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The Eisenstein Quotient of the Jacobian Variety
of a Drinfeld Modular Curve

By

Akio TAMAGAWA *

§ 0. Introduction

Let K = ¥q(T\ the rational function field over the finite field ¥q (T:
indeterminate), and A=¥q[T]. For a non-zero ideal n of A, we can define a
smooth proper geometrically connected curve X0(n) over K, called the Drinfeld
modular curve of Hecke type with conductor n. In this article, we define the
"Eisenstein quotient" J of the Jacobian variety / of Jf0(n) for n maximal and
investigate its arithmetic properties. One of the main results is as follows :

Theorem (5.7).
(i) J~(K) is finite.
(ii) ffl (/"/SO f Z [_q - '] is finite.

Here J~~ is a certain quotient of J (the "minus part" of J) and HI means the
Shafarevich-Tate group.

In [19], Mazur established a very elaborate theory of Eisenstein ideals for
modular curves over the rational number field Q and his theory has various
applications to number theory. (For example, the theorem corresponding to (5.7)
(i) above has been a main tool of almost all the researches on rational points on
modular curves.) The problem to develop the theory of Eisenstein ideals for
Drinfeld modular curves was suggested by Mazur, already in the introduction of
[19]. We consider that the present paper is its first step and hope for further
development.

In § 1, we define an (/-primary) admissible group over an irreducible locally
noetherian normal scheme S of dimension 1, following Mazur [19], and give an

Received April 7, 1994.

1991 Math. Subject Classifications : 11G09, 11G40, 14K15.

* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-01, Japan



204 AKIO TAMAGAWA

estimate (1.11) of its etale cohomology in case S=P1
V . In § 29 we recall the

definition of the "I* -series with coefficients in F" of an abelian variety over a global
field of positive characteristic on which an order of an algebraic number field F acts,
and we prove two propositions (2.4), (2.7) on the order of the L -series at 5 = 1.
This section depends entirely on the theory of etale cohomology. In § 3, we recall
Drinfeld's theory concerning Langlands correspondence and give the functional
equation (3.14) of the L-series attached to some l-adic representation (or,
equivalently, to some automorphic form). As in [19], Eichler-Shimura type
congruence relation (3.9) will play a crucial role in investigating the Eisenstein
quotient later. The formula for the £-factor and its corollary (3.17) will be also
used to prove main results. After these preliminaries, we investigate the Eisenstein
ideal of the Hecke algebra in § 4, and give the proof of main results (5.1), (5.7) in
§ 5. In Appendix, we prove that End^ (/) (|)Q is generated by Hecke operators as
a Q-algebra. This is an analogue of a result of Ribet [24] .

Usual notations are employed freely :

¥q, Z, Q, Q;> C ; Horn, End, Aut, Gal ; etc.

We shall fix some other notations here.
For a finite set £f,

#£f = the cardinal number of &*.

For a module M and /e End (M),

M[/°°]=U M[/"].
n > 0

For an integer /£=Z, we write M[Z] and M[/°°] instead of M\l • idu\ and
M[(/ • Wjif)00] respectively. Moreover, when / is a prime number,

Similar notations are employed for commutative group schemes, abelian sheaves,
etc.

For a group G and a G-module M,

x=x for any
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For a field k,

k = a.n algebraic closure of k,

fc seP __ a separa|3ie closure of k.
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§ 1. I- Primary Admissible Groups

Let 5 be an irreducible locally noetherian normal scheme of dimension 1 and
S' a non-empty open subscheme of S. We denote by K the function field of S.

Example (1.1).

- {n},

where T is an indeterminate and n is a maximal ideal of F9[r].

In this section, we define admissible groups over 5 (with respect to 5'), and give
an estimate of their etale cohomology groups in the case of (1.1).

Fix a prime number / which is invertible in F(S, Os). We shall define two
categories ^, 2 which turn out to be equivalent to each other.

The category ^ is a full subcategory of (group schemes /5) . A group scheme
G over 5 is an object of ^ if and only if
(i) G is commutative ; G is flat, separated, and of finite type over S,
(ii) GX5' is finite over S', and
(iii) Z*5- idG = 0 in End(G/5) for some N > 0.

Remark (1.2). An object G/S of # is automatically etale. In fact, the
condition (iii) implies that 1N Lie(G/5) =0, so Lie(G/5) =0, which assures that G
is etale over S.
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Example (1.3). Let B be an abelian variety which has good reduction at each
closed point of S' . Then <^[/r] (r > 0), J(0[/r] (r > 0) are objects of «, where »
is the Neron model over S of B and 3$° is the "connected component" of ^.

Next we shall define the category 2. We fix a separable closure JTsep of K and
for each x^S—S' we fix the following commutative diagram :

(1.4) t Q t Q t
K - 0Sf, — -* *Cx)

where /c(;c)sep is a separable closure of the residue field /c(x) of 05j * and $£% is a
strict henselization of 0SiX. Then we get the decomposition group Dx and the
inertia group Ix :

(1.5) Gal(Jrep/JO ̂ )DX^IX.

An object of 2 is a family (M, (Mx)x^s-s'), where Af is an /-primary finite
discrete Gal (Ksep/K) -module which is unramified everywhere on S' and, for each
x^S—S', Mx is a Dx-submodule of M on which Ix acts trivially. A morphism
(M, (MAeEs-sO-^GV, G^LEES-S') is a GalQrep/JO-homomorphism M-+N
which sends Mx into Nx for all x £S — S' .

We denote by 0 the functor ^-^^ which sends an object G/S of # to
(GQ£sep), (Image (G((P|hx)^G(^sep))Les-5') and a morphism/: G-^H of <ff
to the Gal(^sep/J:)-homomorphism G(Kse^-+H(Kse^ induced by/

Proposition (1.6). 0 : ̂ ^Q) (category equivalence^.

Proof. Using elementary etale sheaf theory, we can easily prove that 0 is full
and faithful (cf. [21, H, 3.10, 3.12, 3.16]). Note that the separatedness of G/S
implies the injectivity of the map G(0£J ->G(JTsep).

We shall prove that 0 is essentially surjective. Let (M, (Af^es-sO be an
object of the category ^. By Galois theory, there exists a finite etale scheme GK

over K with an isomorphism of Gal (K**/K) -sets G*G£sep)-M and this
isomorphism induces on G # a structure of commutative group scheme over K. Let
GO be the normalization of S in GK and G i be the maximal open subscheme of G0

that is etale over S (i.e. Gi is the complement of the support of QGO/S)- By
definition, we can easily show that GI is isomorphic to G'*)*G* as a (sets) -valued
sheaf on the etale site on S, where iK is the natural morphism Spec K-^S. This
isomorphism induces on G \ a structure of commutative etale group scheme over S.

For each x^S— S' , G \ X/eOc) is a finite etale scheme over /e(x) and we have
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C GK(K^
\l \l

M1* C M
U

Mx

Since Mx is a I) *//*( = Gal Oe(x)seV/e(x)))-submodule of M1*, there exists a
(unique) open and closed subscheme Hx of G i X/cOc) such that ^fx(/c(x)sep) — Mx

via the isomorphism above.
Define G to be the open subscheme G i — J^J (G i X/c (x) — #*) of G i . Then a

structure of commutative group scheme over S is induced on G from that of G i . By
construction, G is an object of <& and 0 (G) — (M, (Mx)X(=s-s' ). This completes the
proof. •

Lemma (1.7). Let

G \— >G 2 ^G3

be a sequence in %> and we set $(GZ) = (M/, (M/, X)xes-s0 0"~ 1, 2, 3). Then the
following two conditions are equivalent :
(i) the sequence above is exact as a sequence of sheaves on the etale site on S ;
(ii) the sequence

in 2 obtained by applying 0 to the sequence above is exact in the sense that

M^M2^Mi

is exact and

MitX^M2,x^M3,x

is exact for all x GS -S' .

Proof. Rephrasing the condition (i) in terms of stalks, we obtain the condition

(ii). I

Lemma (1.8). Let G be an object of % and set $(G) = (M, (Mx)xes_5'). For
any given exact sequence
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of Gal(Ksep/K) -modules, there exists a sequence

in <& which is exact as a sequence of sheaves on the etale site on S, such that there exists
the following commutative diagram of Gal(Ksep/K) -modules

0 -> F(j^sep) -> GQTep) -> H(K"*) -> 0

if Q ii O if
0 ^ L -> M -» JV -> 0.

