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Action-angle Maps and Scattering Theory for Some
Finite-dimensional Integrable Systems

III. Sutherland Type Systems and their Duals *

By

Simon RUIJSENAARS **

Abstract

We present an explicit construction of an action-angle map for the nonrelativistic N- particle

Sutherland system and for two different generalizations thereof, one of which may be viewed as a

relativistic version. We use the map to obtain detailed information concerning dynamical issues such as

oscillation periods and equilibria, and to obtain simple formulas for partition functions. The

nonrelativistic and relativistic Sutherland systems give rise to dual integrable systems with a solitonic

long-time asymptotics that is explicitly described. We show that the second generalization is self-dual,

and that its reduced phase space can be densely embedded in PN~l with its standard Kahler form,

yielding commuting global flows. In a certain limit the reduced action-angle map converges to the

quotient of Fourier transformation on C^ under the standard projection
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1 Introduction and Summary

1.1 Introduction

In two previous papers [1, 2] (henceforth referred to as I, n) we have
studied Calogero-Moser type .AT-particle dynamics whose long-time asymptotics can
be encoded in a soliton-like scattering transformation. In this paper our starting
point consists of the closely related Sutherland dynamics

g*\v\ E r (HO (1-1)
sm

2 ^ J

and two integrable generalizations thereof, viz.,

N

(1.2)

(1.3)

(IHb) (1-4)

1/2

, re(0, 7T/AO (1.5)
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We may and will view these dynamics as the simplest non-trivial representants of
three classes of commuting dynamics, each of which has an associated class of
'dual' dynamics. The former dynamics yield oscillatory motion, but the dynamics
dual to (1.1) and (1.2) (which are exemplified by (1.106)-(1.108)) have a
solitonic long-time asymptotics. The integrable systems associated with (1.4) will
be shown to be self-dual.

Unless explicitly stated otherwise, we take

oo), g<o (1.6)

Setting

T = Pug/2 (1.7)

this convention entails z > 0 for the case Mrei ( where /3 > 0) and r > 0 for the case
Mb (where — i& > 0). We suppress dependence on the parameters whenever this
causes no ambiguities. (The sign of g is fixed to ease the definition of certain
matrices ; the various maps and dynamics occurring below are even in g, cf. also
I Proposition 5.5.)

To a large extent this paper is self-contained. However, we do need the
spectral asymptotics and canonicity results obtained in I. For more context and
background material concerning the integrable systems at hand, we refer to [3-6] .
In particular, in our survey [6] we discuss both the classical and the quantum
versions of the above-mentioned systems, their elliptic generalizations and Toda
type limits, and their relations to infinite-dimensional integrable systems. Also, in
[4] the terminology 'nonrelativistic' (nr) vs. 'relativistic' (rel) is explained, cf. also
[5,7] . (To model solid-state phenomena it may be more natural to replace the speed
of light by the speed of sound, e.g.) The suffix b in (1.4) stands for 'bounded'.

In contrast to the dynamics handled in I and II (whose interpretation is
unambiguous), there exist three different interpretations of the Hamiltonians (1.1)
and (1.2), whereas (1.4) admits even more than three versions. To explain this, we
introduce the Weyl alcoves

wn= {<5eR"|<5i , . . . , 5»>0 , \ f i \ ^ 8 j < 7 u } 9 n=N-l (1.8)
7 = 1

WN = {q^nN\(qi-q2,q2-qi, ... , qn-qN}/2^W n] (1.9)

Clearly, WN is an open convex set, so we obtain a symplectic manifold <Q, o)> by
setting

(1.10)

(1.11)
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Replacing *,/? by q, 9 at the rhs of (1. !)-(!. 3), we obtain smooth positive functions
on Q. The Hamiltonians defined in this way will be denoted by ff.

Next, consider the Z-action on Q whose generator reads

G:(qi, ...,qN,0i, ... , ON) I - > (qN + 2n/\lJL |, q 1? ... ,qN-i90N,Ql9 ... 9 0N-i)

(1.12)

This action is well defined, free, discrete and symplectic, and the functions ff are
Z-invariant. Thus we may divide out this action to obtain a manifold

Q = Q/Z (1.13)

equipped with a symplectic form &>, and smooth functions H on Q. We coordinatize
Q by setting

(1.14)

where FN is defined by

(1.15)

This is a natural choice, since FN is a fundamental set for the Z-action restricted to
WN. To be more specific, given (g, 0) EE£2, there exist uniquely determined x ^FN ,
/e {1, ... , AT} and m<EZ such that

and then /? is defined by

N-^ * (1.17)
P N-l + 2 — "\
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We may and will view (1.1) and (1.2) as the coordinate expressions for the smooth
functions H on Q we have just defined. Note that on the open dense coordinate
patch {x i < n/ \fi \ } one has

(D = ibdXj f \ d p j (1.18)
7 = 1

For later purposes it is expedient to insert an important observation at this
point : two vectors q, qEiW # belong to the same orbit under the Z-action if and
only if the diagonal matrices A (g) and A (g) are related by a permutation, where A
is defined by

4 GO = diag(e^i, ... , e™*} (1.19)

(Note that the permutation involved is necessarily cyclic.)
Physically speaking, the Hamiltonians H(q, 0) on the phase space Q describe

N particles on the line whose distances are bounded below and above due to energy
conservation. Hence they can be distinguished by their ordering. The Hamiltonians
H(x,p) on Q describe particles on a ring, whose angular positions are encoded in
the phase factors exp (/£*;) £5 l C C. Then the ordering is fixed up to a cyclic
permutation. Factoring out the Z-action generated by G amounts to viewing the
particles as indistinguishable.

However, one may also treat the particles as being distinguishable. Then one
needs a phase space

(1.20)

where Z' denotes the Z-action generated by

GN: (0,0)1 - > ( g 1 + 27T/|//|, ... , qN+2z/\fi , 0) (1.21)

One way to coordinatize Q' and the quotient form a/ is to take

Q'^{(y,k-)^R2N\y^F£, ta'^dyj^dkj (1.22)
7 = 1

where

F^ {y^WN\T*yj^(-nN/\ii\97iN/\n\~]} (1.23)
7 = 1

That is, for a given (q, 0)6= £? one has

j=l,...,N (1.24)
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where m^Z is uniquely determined. Replacing x, p by y, k in (1. !)-(!. 3) yields
smooth functions H'(y, fc) on Q' . Note that one has

Q-Q'/ZN (1.25)

where the Z# -action consists in cyclic permutations of y, k ; this amounts to writing

Z-ZtfXZ' (1.26)

Summarizing, we have

(<?, 9} efl ^> (y, k} GED' — (x, /,) eO (1.27)

(Here and below, n( 0 ) denotes regular covering projections.) As far as dynamics
is concerned, our emphasis will be on understanding a class of commuting
Hamiltonian flows on Q that contains in particular the flow generated by ff. All of
these flows admit quotient flows on Q' and Q, whose relevant features can be read
off from the covering sequence (1.27).

Just as in I and n, we shall arrive at a detailed understanding of the
commuting flows via an explicit picture of the action-angle map and its 'harmonic
oscillator' extension. These maps are most easily constructed at the left side of the
sequence (1.27), since Q is convex and hence topologically trivial. Moreover, a
linear coordinate change turns Q into a product of R2 and an open convex subset
M of R2", encoding the center of mass motion and reduced (center of mass frame)
motion, resp., for the Sutherland dynamics. Correspondingly, the action-angle map
can be factorized. Since this change of coordinates

« : D-^-R2XM, (q, 0) I — > (5, , rs ; 8, r) (1-28)

plays a key role in the sequel, we detail it now :

l = (ql-q2)/2

1 30)

(Recall n = N— 1.) Clearly, this entails
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M=wnXRn (1.31)

Also, the new coordinates are not quite canonical ; setting

(1.32)

(1.33)
7=1

one easily checks that

(1.34)

(Of course, the scale factors 2 and N are a matter of convention. Our choice
ensures absence of similar factors in many later formulas.)

We now turn to the Mb systems. Here, we need the open convex sets

,, ..., \v\6n>T>0, \v\i2 dj<n-T} (1.35)
7 = 1

b
n} (1.36)

Note that the restriction i < n/N in (1.5) is equivalent to wj being non-empty.
Now we put

Q={(q,ff)t=XL™\q^Wb
N} (1.37)

and equip Q with the symplectic form a), cf. (1.11). As before, replacing x, p by q,
9 at the rhs of (1.4), (1.5) yields a smooth real-valued function H on Q. (The
restriction on q guarantees that all radicands in (1.5) are positive.)

Next, we define a ZN- action on Q by setting

01 — »0-h2flfc/b8|, k^ZN (1.38)

and a Z-action via the generator G, cf. (1.12). Combining these, we obtain a free
action of a semi-direct product of Z and Z^ (the action of Z on Z^ being generated
by (k i , ... , fcjy) I — > (kN, k i , ... , fc#-i)). This action is symplectic and leaves H
invariant, so H descends to a smooth funtion H on the quotient symplectic manifold
<Q, &>>, where

(1.39)

Introducing
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Fb
N=Wb

NnFN (1.40)

an obvious coordinatization of Q reads

Q^fap^KMlxEtf^p^-X/lfil, 7T/|/3|]N} (1.41)

Here, x is defined via (1.16), whereas the definition (1.17) of/? should now be read

Clearly, upon quotienting out part of the Z [X Z ̂ -action one can obtain various
phase spaces and Hamiltonians interpolating between (£?, <£>, ff and (£?, &)), H,
each with its own physical interpretation. We single out one of these, because its
action-angle map is most easily constructed.

To this purpose we introduce the subgroup

EN= {k^ZN L fcy = 0} (1.42)
7 = 1

Changing coordinates on Q via (1.29) and (1.30), the action of EN leaves (6S9 7S)
£ R 2 and 5 6E w J fixed, whereas 7 1 , . . . , 7 „ change by multiples of 2;r/ 1 J3 \ . Then the
quotient manifold

QC = Q/EN (1.43)

may and will be viewed as

QC = R2XMQ, M° = w*XT* (1.44)

Here and from now on T7 denotes the torus

=1) (1-45)

The obvious coordinates on Qc are 6S, 7SJ 6 and 7, with 7 now varying over
(— TT/|/?|, Tz/l^l]". The corresponding quotient form and Hamiltonian will be
denoted by coc and H c, resp. Thus we have

wc=w s+w(M°) (1.46)

where 60 s is given by (1.32) and a) (M°) by (the obvious reinterpretation of) the rhs
of (1.33).

Having prepared the arena, the battle can begin. Lest the logistics go haywire,
we suggest that the reader skip the following two sections at first reading. These
sections contain a rather detailed summary of Chapters 2-4 and might be referred
back to as needed. (This is perhaps the best policy as regards all of Chapters 2-4.)
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Quite a few auxiliary objects and a lot of notation must be introduced to define and
study the various maps and spaces that are relevant for the systems at hand, and
some of this is already necessary to even sketch their constructions. Thus Sections
1.2 and 1.3 should serve both as a database and as a flow chart, uncluttered by the
many technicalities arising in Chapters 2-4 and Appendix A. In Section 1.4 we
summarize Chapter 5 in a more descriptive fashion.

We close this introductory section with three more remarks. First, we would
like to point out that many of the Mrei and Mb objects reduce to their Mnr
counterparts when one fixes g and //, renormalizes suitably, and takes & to 0.
(Similarly, taking// to 0 in the Mrei systems and their duals, one obtains the Irei and
nnr systems, resp., studied in I.) But just as in I and n, we do not have sufficient
control over this limit to rigorously obtain all of the Mnr results as corollaries of the
Mrei and/or Mb results. Therefore, we handle the Mnr systems separately, choosing
however notation and arguments that admit partial generalization to the IHrei and
Mb systems.

Secondly, a part of this paper can be reformulated in terms of notions from the
area of Lie groups, Lie algebras and symmetric spaces ((affine) Weyl groups, root
and weight lattices, totally geodesic submanifolds, to name a few) ; the afficionado
will have little trouble doing so. (Cf. also [3] for this viewpoint.)

Thirdly, we remark that the above-mentioned dual dynamics emerge as a
corollary of the constructions in Chapters 2-4. As such, we have deferred their
definition to the beginning of Section 1.4. At this point, the dual dynamics (1.106),
(1.107) appears to be very far removed from the Sutherland dynamics (1.1). As
will be seen below, however, the inverse of the harmonic oscillator map for the
latter dynamics serves as the action-angle map for the former—a quite unexpected
and most remarkable bonus. Similarly, the self-duality of the dynamics (1.4), (1.5)
amounts to the corresponding harmonic oscillator map being (in essence)
involutive. (Cf. also our previous paper I, where the notion of 'dual system' is
more readily understood.)

