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Euler-Poincare Characteristic and Polynomial
Representations of Iwahori-Hecke Algebras
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Abstract

The Hecke algebras of type A „ admit faithful representations by symmetrization operators acting

on polynomial rings. These operators are related to the geometry of flag manifolds and in particular to

a generalized Euler-Poincare characteristic denned by Hirzebruch. They provide g-idempotents,

togetherwith a simple way to describe the irreducible representations of the Hecke algebra. The link

with Kazhdan-Lusztig representations is discussed. We specially detail the case of hook representations,

and as an application, we investigate the hamiltonian of a quantum spin chain with C/g(su(l/l))

symmetry.

§ 1. Introduction

The Iwahori-Hecke algebra J^n associated to the symmetric group 6 „ admits
a faithful representation as an algebra of operators on the ring of polynomials K
[A], A={ f l l , . . . , f lB}[LS 82-87].

As a matter of fact, such operators have already been used to describe flag
manifolds : Hirzebruch [Hil] has defined a "%y-characteristic" which coincide
with the operators that we use in the case of maximal permutations of a Young
subgroup, when extended to the case of a relative flag variety. In particular, for
simple transpositions the operators correspond to the characteristic of a projective
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line bundle. However, the simple operators do not satisfy Moore-Coxeter relations,
but Yang-Baxter ones (Section 3). We give in Theorem 3. 1 several expressions of
the operators corresponding to a maximal permutation.

Restricting the action of the Hecke algebra to weight spaces, we recover one of
the usual descriptions of its representations (Section 4).

We also obtain #-idempotents in Section 5, and deduce from them a g-analog
of Specht representation, as an orbit of a product of q- Vandermonde functions. We
moreover show that the decomposition of general elements into a standard basis can
be obtained from a q- analog of a triangular matrix due to Rutherford (Proposition
5.3).

Different constructions of the irreducible representations are exhibited in the
case corresponding to hook partitions. We show that these representations are
essentially described in terms of certain graphs, which turn out to be identical with
those of Kazhdan-Lusztig (Section 7).

This interpretation is then applied to the diagonalization of the hamiltonian of
a quantum spin chain having the quantum superalgebra C/9(su(l/l)) as symmetry
algebra.

§ 2. Symmetrizing Operators

Our fundamental tool will be Newton's divided differences and deformations
of them called "symmetrizing operators". All operators act on their left.

Denote by cr/, 1 < / <n — 1, the simple transposition exchanging al and a,-+i .
The Newton divided difference associated to the pair ait ai+\ is the operator on

The di satisfy the relations

didj=djdi if i-j >2

didi+idl=di+ididl+i (Moore-Coxeter relations)

together with

More general operators are :

Dt(p, q, r) :f~
al—al+i

which satisfy Coxeter relations and
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(2.1) />?=(?- OD/+r(?+r-l) .

In [LS87] one finds more general five-parameters symmetrizing operators
having similar properties.

Coxeter relations imply that for any #£©„, there exists a well defined
operator D,, which is equal to the product of the simple operators Df corresponding
to any reduced decomposition of//. In particular, one has for any permutation //
a corresponding divided difference 9^[BGG], [Dem].

One notices that the operators T/ : =D/(0, #, 1) satisfy the usual Hecke relation

and thus that the Tf generate a representation of 3tfn. The T^D^O, q, 1)
constitute a linear basis of ^n.

This representation is faithful, so that we can characterize elements of 3? n by
considering their explicit action on K [A] .

Since the operators Dl admit symmetric functions as scalars, we can use the
structure ofK[_A~\ as a free Snm(A) module of rank n ! (where Sr)m(A) denotes
the ring of symmetric polynomials of K [A] ) .

It is therefore sufficient to restrict the action to an appropriate basis. For
example, relation (2. 1) requires to be checked on K\_alt a /+J , which is a free Snm
(fll9 az+i)-module with basis {1, a/}. Now, Dt sends 1 to q — 1+r and aL top +
(g — 1) (a , +a 1+1) +ra ,+i , and thus one has relation (2. 1) .

Given a complex compact manifold M, and any analytic vector bundle V on it,
Hirzebruch [Hil] defined the % ̂ -characteristic of V to be

where QJ is they-th exterior power of the cotangent bundle Q l of M.
The three special cases y = 0, 1 or -1 are of particular importance in geometry,

when V is the trivial line bundle (denoted 1) : %- i ( l ) is the ordinary Euler-
Poincare characteristic. If Ji is a compact Kahler manifold, then %i( l ) is the
signature of Ji and %o(l) is its arithmetic genus (see [Hi2]). P

As shown by Grothendieck, one should work with relative varieties M^3&
and their associated Grothendieck rings K0(J?^^>K0(^ of classes of vector
bundles.