TTie sequence ( * ) ^ determined uniquely (up to isomorphism^) by the condition
above.

Proof For each x GS — ̂ x , let L x be the inverse image of Mx in L and Nx the
image of Mx in N. Take a sequence

in ^ which corresponds to the sequence

0- (L, (LAes_sO -> (M, (Mjxes_50 ^ OV; 0V J.es-sO ^0

via 0. By (1.7), this satisfies the condition. The uniqueness can be easily seen.l

Definition. Let G be an object of * and set $(G) = (M, (Mx)xeS-5'). We
define the following invariants :

5,(G) =p(G) -length z.m0dM^log/(M :

mod^let(X G)=log/##'ftCSf G).

If fTitCS, G) is not a finite module, then we set A'(G) = °°.

Remark (1.9).
(i) Since G (5) *-> G (JT) ̂  G (£ sep) =M,

(ii) Let
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be a sequence in # which is exact as a sequence of sheaves on the etale site on S.
Then

/(G2)=/(Gi)+/(G3)

for/=p, dx and

g(G2)<g(G1)+g(G3)

forg=/z', hl-h°(or, more generally, 2] (-l) /+1/zz, ifA'(G7-) < °o for 0 < i < 2k,

7=1,2,3) .
1=0

Definition.
(i) We say that an /-primary finite discrete Gal (K sep/K) -module M is admissible
if the composition factors of the Gal (Ksep/K^) -module M are isomorphic either to
Z//Zorto/z/CK s e p).
(ii) We say that an object G of tf is admissible if the Gal (£ sep/£") -module

sep) is admissible in the sense of (i) .

Lemma (1.10). Let G be an object of <& and we set m=p(G\ If G is
admissible, then there exist 2m + 1 objects G/G'^O, ... , m), Ht(i=l, ... , m) of ^
which satisfy the following conditions :
(i) G0=G, Gm = 0;
(ii) for each i=l, ... , m, there exists a sequence

in ^ which is exact as a sequence of sheaves on the etale site on S ;
(iii) for all i = 1 , . . . , m, the Gal (K sep/^) -module Ht (K

 sep) is isomorphic either to

Proof. Using (1.7), (1.8), (1.9), we can prove the lemma by induction on m

=P(G). I

We shall turn to the special case (1.1).

Proposition (1.11). In the case of (1.1), we have the following inequality :

where G is an admissible object of %>.
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Proof. By (1.9) (ii) (/=<5n, g=h1-h°^) and (1.10), the problem is reduced to
checking the inequality in the case where the Gal (K^/K} -module G(^Tsep) is
isomorphic either to Z//Z or to ///(^Tsep). In each case, there are (up to
isomorphism) four cases. (Use (1.6).) By some elementary computation in etale
cohomology (cf. [19], where fppf cohomology is involved), we establish the
following table :

G(Xsep)

Z//Z

//

//

//

M*sep)

//

//

//

<5.(G)

0

1

0

1

0

1

0

1

<5n(G)

0

0

1

1

0

0

1

1

A°(GO

1

0

0

0

JO l/q-l

( 1 l\q-\

0

0

0

A1 (GO

1

0

jo iXd
[l / d

1

JO l/q-l

[1 1 q- l

0

n nqd~l

° //f 9-1

1 / 9""11 l
 q-l

fo //rv-i
[i / ^-1

^(G)-;*0^)

0

0

JO l/d

[l / ^

1

0

0

n nqd~l0 ^ g-i

i / qd~l
1 J

 9-i

JO l/qd~l

[1 / ^-1

where d = deg n= [/c(n) : Fj. In all the cases, the inequality holds.

§ 2. L-series of Abelian Varieties

Let F be an algebraic number field and R an order of F. We shall recall the
definition of the "L-series with coefficients in F" of an abelian variety over a global
field of positive characteristic on which R acts.

We need some lemmas to define the local factors of the L-series. (Note that we
have only to refer to [29] and [23] for good primes. For bad primes, there seem
to be no suitable references.)

Lemma (2.1). Let k be a field and G a commutative algebraic group over k
equipped with a ring homomorphism R-^Endk(G). (By an algebraic group we
mean a group scheme smooth of finite type over a field.) Let I be any prime number
distinct from the characteristic ofk. Then :
(i) F/(G(/c)) is a free R XQrmodule of finite rank which is independent of the
choice of I



JACOBIAN OF A DRINFELD MODULAR CURVE 211

(ii) Assume that k is a finite field. Let_q>k be the (#k)-th power Frobenius element
in Gal(/c/fc). (Note that cpk acts on G(fc) and that its action commutes with that of
lO Then the characteristic polynomial of (Pk in the free R®Qi-module F/(G(fc))
has coefficients in F, when we regard F as a subring of R®Qi=F®Qi, and is
independent of the choice of I.

Proof, (i) Using the structure theorem for commutative algebraic groups
( [1] , [8] , [26] ), we can easily reduce the problem to the case where G is either an
abelian variety or a torus. Since F/(G(fc)) is a Q/ -vector space of finite dimension
which is independent of /, we have only to show that F/(G(fc)) is a free R®Qi-
module.

For each /£ End ̂ (G), the characteristic polynomial of / in the Q/ -vector
space K/(G(fc)) has coefficients in Q. In fact, when G is an abelian variety, this is
well-known ([22, IV, 19, Theorem 4]) and when G is a torus, it is easily seen. (We
may assume G= (Gm)B and then the following diagram is commutative :

End^(G) ^ Mn(Z)

I i

In particular, the characteristic polynomial of f£=R in the Q/ -vector space
F/(G(/c)) has coefficients in Q and then the same statement holds for /EEF
= R(|>Q. This implies that K/(G(Jk)) is free as an R®Qi(=F®Qi) -module
([30, E, Lemma 1]).
(ii) Again by using the structure theorem, we can reduce the problem to the case
where G is either an abelian variety or a torus. Then Endfc(G) is a free Z-module
of finite rank and the given homomorphism R -> Endfc(G) is injective unless G = Q.

Let/fcEEEndfcCG) be the Frobenius endomorphism attached to the finite field k.
The action of fk on G(fc) coincides with that of <pk. We denote by R [/fc] (resp.
Z[/fc]) the subring of Endfc(G) generated by fk over the image of .R (resp. Z).
Then the commutative Q-subalgebra R [/*] (|> Q of End k (G) <|> Q is semi-simple. In
fact, Z [/fc] (|) Q, which is included in the center of the semi-simple Q-algebra
Endfc(G) <|)Q, has no non-trivial nilpotent elements, hence it is semi-simple, and so
isF® (Z [/fc] (| Q) . Being a quotient of the semi-simple Q-algebra F® (Z [/J <§> Q),
R [/*] §Q is also semi-simple.

Let

be a decomposition into a direct product of fields, where Ff is a finite extension of
Q for each i = 1, ... , t. We define the ideal // of R [/fc] to be the kernel of
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R [/*] -»* E/J f Q^Fi x - XF,-^ **„

and set G/=G///G. We can easily check that the morphism G->GiX ••• XG,
induces a canonical isomorphism

K,(G(fe)) -^- K,(G , (fc)) X - X K/(G,(fc))f

which is identified with the decomposition associated with the ring decomposition
R [/*] <§> Q / - (F i ® Q /) x ' " x (ft ® Q /). It suffices to verify the statement of (ii)
for each G /(/=!, ... , 0, so we may assume that R [/*] (8)Q is a field (which is
necessarily an algebraic number field) and that R [/J is an order of the algebraic
number field.

Then we can apply (i) to the ring homomorphism R [/*] -^Endfc(G). The
R [/*] ®Q/ -module F/(G(fc)) is free of finite rank m which is independent of L
The polynomial in question is equal to the m-th power of the characteristic
polynomial of/* in the field extension R [/*] <|>Q/F, so it has coefficients in F and
is independent of the choice of /. 1

Let K be a discrete valuation field with finite residue field k. Fix an extension
to K of the given valuation on K, so that we get the decomposition group D, the
inertia group /, and the isomorphism D//-^Gal(fc/fc). Let <pk be the (#fc)-th
power Frobenius element in Gal (/:/&)•

Let B be an abelian variety over K equipped with a ring homomorphism R — >
For a prime number / =£ char, (fc), Gal(JPep/lO acts on the Tate module

and its action commutes with that of R. Moreover, R and
Gal(i£sep/J0 act on F*=HomQ/(F, Q,), as follows :

(flA)Gc)=A(ox)

Lemma (2.2). Notations and assumptions as above. Let W be either V1 or
(F*y.
(i) W is a free R (8) Q / -module of finite rank which is independent of the choice of I.
(ii) The characteristic polynomial of (Pk in the free R®Qi -module W has
coefficients in F, and is independent of the choice of I .