1.2 Summary of Sections 2.1, 2.2, 3.1, 3.2 and 4.1, 4.2

We begin by discussing the Mnr and Mrei systems, which can be handled in
much the same way. First of all, the commuting Hamiltonians can be obtained
from an NXN matrix-valued function L on O, which is self-adjoint in both cases.
This Lax matrix is defined by (2.1) and (2.51), resp. Just as in I and n, its
spectral properties are an essential ingredient for the explicit construction of the
action-angle map. Once again, the starting point for obtaining detailed spectral
information is the commutation relation between L (q, 9} and the matrix A (#)
given by (1.19). (This relation was first used for the Mnr systems in [8, 9], cf. also
[10].)
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Combining the commutation relation with algebraic information assembled in
Appendix A, we show in Section 2.1 that L has eigenvalues A i, ... , AJV satisfying
| A / — A 7- 1 > | jLLg I , i =£/ ; in Section 2. 2 we obtain positive eigenvalues obeying In A /
— In Aj r | > 2z, i=£j. The subset of Q where all inequalities are strict is denoted by
Qr. (Here, r stands for 'regular'. On the boundary set Qb = Q\Qr the dimension
of the vector space spanned by the gradients of the commuting Hamiltonians is
smaller than N. )

It is convenient to view Q as R2XM, M=wnXRn, via the above coordinate
change ^, cf. (1.2 8) -(1.30). Then the spectral requirement amounts to a restric-
tion on M :

(1.47)

Fixing P^Qr, there exists a unitary matrix U (P) such that

fdiagC^, ...,£,) (fflj
(tf*LCO(P)= - - O-4*)

I diagfe"', ...,*"") (nrel)

where 6 varies over the action set

AN= {9^RN 0j-dj+l>d, ;=1, ...,«}, rfs|^| (1.49)

Introducing

it follows that 5S varies over R and <5 over

a,= {8(=*'\Si,...,Sn>d/2} (1.51)

In both cases we obtain

S.=r, (1-52)

A suitable fixing of the gauge freedom left in U now gives rise to n phase
factors that are written exp Gu?y-) , f ; 6E ( — TZ/ | /z | , K/ | ̂  ! ] , j = 1 , . . . , n. Setting

r*=ss (1.53)

we then obtain the (action-angle) map
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$ : R 2 XM r - >QC, (6S, 7* ; <5, 7) « — * (£, f , ; 5, f) (1-54)

where

flc = R2XM°, J#° = a n X T " (1.55)

Furthermore, the map can be factorized as

$=P2X0 r (1.56)

Here and below, P2k denotes the flip map on M2fc :

(1.57)

The detailed construction of $ can be found in Sections 2.1 and 2.2 for the
cases ninr and EIrei , resp. It is proved there that 0 is a bijection onto Qc. Moreover,
the Z-action on Qc corresponding to the Z-action on Q is determined, cf. Lemmas 2. 1,
2.2. We shall write the inverse of 0 as

/=P2Xb°, b° = (f>-1 (1.58)

(Thus far, our notation may appear somewhat bizarre. However, we are
anticipating an extension to all of Q, as well as the self-duality of the case Mb . Once
the whole picture has been sketched, we hope the patient reader will agree that our
notation is appropriate.)

The principal result of Sections 3.1 and 3.2 is that the map 0 is a real-analytic
(henceforth Cw) symplectomorphism from <Q r, £>> onto <R2XM°, wc>, where

(1.59)

w(M°) = 2S dfj A ddj (1.60)
j=i

This is proved by exploiting the canonicity results obtained in I . In brief, a
suitably chosen analytic continuation yields a branch

B:Q = RNXAN - >Qr, (4,0)1-^(0,0) (1.61)

of the multi-valued holomorphic function R from n Sections 3A and 3B. The
continuation preserves canonicity, so that

E*o)=c3 (1.62)
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where

(5 = lbdqjAd8j (1.63)
7 = 1

Then we define a coordinate change ^ by (1.50) and by

7 = 1, . . . , n (1.64)

and a Z ̂ -action by

(1.65)

Upon quotienting out the EN -subgroup (given by (1.42)), the following commu-
tative diagram arises :

B

(1.66)

Since the quotient form co/EN equals & C
9 the salient properties of / can now be read

off: in addition to being bijective (as already shown in Chapter 2), & is Cw and
symplectic.

The situation on Q r can then be understood by dividing out the Z-action on Q r

and the corresponding Z-action on Qc. This yields a commutative diagram

bt

TT(Z)

r

v i<i

) * C

' r — 1*. /\ 1YJ. r

ff(Z)

)

(1.67)

Here, Q equipped with the quotient form a) is the action-angle phase space
corresponding to the starting point <fi, <D), H. Explicitly, we may take
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Q=TNXAN^{(x9p^R2N\x^(-7i/\iLt\,7r/\fi\Y9p^AN} (1.68)

a) = f^dxjAdpj (1.69)
7 = 1

where the coordinates are related to those on Q by

Pj = 8j9 Xj=qj (mod 2*/|//|), j=l,...,N (1.70)

In Sections 4.1 and 4.2 we show that the Cw symplectomorphism <pr : <Mr,
<w(Af ,.)>-* <M°, CL)(M°)> admits an extension to a Cw symplectomorphism

0 : <M, <y(M)> - > <M, co(M)>, (5, 7) I - - («, tO (1-71)

with inverse b extending b °. Here, one has

i^dUj/\dVj (1.72)

and M° is embedded in M as the open dense full measure submanifold where (juJ9

Vj) ^ (0, 0),7 = 1, ... , n. Specifically, we have on M°

\fi\tj fy=-arctg(t;y

^^ 7 = 1, . . . , n (1.73)

^- !// 1 (u/ + t;/

so tL)(^) in (1.72) extends co(M°) in (1.60). From this result one easily under-
stands the state of affairs on Q, and a corresponding 'harmonic oscillator' picture
for Q can then be read off from the following commutative diagram :

Q-R2XM

TT(Z) ;r(Z) (1.74)

Q
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1.3 Summary of Sections 2,3, 3.39 4.3 and 404

We proceed by sketching the corresponding results for the case 11 b . Here our
starting point is the manifold Q c, cf . ( 1 .43) . In contrast to the previous cases, where
the Lax matrix is self-adjoint, L is now unitary, cf. (2.82) . Once more, L has simple
spectrum on Qc ; moreover, the minimal eigenvalue distance (in arclength along
S1) is equal to 2r. As before, we first restrict attention to the open dense full
measure submanifold

QJ = R 2 XM? (1.75)

where all distances are larger than 2r. Fixing P^Qc
r, there exists a unitary (7(P)

such that

"») (Mb) (1.76)

Here, 9 is uniquely determined by requiring that it satisfy

S 9j=N7s (1.77)
7 = 1

and belong to

Ab
N = {y^RN\(yi-y2, ... , yn~y *)/2ea»} (1.78)

where

>r, \fi\ ± £j <K-T} (1.79)

Introducing §s and ^lf ... , Sn by (1.50), it then follows from (1.77) that (1.52)
holds true ; also, from O^Ab

N one gets 6^ab
n.

Again, a suitable gauge fixing of U now yields a unique 7^ (— n/ \fjL \ , n/ \fi \ ]",
and defining fs by (1.53), we obtain a bijection

0=P2X(f>?: Qc
r = R2XM? - >0< = M2XM?, (fff , Ts ; <5, r) ' — ̂  (5s, t, ; (f, f)

(1.80)

Here we have

M° = a ^ X T n (1.81)

with the subscript r on Qc and ./If0 signifying restriction to points where the
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eigenvalue distances of the dual Lax matrix A (defined by (2.109), (2.82)) are
larger than 2r; for the 0-images this property is manifest from the relation

(1.82)

Writing the inverse of 0 as

d=P 2 Xb?, b?-(0?)-' (1.83)

we also prove in Section 2.3 that b? is essentially an involution. More precisely,
taking fi =/JL one can identify M? and M? in an obvious way, and then b ? o b ? is the
identity map. (The case P^IJL is solely a matter of more notation.)

In order to sketch the results of Sections 3.3 and 4.3, we begin by pointing out
some crucial differences between the case fflb and all previous cases (including those
studied in I and n ). First, due to the spectral restriction in the definition of Qc

r,
we are no longer dealing with a manifold that is manifestly connected. However,
this is actually the case, as will be shown in Section 4.3. But Q°r is not simply-con-
nected, as will also be proved in Section 4.3.

Correspondingly, in contrast to all previous cases, where we wind up with a
(one-valued) branch I? of R, we now have to invoke the multi-valued function R to
conclude that the bijection 0 given by (1.80) is a Cw symplectomorphism when Qc

r

is equipped with coc (cf.(1.46)) and Qc
r with a)c (cf.(l.49), (1.50)). To be specific,

we introduce the open convex set

and note that Qc is then obtained from Q in the same way as before. Denoting the
cover of Or by Qr, we arrive at a commutative diagram

Qr > Qr

o% (1.85)

instead of (1.66). However, since we still haveR*cd=co, we reach the conclusion
mentioned earlier.

The corresponding conclusion for Qr is now obtained by quotienting out the
remaining ZXZ-action on Qc

r (recall (1.39) and (1.43)) and the corresponding Z
XZ-action on Qc

r; this gives rise to a commutative diagram
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0
bt

TZ-(ZXZ)

r

r

> ,

QC
r

Tr(ZXZ) (1.86)

Qr

from which the salient features of 0 can be read off.
As it happens, it would be quite awkward to prove connectedness of the spaces

in the above diagrams already in the context of Section 3.3. Therefore, the main
result of this section (Theorem 3.5) actually involves certain connected compo-
nents, whose equality to the spaces in (1.85) will become clear in Section 4.3.
Moreover, a consideration of the diagram (1.86) is shifted to Section 4.3 as well.

Just as in the previous cases, we begin Section 4.3 by calculating the reduced
map <f> r explicitly for n = l. This enables us to infer that 0 ? admits an extension 0 °
to M°, provided two new points are added to 1$°. This extension gives rise to a
non-self-dual situation, but self-duality can be restored by adding two new points to
M°, too, and by extending 0 ° to a map 0 : M^M. The extended spaces M and M
may and will be viewed as being homeomorphic to the two-sphere, and then 0 is a
homeomorphism, cf. Figures 2 and 3 below.

This purely topological extension procedure has an analytic reformulation that
greatly enhances its cogency. First, we identify the sphere with radius R in R 3 with
the projective line P 1 ==CU {°°} via stereographic projection. Thus we have two
patches {(1, Zi)}, {(z0, l )},z0 ,Zi^C, related by the transition function z I — >
l/z, z^C *. (Here we view C as R2 via z I — > (Re z, Im z), so the transition func-
tions are Cw in Re z, Im z.) Next, we introduce coordinate changes

where the superscript /signifies that the hat is facultative and where

•- '" --
Then the above embedding of M/0 in S2 may be described by identifying (6f,
with (1, w7). The crux is now that the following holds true.

(i) One has

;r-2r) (1.89)

where the symplectic form
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d Re z A d Im z ^.n2 dz A dz , .2

amounts to the area form on S2. (This is easily verified from (1.88).)
(ii) The map

ml m (1.91)

is a Cw symplectomorphism.
(iii) The compactification of M° just described gives rise to a Cw extension of

the (reduced n = l version of the) Hamiltonian (1.4). Hence one obtains a com-
plete Hamiltonian flow on M, as opposed to the flow on M°, which is not complete.

(iv) Last but not least, M is a minimal completion, in a sense detailed below.
All of this turns out to admit a generalization to n > 1. Specifically, (1.87)

and (1.88) generalize to

>c*«, (<f, fO I — **' (1.92)

where we have set

The extension of Mfo is now given by

(1.95)

Here, we view P" as a real 2n -dimensional Cw manifold by using the N obvious
patches

^v= {(zo,. . . ,zn)eC^ z^O}/C*-{zeCjV|z,= l}-C", i/ = 0, l , . . . ,n (1.96)

whose transition functions are indeed Cw. Then the embedding of Mfo in P" is
given by ((?', f7) I — > (1, w/

Inverting (1.93) yields

w
\UL\8 V-T=&-NT)-—=-? - 1* ^ = 0, . . . ,«, w o ^ l (1.97)
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e^wt/lwtl, i = l f . . . ,11 (1.98)

so the first property expressed by (1.89), (1.90) generalizes to

(1.99)

2
A d z j — T n - 7V 2 ̂ ; A S zkdzk 1 (z0 -j=i

(1.100)

Thus, a) R is a multiple of the global symplectic form derived from the obvious
(Fubini-Study) Kahler metric on P"9 the multiple being such that the integral of

(JL>R over a protective line equals 4ftR 2. Now the properties (ii)-(iv) hold true for
n > 1, too.

We mention in passing that the starting point for geometric quantization on
the Kahler manifold (P", (JL>R) is the integrality condition

2J*2(EN* (1.101)

cf. e.g. [11]. For N=2 this is exactly the quantization condition (3.85) in our
survey [6], which we imposed for quite different (self-adjointness) reasons,
however. For J¥ > 2 one again needs (1.101) with R2 now given by (1.99). (We
arrived at the above solution to the classical non-completeness problem after
writing [6].)

With the reduced situation under control, it is easy to introduce and study
extensions of Qc and Q. Specifically, (1.86) may and will be extended to a
commutative diagram

0 x = P 2 X < f >

Tr(ZXZ) Tr(ZXZ) (1.102)

In Section 4.4 we study the reduced map 0. Identifying M and M with P", we
may and will view 0 as an involutory antisymplectomorphism of the symplectic
manifold <P", coren)9 where
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(1.103)

This renormalized form equals 2n times the Fubini-Study form and is derived from
the symplectic form 2Im (x, j) on CN— R2^. (We take the inner product on C^
antilinear in the first slot.) The normalization ensures that for a self-adjoint matrix
A the quotient of the unitary group exp(— itA) (under the projection CN\ {0}-^P",
cf. (1.95)) equals the Hamiltonian flow expCtff^) on <Pn, 60ren>, with

^(z)^(z,^z)/(z,z), zEEC"\{0} (1.104)

This will be convenient for studying the limit T f ;r/N.
Our main result concerning the map 0 is an immediate consequence of

Theorem 4.9 : 0 is not equal to the quotient of an anti-unitary on C N for any rEE (0,
7T/7V), whereas for r f n/N it does converge to such an anti-automorphism of P".
Specifically, we obtain

lim 0 = k o f 0 (1.105)
•c\n/N

Here, k and f 0 are the quotients of complex conjugation and Fourier transfor-
mation on CN, cf. (4.108) and (4.128), resp. In contrast, the r | 0 limit does not
yield a continuous map.

