mu(t) ,$$

where μ is a unique probability measure on [-1, 1], cf. [7, 4.4]. Elementary calculations show that

$$f_T^{[1]}(S) = \int_{-1}^1 (1 - \alpha T)^{-1} S(1 - \alpha T)^{-1} d\mu(\alpha) \, .$$

Likewise, each operator monotone function $f: \mathbf{R}_+ \to \mathbf{R}_+$, normalised such that f(1) = 1, has the representation

$$f(t) = \int_0^\infty \frac{t(1+\lambda)}{t+\lambda} d\mu(\lambda) \, ,$$

where μ is a unique probability measure on the extended half-line $[0, \infty]$. Again we obtain the Fréchet differential

$$f_T^{[1]}(S) = \int_0^\infty \lambda (1+\lambda) (T+\lambda)^{-1} S (T+\lambda)^{-1} d\mu(\lambda)$$

by elementary calculations.

Remark 3.5. It is not, in general, possible to describe the differential $f_T^{[1]}(S)$ as an Hadamard product in the infinite dimensional case. However, if $H = L_v^2(I)$ for some probability measure v on I and $T\varphi(x) = x\varphi(x)$ for every φ in H—so that T is "diagonalised"—then for each f in $C_F^1(I)$ and every Hilbert-Schmidt operator S on H given by a self-adjoint kernel k, i.e.

$$S\varphi(x) = \int k(x, y)\varphi(y)dv(y),$$

we find $f_T^{[1]}(S)$ to be the Hilbert-Schmidt operator with product kernel $f^{[1]}(T)k$, where $f^{[1]}(T) \in C(I \times I)$, given by

$$f^{[1]}(T)(x, y) = \begin{cases} f'(x) & \text{for } x = y\\ \frac{f(x) - f(y)}{x - y} & \text{for } x \neq y \end{cases}$$

The computations are straightforward and left to the reader.

References

- [1] Akemann, C. A., Anderson, J. and Pedersen, G. K., Triangle inequalities in operator algebras, *Linear and Multilinear Algebra*, 11 (1982), 167-178.
- [2] Ando, T., On some operator inequalities, Math. Ann., 279 (1987), 157-159.
- [3] Araki, H., Expansional in Banach algebras, Ann. Sci. Éc. Norm. Sup., 6 (1973), 67-84.
- Bernstein, D. S., Inequalities for the trace of matrix exponentials, SIAM J. Matrix Anal. Appl., 9 (1988), 156-158.
- [5] Brown, L. G. and Kosaki, H., Jensens inequality in semi-finite von Neumann algebras, J. Operator Theory, 23 (1990), 3-19.
- [6] Hansen, F., An operator inequality, Math. Ann., 246 (1980), 249-250.
- [7] Hansen, F. and Pedersen, G. K., Jensen's inequality for operators and Löwner's theorem, Math. Ann., 258 (1982), 229-241.
- [8] Kadison, R. V. and Ringrose, J. R., Fundamentals of the Theory of Operator Algebras, I-II, Academic Press, 1982 & 1986.
- [9] Powers, R. T., Representations of uniformly hyperfinite algebras and their associated von Neumann rings, Ann. of Math., 86 (1967), 138-171.
- [10] Reed, M. and Simon, B., Methods of Modern Mathematical Physics II, Fourier Analysis, Self-adjointness, Academic Press, New York, 1975.
- [11] Sakai, S., Operator Algebras in Dynamical Systems, Camb. Univ. Press, Cambridge, 1991.