Proof Let OK be the valuation ring of K and ^ the Neron model over OK of
B. Then R acts on the commutative algebraic group $®k over k, as follows :
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Since the isomorphism

is compatible with the actions of R and Gal(/c//c), (i) and (ii) for W—V1 follow
from (i) and (ii) of (2.1) respectively.

Let Ef be the dual abelian variety of B. Then R acts on Ef via the anti-
isomorphism : EndjcCB) — — ̂  End *(#')• The isomorphism

Q/(D) > Q/(~ 0

is compatible with the actions of R and Gal (K sep/^0 , so the isomorphism

is compatible with the actions of R and Gal(fcA). Thus, (i) and (ii) for (F*)7

follow immediately from (i) and (ii) for (F/Clf'OO))7 respectively. 1

Let 5 be a smooth proper geometrically connected curve over the finite field ¥q

and denote by K the function field of S. For each closed point x of 5, we fix a
commutative diagram (1.4) (hence (1.5)). Let (px be the (#/c(x))-th power
Frobenius element in Gal(/e(x)//e(jc)) —DX/IX. We shall define the "L -series with
coefficients in F" for an abelian variety B over K equipped with a ring
homomorphism R — > End #(!?)•

We choose a prime number / which does not divide q. For each closed point
x of 5, we set

where F ; ̂  ® Q / means that F is considered as an jR (|) Q / -module when we take the
determinant. From (2.2), Qx(t ; F) is in F[f] and is independent of /. Since

Px(u ; F) =g,(0 ; f^^Q^u^ ; F),

we see that Px(u ; F) is in F[u degx] CF[w] and is independent of /.
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Definition*

x : closed
point of S

(Note that there are finitely many x with deg x < N for each N^N and that, for
each*, PX(0;F) = 1.)

Let 5' be the dual abelian variety ofB and let J^(resp. J*') be the Neron model
over S of U(resp. of I?')- As we have seen in the proof of (2.2), the isomorphism

exists, hence

<p;lu**x [

where F/(JO* is the stalk at x of the etale Q/ -sheaf F/(JO- Then by the theory
of etale cohomology, we conclude that

ZB(q -'« ; f) = A detOa-^-'« | #'«& K,(«0) ; IZf Q,)(-°'+1,
,==0

where S^^^F^ and ^ is the g-th power Frobenius element in Gal(F9/F9).
(Note that "det" makes sense since H&(S, F/(J^O) is at least a finitely generated
locally free R 0Q/ -module.) Since R (8)Q/ is a direct product of fields and, for an
extension E/F of fields, F((u)) HE(w) =F(ii) (cf. [2, Part M, Chapter I , Lemma
1] ), it follows that ZB(q~lu;F} eF(ii), hence Z5(w ; F) GF(ii). Moreover, the
weight theory ([6, 3.2.3]) implies that, for each / = 0, 1, 2,

is inF[ii] (thereby fi" it CS, F/(^0) turns out to be a free R (|) Q / -module) and it is
independent of /. (Observe that, if we choose a non-empty open subscheme U of S
over which St'XU is proper, F/(^') is isomorphic to j *(F/(J'XI7)), where
j: U^S.)

Definition*

pF'= (the order at u =q ~l of ZB(u ;
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and for a prime number /^char.(F9) and a field E which appears as a component
in the direct product decomposition of R®Qi=F®Qi,

where e is the idempotent of R $ Q/ which corresponds to E(i.e. E=JJ (|)Q/ /(I —
e)) and ' means the action on Bf ' , & , etc. (See the proof of (2.2) .)

Remark (2.3). Letp, r, o\ denote pQ, rQ, crQ,/f Q/ respectively. Then we can
easily check the following equalities :

r=[F:Q]rF.

Oi=Tl [Ei
E

From now on, we fix a pair (/, E).

Proposition (2.4). (cf. [27].)
(i) pF>aF,i,E>rF>0.
(ii) If a F.I. E=Q, then

Proof. First we note that F/(^/) = K/(« /0), where J*'0 is the "connected
component" of $' . From the Kummer sequence for $ °, we have the following
exact sequence of R (|) Q / -modules :

(Note that ^°(5) is a finitely generated Z-module.) Considering the E-part of this
exact sequence, we obtain rF < oFi /, £.

On the other hand, since Gal(F9/Fg)— Z has cohomological dimension 1,
the Hochschild-Serre spectral sequence gives the following exact sequence of
R®Qi -modules :

0-*Jf l(¥q, HQ(S,

where jy^F,, ^'(X F/(«7))) —(Um^'CF,, '̂(S, ^T/r])))®Q/. Now since
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=##'[/']($)
<#B'(K)[l°°~] (bounded),

we see that Hl(¥q, H°(S, K, (#'))) =0, hence

Hl(S, ViW)-H°(fq,H
l($, K/OT))).

Considering the E-part, we deduce :

OF, i, E= (the dimension over E of the eigenspace of <p with eigenvalue

1 in the E-vector space e Hl(S, K/

follows.

< (the dimension over E of the generalized eigenspace of (p

with eigenvalue 1 in the E-vector space e'Hl(S, F/ (#')))

(i.e. dimEe'Hl(S, K/(» /))[(^-l)c°])

=pF([6, 3.2.3]).

If the eigenspace is {0} , then the generalized eigenspace is also {0} . Hence (ii)

Remark (2.5). If we assume that #HI (B/K)<°® (or, more weakly,
(B/K) [//0°] < oo for some number /V char. (F,)), then we obtainp-r ([27]),

hence PF—OF, i, E=rF.

Next we fix a polarization A : B-^B' over K and consider the following
condition :

(2.6) the image of CR-^ End *(!?)) is invariant under the Rosati involution f.

This condition requires that two homomorphisms

UJ 111

/ ^— f

and

LU 01
/ h— A/A
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are the same. If (2.6) holds, then the isomorphism (induced by A)

Hl(S,

induces an isomorphism

eHl(S, K,G»)) —

Note that (2.6) is satisfied automatically when (F, JO = (Q, Z).

Proposition (2.7) . Under the assumption (2.6),

PF = OF,I,E (mod. 2).

Proof. The pairing

Weil pairing
cup product

is a non-degenerate bilinear form on the finite-dimensional Q/ -vector space
Hl(S, F/(JQ) ([21, v, 2.2c]). It is symmetric, since the Weil pairing is alternating.

For a^R,

(av | w) = (v | a t w) = (v aw),

hence the same equality holds for a^R 0Q/. This implies that the decomposition
of the R®Qi -module H^S, F/(J*)) associated with the direct product decom-
position of R^Qi is an orthogonal sum decomposition with respect to the
symmetric form ( | ) . Thus the restriction of the pairing to eH l (5, F/(^)) X
eHl(S, F/(^0) is again non-degenerate and symmetric. Then (2.7) follows from
the next lemma (2.8). I

Lemma (2.8) s Let k be afield of characteristic ^2. Let V be a k-vector space
of finite dimension equipped with a non-degenerate symmetric bilinear form
( | ) : FX F->fc ///eEndfc(F) satisfies (/v /w) = (v | w) for all v, wGF,
then (the dimension over k of the generalized eigenspace of f with eigenvalue I in F)
= (the dimension over k of the eigenspace of f with eigenvalue 1 in V)(mod. 2).

Proof. Considering V®k if necessary, we may assume k—k.
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First, the non-degeneracy of the pairing implies that / is injective, and then
since V is of finite dimension. Thus the decomposition

V= ® F(a)
a6fcx

exists, where V(a) is the generalized eigenspace of/ with eigenvalue a in V (i.e.