1.4 Outline of Chapter 5

The key objects in the construction of the action-angle transform and its
harmonic oscillator extension are the matrix^ (1.19), the Lax matrices L (given by
(2.1), (2.51) and (2.82)), and their duals A and L. The Hamiltonians (1.1)-
(1.5) are not used anywhere in this construction. They can be viewed as the
simplest non-trivial dynamics that arise by taking the trace of a suitable function of
L. Letting this function vary, we obtain commuting dynamics that are simultane-
ously diagonalized by the harmonic oscillator transform.

In Chapter 5 we study a class of dynamics obtained in this way, as well as a
class of dynamics similarly associated with the dual Lax matrix A. The latter
dynamics are simultaneously diagonalized by the inverse of the harmonic oscillator
transform. Since the case nb is self-dual, the dual dynamics will not be separately
studied.

The dual systems Mnr and Mrei are very different from (1.1) and (1.2),
however. In the coordinates (x, p) on the dense submanifold Q = TNXAN (cf.
(1.68)) of the extended phase space Q$ the simplest non-trivial representants read
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where

(1.106)

I 2

I " , . ! (fflnr) (1-107)
-

sh2z
v l /2

(trel) (1.108)

From a physical viewpoint the dual dynamics describe particles on a line,
whose distances are bounded below by |//g|; their momenta vary over the first
Brillouin zone (—/r/ | / / | , /r/|//|]. (Admittedly, denoting positions and momenta
by p and x, resp., amounts to physical heresy. Introducing additional notation
would have its own drawbacks, though ; cf. I for a similar dilemma as concerns the
nnr and Irei systems.) The flows generated by the dual dynamics are not complete
on Q ; at the end of Sections 5.1 and 5.2 we will be in the position to explain how
the extension to complete flows on fl# can be viewed as a minimal completion.

We now turn to a more detailed sketch of Chapter 5. Section 5.1 begins with
an explicit description of the flows associated with L in terms of the center of mass
coordinates §s, fs and harmonic oscillator coordinates u i, ... , v „„ Then we study
equilibrium properties of various dynamics. In particular, for the Sutherland
dynamics H we show that the points

l,...,N (1.109)

are the only equilibria (in agreement with the physical picture).
In Theorem 5.1 we detail a relation between the position part q (0 of the flows

and the eigenvalues of a f-dependent matrix defined in terms of A and L, In
Theorem 5.2 we exploit the canonicity of the action-angle map to derive a simple
integral representation for the partition functions of a countable set of quotient
dynamics on Q, containing the 'indistinguishable particles on a ring' version H of
the Sutherland dynamics, cf. (1.1).

We then study the class of dual dynamics mentioned earlier. Here, the inverse
of the harmonic oscillator map is exploited to derive an explicit description of the
various flows on Q#c in terms of the coordinates (q, 0) on Q ; the state of affairs on
the quotient manifolds d# and Q can then be determined via the diagram (1.74).

Theorem 5.3 details a relation of the position part of the dual flows with
eigenvalues of a ̂ -dependent matrix defined in terms of A and L . As a consequence
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of this relation, the t -> ± °o asymptotics of the spectrum of this matrix yields the
long-time asymptotics of the positions. On a distinct-velocity open dense submani-
fold the spectral asymptotics can be readily determined by invoking Appendix A
in I.

Correspondingly, Theorem 5.4 shows that the long-time behavior of the dual
particles is solitonic : the set of momenta is conserved and the position shifts are
factorized in terms of the 2-particle shift. Subsequently, these scattering results are
used to clarify the issue of 'minimal completion' mentioned above.

The results for the Mrei case in Section 5.2 are quite similar to those for the Etnr
case, with Theorems 5.5-5.8 corresponding to the theorems we have just described.
Therefore, we refrain from a further discussion. Instead, we wish to draw attention
to an important distinction with the previous case.

This concerns the possibility to generalize the dual dynamics (1.106), (1.108)
describing N solitons to a dynamics describing N + < N solitons and N - =^N—N +
antisolitons via the 'crossing' substitution

pk^pk+i7r/j3, k=N + + l,...9N (1.110)

x
We expect that the resulting Mrei systems can be handled along lines similar to those
followed in n. In particular, the role of the pseudo-self-adjoint Lax matrix from
II should be played by a pseudo-unitary matrix, there should be soliton-antisoliton
bound states, scattering factorized in terms of the (analytically continued) 2-soliton
shift, etc. Using Lemma A.2 below it is not hard to check that the substitution
(1.110) (with p replaced by 0) in the dual Lax matrix (2.61) indeed yields a
pseudo-unitary matrix; moreover, for N +, N - = 1 one easily verifies all of the
above scenario. We believe however that a reasonably complete study of the
general case would be a quite laborious enterprise, even at the purely algebraic level
of Chapter 2 and Appendix A in II.

We conclude with a brief sketch of Section 5.3. Again, the harmonic oscillator
map enables us to obtain an explicit picture of the flows generated by an extensive
class of commuting Hamiltonians. More specifically, oscillation frequencies and
equilibrium properties can be read off from the diagonalized flows. Theorems 5.9
and 5.10 may be viewed as generalizations of Theorems 5.1 and 5.2, resp.; they
specify position parts in terms of eigenvalues, and partition functions for certain
dynamics on £2#, resp.

The last two topics of Section 5.3 concern the T f n/N limit and the issue of
'minimal completion'. We study these issues only in the reduced context already
mentioned below (1.102) ; the non-reduced state of affairs can be readily estab-
lished from this.

As they stand, all of the above-mentioned Hamiltonians converge to constant
functions on M as r f n/N. (For instance, the Hamiltonian (1.4) has limit 0, since
the potential (1.5) does, cf. (1.41).) This may be viewed as a consequence of the
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spectrum of L becoming constant for r f n/N, cf. (1.76)-(1.79). By means of a
suitable renormalization, however, we can ensure non-constant limiting Hamilton-
ians and, correspondingly, non-trivial limiting flows.

All of the resulting Hamiltonians are of the form (1.104), with A belonging to
the maximal abelian algebra of self-adjoint matrices that are diagonalized by
Fourier transformation on C^. In particular, the limit of the (renormalized)
defining dynamics (1.4) is shown to be proportional to the discrete Laplacean on
C^ with periodic boundary conditions. Thus, the map k o 0 may be regarded as a
nonlinear generalization of Fourier transformation, in much the same way as the
1ST for the KdV equation (say). We would like to stress, however, that the r-value
yielding the 'free' dynamics is not r=0, but T^n/N. (This is not at all evident from
(1.4), even with hindsight.)

Our last result is Theorem 5.11, which shows that for r near n/N the phase
space M—Pn may be viewed as a minimal completion of the phase space MQ (on
which the commuting local flows are not global). The proof makes essential use of
the simple limiting behavior of the various flows and maps for r f n/N, which has
already been sketched above.

2 The Action-angle Transform i Algebraic Aspects

2.1 The Case HU

On the space Q given by (1.8)-(1.10) the Lax matrix is defined by

Ljk^dj^j+d-djk) - - - , //&'((), oo), g<0 (2.1)

Thus the Hamiltonian S can be written

#=yTrL2 (2.2)

cf. (1.1). The fundamental commutation relation reads

jj-[A,L]=e®e-A, d=ifig=\ftg\ (2.3)

where A =A (gO is given by (1.19) and e is the vector with components

e. = e*V2, j=l,...,N (2.4)

Since L is self-adjoint, there exists a unitary U such that
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L =U*LU=diag(dl9 ...,#*), 0N <'•'<§, (2.5)

Setting

A = U*AU (2.6)

/ = U*e (2.7)

g = Ufe (2.8)

the transformed commutation relation can be written

AJk(d + d k - d j ) = d f j g k (2.9)

Upon restriction to the subset

Qr={(q,0)^Q\dj-dk=£d, j^k] (2.10)

this entails

Ajk=fjC(09 ft, -g ; 9^jkgk (2.11)

where the Cauchy matrix C is given by (A. 1). Taking determinants, it follows from
Cauchy's identity (A.2) that a(L) is simple and that

fj*Q, gj^Q (2.12)

Next, using A ~1 * =A and C = C (the bar denoting complex conjugation), we
deduce from (2.11)

(C-l%=\fj\2Cjk\gk
 2 (2.13)

Comparing this to (A.5) and noting C^O, we get

\fjgk 2=(/;-^)(0,//, -g;0) (2.14)

Consequently, the inequality (A.7) with/3=Q and a = ^ results. Moreover, (A.8)
is satisfied in view of (2.5) and simplicity of a(L) on Qr. Therefore, Lemma A.3
yields O^A N. As promised below (A.6), one then gets positive quotients in (A.4),
so taking positive square roots yields an unambiguous matrix C, cf. (A.6).

Since 6j — 9j+\ > d on Qr, the unitary U is uniquely determined by (2.5) up to
right multiplication by a diagonal phase matrix. Before fixing this gauge ambiguity,
it is expedient to observe that (2.14) entails the gauge-invariant relations
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\fi\=Siy\ gj =rlrj<\ f>0 (2.15)

Now U is an isometry, so that

N= \\e p= ii u*e p= ii/ii2-p i; ij=? 2 i; n

We claim that the sum at the rhs equals N. To prove this, we need only show that
the sum does not depend on 9. But this follows just as in the proof of Lemma A. 5 ;
in fact, the sum is a degenerate form of S \ , cf. (A.24) . Hence we infer f= 1, so that

\fj\=ir, \Sj\=r}a (2.17)

In order to fix U we now require

(tfMtf)*,*+i<0, k = l,...,N-l (2.18)

( lT 'e) i>0 (2.19)

This makes sense, since the quantities at the Ihs are nonzero in view of (2.6), (2.8),
(2.9) and (2.10). Moreover, (2.18) fixes U up to an overall phase, and then (2.19)
fixes this phase.

Next, we set

(2.20)'

and introduce

by writing g; as (cf. (2.17))

1/2

It now follows from the above that we must have

/ J \1/2

/y- = expG/[r;+/rJ)n (l—g^j (2-23)

exp(-//[>*_, +(*-l)?,]) (2.24)
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where CeSOQV) is the modified Cauchy matrix (A.6). Indeed, I /M, ... , \ f N \
follow from (2.17), whilst the phases of/ i , ... , f^-i follow upon combining
(2.11), (2.18) and (2.22). (Note Cktk+i < 0, cf. (A.I).) Moreover, due to (2.20)
one has |>i | = |>4 | z=exp(//JV7s), so the phase of/# must be equal to exp (/£#?',).

The main reason for our gauge choice can now be made clear : The dual Lax
matrix A given by (2.24) has a limit for 9k — 6k+i \ d that does not depend on ?k,
which will be crucial in Section 4.1. Indeed, in this limit one has Ck,k+i-* — 1 and
C/ , f c+ i , Cfc/~^0 forj^k, l=£k+l (in agreement with orthogonality), as is readily
checked.

Next, we trade O^A N for (§,, 5) eR X an via (1.50), and (q, ff) eOr for (5S,
TS ; 6, r )^H2XM r via (1.28)-(1.30). From Tr L-Tr L and (2.20) we then
deduce that (1.52) and (1.53) hold true, resp. Thus, we have now supplied the
details of the construction of the map 0 given by (1.54)-(1.56). (The factorization
(1.56) follows from invariance of § and j under shifts qj^qj+qo, Oj-^Oj + 0Q,j
= 1, ... , N, which is easily established from the above.)

We proceed by showing 0 is a bijection. To this end we fix (§s ,7S;§, j) ^Qc

and define O^AN via the inverse of (1.50), cf. the rhs of (1.29). Then we define
L by the rhs of (2.5), g and/by (2.22) and (2.23), resp., and A by (2.24). Since

there exists a unitary V such that

(2.25)

Transforming the commutation relation

-7 [A, L ] =f®g -A (2.26)

with F, we then obtain

1
d

where we have set

£/ = F*LF (2.28)

d= V*f (2.29)

Cr= V'g (2.30)

Taking y =fc, this says

eijerj—ctj^Q (2.31)

so that
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(2.32)

Choosing then j ^k9 we get a^ak, so a 01) is simple.
We may now conclude that there exists a uniquely determined x^FN (cf.

(1.15)) such that

aGl)={e^i, ...,€**»} (2.33)

Next, consider the vectors q EE WN that are on the Z-orbit of x. These are given by
(1.16), so one has

/^ {!,...,#} (2.34)
7 = 1 7

Thus we can uniquely determine m and /, and hence q €= WN , by requiring

I] qj=Nrs (2.35)
7 = 1

Now we are in the position to fix the permutation ambiguity in V by demanding that
in (2.25) one has

a^e^i, 7 = 1, ...,# (2.36)

We continue by defining

0j=L'jj, j=l,...,N (2.37)

These numbers are real, since I/ is self-adjoint. Moreover, they are uniquely
determined, since the diagonal phase matrix ambiguity left in V only renders the
off-diagonal elements of L' ambiguous. Consequently, we obtain a well-defined
point (q, #) in Q. Changing variables according to (1.29), (1.30) now yields a map

<?: R 2 XM° - >R 2 XM, (SS9 t,;8, 7) I — - ((5,, 7, ; 5, r) (2.38)

Lemma 2.1. T/ie mop /is an injection onto R 2 XM r with inverse 0, which may
be factorized as P 2 X b °. I7ze generator

(2.39)



ACTION-ANGLE MAPS FOR SUTHERLAND SYSTEMS 273

maps R 2 XM r onto itself, and one has

!, ... , <5n , f i-2rc/tf|0|, ... , ?B-2m/tf |0|) (2.40)

Proof. S witching 7 *>fc in (2.27), the modulus of the Ihs is invariant, since I/
is self-adjont. In view of (2.32) this entails that |e 0/^/7 1 does not depend on j.
Since ||e/ 1|2= ||/||2=tf and ||er||

2- ||g||2-^, it follows that ey\ = \ e 1 i \ . Com-
bining this with (2.29)-(2.31) and (2.36), we infer that V can be rendered unique
by requiring

e<r=e, /=e'V2 (2.41)

Next, we fix a point PeDc, yielding a point P = % -1(/(P)) <E£2. We assert
that the Lax matrix (2. 1), when evaluated in P, coincides with L' . Indeed, in view
of (2.37) these matrices have equal diagonals. Using (2.36), (2.41) and (2.27) to
express the off-diagonal elements of I/ in terms of q\, ... , g#, we obtain the
off-diagonal elements in (2.1). Thus our assertion is proved.