The Xy -characteristic becomes now the following morphism (called relative
Xy -characteristic, cf. [Las]) :

We shall detail the case of flag manifolds. Let ^ be a complex manifold, V a
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vector bundle of rank n on it, OF (F) the associated flag bundle. Let L \. ... , L n be
the tautological line bundles on J*(F) and a i, ... , an their respective classes in
^oC^CF)). The Grothendieck ring of J^(F) is the quotient of the ring K0(3$)
[f l i , ... , «„] by the ideal </ generated by the graded relation II( l+fl /) = S C/1'F].

The associated morphism j? / is

/-*S [//HO-fly/«/)?,
#esn / >i

where g^ denotes the image of a function of a \, ... , a „ under a permutation //.
The class of the relative cotangent bundle Ql is equal to 2 n >7 > / ̂  i fly /a / and

thusA-i/fCQ1) ^SC-^-'A'QMsequalto II i < < < y < « (1-? "'fly/fl,).
Finally, in the case of a relative flag manifold, the %y-characteristic, for y =

l/q, is the morphism

In the particular case n = 2 (case of a relative projective line) Hirzebruch's
characteristic is equal to the operator /— > (a i— a 2/q)d \. Let us rather use the
operators (acting on their left)

We shall see in the sequel that D i ( D 2 — ~[^T-) D i is also equal to Hirzebruch's
characteristic for a flag variety with n = 3, i. e. that one has

D i (n 2— . J_ ) Ui = (qai—a 2) (ga i — a 3) (qa2~a 3)9 321 .

Symmetrically, one also has operators

Fz ==9, (qai+i—ad=Ti—q

as well as a dual characteristic

Vu''=da> II (0fl/ + i— 0,-).
1 <J <J <«

The operators Dz and F/ satisfy the relations

which will be used to construct g-idempotents (see Section 6) .
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However, these operators do not satisfy Moore-Coxeter relations, but
Yang-Baxter ones :

These relations are better understood when extending them to the case of any
reduced decomposition, instead of only

§ 3. Yang-Baxter Equation

Let OiOjOh ... ok be a reduced decomposition of the permutation IJL. This
reduced decomposition gives rise to the sequence of transpositions

Tl'=aif T2m'=(0i) Oj (ad , T3: = (a/ay-) oh (cr;-a/) , ... .

The total set of transpositions, which corresponds to the set of inversions of//,
does not depend on the choice of the reduced decomposition of//.

A function / from the set of transpositions to any commutative ring will be
called a solution of Yang-Baxter equation if it is such that, for any permutation JJL
and for any reduced decomposition of//, the products

are operators independent of the choice of the reduced decomposition of//.
A solution, implicit in [Ro] and used by Cherednik [Che 1-2] is, taking an

extra set of variables {x i , . . . , % „ } :

/ (TIJ) = (qx i — x7) / (x , -Xj)

for the transposition rtj of /, j.
[FK1] and [FK2] explicit the links between the usual form of Yang-Baxter

equation and the operators 9/ and a , <9 r , and their associated polynomials (Schubert
polynomials, Grothendieck polynomials) .

We shall need only the special case where {x i, X2, ••• , *«} — (1, q> q2, ••• ,
qn~~1} . In that case,/ (r,7-) =q {j-^ , writing [r] for the q- integer (1 — gr) / (1 ~~

?).
For any permutation //, let us denote 7^, D^ the operators given by this
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solution of Yang-Baxter equation.
For example, o^o-^o\o^ is a reduced decomposition of # = 3412. The

associated sequence of transpositions is a2= (32), o20"3a2= (42), o'2o^o\o30'2 —
(31), OiO^o\(72^1(73(72— (41). The two operators are

We are now in position to recover Euler-Poincare characteristic.

Theorem 3. 1. Let a) be the maximal permutation of © „. Then

0

Take the basis X^s /ze@n of Schubert polynomials (cf. [LS82]). If
there exists some i such that a, leaves in variant X^, thenX^ is annihilated by <9/ and
thus by d w as well as Fw , because there exists at least one reduced decomposition of
a) beginning by a/. The same reasoning is valid for the sum 2 (— ̂ f)/({U")7^, from
which one can extract a left factor Tl—q = dl(qal+]—ai). Therefore, one has only
to compute the action of the three operators on the only totally non symmetrical
Schubert polynomial, which is X0)=ani~lal~2°°-an-i, and this can be done by
induction on n. Left/right symmetry gives if) from i). D

Remarks. 1) Let /e N and S (/) = S (i i) X S (i 2) X . . . X S (/*) be the Young
subgroup corresponding to I. The preceding theorem extends to the case of the
maximal permutation a) / of S (/). For example, for S (3, 2) = S (3) X S (2), one

| ^ £ 4) and

3 — 02
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2) Geometry provides a fibration of the flag manifold into projective spaces
([Hi2] p. 49), and this induces the following factorization, with a/ =(n — l, ... , 1,

n
M < < <

One has also the factorisation

but the two operators II i < / < „ (qat— a,,) 9n-i • • •9 i and
Tn-\"-T\ are not equal.

3) The operator n w sends any monomial onto a Hall-Little wood polynomial
(cf . [Mcd] ) . For example with A = (a \ , a 2 , a 3} , one has a 1 a \ D 321 =q 6P 42 (A, I/

9).