We can easily show that (V(a) \ F(/3)) =0 unless aj3 = l. Then the restriction
of the pairing to F(l) X F(l) is still non-degenerate, so we may assume that V—

Put F'={veF| (v|w)=OforallweF[/-l]}. Then

Since

the problem is reduced to checking that dimfe V1 is even.
As (F[/~ 1] | F') = (F' F[/- 1]) =0, we can define a new pairing on F'X

V' as follows :
< | >:F 'XF' - >k

<(/-!> (/-Dw> = (v|(/-l)w)-((/-l)v w) (v, w£K).

This pairing becomes an alternating bilinear form on F' . If v'= (/— l)v £ Fx(v £
F) satisfies that </| w />=0 for all wxeFx

s then for all

= <(/-!> I (/-!»

-(v (/- 1) w) -((/-!> | w)

= (v (r1- D(-/)w) -((/-!> I w)

= ((/- Dv | -»-((/-!> | w)

= (/ 1 -(/+!».

Now V= F(l) implies (/+ 1) V= F (Note that char, (fc) =£2.) Then it follows
from the non-degeneracy of the pairing ( | ) that v/=0. Thus the pairing
( ) is non-degenerate, and the k- vector space Fx, having a non-degenerate
alternating bilinear form, is even-dimensional. 1
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§ 3. Drinfeld Modular Curves and Automorphic Forms

Notation,,

S = Pif = AifU{°°} (~ = (1:0)),

A =T(S- {oo}, (9s) =F,[T] (T : indeterminate),

K = the function field ofS = V q ( f ) ,

S= {the prime divisors of K} = {the closed points of S}

= {the maximal ideals of A} U {°°},

Kv : the v-adic completion ofK(y£=Z\

Ov : the integer ring of the local field Kv,

AK
= the adele ring of K = II ' Kv,

vfEi1

A£ =the idele group ofK = U' Kv
x,

ver

A= lim A/I= II Ov,
J r n z e r o
ideal of A

A£X= n' K?,
ver-{°°}

C 00= the (oo-adic) completion of an algebraic closure K

In this section, we shall recall the relation between Drinfeld modular curves
and automorphic forms. We refer the reader to [7], [9], [14] for Drinfeld
modules and their moduli schemes, and to [15], [17], [25] for automorphic forms
onGL 2 . See also [12].

(Generalities)

For an open subgroup H of GL2(A\ MH denotes the corresponding (coarse)
moduli scheme of Drinfeld A -modules of rank 2, and YH denotes MH®K. The
scheme YH is a smooth affine (not necessarily geometrically connected) curve over
K. Define XH to be the (unique) smooth compactification of YH over K.

From now on, fix a prime number / not dividing q. We denote by Jf the
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module Hm Hl(XH®Ksep, Q,), on which GL 2 ( A£) X Gal (K sep/K) acts.
H : open subgroup

ofGLzW)

Fixing an embedding Ksep^Ks£p, we have the following isomorphism of GL2(A£)
X Gal (* sdp/*: oo)-modules :

(3.1) Jf

where

= the space of (Q/- valued) cusp forms on GZ^CA^),

Fsp— {/ : P * (£" oo ) — > Q / ! locally constant} / {constant functions}

(which gives an irreducible admissible representation asp of GL2(K^ called the
special representation), and

Woo : the 2-dimensional /-adic representation of Gal^K^P/K co) which is
determined up to isomorphism by the existence of the following non-split exact
sequence of Gal(Ks£F/K «>) -modules :

Further, considering the decomposition

where II is a set of irreducible representations of GL 2(A^), we obtain the following
isomorphism of GL 2(A£) X Gal (K sep/^) -modules :

(3.2) ^^ ®n (yej){oo};rv)(8)p(7r),
ZToo^Oap

where p(n) is a 2-dimensional representation of Gal(Ksep/K^) over Q/ which is
determined by n and whose restriction to Gal(^sc!p/^oo) is isomorphic to Woo,

The Galois representation p (n) corresponds to n in the sense of Langlands,
that is to say, for each

(3.3)

Here we fixed an isomorphism Q/ — C (and hereafter also). The equality (3.3) at
an unramified place results from the Eichler-Shimura type congruence relation and
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the general case is proved by using a result of [5] (cf. remark of [10]).
For a non-zero ideal nv of Ov, we set

^O (mod. nv)
c v d v ]

and for a non-zero ideal n of A, we set

GO c = 0 (mod. n
d

^ II #o(n0v) is an open subgroup of GL2CI). LetM0(n), r0(n),
and JT0(n) denote M#o(n), r^o(n), andX#o(n) respectively. These schemes have
geometrically connected fibers over Spec A, Spec K and Spec K respectively, since
PicG4) = l. We have the following isomorphisms (of rigid analytic spaces over
C.):

70(n)(Coc) ^ r0(n)\Q
(3.4) 1 1

where

a :ieGL2U) c^o
c d

We denote by J0(n) the Jacobian variety of X0(n) and by </0(n) the Neron
model over S of /oGt). It is known that Jo GO has good reduction at each v£=
Z— {°°} which does not divide n.

Remark(3.5). The moduli problem on (Sch//4) corresponding to H0(n) is a
functor

T\—> {isomorphism classes of (E, H}},

where E is a Drinfeld ^4-module of rank 2 over an A -scheme T and H is an
A -subgroup scheme of E[n} which is locally free of constant rank #G4/n) over T
and which satisfies the following condition : there exist a morphism T'^ T
faithfully flat locally of finite presentation and any4-homomorphism 0 : n ~1A/A —>
H(T') such that S (/)(a^)=HXT/ as effective Cartier divisors in
[16], [18]). "'""
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Remark (3.6).
(i) From (3.1), (3.2), we obtain the following isomorphisms :

(3.7) Hl t(Jf0(n)>Jrep, Q,)

as

(3.8) Hl(X0(n)®Ks**9 Q,)

as Gal(JTep/JO-modules.

(ii) By definition, the center ofGL2(K «,) acts trivially on Fsp . Therefore, noting
that A£ =K x • ( n Ov

x X^) as Pic GO = 1, we see that

in (3.7) can be replaced by

xV, 1),

the part on which the center of GL^A*) acts trivially. Similarly, in (3.8) it is
sufficient that n runs over the representations with trivial central character.

(Hecke operators and congruence relation)

Definition. (Heche operators. )
(i) w q for a maximal ideal q of A which divides n :

Let m be the maximal natural number such that qm divides n . We define w q

eAut^(M0(n)) by the rule

(JE, fO I - > (E/H[qml (E[qm] +lf)/H[qm])

under the notation of (3.5). (We see that Wq = 1 since Pic GO = 1.)
We denote also by the same symbol wq the element of Aut^(jr0(n)) or

Aut K C/o (n) ) etc. induced by w q .
(ii) rp for a maximal ideal p of A which does not divide n :

Let b : X0(np) -> JT0(n) be the morphism induced by the injection //0Gtp) C
-ffo(n). We define an algebraic correspondence Tp of X0(n) by the formula rp =
(b o wp) ° f6, where
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We denote also by the same symbol Tp the element 0/End#C/o(n)) induced by
TJ. P.

Proposition (3.9). (Eichler-Shimura type congruence relation.}

T P = f P + t f p in End*(p)C/o(n)X/c(p)),

where /p denotes the Frobenius endomorphism attached to the finite field /e (p) .

Proof. It follows from the result of [13] as in the classical case. |

Remark (3.10). Since /p - ffp=
ffp -/P=gd e g p • id, X=fp satisfies the

following equation in End*(p)C/0(n) X/e(p)) : X2-TpX+qde** = Q.

Let n, q, and p be as in the definition above and let P q (resp. P p) be the monic
polynomial in A=¥q[T] which generates the ideal q (resp. p). For each/

(n) X 1)), we define wq/and Tp/as follows :

(w q/) GO =/ x_pm (m : as above),
\ f q

where 77 runs over a system of representatives of

Then we can easily check that w q/and Tp/are in <$# o(GL 2(K^)\GL 2(AjS:)/(Jffo(n)
XI)) .

On the other hand, wq, rpeEndjfC/0(tt)) act on

, Q7) = (F/(/0

Lemma (3.11). The isomorphisms (3.7), (3.8) commute with the action o f w q

and Tp.