As a consequence, the numbers #i(P), ... , 9N(P^) arc the eigenvalues of L (P).
Since they satisfy \9j — 9k\ ^d, we may infer that i maps Qc into R 2 XM r . (In
particular, we may conclude at this point that Mr is not empty.)

We proceed by observing that C/(P) coincides with F*. Indeed, from (2.28)
and!/=L(P) it is evident that F* has the diagonalizing property (2.5) of U(P).
Moreover, from (2.25), (2.36) and (2.24) we obtain

0, k = l,...,N-l (2.42)

and from (2.30), (2.41) and (2.22) we get

g ! > 0 (2.43)

Thus F* has the three properties that uniquely determine U(P). As a result, we
may infer 0 o /=id(Oc). Arguing similarly for a fixed PQ^Qr , the matrix F * (0
(^(Po))) must equal U(Po). This yields /o 0=id(£?r), so the first assertion of
the lemma now follows.

The map (2.39) amounts to the map (1.12), as anticipated by our (abuse of)
notation, cf. (1.28)-(1.30). Now (2.1) entails

LG(P) -Z,(G(P))=S"L(P)S (2.44)

where S is the antiperiodic shift (A.35). Therefore, one has cr(LG) =a(L), so G
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maps Qr onto itself. Moreover, it follows that (? leaves 5 1 , . „ . , ( ? „ invariant. Since
the first two coordinates in (2.40) obviously transform as specified, it remains to
consider j.

To this end we observe that the unitary

UG(P)=StU(P} (2.45)

satisfies

(2.46)

t/G(P) *A (G(P))C7G(P) = (U*AU) (P) (2.47)

(2.48)

This entails that I7G(P) has the three properties that uniquely determine I7(G(P)),
cf. (2.5), (2.18), (2.19). Hence we must have

t/(G(P))=S"f/(P) (2.49)

From (2.47) it now follows that

(2.50)

By virtue of (2.24) and f s I - >fs + 2x/N\iJL\, this implies f ; I - >fj—27g/N\[i\,
which completes the proof of (2.40). D

2.2 The Case Mrei

In this case the Lax matrix reads

, -in, $, z > 0 (2.51)

where Vj is defined by (1.3). Then ft can be written

^ (2.52)

(To see this, use (A.2). ) Reparametrizing z by (1.7), the commutation relation
reads
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]=e^-yUL+L^), d= \vg (2.53)

where

ej = expQiqj/2+/3dj/2*)Vj(qy/2 (2.54)

Moreover, L may be written

Ljk=ejC(ji9 13, g ; q)jkek (2.55)

ef. (A.I). Since q^WNf Lemma A.I entails L > 0.
Proceeding now as in Section 2.1, we choose a unitary U such that

L = tf*Ll/=diagG?^i, ... , e^), #* < • • • < # ! (2.56)

Defining yf, / and g by (2.6)-(2.8), we then obtain as the generalization of (2.9)

Aj.sh^d + ̂ -Oj^sh^d^e-^^^fjg, (2.57)

On Qr (defined by (2.10)) this can be rewritten

Ajk=fj COS, v, -g ; 9}jkgk (2.58)

cf. (A.I). Thus, (A.2) again yields non-degeneracy of o(L} and (2.12) follows,
too.

Using unitarity of A and the properties of C in the same way as before, we now
obtain (2.14) with 0 replaced by /?. From this the inequality (A. 7) is plain, and
since (A.9) is satisfied, we deduce 9^AN from Lemma A.3. Then (A.6) yields
again an unambiguous matrix CEiSOC/V).

Once more, (2.15) readily follows, but in the present case it is not easy to
determine f explicitly. In fact, we are only able to solve this problem at the end of
this section (the result being f =exp[GV— l)z/2]).

To fix U we may and will impose (2.18) and (2.19), and then we write g as

a
shf

where (2.20), (2.21) are in effect. Then it follows as before that/ and A are given
by
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(
O \ 1/2

sh^(ej~el-d^\
- a - (2.60)

shf (0,-^) /

, -g; ^exp(-//[ffc-i+(^-l)fs]) (2.61)

with C&SOGVO given by (A.6). The limiting behavior of A for Bk-9k+i j d is
now the same as for /?=0, which motivates our gauge fixing.

Mimicking the reasoning in Section 2.1, we again obtain (1.52) and (1.53), the
first equality now following from expGS#r,) = |L | = |£ | = exp GSM?,) , cf. (A.2).
Thus we have once again constructed a map 0 given by (1.54) -(1.5 6).

To prove 0 is bijective, we fix PEiQc and define O^AN as before. Also, we
define L by the rhs of (2.56) and^l by (2.61). Finally, we define renormalized
vectors gp,fp via the rhs of (2.59), (2.60) with the factors £ ~!, f omitted. Then
one readily checks

yCthGWl) W, L ] =/p®$P- y Of £ + £^) (2.62)

Now Jf is unitary, so there exists a unitary V obeying (2.25). Then (2.62) yields

L'jMaj-a^chtpd/l) + (a7+afc)shGSd/2)] =2e/;- er,sh(^/2) (2.63)

where Lx is defined by (2.28) and where

ei^V*fp (2.64)

e r = F f g p (2.65)

Now assume aj=ak for j^k. Then (2.63) implies that the 2X2 principal
minor of L' containing the indices y' and A: is a dyadic, and hence of rank one. But
we have L' > 0, a contradiction. Thus o 01) is simple.

Next, we follow again Section 2.1, writing first o (/I) in terms of a unique x^.
FN via (2.33), and then determining a unique q^WN on its Z-orbit via (2.35).
Now we may and will fix the permutation freedom in V by insisting on (2.36).
Then (2.63) can be rewritten

L'jk=e0C(ji9 0, g ; q}jkerk (2.66)

We now introduce 6EiJ<tN by setting

L'jj=e^Vj(q\ j=l,...,N (2.67)
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(This makes sense, since Vj is positive and L' > 0 implies L]j > 0.) As before, L]j
is gauge-invariant, so after the transformation (1.28)-(1.30) a well-defined map /
given by (2.38) results.

Lemma 2.2. The assertions of Lemma 2.1 hold true in the Mrei case, too.

Proof. Consider the relation (2.66). Taking determinants, we infer (2.32)
holds true. Taking theny <^ k and using \Mjk = \Mkj \ , M=L' , C, we deduce that
there exists % > 0 such that

\ev/e^\=^2
9 j=l, ...,N (2.68)

Taking nowj^fc, we obtain

eve^eVjL'jj (2.69)

so we may fix V by requiring

e^e^LW", erj = ̂ e^\L^\ f>0 (2.70)

The reasoning in the proof of Lemma 2. 1 now applies, with (2.43) replaced by

(K*'e(P))1 = f(F*^r)i = ftpi = ftCP)gi >0 (2.71)

cf. (2.54), (2.70), (2.65) and the definition of gp above (2.62). D

To conclude this section we show that the scale factor f is given by

as announced above (2.59). In the process we obtain the remarkable functional
equation

F(y,z)=e^F(y,ti) (2.73)

where

" (2-74)

To prove these identities we first observe that
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f2FGS0/2, -z)= ||/||2 = || U*e ||2 = ||e ||2=TrL=TrL =F(08/2, 0) (2.75)

where we used (2.60), (2.7), (2.54), (2.51) and (2.56). Similarly, consideration
of || g ||2 yields

f -2 F039/2, z) =F(t3§/2, 0) (2.76)

Combining this with (2.75), we obtain the identity

F(y, z)F(j;, -z) =F(j>, O)2, j;EEC", zEEC (2.77)

(Indeed, from the above it follows that (2.77) holds for positive z and 2yE$/4 #.)
Next, we fix y in the region yN < ••• < y i(say) and consider the function

(2.78)

Clearly, Gy is entire and 1m- periodic, and one has

lim G,00 = i;g».n ' , ^A(y^ (2.79)
R"-°° «=i j*t 2sh(j;/— yj)

Now A(y) does not vanish identically, since one clearly has

lime-^i/Kj;)-! (2.80)
yi-*°°

Also, using (2.77) we may infer

lim G,fe) = (2.81)
Rez->-~ ^

From Liouville's theorem we now deduce Gy(z)=Gy(Q), which entails (2.73).
Due to (2.75) we then get (2.72).

2.3 The Case mb

As announced in Section 1.3, we start from the space £2C = R 2 XM° in the
present case, cf. (1.43), (1.44). Our choice of Lax matrix reads

-£[r/-i+ (y- DrJ)C(//, A g ;

X ifi,i0,g<Q (2.82)
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Here, we have f0, /# = (), q is defined by (1.29), and C&SOQV) is defined via
(A. 6), (A.1) and (A.4). (Since q^Wb

N, the quotients in (A.4) are indeed
positive.) With (1.7) in force, we then obtain

He=jTr(L +£,-') (2.83)

and the commutation relation reads

ycthO^g/2) [A. L] =/<8g-yUL +LA) (2.84)

where (cf. (A.4))

fj = exp(-£[rj-,+ 0- OrJ)//0, yS, g ; qy/2 (2.85)

gj = expG3[r;+/rJ>;G«, &, g ; 9)1/2 (2-86)

Since L is unitary, there exists a unitary (7P (/> for provisional) such that

tf/Ltf,=diag(e »',...,«"*), -s/|/8| <,?* < - <,p , < x/\0\ (2.87)

Setting

AP = U*AUP (2.88)

A s £/P*/ (2.89)

&, = U'pg (2.90)

we obtain

K>^nfp]gpk (2.91)pj

Thus, putting

Q<= {P^Q<\pj-pk*\iJig\,2n/\i3\-\viS\,i*k} (2.92)

we have on Q°r

APjk =fpj COS, 0, -g ; p V g> (2.93)

We now use (A.2) to deduce p N < • • • < /? i and

(2.94)
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on Qr
c.
Next, using unitarity of Ap and the features of C we get

, -g;p~) (2.95)

From this (A. 7) (with a — *7?) follows, and since (A. 10) is satisfied on Qc
r, we infer

P^^N from Lemma A. 3. Moreover, using \L\= L\ we conclude

exp(tffr,')=exp(J3\Ji + -+pN]) (2.96)

Now consider the map y \ , . . . ,}># I — *yN+27C/\fi\9 y\, ...,yN-\- Clearly,
this map acts bijectively on the set Ab

N defined by (1.78), so we may use it to
generate a Z-action on A #. The set FN may and will be viewed as a fundamental
set for this action. Furthermore, in view of (2.96) we can find a unique 6 on the
orbit of p satisfying (1.77). Therefore, we may now switch to a unitary U that
satisfies

tf*Ll/=dkg(e^i, ... , e^r) = L (2.97)

Next, we define A, f and g by (2.88)-(2.90) with the subscripts p omitted.
Then we get (2.91), (2.93)-(2.96) withe's omitted and withp -> 6. We claim that

\fj\ = \ljU,V, -g;£)|1/2, \gj\ = rj(j3,», -g;£)|1/2 (2.98)

To prove this, we first note that (2.95) entails

l/;l =?!/;! "2, lg;l=r'k; 1/2, F>0 (2.99)

Thus we need only show f = 1. Now we have

= 2= '-= ll/l

-PS n — (2-100)
kJJ.ii ,_ \IS j \J J/

and when we apply the result (A.23) of Lemma A.5 to the function 51, cf. (A.24),
we infer that both sums are equal to S; exp(zr(AT+1 — 2/))- Hence we have f=
1 and our claim (2.98) follows.
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To fix the diagonal phase matrix ambiguity left in U, we require

<0, k=l,...,N-l (2.101)

'g)! >0 (2.102)

With the definition

t, = d, (2.103)

and the conventions (2.21) in force, we may now define fi, ... , fn by writing g as

,+ 0- Of,] +M/2) n - r5| - - (2.104)
'

Then/ and yl are given by

l/2

, = exp GU ft +/f ,] +/8^/2) n - roi - - (2. 105)

and (2.61), resp., as will be clear by now.
We proceed by trading 9^Ab

N for (<?,, 5)eRXaS via (1.50). Then the
upshot is, that we have defined a map

0 : Qc
r — >QC, (ds, rs ; 5, 7) I — > (85, fs ; S, f) (2.106)

where

(2.107)

As before, this map may be written P2 X $ ?, which follows for instance by using the
readily verified relation

U(8S9 rs; 5, rV = exp[-j8r.(2y-l)/2]U(0, 0; <5, r

(2.108)

Moreover, comparing (2.61) and (2.82), we obtain the pivotal relation
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A=L(0,»;8, 7sJ,ry (2.109)

(Note that taking g-^ — g in (A.I) and (A.6) amounts to a transposition.)
From this relation it will be clear how to continue : We should go through the

same steps as were made to define 0, in order to construct a map

/:fa - -Oc, (S,,t,;S9f)l—>(6M,7,;8,7) (2.HO)

Thus, Qc
r is defined as follows : Fixing PEiQc, there exists a unitary V p such that

F/^=diag(^i,...,«^)f -7i/\VL\<xN<~'<x,<n/\UL\ (2.111)

where A is defined by (2.109). Then we set

(2.112)

cf. (2.92). Arguing as before, we obtain x^Fb
N and using expGV^f,) =

wethengetauniquegeFF^ontheZ-orbitofx, cf. (1.16), (1.36), (1.40). Then
we trade Vp for a unitary V such that

V*AV=A(q) (2.113)

and render V unique by imposing

(F*LF) f c + 1 , f e<0, fc = l, . . . ,JV-1 (2.114)

, >0 (2.115)

where L and /are defined via (2.97) and (2.105), resp.
At this stage the rest of the construction of / will be obvious. But in contrast

to the previous cases, it is not obvious that the definition domain Qc
r of / is

non-empty. Among other things, we shall take care of this in the following lemma.