§ 4. Weight Spaces

Let A = {a i , . . . , a „} be an alphabet of cardinal n. For every J = ( j i , j 2 , ...
, jn) e N", one denotes by e-7 the monomial

ej •=aji^ a& ... aj
n

n

and ^"(/) the weight space of all monomials {e^ : /iGS(A)}, i.e. the space
generated by the action of the symmetric group S (A) on e J, JfJL being the vector

0\» —JuJ'
A weakly decreasing J is called a partition and the corresponding monomial ej,

a dominant monomial. A weakly increasing / is called a French partition. The so-
called natural order on partitions [ JK] induces an order on weight spaces of the
same degree \ J \ : = = j i H ----- \-jn.

The operators T, D , V do not preserve weight spaces. Indeed, let T correspond
to the pair of letters a, b and let h < k be positive integral numbers. Then one has

h hahb
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Modulo the weight spaces ^(ij) : h < i < j < k, i+j=h-\-k, spaces which are
smaller with respect to the order induced from the order on partitions, the action of
Tis

ab-->qab.

Notice that the action modulo the smaller weight spaces does not depend on
the value of h and k, but only on the fact that h <k, h =k or h >k.

Let pj denote the projection from the space of polynomials onto the space i^
(J)(i. e. sending to 0 all monomials which do not belong to iT(/)). Writing
[I] instead of e1, what we said just above can be formalized in :

Proposition 40 1. i) Let /=(/ 1 , . . . , / „ ) fee any integral vector in N r, X \ , ...
, /I r rational functions in q, and iT (/) is a weight space. Then p/CT^-h/l i)---(Ji r +

Ar)p/=(p/(r / 1+A1)p /)-(p/r, r+A r)pj)
ii) The operators :

-M-] - > [-kh • • • ]

operating on the r and r+1 component, with h<k, generate a representation of the
Hecke algebra which preserves each weight space.
If one prefers, one can write the second point of the proposition :

iii) For any French partition Js the weight space is a representation of the Hecke
algebra, with the generators p/T/p/ defined by :

When/ has all its components j i , ... ,jn different, the weight space f (/) is
the regular representation.

Notice that restricting the action of the Iwahori/Hecke algebra, we have lost
the fact that symmetric functions in A are scalars for the operators.

Interpreting the 2-component symbols [A, k] as tensor products eh®ek of the
basis vectors e( of some n- dimensional vector space V, we recover from if) a
familiar solution of the (quantum) Yang-Baxter equation
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Ehk®Ekh + (q- 1)S Ekk®Ehh
h<k h h<k h<k

where Etj is the matrix with coefficients (E tj)ki=S tkSji.

§ 5. q-Speefat Representations

In the case of the symmetric group, one has many ways to define irreducible
representations. The original method of Young was to associate an idempotent to
any Young tableau. The idempotents corresponding to all the tableaux of a given
shape are all conjugate, so that Young defined essentially only one idempotent for
each shape. Because conjugation is more tricky in a Hecke algebra, one has more
g -idempotents corresponding to a given shape. Let us just define one of them,
following a construction of Martin [Ma2] . Gyoja [Gy] and Dipper and James
[DJ] had also described q-idempotents in a sligthly different way.

Let 1 be a decreasing partition, / be the conjugate partition, this time
increasing, and let a)' and a/' the maximal permutations of the two Young
subgroups £(/) and S(J). Then (cf. Martin [Ma2])

Lemma 5, 1. The space Fa/ ̂ D a/ is 1-dimensionaL

Proof. Let ol denote the simple transposition off and /+ 1. If / is a descent of
co' , Le. co • >a)'i+i , then Fw' =7(1>'ol F/, and

Fa/ Tt = Fa/ a, (F, r/) = - FO/ Ol F, = - F*' .

Thus, by induction, one obtains that the space Fw' 3tf is linearly generated by the
{F^, /(//) =/(&/ ) +/(w ///)}. These permutations {JL are exactly the permutations
having the decreasing sub words of a)' . Now, given such a //, suppose that // , > // , + 1
and that (/ 4- 1) / is a sub word of co" (i. e. that Vl CL* =0). Then

t has no longer the decreasing subwords of a/ , then // , — // , + 1 = 1 and F^ D w" =
F/£/a[ (Fi D W0 = 0. Otherwise F^ D w" is proportional to F^ D w" . Therefore Fw' Jf D <*•
is generated by the elements F^ Dw" , where ILL has the decreasing subwords of &/
and is such that / / /< / / /+i whenever (i + l)z is a sub word of o)^. It turns out that
there is only one permutation jut, satisfying these two conditions. This permutation
is the row reading of the Young tableau whose column reading is a)' . D
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For example, if 1=331, then/=223, a/ =321 654 7, a)" =21 43 765. The only
permutation // having subwords 321, 654, 7 and such that / / i > / / 2 , ^ 3 ^ > / ^ 4 , / / 5 ^ >

// 6 , // 6 5^ # 7 is 3625 147. This permutation is the row-reading of the Young tableau

3 6
2 5
1 4 7

Similarly, the space D^ 3tfV <j is 1 -dimensional and equal to d 2471355 f732i654?.
This time, one recognizes in the new permutation the row-reading of the
contretableau

2 4 7
1 3 6

5

The preceding Lemma enables one to construct primitive idempotents of 3tfn .
More precisely we have

Theorem 5. 2. Let I be a partition, 6/ and co" the maximal elements of the
corresponding Young subgroups, JJL' and // the row readings of the associated tableau
and contretableau. Then V^ D^ and O^P^ are two idempotents, up to a scalar,
and their images are irreducible representations of the Hecke algebra corresponding to
the partition I.