Proof. Using the fact that the isomorphisms (3.1), (3.2) commute with the
action of GL 2 (A£), we can check the statement. I

In the next section, we shall investigate the Hecke algebra ( = the algebra
generated by Hecke operators) in detail, assuming that n is a maximal ideal of A.
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<e-factor of the L-series>

Next we give the calculation of the e-factor of the L -series attached to a 2-
dimensional subrepresentation of Gal(Asep/A) in Hlt(X0(n) ®Ksep, Q/), using the
equality (3.3). _

Let U be a Q/[Gal(Asep/JO]-submodule of Hl(X0(n)®K*ep
9 Q/) of dimen-

sion 2 over Q / and let p denote the representation of Gal (K sep/JO associated to U.
Since in (3.8) each p(jt) is 2-dimensional and irreducible, we see that there

exists a TrE: /7 with TT oo — <7sp such that p is isomorphic to p Or) . Such TT is uniquely
determined because of (3.3) and of the strong multiplicity one theorem ([3,
Theorem 2] -h [17, 11.1.1]). Now consider the following condition :

(3.12) the conductor of TTV (in the sense of [3]) is nOv for each v^Z— {oo}.

If we denote by Uf the image of U in the right-hand side of (3.8), there exists
an//e(vej8){oo}7z-v)Ho(n) such that tf=f'®p(jc). Further, we denote by/oc a new
vector of TToo— <7sp and we set f=f'®f™^n. (Note that /', /oo, and / are
determined by U up to scalar multiplication.) The condition (3.12) says that /is a
new form belonging to n.

Remark (3.13).
(i) The conductor of asp is °° ( = T ~ l O oo). We can see this fact by observing that
the action of HQ (1) =GL2(O oo) on P l (K oo) is transitive, while that of HQ (oo) Is

not transitive. A new vector of asp is realized in Fsp as the characteristic function
of one of the two orbits of the action of JJ5°(oo) on P^A"*,).
(ii) When n is a maximal ideal, the condition (3.12) is always satisfied. In fact,
by (3.8)

Q/),
7r«,~CTsp

which is reduced to zero, since M0(l) — Ai = Spec ^4[j] ([11, §3]) and then
jr0(0=Pi.

We define

x ; closed
point of S

In fact, Z(M, p)^Q/(w), which can be seen as in §2. Note that L(s, p) =
Z(q ~~s, p) by definition.
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Proposition (3.14). Assuming the condition (3.12), we have

with

q : maximal ideal of A
which divides n

where £q^ {+ 1} is determined by the formula wq/=£q/

Proof. Since the central character of n is trivial ((3.6)(ii)), the functional
equation of L (s, n) reads as follows :

L(s, ?c)=e(s, 7i)L(l—s, TT),

where e(s, TT) is the £-factor of TT. Considering (3.3), we see that the statement is
equivalent to the following equality :

Lemma (3.15). Let nvbe an irreducible admissible representation ofGL2(Kv}

with trivial central character and fv a new vector ofnv(y EEZ). Let wv=(_ Q

GL2(KV\ where we choose a v £=O v so that avOv is the conductor of nv. If

with £ v£= {± 1}, then, for an additive character (pvofKv of order 0, the e-factor of nv

is as follows :

i_
£(5, 7TV, 0V) — £v I <3v I v 2 ,

where v w a valuation ofKv normalized so that

,, , 1

Proof. This seems to be well-known and is easily computed by using [15,
Proposition 6.17] I
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Corollary (3.16). (cf. [32].) Let n=^,nv be an irreducible admissible
representation of GL2(A#) with trivial central character. Under the notation of
(3.15) for each nv, we have the following formula for the e-factor of n:

e(& *) = I I e , - (H av v- (II dv v)2}*-i ,
ver ver ver

where (<f V)V£=A* is a differental idele attached to a non-trivial additive character T
ofAK which is trivial on K ([33, W, Definition 4]).

Proof. By definition, </)v = Tv(d~l • ) is of order 0, so

= 11 fiU ^v, 0v(^v ' ))

We return to the proof of (3.14). Here

ni f lv iv=<?- 1 -<r d e g n =<r 1 - d e 8 " ((3.12), (3.13)),
ver

II M, ,=q2-2'°=q2 ([33, VB, Proposition 6]),

SO

Hence it suffices to show that
(i) for v^Z— {00} which does not divide n, wvfv=fv,
(ii) W 00/00= "/CO.

(i) is clear because wv£GL 2(OV) =^5(0 for v^Z— {00} which does not divide
n. If we realize/oo in Fsp as in (3.13)(i),

0/00 = constant function = 0 in Fsp?

which implies (ii). This completes the proof of (3.14).
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Corollary (3.17). Let v be the order at u=q~l ofZ(u, p). Then
(i) 0 < v < d e g n - 3 ,

(ii) (- i)"=-neq .

Proof. Since TT is a constituent of £/ 0, L (s, n) is a polynomial function of q ~s

([17, 11.1]), so Z(u, p) is a polynomial of u. Now (3.14) implies that the degree
of the polynomial is deg n —3. (Note that Z(0, p) = 1.) Hence (i) follows.

Next we set

Z(iif p} = (u-t

Then we have

z( 1 f nW-J -iyy(_J__
^q2u' ' ^q2u ' ^q2u' y L qu

so

Z(w, p) , ^

q u / \q u

Since F(^ \ p) ^0, we obtain 5(^ !, p) = (— 1)" by setting u =q ~l. On the other
hand, from (3.14)

which completes the proof of (3.17).

§ 4. Hecke Algebra and Its Eisenstein Ideal

We follow the notations of § 3. Moreover, we assume that n is a maximal
ideal of A (cf.(3.13)(ii)), and set d = deg n= [/c(n) : F9]. Then the genus g of
Xo(n) ( = the dimension of J0(n)) is given by the following formula ([11, 3.4.18]) :

(4.1) g=

q 2
q -1

d-2
2 ^

g . _

9-1

We write / instead of/0(n) for simplicity.
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Definition. The Heche algebra T is the subalgebra of End* (/) generated by
U {wn} over Z.

Proposition (4.2).
(i) T is a finitely generated Z-module.
(ii) T(|)Q is a commutative semi-simple algebra of dimension g over Q.
(iii) TfQ=End*(/)(f)Q.
(In fact, in (iii), End* can be replaced by End#. See Appendix.}

Proof, (i) results from the well-known fact that End(7) is a finitely generated
Z-module.

Next, in the isomorphism (3.8)

( ® 77v)
H°(n) is of dimension < 1 for each n. This follows from (3.13)(ii)(cf.ver— {00}

[3, Theorem 1] ) . Therefore, there exist just g such TT'S and if we call them n\9 ... 9
7Tgf we have the following isomorphism of Gal (Ksep/K^ -modules :

, Q,)-

Then

>Q,

— End oaKX8"1/*:) (K|(/(*T)) * ® Q;) (anti-isomorphism)

- EndGal(x»p/X)(^ltao(n)®/s:8ep, Q,))

- End Gaio^/jo (©j /o (TT;-) )

where the last isomorphism follows from the fact that each p (/T/) is irreducible and
that p (TCJ) ^ P (KJ ' ) unless j =j ' .

Now define Tx to be the subalgebra of T generated by {rp p ̂ n} over Z. For
each TCj, the 1-dimensional Q /-vector space (^jS)^ KJ. v)^0^ is generated by ®/}, v,
where//, v is a fixed new vector of n^ v(yEiZ— {°°}) and the action of Tx on this
space (in other words, the set of eigenvalues of Tp

?s (p =£ n) ) determines 7T; uniquely
(the strong multiplicity one theorem). Hence the image of
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should be the whole fl Q/. Since T'C TCEnd*C/), we obtain
y=i

Tf Q, = End*(/)(f>Q^n Q,.

We can easily show the statement of (ii) and (iii) by using this isomorphism. |

Remark (4.3). From (4. 2) (ii), we obtain

(4.4) T(8)Q-Fi X — XFS, Ft : algebraic number field,

S IF, : Q] =g,
1 = 1

and this decomposition gives the following isogeny over K :

(4.5) J - >JiX — XJs,

where // =//$ / / with <$ / = Ker (T -> Fj. Here we have

(4.6)

In fact, since

as Gal (Ksep/K) -modules, we have

accordingly

dim/,=ydimQ,

TIQ;
' e
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The set of cusps ^o(n) — F0(n) consists of two A'-rational points correspond:
ing to the points of r0(n)\PlGO (cf. (3.4)). (See [13, 3.4] for the JT-rationality.)
We denote by °o (resp. Q) the ^-rational point corresponding to (1 : 0)(resp.
(0 : l^eP'GO and define c^/GO to be the class of the divisor (Q) - (oo) of
degree 0. The subgroup C of /GO generated by c is finite cyclic and its order N is
given by the following formula ([13]) :

d : odd
q-\

—2 d : even.
q —1

(4.7) N =

Lemma (4.8).

wnc=-c.