Lemma 2,30 The points

PoG?s, r 0 = ss, TS ; -f/^\b> - > 0, ̂ \^ - JCff-j), ... , n)f 8,, f S

(2.116)

belong to Qc
r and the points
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PO(SS, r.) =ss, r* ; ^1- ••• . 0, f 0«. - .jCff-j), ... , »), <5S ,

(2.117)

belong to Q°T. The map / is an injection onto Qc
r with inverse 0, which may be

factorized as P2Xb?. The generator (2.39) maps Qc
r onto itself, and (2.40) holds

true. The involution

K:QC - >QC, dS,,r,;S, 7)1 — "(jS,,-7,;S,-7) (2.118)

maps QC
T onto itself, and one has

g = $oKo/: (,$,,r.;&i, ....&„ 7i, - , 7 .) I - *

(-«5,,f.;<5. ..... 5,, -f,, ..., -f,) (2.119)

Finally, identifying Qc
r(/i, yS) and Or(/3, /z) m fne obvious way, one has

/G/,0)=$G8,;0 (2.120)

r/ze notation being clear from context.

Proof. The Lax matrix (2.82) evaluated in P0(5S, 7s) is similar to

W- f c , CD EEg2^ (2.121)

with E given by (A.29), so it follows from (A.2) and Lemma A.4 that a(L)
consists of the Nth roots of a phase. Thus we obtain

i = l, . . . , n (2.122)

and P0^Qc
r. Using (2.108) this argument can be repeated for P0, yielding

/=1'-'11 (2-123)

The second assertion follows as before by exploiting the commutation relation
and the uniqueness of U and F, which yields

(2.124)

To prove the third claim, we first observe that
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LG(P) =L(G(P))-DG(P)5fL(P)5^(P) (2.125)

where

£>G(P) =e^-7^dmg(em^ 1, ... , 1) (2.126)

and 5 is given by (A.35). Therefore, the reasoning below (2.44) applies, and
setting

C/G(P) =DG(P^SfU(P^ (2.127)

one easily checks (2.46), (2.47) and (2.48) with e-^g. Since 6 is invariant, it now
follows from uniqueness that

(2.128)

Then (2.47) entails (2.50), and so (2.40) follows.
The involution K clearly satisfies

AK=A, LK=L9 gK=Ag (2.129)

where FK is defined by FK (P) = F(K (P) ). Now from L K =L one readily deduces

(2.130)

Hence one has K(Qcr) =Qc
r, and §S) 6 transform as specified in (2.119). Thus, to

prove (2.119) it remains to show fi, ••• , fn I — > ~7n, ••• , — 7i-
To this end we invoke Lemma A. 7. It enables us to infer that/ and g are

related by

xN = el™ (2.131)

(To check this, use Ljk=fjCjkgk,} This relation can now be employed to prove

UK=xNU£, t/*(P) ^ £/(*(P)) (2.132)

where we have introduced the reversal matrix

^jk = SJlN-k+i (2.133)

Granting (2.132) for a moment, it follows fromg*=y4g and (2.131) that
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UKtgK=XN@U*Ag = @U*L-lf=@L -1/ (2.134)

From (2.130), (2.104) and (2.105) one can now read off that 7 transforms as
claimed in (2.119).

To prove (2.132), we show that the rhs has the three properties that uniquely
determine UK. The first property (2.97) is clear from (2.130), and the second one
(2.101) follows from AK=A and G2Llr^)fc,k+1 < 0. The third one (2.102)
amounts to

>0 (2.135)

Using the equations (2.131), £/*/=/ and (2.105) withj^AT, it follows
has this property, too, and so (2.132) results.

It remains to prove (2.120). We take /3=// and then suppress the dependence
on /3, //, the general case being clear from this. The key to proving the involution
property 0 ~l = 0 is the relation (2.109). By uniqueness of U and V it entails we
must have

(2.136)

On the other hand, (2.124) holds true, so that

U(py = U(P)9 P-0(P) (2.137)

But now we may deduce (using L —A, A =A 0

(2.138)

(2.139)

This entails $2(P) =P, since the pair L, A separates the points of {(5,, r*)} XM°.
D

In Section 3.3 we shall show

<5s, r,))=^o(r., <*,) (2.140)

by invoking the implicit function theorem and analyticity arguments. In fact, for
N odd we might also prove (2.140) already at this point, as will transpire from
developments below Corollary 4.8. However, this would involve additional
notation and a change of viewpoint that could be confusing at this stage.
Moreover, for N even the fixed-point arguments we are alluding to do not quite
yield (2.140).
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3 The Action-angle Transform : Analytic and Geometric Aspects

3.1 The Case EI^

As we have seen in the course of proving Lemma 2. 1, the subset QrofQ given
by (2.10) is non-empty. Alternatively, non-emptiness is obvious from a perturba-
tion argument : Fixing q £= WN and taking #/ — #/ + 1 =Ad, j = I , . , . , N — 1 , it follows
from (2.1) that 0EEAN for A large enough. Furthermore, Qr is an open subset,
since L is continuous on Q. Thus the symplectic form (1.11) may be restricted to
Qr9 yielding a symplectic manifold (Qr, o>>. We are now prepared to state and
prove the main result of this section, already described in Section 1.2.

Theorem 3.1. The map 0 from Section 2.1 is a Cw symplectomorphism from
(Qr, d>> onto (Qc, &c\ where tic is defined by (1.59), (1.60).

Proof In view of Lemma 2. 1 we need only show that / is a Cw map satisfying
/*6)=a)c. Just as in II , this will be done by constructing and exploiting a
commutative diagram, viz., the diagram (1.66). The spaces and maps occurring in
(1.66) have been defined above (1.66) and in Section 2.1, except for the map B,
which has only been described in general terms.

In order to define B9 we introduce the matrices

...,£*) (3.1)

JL, g ; q, 6}jk = C(0, v, ~g ; d}jkT]k (3.2)

with

V^e^U [l+//V/(^-£/)2]1/2 (3.3)
l*k

taking at first

G/,g,4,0)e(o, oo)X(-oo, O)XR"XG^D! (3.4)

where

GN^ {y^RN\yN< -<^i} (3.5)

We are going to make use of the map

# i :Di - >GL(N, C) (3.6)
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which is uniquely determined by the requirements

dff'jSfiJ^diagCe^, ...,e«*), y^GN (3.7)

*if=f, r=( l , . . - , 1) (3.8)

(Here and below, the subscript I signifies that the arguments belong to D i .) In the
present case (as opposed to the situation considered in n ) it is crucial to take the
parameter dependence into account. Arguing as in the proof of It Lemma 3.1 one
infers that J^i is Cw. Consequently, the definitions

l&iadjj (3.9)

e^Gar1.*/!^ (3.10)

give rise to a Cw map

BnDl - >GNXRN, G/, g, q, 6} I - > (ql9 0J (3.11)

This map (denoted & in I ) is in fact canonical (i.e., B f dq i A ddi=dq A d0), as

is proved in I . Our strategy is now to continue // to the imaginary axis, yielding

a map B that inherits the canonicity property. Specifically, we are going to choose

the continuation path F such that one stays away from the branch varieties and

such that the image points move into Qr. The details now follow.

The path F is defined by fixing // > 0 and gE= (— °o? 0), setting

tt=[Q, 1] (3.12)

and taking q^ and #/ equal to

2j}/N\Vi\, j=l,...,N (3.13)

j=l,...,N, d^\vg , A>\ (3.14)

resp. Rewriting j£? along F as

^f(f) =diag(exp(/z(0g?), ... , exp(1u(0?W) + F(t,yl) (3.15)

it readily follows from (3.2), (3.3) that

\\V(t,A}\\=0(A~^, A^™ (3.16)
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uniformly along F. (Here and below || * || denotes the operator norm derived from
the standard inner product on C^.) Therefore, taking A ^> 1 ensures that 3? is
holomorphic and has simple spectrum in an open neighborhood in C2+2N of F. It
follows from this that £8\ analytically continues to an open neighborhood in Q of
the endpoint (which clearly belongs to U). Moreover, since | J£?(t) = exp [// (0 2 jqf]
7^0, the mapjBi continues too, cf. (3.9), (3.10). More specifically, we takeyl so
large that

qj(t)-tf <x/2N\v\, re [0,1], 7 = 1, . . . , J V (3.17)

where q (0 denotes the continuation of q i along F. This guarantees not only
simplicity, cf. (3.13), but also ensures q(l}^FN, as we shall show shortly.

The continuation just detailed yields functions jtf, J£f, $ and B that are well
defined and C w on an open convex neighborhood in Q of the point (q °, 0A*) with A
^> 1. Choosing a point P in this neighborhood, it follows that the matrices s& and
&inf are related to L and A in P = X(£N) (*(/)) via

j*(f) = L(f) (3.18)

, £ = diag(/i, ...,/jv) (3.19)

(To check this, recall the definitions (3.1)-(3.3) and (2.5), (2.11), (2.22)-
(2.24).) Furthermore, s/ and & clearly extend to Cw functions on Q satisfying
(3.18), (3.19) on all of Q.

Next, we claim that ^ and B can also be analytically continued from the above
neighborhood in Q to all of Q, yielding Cw maps

m : Q > GL (N, C) (3.20)

B : Q >Qr, (q} 0) I > (q, 0) (3.21)

Here, we have suppressed the dependence on //, since IJL is now again assumed to be
a fixed number in z(0, °°). Moreover, the image of (q, 0) under B is provisionally
denoted (q, 0) ; we shall see shortly that (q, 0) equals (q, 0) = Off - 1 o gon(£N}
o ^) (q, 0), as anticipated in the diagram (1.66).

To prove the above claim, we begin by noting that (3.19) implies a(
o(A (P)). Since a(/f) is simple on Qc (as we have shown in Section 2.1), it follows
that a(j£?) is simple on Q. But Q is a convex subset of R2^, so that & and B
continue to Cw functions on Q (cf. the proof of It Lemma 3.1). Moreover, ^ and
B continue to be related by

, ...,e™^ (3.22)
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(a^j/a^Oj (3.23)

since $\ and B i are related in this way, cf. (3.9), (3.10). Therefore, our claim will
be proved once we show that (q, 0) belongs to Qr.

To this end we first recall the formula

(KMF)(?)=diag(e«i, ... , e«*), q^WN (3.24)

from Section 2.1, cf. (2.25), (2.36). Now from (3.19) it follows that the numbers
at the rhs of (3.22) evaluated in P are equal to the phases at the rhs of (3.24), up
to an eventual permutation. From (3.17) we may then infer q(l^^FNdWN.
Moreover, letting P vary over Q and recalling q is continuous on Q, it follows that
q must remain real and cannot cross the hyperplanes bounding WN. (Indeed, these
hyperplanes correspond to eigenvalue collisions.) Therefore, q belongs to W ' N.
Since A(q) and A(q) are related by a permutation, it now follows that q and q are
on the same Z-orbit in WN. (Cf. the paragraph following (1.18).) But we also
have 2^—Zi^; (by analytic continuation) and ^qj=Nds=Ni's=^qj, so that
Hqj=TtqJ.

Consequently, we must have q = q. From this we deduce

(3.25)

where D is an invertible diagonal matrix. (In fact, one has /)_/_,- = exp(//g;-/2), as is
easily verified.) But now we may conclude that the vector 0 in (3.23) equals the
vector 0 in (2.37), cf. (2.28). Hence, we have (q, 0} = (q, 0} ̂ Qr, so the above
claim is now proved.

In the process of proving the claim we have also defined B and shown that the
diagram (1.66) commutes. Since B is a Cw map satisfying (1.62), it follows from
commutativity that / is a Cw symplectomorphism. D

Thus far we have restricted our considerations to the open submanifold Qr of
Q. Recalling the definition (2.10), we see that the boundary set

(3.26)

is equal to the zero locus of the function

F^ n [tt,-;u)2+02g2] (3.27)
l<j<k^N

where A i, ... , XN are the roots of \L(q, (f)—X\N\. Since F is invariant under
permutations of /I i , . . . , A N , it is a polynomial in the symmetric functions of L. But
L is Cw on Q, so it follows that F is Cw on Q, too. Therefore, Qb is a subvariety of
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codimension at least one. As a consequence, Qr is a dense full measure submani-
fold of Q. In particular, we may now deduce that L has simple spectrum with
minimal eigenvalue distance > d on all of Q. (Recall that 0^AN on Qr9 i.e., the
eigenvalue distance is > d on O r.)

With Theorem 3.1 at our disposal, we can settle two obvious questions about
Qb. First, we may infer that Qb is non-empty. Indeed, Theorem 3.1 entails that
Qr and Qc are symplectically diffeomorphic, so a fortiori these manifolds are
homeomorphic. Therefore, we have

n^Qr)=nl(Q
c^=nl(Q/EN}=EN (3.28)

where the last equality follows from the convexity of Q. Since Q is convex, too, Qr

is smaller than Q, as claimed. Second, we may deduce that Qb does not separate Qr

into several connected components (as it might, a priori). Indeed, Qc is connected,
so Qr must be connected as well.