In the preceeding example, the claim is that Faezsu? D 2471365 and D 2471355 Fsezsu?
are two g-idempotents, up to a factor.

Using now our interpretation of ffln as an algebra of operators on the ring of
polynomials, we can realize its irreducible representations by letting it act on an
appropriate subspace of K [A] .

Let JE=N r be an integral vector of weight nf S(l) be the corresponding
Young subgroup of ©„, and &>/ its maximal element, d the length of &>/„ Lety'o —
05 j

 r i =* • i , j ? 2 — i i + * 2 , ... 5 j r — i i + . . . -H r- The g-Vandermonde of index / is by
definition

^/ :=n n (?fl/-a t).
m=0

Then, f/ : = DJ /Fw/
z=Dy5a j / A! is the idempotent corresponding to 1.

Since the operator ny5w/ decreases degrees by d, it sends the space K[A]d of
polynomials of degree d to K because it is not identically null on that space.
Therefore the space JT[A]df/ is 1 -dimensional of basis AI and the space Ai^n=K
[AYSi^n, which is equal to J^nSi^n, is, according to theorem 5. 2, a model of
an irreducible representation of J^n, corresponding to the shape conjugate to the



IWAHORI-HECKE ALGEBRAS 189

reordering of I into a partition.
We shall explicit this representation when / is weakly increasing, i. e. is a

partition.
Let t be the contretableau which, as a word, coincides with &)/. Consider the

set of permutations

{cof1^ | w = t}

for all w plactically congruent ( = ) to t.
For example, with /= 122, a)i= 13254,

1 3 5
1 2 4 '

the plactic class of t is the set {13254, 31254, 13524, 31524, 35124} and

= {12345, 21345, 12435, 21435, 24135}.

Instead of the class of t, one can use Yamanouchi symbols (cf . [Ham] ) (called
lattice permutations by MacMahon, see [Mcd] ) : one starts with the code of a) /, i.
e. with the vector [/ 1 — 1, ... , 1, 0, /2~1, ... , 1, 0, ... , ir—l, ... , 1, 0] ; its plactic
class is the set ̂ ^(/) of Yamanouchi symbols corresponding to shape /. For
example, the code of CD m= 13254 is [0, 1, 0, 1, 0] and its class $^^(122) is

{[0, 1, 0, 1, 0], [1, 0, 0, 1, 0], [0, 1, 1, 0, 0], [1, 0, 1, 0, 0], [1, 1, 0, 0, 0]}

which coincides with the orbit of the code of a) i22 under the set of permutations

It is easy to characterize the set of all Yamanouchi symbols : they are exactly
the vectors v such that for any cut into two pieces : v=v' v", then the right vector
v" is such that

// \ i // \ i // \
v o > I v i > I v 2 > •'• ,

where v | / denotes the number of components of a vector v equal to /.
In the preceeding case, we have enumerated the vectors permuted from [0, 1,

0, 1,0] which have more 0 than 1 in any of their right part, excluding the five
vectors {[0, 0, 0, 1, 1], [0, 0, 1, 0, 1], [0, 1, 0, 0, 1,], [1, 0, 0, 0, 1], [0, 0, 1, 1, 0]}.
Note that Yamanouchi symbols are another way of coding standard Young
tableaux.

We now claim that Yamanouchi symbols are the exponents of the leading (for
the lexicographic order) monomials of the polynomials {J/I^ : //^^^^(I)}.
The case /= 122 will be sufficient to illustrate this property. The polynomial
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has only one monomial whose exponent satisfies the Yamanouchi condition, that is
e olol°. The successive images of this monomial under the T^ are the polynomials
e iooio? eonoos e ioioos e nooo? L e_ the monomiais having a Yamanouchi exponent, and

the other monomials in the expansions of AI T^ are lexicographicaly smaller than
-010107-'e i n,

Therefore, the polynomials AjT^ are linearly independent, and constitute a
basis because their number is equal to the number of Young tableaux of shape /.
Moreover, the projection of Ai$£n on the free module of basis [ey, y^%/am(I^)}
is an isomorphism.

Let M be the matrix whose columns are the coefficients of the Yamanouchi
monomials of the polynomials AiT^. Then M is a triangular matrix with unit
diagonal. For q = 1, this matrix, which has only 0, ± 1 entries, has been defined by
Rutherford to describe the so-called Young natural representation. It is interpreted
in [CLL] as a matrix of scalar products and used to produce a turbo-straightening
for decompositions into standard bases.