In particular, C is preserved by the action ofT : TCCC.

Proof. Immediate from definitions (cf. [31]). H

Definition. The Eisemtein ideal I of T is the kernel of T-> Endz(C) (i.e. the
annihilator of c).

By definition T/I—Z/NZ, and from (4.8) we can see that / contains Tp —
n) andw n +l .

Definition,,
(i) An Eisenstein prime number is a (rational) prime number which divides N.
(ii) An Eisenstein prime ideal of T is a prime ideal of T which includes the
Eisenstein ideal /.

Remark (4.9).
(i) By (4.7), an Eisenstein prime number / does not divide q.
(ii) Since T//— Z/7VZ, we have the following one-to-one correspondence

{Eisenstein prime numbers} < — > {Eisenstein prime ideals}
/ ^ a /)

the prime number which generates & D Z < - 1 <g
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Definition.
(i) Let $1 be an ideal of T. Then we define

(ii) We write J (resp. /~) instead of J(/) (resp. J(/)"). The abelian variety J is
called the Eisenstein quotient of /.
(iii) For each Eisenstein prime number /, we write /(/) instead of J^\ where <£
is the Eisenstein prime ideal corresponding to /.

Lemma (4.10). Let b be an ideal off. Under the notation of (4.3),

J/bJ - >UJi
iGA

is an isogeny, where A = {i = I , . . . , s [ b C 9$ ,-}

Proof. Since (T/b) ®Q is a quotient of T(|)Q— H F/, we have the foUowing
commutative diagram for suitable A'c. {1, ... , 5}.

T Q - U F i

q - n Ft./eyl'

Here we can easily see that i^A'&i^A, hence

(T/b)§Q^nF,-n a/*,)® Q.
^ ze^l jeyi ^

From this the statement follows immediately. I

Proposition (4.11), We follow the notation of (4.3).
(i) Let I be an Eisenstein prime number and <£ the Eisenstein prime ideal
corresponding to I. Then

rO). ru
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is an isogeny, where A\ = {i = l, ... , s \ ̂
(ii) The following two homomorphisms are isogenies :

I - > II Jt. where A={i=l, ... ,s\3&: Eisenstein prime ideal s. t. *P /CUSP}
i<EA

J~ - > II Jt, where A~={i=l, ... , s \ 3JS? : Eisenstein prime ideal s.L
~

Proof, (i) By (4.10), it suffices to show that b y C ̂  t <^=> ^J,-C Jgf. Set T# =
(T —JSf) -1T, then f^ may be identified with the completion of T^ at its maximal
ideal &T#, since <£ is a maximal ideal of T. (Note that T/JSf — Z//Z, which is a
field.) Now T^ is a noetherian local ring, so T^->f^ is injective.

We have the following commutative diagram :

T - fl1=1

\ \
T* -> n1=1

where

J,)(CF,) $,CJg?.

Hence

= Ker(T >T^)

= n*i.
Noting that each S i is a minimal prime ideal of T, we obtain b ̂ C *p f <=^> ^S /C J^f.
(ii) Since f/^ II T^, we have b/= H b ̂ . Then, from the proof of (i),

J5f : Eisenstein 5£ : Eisenstein
prime ideal prime ideal

we can see that b/= fl ^P/. This implies that the first homomorphism of (ii) is an
isogeny, as in the proof of (i). From this, it follows immediately that the second
homomorphism is also an isogeny. This completes the proof. 1

Proposition (4.12).
(i) Let I be an Eisenstein prime number 7^2. Then the homomorphism /-> J(/)

factors through J-^J~.
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J - > J~

\ Q /

(ii) IfN is odd, then J=J~.

Proof, (i) First we note that wn— l = (wn+l) — 2 is invertible in T# since
wn+ie^ andief £. Then (w n — l ) ( w n + l ) = w j — 1=0 implies that w „+! =
0 in f ^ , that is to say w „ + 1 e b y - This proves (i) .
(ii) IfN is odd, we obtain from (i) that w n + l £ Pi

Jz? : Eisenstein
prime ideal

Remark (4.13). By the formula (4.7),

either
N is odd 4=> q is odd and d is not divided by 4,

or
q is even.

Proposition (4.14).
(i) For each Eisenstein prime number /, / (/) =£ 0.
(ii) The following are all equivalent :

(a) d > 3 ; (b) g > 0 ; (b') g > q ; (c) N > 1 ; (c') N > 5 ; (d)

Proof, (i) By (4.11)(i), it suffices to prove A^0. As in the proof of (4.11)
(i), Ai = 0 implies T^ = 0. This is absurd, since T/J^~Z//Z^O.
(ii) We can see (a) O (b) O (bO from (4.1) and (a) <=> (c) <=> (cO from (4.7). (e)
=> (d) ^> (c) is clear. We shall show (c) => (e). By (i) and (4.12) (i), it suffices
to check that if N > 1, then there exists an odd prime number / which divides N. If
this is not so, then N=2M with M > 1. In particular, N is even and then (4.13)
implies that q is odd and d is divided by 4. Hence q4—! divides qd~ 1 and q2+ 1

divides —5 — -=:N=2M, so — - — divides 2M~l. This is absurd since — - — is an
q —I 2 2

odd number > 1. I

Let / be an Eisenstein prime number and =£? the Eisenstein prime ideal
corresponding to /. Since T is finite over Z, only finitely many prime ideals of T
contain / and, when we call them JSf i = JSf, J£?2, ••• , & 't> the following decom-
position exists :

(4.15) f ( 0 - t X - x f
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where we set (T^)/:=Tjsf2X ••• XTT^. From now on, we denote by tg the idem-
potent of f (/) which corresponds to (1, 0)ef #X (f *)' .

Proposition (4.16).
(i) The composition of C— *VQO —>J(K) is injective.
(ii) ITze kernel of the composition of C— >/(/0 -> /GO — >/~ GO is contained in
C [2] . In particular, if one of the equivalent conditions of (4. 14) (ii) is satisfied, then
the image of C in J~ GO w woZ reduced to zero.

Proof (i) Let / be an Eisenstein prime number and £P the Eisenstein prime
ideal corresponding to /. The following exact sequence of T//T( — f(/)//f(/)) -
modules exists :

] - /GO [/]

Taking the J£? -primary part of this sequence, we obtain

which is again exact.

Claim. £<? ( (b */) (K) [/] ) - 0.

). Then there exists a finite extension L/K in K/K such that j; i , . . . , y k are all
in J(L). For each r > 1, fix £^, r£T which is congruent to e^ modulo lr f & . Since
x is an J-torsion element, we have

Here, by definition e^ b # = 0 in f (/) , hence £^, r b y C / r T = / r f (/) H T for each r > 1 .
Therefore £&x£^lrJ(L) for each r > 1, which implies

Thus

since /(L) is a finitely generated Z-module.
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In particular, J(K) [jSf] ->J(/)(^0 is injective, since

Now, turn to the proof of (i) . If the map is not injective, then there exists a
prime number / which divides N and x£=C[/] which is a non-trivial element of the
kernel. Since the Eisenstein prime ideal J2f corresponding to / is generated by / and
/, and since 1C = 0 by definition, we see that x £ J (K) [JS?] . By definition, the image
of x in /(AT) is zero, a fortiori so is the image of x in J(/) (A"). This is contradictory
to the injectivity of /(X) [jSf] -^/(/)GO.
(ii) Let x be an element of the kernel of the map of (ii) and x' be the image of
x in J(JO. ^ince J~ = J/(w „+ 1)J implies J ~ GO =/(£)/ (w „ + 1) (/(£)), there
exists yE:j(K^) satisfying jc'= (w n+ l)j>. On the other hand, xEEC implies w nx =
—x, so

Since C-^J(K) is injective from (i), we have 2jc = 0.
As we have seen in the proof of (4.14) (ii), N can never be equal to 2. Thus

the second statement of (ii) follows. I

Proposition (4.17). Let b be an ideal o/T and set B =J/ b/. Let & denote the
Neron model over S of B. Then for each r > 0, £^(^[/r]) and e^(^°[/r]) are
admissible for (S, S") = (P^, P^— {oo, n}) m r/ze sense o/ § 1.