In Section 4.1 we shall greatly improve on these observations by detailing the
structure of Qb in regard to Qr. In particular, it will be shown that Qb actually has
codimension 2.

We close this section by studying the two quotients described by the covering
sequence (1.27). First of all, it should be recalled that the Z-action on Q is
isospectral w.r.t. L, cf. (2.44). Therefore it leaves Qr and Qb invariant, and so we
obtain open dense full measure submanifolds

Q'r = Qr/Z', Qr = Qr/Z (3.29)

of Q' and fi, resp. Next, we recall (2.39) and (2.40). From these formulas we
read off

(3.30)

(3.31)

Hence, quotienting out the Z' -action amounts to letting the center of mass position
ds vary over Sl instead of R, in keeping with the physical picture sketched in
Section 1.1. Since the quotient respects the direct product structure of the center
of mass space and the reduced space, and since it acts trivially on the latter, results
for this situation are immediate from Theorem 3.1, and correspondingly we shall
not spell these out.

The situation on Q r is more interesting, in as much as the quotient now mixes
the center of mass and internal spaces. Consider the top line of the diagram (1.67).
The map 0 is a bijection mapping orbits of the Z-action on Qr onto orbits of the
Z-action on Qc (cf. (2.39), (2.40)). Thus we may and will define the map 0 in the
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bottom line in such a way that the diagram commutes. The space Q may and will
be viewed as being obtained from Q — J I N X A N by factoring out the Z ^-action
(1.65) on R^, which yields (1.68)-(1.70). We are now prepared for the last result
of this section.

Corollary 3.2. The map 0 is a symplectomorphism from (Or, &>) onto <O, cD).

Proof. This follows from Theorem 3.1, the above definitions and the commu-
tative diagram (1.67). D

3.2 The Case nrei

Just as in the case M n r j the set Qr given by (2.10) is a non-empty open subset
of Q, so that <£2r, d>) is a symplectic manifold. However, in this case there appears
to be no obvious analytic argument from which non-emptiness follows. (Recall we
proved non-emptiness by purely algebraic means in Section 2.2.)

Theorem 3.3. The assertion of Theorem 3.1 holds true for the map 0 from
Section 2.2.

Proof. The proof runs parallel to the proof of Theorem 3.1. To define the map
B in the diagram (1.66) we replace (3.1)-(3.3) by the functions

e^) (3.32)

JS?G8, ft, g ; q, 9}jk = C(& 0, -g ; 0^7] k (3.33)

h2-(^-^)]1/2 (3.34)

from n Section 3B. Thus/? and// are positive numbers, and we take at first (q, 0)
eR"XG*,cf. (3.5),andge(-;r/£//,0). As before, the set of Q3, /z, g, q, ^) thus
obtained will be denoted by D\. Again, our starting point is the map (3.6)
determined by (3.7), (3.8). Arguing as above, this map gives rise to a Cw map

BI:Dl - >G*XR", (0,ti,g,4,$)\—+(ql99j (3.35)

which is now defined by

q u = f j L ' l l n a j 9 aj = («f ^i^i)^ (3.36)
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,^- ln(*f '

Here, all logarithms may and will be chosen real, and B i thus defined is a canonical
transformation, as proved in I . (Indeed, B r coincides with the map $ of the II rei
regime.)

Next, we continue stf i , 3? \ , 01 i and B i along a path F that is here defined as
follows. We fix ̂ S, |// | > 0 and take

ge(-^/7V|^|,o)^/£, £^(0, 2] (3.38)

where £ is yet to be chosen. Now we take //(O and q equal to (3.12) and (3.13),
resp., whereas Oj is taken equal to

\, j=l,...,N (3.39)

As the analog of (3.15) we now set

J?(0 =diag(expG/(04?), - , exp(/z(0<?Xr)) + F(f, g) (3.40)

Then we infer from (3.33), (3.34) that

HF(f,g)| |=0(£), £ — 0 (3.41)

uniformly on [0, 1] X/£. Hence, by taking £<C1 we can ensure that & is
holomorphic and a(j&?) simple in a C3+2Ar-neighborhood of F. In fact, we may and
will require that £ be sufficiently small so that (3.17) holds. This entails

0< |//(0[ft(0 -$*(*) +tfg] <2;r, re [0,1] (3.42)

(Use (3.12), (3.13) and (3.38) to check this.) Therefore, the argument of the
second logarithm in (3.37) stays away from 0 along F. But then the argument of
the first one does so, too, cf. n (3.63)-(3.67).

As a result, we obtain functions s$ , <£ ', ^ and B that are Cw in (g, q, 9} for
gG=/£ and (q, 0) varying over an open convex neighborhood in £? of the point (q°,
0°). (A priori, this neighborhood depends ong. ) Again, the matrices &f and <£ are
related to the matrices L and A via (3.18) and (3.19), resp. (To see this, compare
(3.32)-(3.34) and (2.56), (2.58), (2.59)-(2.61).) It is also clear by inspection
that s$ and J£? admit a further continuation to all of Q and to any gE= (— °°, 0), and
that (3.18), (3.19) continue to hold.

Proceeding as before, we now claim that ^ and B can be continued to all of Q
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and to any g£ (— oo> o), yielding Cw maps (3.20), (3.21) when the dependence on
the parameters is again suppressed. To prove this claim, we first note that in view
of (3.19) the spectrum of 3? on Q is simple and belongs to the unit circle. (Indeed,
this holds for^l on Qc, cf. Section 2.2.) Also, since IT > 0 in the case at hand, the
argument of the second logarithm in the continuation of (3.37) cannot vanish on
Q. Since Q is convex, we may now deduce the continuation property by repeating
arguments detailed in n, cf. E Lemma 3.1 and H (3.63)-(3.67).

To finish the proof of the above claim, we show that B maps into Qr.
Following the reasoning for the previous case, (3.36) again leads to (3.22), whilst
(3.37) entails

0» -1 -*«),//) =e**> Vj(qy/2 (3.43)

Now (3.24) is still valid, so it follows as before that the two vectors q and q are
equal and that (3.25) holds true. From (3.25) we now deduce that the vector 9 in
(3.43) and the vector 6^RN in (2.67) are equal mod 2m/$, so it remains to show
that the former vector is real.

To this end we recall the defining properties (3.7), (3.8) of ^i, the definition
(3.33) of J*?, and our choice (3.13) of q. From this we readily infer that $^\N

along F as g f 0. But then the continuation of (3.37) cannot lead to a non-zero
multiple of 2m/P, so that 0 is real. Thus, our claim now follows, first for small g
and then for any g e ( — °o? 0) via analytic continuation. The last paragraph of the
proof of Theorem 3.1 now applies verbatim, completing the proof. D

In the present case the boundary set (3.26) equals the zero locus of

F = II [tt,-;U)2-4A,Afcsh2z] (3.44)
1 <j<k <N

Hence it follows as before that codim Qb > 1 and that Qr is a dense full measure
submanifold of Q. Moreover, L has positive and simple eigenvalues satisfying
|ln Xj — In A k \ > 2z,j^k, on all of Q. Finally, since (3.28) is still valid, it follows
once again that Qb is non-empty and does not disconnect Q. Among other things,
we will sharpen these results in Section 4.2 by proving codim Qb = 2.

Since (2.44) still holds in the case at hand, it follows that Qr and Qb are left
invariant by the Z-action on Q. Thus, the definitions (3.29) again make sense.
Since (3.30), (3.31) hold as well (cf. Lemma 2.2), the observations below these
equations apply again. In particular, Theorem 3.3 has the following corollary.

Corollary 3.4. The assertion of Corollary 3.2 holds true in the HLT&\ case, too.
D
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3.3 The Case Hb

It is convenient to begin this section by introducing

fie=a*\& (3.45)
where /signifies that the hat is facultative, and

] (3.46)

'] (3.47)

where the A7 and ctj are the roots of the characteristic polynomial of L (P),
andJ4 (P)? P^QC, resp. Then the boundary sets Qc

b and Q°b are equal to the zero loci
of F and f, resp. Now we have seen in Lemma 2.3 that the set Qff is a non-empty
subset of Qfc. Consequently, Ff does not vanish identically on Qfc, and so Qff is a
subvariety of codimension at least one. Therefore, Q? is an open dense full measure
submanifold of Qfc. This entails in particular that the minimal distance between the
A; in arclength along the unit circle equals 2r.

In Section 4.3 we shall obtain a quite detailed picture of the boundary sets. As
it turns out, these subvarieties have codimension two, so they do not disconnect Qc

and Qc. However, for the time being we have to phrase the following theorem in
terms of connected components. Specifically, we denote the component of Qc

r

containing the point P0(0, 0) (given by (2.116)) by Qc
r0, and we set

(3.48)

Theorem 3.5. One has

/(Po(0, 0))=Po(0, 0) (3.49)

where P0(0, 0) is given by (2.117). The space Qc
r0 is equal to the connected compo-

nent of Qc
r that contains Po(0, 0). The map 0 is a Cu symplectomorphism from

<DCK), coc) onto <^0, cDc>, where a)c is given by (1.46) and tic by (1.59), (1.60).

Proof. We begin by continuing the functions sf i , 3? r , £% i and B i defined in the
proof of Theorem 3.3 to the nib regime. To this end we choose a path F by taking
q and 9 equal to q° and 0°, resp. (cf. (3.13), (3.39)), fixing |// 1 , \{l \ > 0 and g as
in (3.38), and defining //(O by (3.12) and£(f) by

= 0-0 !0| +/* |0|, *eE[o, i] (3.50)
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Then the endpoint of F has image P0(0, 0) under X(£N) o <tf, and (3.40), (3.41)
hold true again. Thus we may and will choose £ so that (3.17) is valid, and then
(3.42) with 0 replaced by £(0 follows as before.

As a consequence we obtain functions jtf, & ', $ and B = (q, $) that are Cw in
(g, q, 0) for g&T£ and (q, 0) varying over an open convex neighborhood NgdQ
of (4°, 0°). On Ng these functions satisfy

^r=<T (3.51)

(3.52)

due to (3.7), (3.8), (3.36) and (3.37). Moreover, the matrices si and JS? are
related to the matrices L and A from Section 2.3 via (3.18) and (3.19), resp. From
this and (3.24) it follows once more that #(P) equals q(f) for any P^Ng. In
particular, from Z^=S4y and (2.123) we may infer

'-~>N (3'53)

At the expense of shrinking Ng , we may now analytically continue the above
functions to any gE= ( — 2;r/Wl£// | , 0). Fixing g in this interval and a correspon-
ding Ng, it is obvious from (3.32)-(3.34) that s& and £ have a one-valued contin-
uation from Ng to all of the convex set Q, and that the key relations (3.18), (3.19)
continue to hold.

However, this can no longer be concluded for the functions $ and B. Indeed,
in the present case we have r > 0, so the argument of the second logarithm in the
continuation of (3.37) can now vanish on Q. In view of (3.19) this can only
happen for points in the subvariety

D^(7r(E*)o^(OD (3.54)

But then the open dense submanifold

Qr = Q\Qb (3.55)

need not be connected, a priori.
Consequently, we restrict attention to the connected component Qr0 containing

the endpoint (q°, 0°) of F. It follows from previous arguments that & and q have
a one-valued continuation to ^r0 (q(P*) being equal to <?(P) on &U of f5r0), and that
(3.25) is valid. However, though 6? can be continued to Qr0, the resulting function
is not necessarily one-valued, since Qr0 need not be simply-connected. (As a matter
of fact, 9 is multi-valued and (hence) Qr0 multiply-connected, cf. Section 4.3.)
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On the other hand, from Section 2.3 we may infer

<5)) (3.56)

cf. Lemma 2.3 and (2.82). Let us compare this with (3.52), recalling q =q, (1.30)
and (3.18), and noting HOj=^dj=N6s=N7s, Then we readily deduce that the
diagram (1.85) is well defined and commutative, provided Qr is replaced by QrQ and
R is defined as the continuation of B to Qr0. Moreover, R still inherits the can-
onicity property from B i. Hence DR ^Sp (2N, R) and so \DR \ = 1. But then the
space

Q = R (Q ) (3 57)

is an open subset of Qr. By virtue of (3.48) and commutativity, the image of this
set under n(EN} o<$ equals Qc

rQ, so Qc
r0 is open. Therefore, the last assertion of the

theorem now follows from the commutative diagram obtained from (1.85) upon
replacing the four subscripts r by rO.

Next, we prove (3.49). As we have already seen (recall (2.123)), its Ihs can
be written

/(/0(o, o))=(o, o; -rn^-Ci,..., i), -rfr) (3-5g)

Thus we should show U=UQ, where

H o ^ r O i , ...jCtf-y), . . . , i i) (3.59)

To this end, consider the symmetric functions of L(0, 0; ^•
1), 7). They can be written

where Xj = expG807-) and 9 is defined via (1.30). On the other hand, (3.58) and
(2.116) imply

so the spectrum of L in the point (3.58) consists of the Nth roots of (— 1)". As a
result, this point yields S[ = 09 1=1, . . . ,«, and SN= 1.
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Now we invoke Lemma A.4 to infer that the system of N equations

Si(x,g)=0, 7=1, . . . ,n , S*C*,g) = l (3.62)

for the unknown vector x = (x i , ... , x N) is solved by the N vectors

j=l,...,N, y = 0, ... , n (3.63)

and their complex conjugates. For N=2, 3 these are readily seen to be the only
solutions. However, for N > 3 one has N I > 2N, whereas the system obviously has
exactly N I solutions for g = 0. By virtue of the implicit function theorem, there
exists a unique solution in a C ̂ -neighborhood of each of these for g£(— e, 0],
provided e > 0 is sufficiently small. (Indeed, the relevant determinant is non-zero,
since it amounts to a non-zero multiple of a Vandermonde determinant for the Nth
roots of (— l)n. ) Of course, the above solutions x (i/), x M do not depend on g ; most
likely, the remaining solutions do.