From what precedes, the matrix M also gives decompositions into standard
bases in the case of Hecke algebras. Let h belong to the irreducible subspace f / 3tPn .
To decompose it into the basis F/T^, one must compute the image of the leading
monomial in J/ (which is the only one having a Yamanouchi symbol as exponent)
under h, restrict it to its Yamanouchi terms, and take the image under the inverse
of the matrix M

In other words, one has the following proposition.

Proposition §0 30 Given a partition lofn, Ai$£n is an irreducible representation
of the Hecke algebra 3tfn, with basis {AjT^, /z£^W^(J)}. The projection on the
space generated by the [ey, y^®/am(I^)} induces an isomorphism of vector spaces
between Ai3tfn and {ey, y^<Wa<m(l)}. The matrix expressing the images of the
basis (A i Tj is triangular with unit diagonal

For example, in the above case 1=122, the base of polynomials {^/T^, //EE
is

AU2= [01000] -q [001 10] -q [01001] +g2[0010l]

^122 T}= [10010] -q [10001] -q2 [001 10] +g3 [00101]

^122^3- [01100] -^ 2 [01001] -^2 [001 10] + (g3~g2) [00101] +g3[00011]

^i22TlT3= [10100] -g2[10001] -g3[00110] + (q4-q3) [00101] +g4[00011]

= [11000] -q3 [10001] -^3[01010] + (^4-g3) [01001]
[00011]
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Therefore, the projection of this basis onto the space {ey, j;GE 3^^(122)} is
represented by the matrix

/ 1 0 0 0 g3 \
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

V 0 0 0 0 1

§ 6. Hook Representations

Hook representations could be easily described in the framework of the
preceding section and the next theorem could be directly checked on the explicit
matrices of representation obtained above. There is, however, an alternative
approach involving a ̂ -analog of an interesting property of hook representations of
the symmetric group.

Let V=Cx i © ••• © Cxn be the vector space of polynomials of degree 1, and
let g, be the restriction of the operator Tt to V, so that

0=0

A basis of the space /\k V is given by the x, A • • • Ax, (i i < ... < / fc), and one
n

can code such an element by a vector in {0, 1} , the components equal to 1 being
the i i, ... , z'fc-th ones.

The action of /\k gr on these vectors is, writing only the r and r+l-th
components

[...00...] > g* [ — 0 0 — ]
[...01-] > qk-l[~- 10-]

[-11-] > -^-'[-11-j

It is immediate to check on relations (5. 1) that the operators g,(&) =q l~k /\kgt
satisfy the Hecke relations, so that 77 k : Tt

 >gf f c ) defines a representation of J^n

in A* K
The irreducible content of this representation can be identified by a standard

specialization argument, which can be conveniently formulated as follows. To any
representation p of the Hecke algebra, it is possible to associate a symmetric
function F—3F{p) which depends only of the traces of the representation matrices
of certain elements. The result (cf. [KW], [Ram] ) is that this symmetric function
is independent of q and is equal to the Frobenius characteristic of the representation
of the symmetric group obtained by setting q = l. We shall also call J^(p) the
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Frobenius characteristic of p.
In the case of rjk, the specialization q = 1 yields the k-th exterior power of the

representation of ©„ by permutation matrices, whose Frobenius characteristic is
well known to be equal to A kSn-k [Ait] , where A k is the k-th elementary symmetric
function, and Sn-k a complete symmetric function (denned by S7 zjSj(X) = H x^x

(l-zx)-1).
Moreover, the same specialization argument shows that V splits into two

irreducible components as an 2tf n -module

pr—j^O, n-i)0 yW

where V1 affords an irreducible representation indexed by the partition /. Let (u i ,
... , Un) be a basis of ¥ formed by taking a basis (u i, ... , un-i) of y^n~1^ and a
basis (un) ofVM.

Then, the restrictions of the g ffe) to the subspace

Wk = \ect{uilA"'Aulk | !</! < / 2 < ... <ik<n — l}

define a representation rji of <%? „, which for q = I reduces to the fc-th exterior power
of the fundamental representation (1, n — 1) of (5 „. This exterior power is known
to have as Frobenius characteristic the hook Schur function Sik,n-k, whence the
following result, obtained by Jones ([Jo], p. 354).