Proof. From (1.3), these are objects of the category # of § 1, so it
suffices to show that (e^(^[/r]))(JCsep) and (e*(#° [/"]))(***) are admissible
as Gal (Ksep/K^) -modules. Note that both of these modules coincide with

Now since T^/rT^ is an artinian local ring, there exists m > 0 satisfying
T^. Then we have

sep) [/ ']

accordingly it suffices to prove the following statement (m) for each m > 0 :

(m) : £(JTep) [^m] is admissible as a Gal (K^/K} -module.

If we admit that (1) is true, then for each m > 1, from the exact sequence

e
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where fai, ... , a k} C T is a fixed set of generators of S£ (i.e. JSP = TflH
we can reduce (m) to (m —1). Thus we have only to prove (1).

SetL = K(B[jSP]f ///), that is to say L is the subfield of JTsep corresponding to
the kernel of

Gal (K "*/£) -> Aut (fl (£sep) [JSP]) X Aut (//, (£sep) ).

The extension L/K is a Galois extension and G = Gal(L/j^) is a finite group.
For each p^Z— {°o, n}, 5 has good reduction at p. Therefore L/K is

unramified at p and the Frobenius element <pp£G is defined (up to conjugacy).
Note that

„)[#]-
since B has good reduction at p. Then from (3.10), we see that the action of <p p on
this finite module satisfies <p J - Tp • <p p +q deg p = 0. Moreover, since T?—(\+q deg p)
EEJ by (4.8) it satisfies

" " J ~ ~ ~ x fgd e g p = 0, or

This implies that the characteristic polynomial of (p? in the Z//Z-vector space
can be written as follows :

where 7 is the dimension of B(Ksep) [jSf] over Z//Z.
Now set

W=B (K sep) [JSP] e CB (*: sep) [JSP] ) v,

where (B(K^ [^])v-Homz//z(^(^sep) [JSP], // / (J£ sep) ) . (Note that the action
of Gal(^Tsep/^) on W factors through G, so <pp acts on W.} The characteristic
polynomial of <p p in PF is

which coincides with the characteristic polynomial of <pp in (Z//Z)r©(///(^sep))r.
Moreover, the density theorem of Chebotarev type (cf. [33, XIII, Theorem 12])
implies that for any g^G, its characteristic polynomial in W coincides with that of
(Z//Z)r©(///(JTsep))r. Hence the semi-simplification of the G-module W is
isomorphic to (Z//Z)r©(///(^sep))7, by the Brauer-Nesbitt theorem ([4, 30.16]).
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Since B (K sep) [JS? ] C W, this completes the proof. I

§ 50 Main Results

We follow the notations of the preceding sections (especially § 3 and § 4) .
Let / be an Eisenstein prime number and JS? the Eisenstein prime ideal

corresponding to /. Let ^P be a minimal prime ideal of T (i.e. ^3e {<$ 1 , ... , ^3 J in
the notation of (4.5)). We assume that ^BCJ^. Set B=J/^J and let ^ be the
Neron model over S ofB. The factor ring R '• = T/^P may be regarded as a subring
of Endjf (B). Note that R is an order of the (algebraic number) field F of fractions
o f R .

The decomposition (4.15) :

t<o-f*X(f *)',£*= (1,0)

induces

and

'= (f *)'/$(! ̂ )'®Q/. LetE=E ! X — XEA be the
decomposition of E into fields E \ , . . . , Eh of finite degree over Q /. The assumption

implies that E^O.
For an E-module F, we define

dim£ V-=(di

where e/=(0, ... , 1., ... , 0)e
/

Theorem (5.1). Notations and assumptions as above. Set

where H I (5, F/ ( @) ) = (Ijm H I (5, J1 [/ r] ) ) ® Q , 63; definition. Then
(i) dim£ F= (0, ... , 0) or (1, ... , 1) (i.e. V is a free E-module of rank < 1).
(ii) dim£ F= (0, ... , 0) if and only ( fw n +ie<p,
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Proof, (i) First we note that

Now £^(^°[/r]) is admissible from (4.17), so it follows from (1.11) that

where we define L0= length z_mod B(K) [7°°]. (Note that L0 < °° since 5 (AT) is a
finitely generated Z-module.)

Lemma (5.2). <%0X/c(ri) is a torus. In other words,

where b is the dimension of B.

Proof. By the result of [13] , we see that the special fiber of J> °, the "connected
component" of the Neron model </ over S of/, is a torus. From this, the statement
follows immediately. I

From (2.1) and (5.2), we conclude that

<5n(£<z>(^°[/ r]))=r • 2 dimQ/E-r • dimQ/E

=r - dimQ/l?.

Now from the exact sequence

we obtain the following exact sequence for each r > 0

(i.e. T/lrT^Hl(Sf

where T=ljmHl(S, £<? (3$ ° [/ m] ) ). Thus, for each r > 0, we have

r dim Q/ V < length zT/lrT (Note that V= T<$ Q /. )
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Since r > 0 is arbitrary, we obtain dimQ/F < dimQlE, or

i] [JE,:Q,] dim£(e,.F)<i] [Et : Q,].
1=1 ' 1=1

Case I : dim£j(e, F) >0 for all i= 1, ... , A.

In this case, the inequality above forces dim£(F) to be (1, ... , 1).

Case 2 : There exists an /Oe= {1, ... , h] such that dim£ (e/oF) =0.

Let p'F(resp. <7X
F> /, E) denote p/r(resp. oFj /, £j) for If'/AT and .R — > End*(I?) - ^

f (B7) (cf. § 2). Since o'Ft /,£Io
=0, we obtain that p'F=Q from (2.4) (ii). This

implies that for all i = 1, ... , h, o'°F, /, ^ = 0 ((2.4) (i)), i.e. dimE V= (0, ... , 0).
(ii) Fix a polarization A : B^B' over K

Lemma (5.3). The ring homomorphism R^EndK(B) satisfies the condition
(2.6).

Proof. Take a prime number /x which does not divide #(e.g. l/=0 and let

e\ : TV (B(X)) xrr (5(^)) ̂ Zr (1)

be the Weil pairing associated to A. It is well-known that the condition (2.6) is
equivalent to :

e } (ax, y} =e}> (x, ay) for all x, y £ TV

Now for each maximal ideal p ¥= n of ^4, we have an isomorphism

Tf (B(K»^T,- ((B X/c(p)) Oe(p)),

via which we shall identify these two modules with each other. Denoting by <p p the
#(/c(p))-th power Frobenius element in Gal(/c(p)//c(p)), we obtain

e]>(Tvx, y^=e^(<pv+qd^"<pp~')x, y)

=e?(«>P* J')+9degpeK?>p-1)x, j;)

= <P,e$(.x, p^y^+q^'V^eKx, <pfy~)
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=c?U rpj;) (3.9)

Since T'<|>QD T in the notation of the proof of (4.2), this completes the proof of
the statement. I

Because of (5.3), we have oFi / ,E I^O'F I i,Ei for each i=l, ... , h . (Note that pF

=p'F is clear from (2.3) without (5.3), since A induces a Q/[Gal(Ksep/K)]-
isomorphism F/ (B (JO ) - F/ (£' (£) ).)

Now for each /= 1, ... , h, we have

(5.4) OF,I>EI <l

from (i), and

(5.5) OF. i, EI =pF(mod. 2)

from (2.7). Further we define £ne {±1} by the condition w n —£ n ^^P- (Observe
that (w n —l)(w n +l)=0£^P and ^P is a prime ideal of T.) Fixing an inclusion Ei
^- Qi and applying (3.17)(ii), we obtain

(5.6) (-!>=-£„.

Then

I 2) (5.6)

f. 2) (5.5)

(5.4)

and

2) (5.6)

,^ KmoJ. 2) (5.5)

The following is the main theorem of the present paper.
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Theorem (5.7).
(i) J~(K) is finite.
(ii) HI (J-/K} ®Z[q ~!] is finite.