Next, consider L evaluated in the point (3.58). In view of (2.116) the
corresponding L reads

L=diag(x}0), ...,*#>) (3.64)

Now <%(q°, #°)->ljv as g f 0, so by (3.25) we have

, gfO (3.65)

But \fj\ and \fk\ do not depend on g, cf. (3.58). Hence, the off-diagonal elements
of F(P0(0, 0)) go to 0. Combining this with (3.56) and (3.64), we conclude
u -» u o as g f 0. Thus we must have u = u 0 for sufficiently small g, and real-analyti-
city in g entails u = u 0 for any g G ( - 2n/N \J3fJL \ , 0) . Therefore, the proof of (3.49)
is now complete.

Combining (3.48) and (3.49), we deduce that Qc
r0 contains Po(0, 0). Further-

more, we have already shown that Qc
r0 is symplectically diffeomorphic to Qc

rQ.
Recalling the self-duality property (2.120), a moment's thought suffices to conclude
that the second assertion of the theorem holds true. D

As announced in Section 1.3, we relegate a consideration of the diagram
(1.86) and its consequences to Section 4.3. Note in this connection that the set
{Po(8s, 7s) \ ds> r,£R} CO'o is not left invariant by the generator (2.39). Thus, at
this stage we do not even know whether Qc

r0 is left invariant by G.
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4 The Harmonic Oscillator Transform

4.1 The Case M^

In keeping with our summary in Section 1.2, we begin this section by showing
that the map <f>r admits an extension to a Cw symplectomorphism, cf. (1.71)-
(1.73) . In the process, we shall arrive at a complete picture of the limiting behavior
of the invariant tori as one or more action differences 6j converge to their minimum
d/2.

It is instructive to detail the case n = l first. Then 0 r can be explicitly
determined by exploiting equality of Tr A(f), Tr L (P) and Tr A(P\ Tr L(P),
resp., where f = 0(P) = (P2X0 r) (P), cf. (1.66). Indeed, it is straightforward to
verify that (f> r is given by

(4.1)

(4.2)

(4.3)

in terms of the coordinates u, v on M° and 6= (q\—q^)/2, 7= (0\ — 0^)/2 on M
(cf. (1.73) and (1.29), (1.30), resp.). Its inverse b° can now be calculated and
reads

(4-4)

(4-5)

'/2 r
k ;

Clearly, the boundary set

Mb=M\Mr (4.7)

is given by

0)} (4.8)

Moreover, from the above one reads off that <j>r and b° extend to Cw maps <t> : M
-^M and b : M-^M, as advertised. The state of affairs is depicted in Figure 1.
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M ^ M
b

Figure 1. The n = 1 maps 0, b and spaces JW'A The indicated points are related by />

It appears out of the question to calculate b° and 0r explicitly for n > 1. Of
course, the cases n=2, 3 should still be accessible via Cardano's formulas, but it
seems unlikely that this would yield substantially more information than the
following theorem, which handles the general n case.

Theorem 4.1. The maps (f>r and b° extend to mutually inverse Cw symplecto-
morphisms <f) and b between <M, w(M)> and (A?, &)(M)>, w/zere f/ze symplectic
forms are given by (1.33) anc? (1.72), resp. The boundary set (4.7) has codimension
2 and one has

(4>9)

Proof. Since we restrict attention to the internal spaces M and $, we may and
will take 5{, ?{=0 in the above and replace the set {(0, 0)} XAffby Mf. First, we
note L is C w on M and we recall cr(L) is real and simple on M. Thus the eigenvalues
of L are Cw on M. As a consequence, the vector 9^AN has a Cw extension from
Mr to all of M, and the extension satisfies $&4$, where d denotes closure.

Next, we note that the Ihs of (2.18) and (2.19) can be rewritten

n

/ /y \1/2

.=$i=n i + - - ~ (4-n)

From these formulas one reads off that the rhs has a non-zero Cw extension to all
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of M. (Note, in particular, that the rhs of (4.10) converges to —1 as 9k — 6k+\ \
d. ) Therefore, we may and will define a unitary U satisfying

tf*Ltt=diag(0i, .. .,£*), 9^A% (4.12)

and (2.18), (2.19) on all of M (Thus, this unitary U coincides on Mr with the
unitary U from Section 2.1.)

Now we fix m = (5, 7) £M and a ball 5CCC2" with center m such that L is
holomorphic and a(L) simple in Bc. Eventually shrinking the radius, there exists
a holomorphic map 2 : BC^GL(N, C) such that

»-1L» = diaga1 , . . . ,A j , ) f AtfCmX-^dii) (4.13)

on Bc, and we may ensure B ^ITDR2* is a ball in M (In particular, the radius
should be smaller than n/ \JJL \ .) Then the restriction of & to B is Cw in B. Since the
eigenvalue ordering on B is fixed by the order in m, and since the order imposed in
m coincides with the order corresponding to U, it follows that on B one has

*), *,:*->€* (4.14)

We now claim that the quantities

<t>k=Xk/Xk+i, k=l,...,n (4.15)

are Cw in J5. Indeed, from (4.14) we have

+l9 fc=l, . . . , n (4.16)

Since the rhs and 0fe are non-zero on B, the matrix element at the Ihs is non-zero.
Moreover, this element and the rhs are Cw in B, so the claim follows. As a
consequence, the renormalized matrix

2, ... , 0i - 0*) (4.17)

is Cw in J5 and satisfies

9r=XiU (4.18)

Now consider the equality

)i (4.19)
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Since (fJ*e)\ is non-zero and Cw in M and the Ihs is Cw in B, we may infer that % i
is Cw in B. In view of (4. 18), we may then conclude that the map M-> U(N\ (d,
r) i — >o r iscw .

We have now shown that 6 and U have Cw extensions to M. Next, we exploit
this to prove that 0r has a Cw extension to M, provided M° is viewed as being
densely embedded in Jl? via (1.73). To this end we introduce (u, v) ^R2" by setting

&'e^/Nj, 7 = 1, ... , n (4.20)

where

\1/2 / » \1/2

; fc*7,y+l 7+1

Since 7V; is negative on all of M, and £/, e and 7V;- are Cw on M, it follows that u and
t> are well-defined Cw functions onM Furthermore, comparing (4.20), (4.21) and
(2.8), (2.22), we deduce that on Mr the relation between u, v and <f, 7 is given by
(1.73). Therefore, 0r extends to a Cw map

0 : M=w n XR" - >Jlf=R2", (5, 7) I - > (H, v) (4.22)

as announced.
To prove that b° admits a Cw extension to M after the coordinate change

(1.73) onM°, we begin by studying the vectors (2.22), (2.23) as functions of the
variables u, v. Recalling (2.8), (4.11), (4.20) and (4.21), we infer that g has a Cw

extension to M Also, / may be written (recall fs = 0)

/ I I \1/2 1/2

J L -- . , . . . , (4-23)\

(4-24)

from which we read off that/has a Cw extension to M, too. Clearly, the same is true
for C(0, //, — g ; 0)k/, provided li^k+ 1. Therefore, J w has a Cw extension for /=£
fc + 1, cf. (2.11). But^l^fc+i is given by the rhs of (4.10), and from this equation
one sees that these elements have Cw extensions as well.

The upshot is, that/, g and A have Cw extensions to M Since the matrix A is
unitary on M° and continuous on M, it is unitary on tif. Likewise, the commutation
relation (2.26) holds true on M Thus we may extend the diagonalizing unitary V
to M by repeating the steps that defined V on Qc, cf. (2.25)-(2.36), (2.41). (Note
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in this connection that for q^WN the constraint Sg; = 0 does not entail
when N > 2.) Along the way, we infer in the same way as before that a 01) is
actually simple on all of M. Since A is also Cw on M, we may deduce that the
eigenvalues of A are Cw on tit. But then it follows that the Cw map J$°^ wn , (u,
v) \ — >6 has a Cw extension to </#, mapping lit into wn. (Note that A(q) has
degenerate spectrum on the walls of the alcove wn .)

To prove that 7 has a C w extension, too, we choose m €E j#, a ball BCLM around
m, and a Cw map ® : B->GL(N, C) such that

j , k = i , ...,N (4.25)

Now the matrix V*AV equals ^4 (#) and so is Cw on M Hence, it equals
on B due to (4.25). Therefore, we must have

...,**), % 7- :J - >C* (4.26)

which entails

(®-1L^,= (K*LK)j / , j=l,...,N (4.27)

As a consequence, the Ihs of (4.27) is a real-valued function on if, which we
denote by 9J9 in agreement with (2.37) for points in B DM0. Defining 7 via (1.30)
(with 75=0, of course), it follows that 7 is Cw in B.

The upshot is, that b° has a Cw extension b, as announced. The relations

(4.28)

then extend by continuity to

(4.29)

so that b and (f> are mutually inverse bijections. Moreover, since b and 0 are
symplectic on dense submanifolds by virtue of Theorem 3.1, the first assertion of
the theorem now follows.

Since J$\M° is the sub variety of M=R2n for which at least one (u} -9 Vj) equals
(0, 0), it has codimension 2. Hence its image Mb under b also has codimension 2.

Finally, to prove (4.9) we observe that b(0, 0) is the point in M that is
uniquely determined by all eigenvalue distances Oj—6j+\,j=l, ... , n, being equal
to d. Now the point at the rhs of (4.9) corresponds to the point (q\ 0e) ^Q given
by
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(4-30)

The Lax matrix (2.1) evaluated in this point equals idE i/2, where E\ is given by
(A. 31). Hence its eigenvalues read

-2/), j=l,...,N (4.31)

by virtue of (A.33). Thus, (4.9) follows. D

Now that we have the relevant maps and their key properties under control, a
comment on the strategy we have followed is in order. From (3. 19) and (3.25) one
sees that the matrix-valued functions & and ^ do not admit a regular extension
from M° to M. (To check this, recall/ is given by (2.23).) However, by using <£
and $ we could solve the canonicity problem via the results of I and analytic
continuation. Just as in n and in the cases Mrei and lUb, the gauge fixing &£=£
involving the constant vector f=(l , ... , 1) (as opposed to functions with
singularities) enabled us to control the continuation between the different
parameter regimes. But we employed A and V to handle the extension of the
action-angle transform to the harmonic oscillator transform, since these functions
admit a Cw extension from M° to M.

To complete this section we detail the results for Q and Q following from
Theorem 4.1.

Corollary 4.2. The maps 0 and /extend to mutually inverse C" symplecto-
morphisms <£ # =P 2 X0 and / # =P 2 Xb between (Q, cD> and <O#C, w#c>, where

, ti*c=Ndrs A dds+ 2] dUj A dvj (4.32)
7=1

The boundary set (3.26) has codimension 2 and one has

/*(0, 0;0, 0) = (r> 9e) (4.33)

where the rhs is given by (4.30).

Proof. This is clear from Theorems 3.1 and 4.1. D

Now we transform the free symplectic Z-action on Q generated by G (recall
(1.12)) into a free symplectic Z-action on £3#c via <£#. Thus the latter action
extends the Z-action generated by G on Q° (recall (2.40)). Next, we set

Q * = Q #C/Z, £ # = &> VZ (4. 34)
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and define a map <£* by requiring that the diagram (1.74) commute.

CoroDary 4.3e The map <£* is a symplectomorphism from (Q, co) onto (£3#,
o>*>.

Proof. Obvious from the above. D

We finish this section by supplying an illuminating coordinatization for £?#.
Namely, we set

Q*^ {& j5 ; a, 6)eRw |jeeE [0, 2ff/tf|0 |)} (4.35)

where the relation to the coordinates G?s, fs ; w, f) on £?#c is defined by

exp(A/tf)=exp(#0f,), j5^Ms (4.36)

exp &/(?.-*)] = exp(2zi7>W) =»

uj, vj)'9 y= l , ... , n (4.37)

\ — sin 0 cos

(Note that / takes values 0, 1, ... , n, depending on fv) Using (2.40) it is easy to
verify that this makes sense. (That is, the coordinates are in 1-1 correspondence to
Z-orbits in £?#c.) Also, on the open dense patch {x^O} one has

& * =dx Adp- daj A dbj (4.39)

Finally, we point out that the action-angle phase space Q equals the
submanifold of £3# given by (aJ9 bj) ^ (0, 0), 7 = 1, ... , n, and that the relation to
the coordinates (x i , . . . , p N) on Q is given by

d), 7 = 1— « (4-40)

0207, 0307, ... , 0J=diagG?**', ... ,€»*«) (4.41)

with

<t>j=(-aj+ibj/(a}+b}y/2, 7 = 1, ... , n (4.42)

Observe that (4.41) amounts to a picture of the obvious maximal t/QVO-torus as a
fiber bundle over £7(1) (given by the determinant) with fiber the obvious maximal
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SU GV) -torus and transition function ex.p(2m/N)lN>

4.2 The Case mrei

Just as in previous chapters, this case can be treated along the same lines as the
lEnr case. Thus, we start again by detailing the n = \ situation. Proceeding as
before, we find that 0 T reads

(4.43)

2J
 2 th/Jr sin|//|5 (4.44)

where

<f=4-Arth([th2£r sin2 \JJL |<5-hsh2z]1/2/[sin2 |//|5+sh2z]1/2) (4.45)
P

Also, the 5-part of b° is again given by (4.4) and 7 reads

7^Arth(mh4(^[W
2 + *;2] +d}} (4.46)

P \ 2 \ 2 //

where we now have

(4-47)

Note these formulas reduce to (4.1)- (4. 6) for 13 1 0. The boundary set (4.7) is
again given by (4.8), and the real-analytic extension properties are manifest from
(4.43)-(4.47). Moreover, Figure 1 applies once more.