Proposition 60 1. Let F0'""0 be the fundamental representation of dimension
n — l of the Hecke algebra 3fn, and MI, M2, ... , Mn-\ be the matrices representing
the generators of ffln. Then, the. matrices ql~k /\k Mf generate an irreducible
representation of Jtifn, corresponding to the hook (lh, n—k\

Taking into account the generating function of the values of the hook
characters [KW] , [Ram] , we arrive at the following identity : denoting by p the
fundamental representation indexed by the hook (1, n — l), the characteristic
polynomial of an element 7^ of connectivity class corresponding to the partition 1
= ( l m i 2 m 2 - - - n m « ) ( s e e [KW]) is given by

(6.2)

In particular, this implies that the eigenvalues of the T^ in the fundamental
representation, and then also in all hook representations, are roots of unity
multiplied by powers of q.
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§ 7. Kazhdan-Lusztig Representations

Kazhdan and Lusztig have defined a linear basis {c^, //£Sj of the Hecke
algebra Jfn, by some optimal properties [KL]. Subsets of these bases give
representations of 3?n9 irreducible representations arising as factors of these
representations. Instead of taking quotient representations, K & L describe for
each partition 1 a graph, from which one can read the matrices representing the
generators T\, ... , Tn-\ in the irreducible representation of index I.

The vertices of this graph are as usual all the standard Young tableaux of shape
I (left celt) or the elements of a plactic class (right cell}. Unfortunately, the edges
are not easy to obtain in general, being related to the expansion of the c M into the
basis {T/u}. More precisely, there is an edge or not whether or not the coefficients
in this expansion (Kazhdan-Lusztig Polynomials} are of maximal degree. However,
since it is difficult to compute these polynomials, the Kazhdan-Lusztig description
of representations is difficult to put into concrete use.

Let us recall how Kazhdan and Lusztig code the representation matrices of the
generators of J^n by a graph. To a set of permutations {v, v' , ...} one associates a
labelled graph. The set of vertices is {v, v' , ...} ; there is an edge v - v' iff v and
v' differ by a simple transposition. Each vertex v is endowed with a set of integral
labels 3? (v) defined as follows : put label / iff the vertex has a subword (i + li) .
Then the matrix M/ has a non-zero entry ( — q l ( y )~ / (v )) corresponding to the pair v,
v' v =£v', iff v' has label / and v has not. The entry v, v is equal to — 1 or q whether
v has label / or not.

In the case of a hook partition, however, one has explicit graphs. Indeed, fix
k, n and let to be the permutation a) = ( 1 ... ,n— k — l,n, ..., n—k\ and let// beany
element in the plactic class of a). One uses the following criterium of
"non-singularity" :

Theorem 7. 1 [Lak-Sa] . Let {Jibe a permutation. Then the following conditions
are equivalent

i) the Schubert variety of index [i in the flag manifold is non singular
ii) the Kazhdan-Lusztig element c ̂  is equal to S v < ^ ( — g) / ( / / )~ / (v )rv , the

order on permutations being the Ehresmann/Bruhat order.
iii) //, considered as a word, does not contain subwords of the type hkij or kjhi,

for i < j < h < k.

Now it is clear from the description that we gave of the class of a) that any //
in this class satisfy [Lak-Sa] third condition. Therefore, all associated Kazhdan-
Lusztig polynomials are trivial, which implies that for a hook, there is an edge
connecting two elements iff they differ by a simple transposition.

For example, for the hook (114), one has the graph
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123654

126534 — 126354

165234 — 162534 — 162354

651234 — 615234 — 612534 — 612354

It is in fact possible to write explicitely the Kazhdan-Lusztig element c ̂  for any
non-singular // : it is a product of simple factors of the type (F {+q r^ ) (the c ̂  do
not coincide with the p\, though they both factorize).

For example, for the hook 112, one has

fc 1243 = F3 , C 1423 = F3 ^2 , C 4123 = ^3 F2 Fj ,

but

Now one can compute the c^T19 but if one sticks to the Kazhdan-Lusztig
approach, one has to take the quotient modulo the components of other types. It
is simpler, instead of taking quotients, to use the interpretation of the elements of
3tfn as operators and restrict their action to an appropriate subspace of polynomials
so that the extra components vanish.

In fact, one can avoid new computations and interpret the results of the
preceding sections in terms of a graph, in which we shall recognize a
Kazhdan-Lusztig graph. Let us first consider the case of the hook (1, H — 1). The
underlying space is the space of polynomials of degree 1 modulo the ideal generated
by symmetric polynomials without constant term, with basis the Schubert
polynomials. In other words, we take the space y \ of polynomials of degree 1, with
basis {a i + - - - H - f l n - i , ... , a i+a 2 j a J and relation a\-\ han = 0.

Each TI acts trivially (i.e. by multiplication by q) on Schubert polynomials
(because they are symmetrical in a /, a i+\, except for a i + • • • +a /. The representing
matrix of T/ coincide with qXidentity, except for its (n-z)-th column which is

[0, . . . ,0,«, -1, 1,0, . . . ,0],

the -1 being on the diagonal.
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These are the same matrices as the Kazhdan-Lusztig ones. Section 6 shows
that one can take any exterior power of this representation and finally one obtains :

Proposition 7» 2. Given two integers h<k, the labelled graph with vertices the
elements of the plactic class of (1, 2, ... , n—k — l, n, ..., n—k\ and with edges
corresponding to each pair of vertices differing by a simple transposition, codes an
irreducible representation, corresponding to the hook (lk, n—k}.