Proof. From (4.11) (ii), it suffices to prove, in the situation of (5.1), the
finiteness of I? GO and IHG&/1O §Z[0 -1] under the assumption wn+ le^B. Note
that E^O. From (5.1), OF> i, ̂ =0, which implies that a/=r=0 by (2.5) (i). Here
r = 0 means the finiteness of 1?GO and a/ — r = 0 implies the finiteness of HI(fl/lO

Remark (5.8).
(i) Define 7 0 to be the ideal of T which is generated by {Tp - (1 +q deg p) p ̂  n} U
{wn+l}. By definition, T/70 — Z/NoZ* for some natural number No > 0. We
claim that NQ^O. In fact if NQ=Q, then E—J/I^J is a non-zero abelian variety
overK and (3.10) implies that the action of <pp on Vi(E(K)} satisfies the equation
(<p p— 1) (#> p — <? deg p) =0, where p£=J7— {°°, n} and / is a fixed prime number prime
to q. This contradicts the well-known (and already proved) "Riemann hypothesis".

From definitions and from (4.8), we obtain that I Q1DI and that N divides N0 .

Question (5.9). I0=/? (In other words, N0=NV

In the case of the modular curve Xo(/?)/Q Cp : prime number), Mazur has
settled the corresponding question ([19, n, (9.7)]).

Note that if we define /o to be the kernel of T-> (T//0) §Z[# ~!], then 70C
JoCI from (4.7) and (4.8), and the results of this section still hold in case I is
replaced by /J.
(ii) We ask another :

Question (5.10). J=J~ !

(We have seen in (4.13) that this is true unless q is odd and d is divided by 4.)
The corresponding question in the case of the modular curve X0(p) over Q

(/? : prime number) has also been settled by Mazur ([19, n, (17.10)]). Without
the equality (5.10), however, we may hope that/" will play some role in the study
of rational points on Drinfeld modular curves (cf. [20, § 3, Axiom 2]).
(iii) Roughly speaking, our theory is concerned only with the Hecke algebra
tensored with Q. (It might sound strange because the Eisenstein ideal does not
make sense after tensored by Q, though.) In fact, the finiteness of the Mordell-Weil
group and the Shafarevich-Tate group only involves the Hecke algebra tensored by
Q.

On the other hand, in [19], to settle the questions corresponding to (5.9) and
(5.10) above, it is necessary to develop an elaborate theory of the Hecke algebra
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itself, and, for that, the theory of modular forms defined over an arbitrary
commutative ring, not only over a field of characteristic 0, is indispensable.

This is the main reason why (5.9) and (5.10) remain open in our case.
Drinfeld's theory only involves automorphic forms defined over a field of
characteristic 0, like Q/, and no satisfactory theory of automorphic forms defined
over an arbitrary commutative ring has been established so far in the function field
case. •

Appendix., The Endomorphlsm Ring of Jo (n) (n i Maximal)

Notations as in the text. We prove the following theorem (cf. (4.2) (iii)).

Theorem (A.I). If n is a maximal ideal of A, then

End jK/oGO) = EncU(JoGO).

CoroOary (A.2).

Proof. Immediate from (A.I) and (4.2) (iii). H

Corollary (A.3). There exist the following one-to-one correspondences

{X-isogeny classes of ^-simple abelian variety factors of Jo GO}

< — >{^T-isogeny classes of ^T-simple abelian variety factors of J0(n)}

< — >{K-isogeny classes of ^-simple abelian variety factors of Jo GO}

< — > {fields occurring in the direct product decomposition of T®Q}

< — > {minimal ideals of T} .

Proof. Easy to see from (A.I) and (A.2). (Note that T is commutative.) B

Remark (A.4). It is known that for an abelian variety B over a field K,

End L (£) = End* *eP (B}

holds, where L is an arbitrary extension field of K including K sep. Therefore (A. 1)-
(A.3) still hold if we replace K by such L (especially by J^sep).

Now let us begin the proof of (A.I). Write J instead of Jo GO as in the text.
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First by using the result of [24], we shall show that the endomorphism ring is
defined over an extension field of K which is "quite small".

Lemma (A.5). / has semi-stable reduction at any

Proof. At v^J7— {n, °o}, / has good reduction. At v = n, the result of [13]
implies that / has semi-stable reduction (cf. (5.2)). At v = °°, (3.7) implies the
following

where W ̂  is as in § 3 and g is the dimension of J. Therefore we obtain a

which implies that the action of the inertia group on Vi(j(K oo)) is unipotent, since
there exists an exact sequence :

O^Q/O) — W*^Q^ 0. I

From [24, Theorem 1.1] and from (A.5), we can see that all the elements of
End^C/) are defined over the maximal unramified extension field K ofK. Note that
the field K coincides with F9^( = Fg(T)), as 7Ti(P| , * ) = 1. Since End^(J) is
finitely generated over Z, we have

End jK-0 -End R (J) = EndPqfK(fT)

for sufficiently large r. |

Remark (A. 6). For a polarization /I :J^f over K, T(|)Q is invariant under
the Rosati involution, as we can see by using (3.9) (cf. (5.3)). Therefore the
pairing (x, j) I - ^Tr^g/Q^cy) on T(|)Q is positive definite, hence, in the decom-
position (4.4) T® Q— FI X ••• X F S , each Ff is a totally real algebraic number field.
On the other hand, each A'-simple abelian variety factor of / has semi-stable bad
reduction at n, as can be seen just as in (5.2). So, no such factor has complex
multiplication in the sense of [28] .

Thus the assumptions of [24, Theorem 2.3] are all satisfied and the conclusion
is that all the elements of End^(/) are defined over the compositum of quadratic
extension fields of K. So, we obtain
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in other words, we may assume r = 2. (But this result will not be used in the proof
below.)

Since End ̂ (J) /End ^(/) = End *«*(/) /End *(/) is a torsion-free Z-module as
can be seen by considering the action of Gal(Ksep/K\ it suffices to show

or

for a prime number / not dividing q.

Notation (for simplicity). Let k be a field and let V and V' be Q/[Gal(fcsep/
&)] -modules. For an extension field kf of k which is included in /csep, we define

Lemma (A.7), Lef Fam£ V' be Qi[Gal(K^p/K ^-modules both of which are
isomorphic to Woo, Let L be a finite extension field ofK oo which is included in KS£P.
Then

Horn a) (F, F')=Hom(0(F, Y\

Proof. We may assume that V=V'—W '«,. We have the following non-split
exact sequence of Gal(^sdp/^Too)-modules :

This exact sequence is non-split also as a sequence of Gal (K^/L) -modules, since
the image of the inertia group of Gal(K^p/K ^ in Aut(^oo) is infinite. Let D be
the image of Q/— * Woo above.

Now/ e Horn CL) OP oo, FT oo) acts on D since Horn a) (Q/, Q/ (— 1))=0. AsD
is of dimension 1 over Q /, f—a - id WOQ kills D for some a £ Q /. Iff—a - id Woo does
not kill the whole space W™, then (f—a - idWcx)W ^ is a Gal(^sdp/L)-submodule
of fF oo of dimension 1 over Q/. Since the exact sequence above is non-split,
(/— a - id w^) W^ must coincide with D.

0 -> Q/ — W^ -» Q/(-l) -> 0

f-a-idWm

Q, -^ W^ -» Q,(-l) -» 0.
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Hence/— a • id Woo induces a non-trivial element of Horn (L) (Q / ( — 1) , Q /) , which is

absurd. _

Thus /— a • id Wo3 kills Woo, that is to say/EEQ/ • id Woo. This shows that

Hom(L)(JFoo, JFoo)=Q/ • idWoodHom(Koo^Wao, Woo\ which implies (A.7). 1

Each element /EE End ̂ (/) defines an element of EndQ^SjpOr/)) in the

proof of (4.2). It suffices to show that the image of / belongs to II Q/g j— \
(CEndg (©p(7Zj))). Thus the following lemma (A. 8) completes the proof of
(A.I), since End^(/) ^Endp rK(J\ as we have already seen.

Lemma (A.8).

Hom(F rfGoOry), pOr/)) = .i , i . , rA;M-v j y » ^ v y y y Otherwise.

Proof. Fixing an embedding ^sep ^Ks£p, we have

Ory), pOr/))

(7r;), p(;r/))

= Horn (XDO) Go Or;), p (TT/ ) ) (A.7) ,

so

which implies the statement, just as we have seen in the proof of (4.2). |
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