§ 8. Application to a Quantum Spin Chain Model

As shown by Deguchi and Akutsu [DA] , the exact solution of a whole class of
quantum spin chain models can be reduced to the diagonalization of the images of
the following element of the Hecke algebra

under some set of irreducible representations, depending on the symmetry algebra
of the chain (the Hamiltonian being the image of H under some representation of
-^ "N
JcnJ.

For example, the model having the quantum superalgebra t/9(su(l/l)) as
symmetry algebra leads to the family of hook representations (see e. g. [MR] and
references therein) . In this case, the hamiltonian can be diagonalized by means of
a Jordan-Wigner transformation [HR] . However, the results of the preceding two
sections lead to an alternative approach, which is perhaps more illuminating.

Using as in Section 7 the basis of Schubert polynomials en-i=a i +a 2^ ----- '\~a /
(1 < / < n — 1) in the space of linear polynomials modulo a\-\ ----- \-a n, we see that
the matrix of the image of H in the representation (1, n — 1) can be written

where In-\ is the identity matrix and

0 q 0 0 ••• 0 0 \
1 0 0 0 — 0 0
0 1 0 0 — 0 0

V o o o o ••• i o /

Set q—t2 and let Pn(x, 0 be the characteristic polynomial of An(q). Then,
PzGti 0 =x2—t2 and one has the recurrence relation
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which shows by induction that Pn is homogeneous of degree n in x and t
Moreover, (8.1) also shows that for t=l, Pn(x, l^) = Un(x/2)9 where Un is the
Chebyschev polynomial of the second kind. The characteristic polynomial of
An-\(q) is thus

(n-l)/2T

so that its eigenvalues are

A5 = 2V q cos ( - ).
^ n y

The components vf s ) of an eigenvector v (s) associated to As satisfy the
difference equation

with the boundary conditions Vo s ) — v ̂ =0, so that one can take

c )v —

/

Remark. The transition matrix from the basis (e/) to the basis (v (/)) can be
,^) =Gn^(q^Cn-l where GB-,(tf) =rfwg (^ -1/2

9 9 ~3/2, - ? ̂  ~("~1)/2)
and CH-i=-B,,-i(l). One easily checks that C*-\ = (n/2)I, so that the inverse of
Bn-i is also explicitely known.

The diagonalization of H in any hook representation can now be deduced from
the above considerations by means of the following observation. Given a vector
space V and an endomorphism / of F, denote by Df the unique derivation of the
exterior algebra A(V} which coincides with /on V. Taking for V the space of
linear polynomials and/=g/ the restriction of F£ to V as in Section 6, we obtain by
a direct and easy computation :

Lemma 8. 1. Let Dp0 be the restriction ofDl=Dgt to A* V. Then,

D^=ql-k/\k
gi+(k-l}L D

Now, let h be the restriction of H to V, i.e.
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We have Df+g=Df+Dg and D^=fc • id A
fcK=fc. /.

where J]k is the representation of Frobenius characteristic ^ fcSB-fc considered in
Section 6. And as we saw in Section 6, the irreducible representation corresponding
to the hook (1 k, n — fc) can be realized as a subrepresentation 77 £ of 7] k : taking any
basis (u i , ... ,Un) of V such that u\, ... ,un-\ generate the irreducible component
F0'""0, un being a basis of F(n), we have

F^-^vecfd^A-At^ I il9...,ik<n-l}.

Then, p o*. „-*)(#) =ri'k(ft) is equal to the restriction to F(1 • "~fc) of the operator
D^+Ot-lX/i-l)?/. The eigenvalues of the restriction of D$> to F(1*"-fc)

= A fcF (1>n~1) are clearly the sums k by k of the eigenvalues of the restriction of h
to J/^1'""1^ These eigenvalues are jLts=Xs— (1+^) so that we get the complete
spectrum of p a*, „-*

Theorem 8. 2. 77ze eigenvalues of the hook hamiltonian p (\k
t n-^ (ff) are exactly

t/ze eigenvectors are explicitely given by the above construction.

Remark. Using the same kind of method, one can also obtain all the spectral
parameters of Hk = T\ + T3 + . . . + T2k+ 1 or equivalently of any sum of k commuting
generators of the Hecke algebra. Indeed it can be shown that the eigenvalues of Hk

are exactly

for every e = (e i, e 2, . . . ,£*) ^ {— 1, l}k, the multiplicity of A e being the number
of different ways it can be obtained in such a sum. The eigenvectors v E of Hk may
also be explicitely described in a similar way as above.

Denoting by P(k |z) the characteristic polynomial of p (^, n-k)(H\ it follows
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from the last theorem that we have

P(k z)=^P?V^fe-((*-0(it-l)

where we set

(8.2) P™ (X} = n (X~( S 2 cos (^))).
I<ji<j2<-jk<n-l ^ ^ m = l X H 7//

Since P^ is obtained by means of an integer translation from the characteristic
polynomial of a graph, it lies in Z[JT]. We shall now describe its factorization in
this ring.

The field Kn = Q[e^] is a splitting field for every P<*\ The Galois group
Gal(Kn | Q) is isomorphic to the group U of units of Z/2nZ? the correspondence
being k^U - >ok^Gal(Kn\Q) where, for every kE=:U, ok denotes the Q-auto-IK ikn

morphism of Kn that maps e » onto e » . We now construct an action of U on the
parameters (71,72, ••• , 7fc) involved in (8. 2). For every 1 < /< m < k, let Wi,
Wtm and Wr.m be the sets of fc-uples ( 7 1 , 7 2 , ... , 7'*) in (Z/2nZ)k that are
respectively defined by the equations 7 / = 0, 7 / +7 m = 0 and 7 i—jm= 0. Let then

\J Wi- U »7m- U
! < / < f c ! < / < m ^ f c \<l<m

The set J^ is invariant under the action of 17 defined by

U. ( 7 * 1 , 7 2 , ... 9jk) = (ujl9 UJ2, ... , M/fc)

for uEHU and ( 7 1 , 7 2 , ••• 9 j k) *=&• It is also invariant under the action of the
hyperoctahedral group 5 * defined by

(e, a) . (71 ,72 , ~ - j k ) = (£ija(i')9 £27*^(2), ...

for (e, a)GjB f cand (71,72, ... ,jk)^R where e= (ei, £2, ... , e*)^{— 1, l}fcand
fc. It is straightforward to check that the simplex

is a fundamental domain for this last action and that this action commutes with that
of 17. Let us consider the set Q of orbits in J?} for the action defined by pulling
back the action of U on the quotient space R/Bk- We can now use A^ as a
labelling for the roots of P^ with
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Galois theory tells us then that, for every a)^Q the polynomial

p <« CO = n (*-*(/))
jew

lies in Q[AT] and that it is a primary polynomial (1) on Q[X]. But one has

(8.3) PP=T[PS?a.

Thus, since P^ is unitary, the factorization (8. 3) lies in fact in Z[AT]. This
explains the numerous factors of P^ that are experimentally observed.

Examples. Let us describe an example of factorization for P^fc) that may be
constructed by the previous method. Consider for instance the shape 1114 and the
polynomial P ¥\ The elements of U are here the units of Z/14Z and hence are equal
to {1, 3, 5, 9, 1 1, 13} . Since 3 is a primitive element of U, we can describe the orbits
of Q under the action of U by only looking on the iterated action of 3 on the
elements of A^. Hence the orbit of (1, 2, 3) under the previous action is given by

(1, 2, 3) - >3. (1, 2, 3) -(3, 6, 9) = (3, 6, -5) = (3, 5,

(3, 5, 6) - >3. (3, 5, 6) = (9, 15, 18) = (-5, 1, 4) = (1, 4,

(1, 4, 5) - >3. (1, 4, 5) = (3, 12, 15) -(3, -2, !) = (!, 2, 3) [53]

Shape

14

114

1114

Gi, fc)

(5,1)

(6,2)

(7,3)

Orbits

(1), (3)
(2), (4)
(1, 2), (2, 5)
(1, 3), (3, 5)
(1, 4), (4, 5)
(1,5)
(2,3)
(2,4)
(3,4)
(1, 2, 3), (1, 4, 5), (3, 5, 6)
(1, 2, 4), (2, 3, 6), (4, 5, 6)
(1, 2, 5), (1, 3, 6), (3, 4, 5)
(1, 2, 6), (3, 4, 6), (2, 4, 5)
(1, 3, 4), (2, 3, 5), (1, 5, 6)

(1, 3, 5)
(2, 3, 4), (2, 5, 6), (1, 4, 6)
(2, 4, 6)

Factors

xz+x-\
X2-X-\

X2-2X-2

X2-3

X2 + 2X-2

X

X-l

X

x+i
X3-X2-9X+l

X3+X2-9X-l

X3-X2-2X+l

X3+X2-2X-l

X3-X2-2XJrl

X-l

X3+X2-2X-l

X+l

(1) More precisely P^-L = (>m for some irreducible polynomial Q and m= \ s *($(/)) for any /£a>.
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Thus the desired orbit of (1, 2, 3) is co= {(1, 2, 3), (1, 4, 5), (3, 5, 6)} and the
corresponding factor P^ of P^3) is then equal to

where we set £=e~. More generally the tables in the previous page give some
complete list of orbits of Q with the corresponding factors of

§ 9. Conclusion

A realisation of the Hecke algebra of type A „ by symmetrization operators
originated from algebraic geometry has been described. This point of view provides
a convenient method for proving identities, as well as an explicit description of the
irreducible representations. In particular, a fast "straightening" algorithm for the
computation of representation matrices has been obtained. Different descriptions
of hook representations have been presented, and illustrated on a quantum spin
chain model. Other algebras of interest can also be realized by symmetrization
operators, for example affine Hecke algebras (degenerate or not) and Temperley-
Lieb algebras. Also, identities between quantum determinants [KL] can be
interpreted in the Hecke algebra, and symmetrization operators provide an
alternative technique for proving them.
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