Theorem 4.4. The assertions of Theorem 4. 1 hold true, with 0 r and b ° denoting
maps defined in Section 3.2.

Proof. The proof of Theorem 4. 1 can be mimicked to a large extent. First,
since L is Cw on M (cf. (2.51)) and o(L) is positive and simple on M, it follows
that 9 has a Cw extension to M, taking values in A $. Next, we rewrite the Ihs of
(2.18) and (2.19) as
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(4-49)

cf. (2.6)-(2.8), (2.59)-(2.61) and (2.72). From this we see that these quantities
have non-zero Cw extensions to M. (The rhs of (4.48) again goes to — 1 as 6k~
Ok+\ I cf.) Thus we may uniquely determine a unitary U on M by requiring (2.18),
(2.19) and

tf*LZ7=diag(e/*i, ... , e^), 9^A% (4.50)

Then it follows in the same way as before that U is Cw on M. Moreover, replacing
(4.21) by

„ . == a 2 2. J ' * I ^ ^ I 111
J 1 \ f£ Jl /^\ U OX I 11 oz \ (Pj—a/2)sa.p0j / k*j,j+i\ iP/£ A \sh—(V-+l — Uk)

ft ~
sh— (£/

(4.51)

and (2.22) by (2.59), the paragraph containing (4.20) applies verbatim. (Recall
the positive factor f in (2.59) is given by (2.72).)

Using (4.49) and (4.51) we see thatg has a Cw extension to M, Since/ can be
written

/3
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it manifestly has a Cw extension to M as well. From (4.48) we conclude that Akik+\
has a Cw extension, so it follows again that A has a Cw extension to M.

We are now in the position to extend V to M via (the extension of) (2.62)-
(2.66), (2.68)-(2.70). (Note that ?=|:"1.) From (2.63) we deduce as before that
a01) is simple on M, so it follows that 6 has a Cw extension to Jl? with values in wn.

The paragraph containing (4.27) now applies verbatim. Since the rhs of
(4.27) is positive on M, the Ihs is positive on B. Thus we may and will introduce
O^RN by setting

(&-lL&)jj = e f * J V j ( q ) , j=l,...,N (4.54)

(This agrees with (2.67) for points in I? DM0.) Defining r by (1.30), we thus
obtain a Cw extension of 7 to B. As a consequence b° has a Cw extension b to M,
so the first assertion of the theorem follows as before via (4.28), (4.29).

Now it is again obvious that codim Mb = 2, so it remains to prove that the
vector 9 in the point (4.30) is given by (4.31). But since we have

00 =£ (4.55)

with E given by (A.29), this follows from (A.32). D

The comment after Theorem 4.1 applies to the present case, too. Note that the
explicit formula (2.72) for f has not been used in the proof of Theorem 3.3,
whereas it is needed in the proof of Theorem 4.4. (A priori, f need not be Cw on
M)

The paragraph containing (4.34) may and will be taken over verbatim.

Corollary 4.5. The assertions of Corollaries 4.2 and 4.3 hold true in the Mrei
case, too.

Proof. This follows from Theorems 3.3 and 4.4. D

Clearly, the paragraphs containing (4.35)-(4.42) can also be applied to the
case Mrei.

4.3 The Case IHb

We begin again by studying the case n = 1 in considerable detail. This will
enable us to obtain a complete picture of the extensions already described in general
terms in Section 1.3. In particular, the real-analyticity of the map (1.91) will be
explicitly verified.
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Proceeding as before, we find that 0 ? reads

(4.56)
C.C. /

(-7r, TT] (4.57)

where

(4 58)

Then b? is given by the interchanges $^#, 7^7, d^d, in agreement with
self-duality. Moreover, introducing

(4.59)

we obtain

Evidently, M{° has codimension 2 and M{° is connected, but not simply-connected.
Figure 2 provides a sketch of the spaces and maps.

As indicated in this picture, when the boundary points (n/2 \IJL \ , 0), (ji/2 1// 1 ,
TT/|/?|) in M° are approached, 6 converges to the endpoints r/|/3|, Or— r)/|/?|,
resp., of its definition interval, whereas 7 has direction-dependent limits, cf. (4.56)-

/ \
c/ "

I c

A ,^ /

^ A./ p\,
V )
\ /

na

/ \7 \

, /
\ /

*;,
HQ /sa

d /\a

^ N/ \

/s

V /

H

^

/ \
1 *\p\

q y c

/</ v
\

/
\ /

Figure 2. The « = 1 maps ^?, b? and spaces M{°. The crossed points and bounding circles do
not belong to l&f

r
0.
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b
Figure 3. The two-step extension procedure for n = 1.

(4.58). Thus, we may extend M? with two 'endpoints' by letting the f-torus
collapse to these points as 6 I r/\f}\ and 6 f (TT—r)/ |£| , resp. Then 0? has a
continuous extension 0° : M°-^Mr, where JMr is the extension of Jl??.

Next, we note that when we fix 7 and take d | r/1//1 and 5 | Or—r)/ \JLL \, we
get ((f, 7)-^ Or/21/31, 0), Oz/2|/3|, 7T/ I / / I ) , irrespective of the fixed 7-value, cf.
(4.56)-(4.58). Thus, it is clear how the loss of self-duality incurred in the
extension can be restored : We should extend M° with two 'endpoints', too, and Mr

with the two boundary points of ^°, yielding (topological) manifolds M, J$—S2

and mutually inverse homeomorphisms 0 : M—>M, b : M->M The situation is
depicted in Figure 3.

We have now supplied the details of the extension already sketched above
(1.87). We proceed by verifying property (ii), cf. (1.87)-(1.91). Since we already
know that 0?: (M?, a)Ry-> <$f?, — O)R) is a Cw symplectomorphism—a fact that
can be verified from <4.56)-(4.58), in principle—we need only check that 0 is Cw

at the 4 points in M\M?. This can be seen by inspection, provided one employs a
suitable representation for 0. Specifically, using (4.56)-(4.5 8) and (1.88) we find
that for points in the patch gPQ= {(1, zO |zi^C} the image m=0(l, w) can be
written

1 (4.61)
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where

_ [cos rf(w) +;p(w) (Im vc)sin d(w)] / _ <f(w) — T x

(sin2 tl(w)-sin2 T)(TZ— r-<?(w)

(4.62)

2) (4-63)

\l/2
_ _ \ (

(Re w)2sin2 r+ (Im w)2sin2 d(w) / ^ ;

? 1T /p(w)Rew+/\ T / «\ . /„ r*\c? = — Ln - , Ln(— I ) = J T T (4.65)
2/ \ c.c. /

(with c.c. = complex conjugate) . Alternatively, we have

m = (yc(w), l)e^i, w^l (4.66)

where

_ [cos d (w) — zp (w) (Im vy) sin g/ (w) ] x

[p(w)2(Rew)2+l]1/2

(4.67)

(Note that cr(w)/c(w) = 1, w^ ± 1, as should be the case.) Now from (4.62) one
easily sees that Re a, Im a are Cw functions of Re w, Im w at w = 0s 1 ; similarly,
from (4.67) it follows that Re /c, Im /c are Cw at w^O, — 1. (Note these 3 points
are the points c, 0, b, resp., in Figure 3.) Substituting w — >l/w in the above one read-
ily verifies that 0 is Cw at m = (0, 1) e^ i , too. (This is the point d in Figure 3.)

Of course, we may just as well view 0 as a Cw antisymplectomorphism of the
symplectic manifold (P1, O)R). Note that the self-duality property (2.120) then
entails 0 o 0 = id(P !), and that 0 depends solely on r£ (0, 7T/2). Finally, we point
out that (f> has two fixed points at m = (1, ±i) (the points/? and q in Figure 3) ;
these points lie on a Jordan curve /"CM? of fixed points given by

r={((55r)^M°|Qcos |j8|r=cot fi\6} (4.68)

(This readily follows from (4.56)-(4.58).)
We proceed by studying the general case. First, consider the function M°~>

R, wl - > w J 2 / ( l + | w i i 2 H ----- h \wn
 2), where ^ {0, 1, ... , n}. This function
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may be viewed as the restriction of the function P " -> R, (z 0 , . . . , z „) I — * z v \
 2/(z,

z) to M°C^0. The latter function is manifestly Cw on P". (To avoid any mis-
understandings, let us recall what this means : Setting za= 1, it is real-analytic as a
function of the real and imaginary parts of z0, ... , za-\ , z f f +i , ... , zn£C, for any
a£ {0, 1, ... , «}.) From (1.97) we now see that the functions dv, y=0, ... , n,
extend to Cw functions on M, again denoted 6». Thus, the matrix A(q) (with
2#;— 0) extends to a Cw function on M, cf. (1.29). Similarly, the matrix elements

l, and

_ sn r
> k+l,k

(4.69)

where k = 1, ... , JV(cf. (2.82)), have Cw extensions to M (Here and below, we use
mod N notation. Thus, e.g., qN+i= q i •)

Consider now the vector-valued functions/and g given by (2.85) and (2.86),
resp. These can be rewritten

/i=e^. MUMM .,,-„ n -^4r] (4.70)

(4.73)
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Clearly, the exponentials and the factors in the products extend to Cw functions on
M. Moreover, substituting

w.-f^, \V\6V-T^ |Z>l^Jyr). *=0,1 ..... n (4.74)

in the remaining terms, one readily checks that the functions fjgk,J\ k=l, ... ,N,
have C03 extensions. Therefore, the Lax matrix L admits a Cw extension to M
(recall Ljk equals /} Cjkgk on M°.)

On the other hand, although the functions/ and g have Cw extensions to ^od
M, they do not even admit a continuous extension to all of M. This is due to the
factors |z0 /z0 in (4.71) and |z0|/z0 in (4.72) ; similarly, the factors sin(|//|50

-r)1/2 in (4.70) and (4.73) are C° but not C1 for z0 -*0. To cope with this
difficulty, we introduce the phases

2
 f ,

> = 0, . . . ,n (4.75)

(4-76)

v = - T~i^wv \ \fi\do— T/ z v z 0

and define

Then/00 and g (y) have C" extensions to the patch ^CAf. This is crucial in the
proof of the following theorem, for which we are now prepared.

Theorem 4,6, The maps 0? and b? extend to mutually inverse Cw symplecto-
morphisms (/> and b between <M, O)R) and (J&, — a)/?). Employing homogeneous
coordinates on Mf—Pn one has

b(e „)=£„, v = 0, ... , n (4.77)

w/zere

e,= ( l ,6)- y
>6)- 2 l / , . . . , f i)-B l ;) , fi)=cM/JV (4.78)

where eQ, ... , en w £/ze standard basis ofCN. The varieties

(4.79)

and M{° have codimension 2. The manifolds Mf
r° and Qff are connected, but not

simply-connected. Finally, identifying M and M with P", the map <p is an involutory
C" antisymplectomorphism of <P",

Proof. We follow the proof of Theorem 4. 1 as far as possible. We have already
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shown that L has a Cw extension to Af, which we denote again by L. Since L is
unitary and has simple eigenvalues whose distance is bounded away from 0 on Af °,
the same holds true on Af. Therefore, the vector G^Ab

N has a Cw extension to Af
satisfying 0(E (A JOC/.

Next, we rewrite the Ihs of (2.101) as

(4.80)

where fc = l, ... , n. Inspecting the rhs of this formula, one sees that it has a
non-zero Cw extension to Af. (Once more, it converges to —1 as Ok~0k+i I d.
Note that (4.80) holds for k=N, too, and that the rhs then converges to 1 for 6\
— 9N\ 2n/\&\ — d.) Thus, when we introduce a function £7 : M— > U(fT) obeying

, <?eUJOd, £0; = 0 (4.81)
7 = 1

+ i < 0 (4.82)

then £7 is determined up to an overall phase ambiguity.
We proceed by fixing this phase in each patch & v , yielding N unitaries U0 , ... ,

Un- Specifically, we require that the first non-zero quantity in the sequence
(Uig W)i , •-. , (Uvg (i/))^be positive. (This makes sense : (4.76) yields a Cw vector
g(v) on ^y ; the paragraph containing (2.100) entails

sin L

on the dense subset Af? of & v ; hence (4.83) holds on #>„, so £/tg (v)^0 on ^y.)
Then the unitaries thus defined on & v are related to the unitary C7 defined in Section
2.3 by

Uv=p^Uf v = 0, ... , n (on Af ?) (4.84)

(To see this, recall (l/rg)i > 0 on Af?.)
Next, we fix m^^y, a ball B C^j, around m (w.r.t. the Fubini-Study metric)

and a Cw map 0 : B-^GL(N, C) satisfying

. . . , A ^ ) , A/m)^^^, y = l, . . . , J V (4.85)
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Then it follows as before that (4.14) holds true on B, provided U is replaced by Uv.
With this replacement the paragraph containing (4.18) applies, too, the result being
that we obtain a renormalized Cw function ®r on B of the form

9r=xUV9 x:B >C* (4.86)

We continue by introducing

gr^^'rg^ (4.87)

Clearly, gr is Cw in B and g r^0 on B. Consider now the function z : B-~>CN

defined by

(4.88)

where fe = l, ... , N. (Recall our standing mod N convention, entailing $0 — ON>}
The quotients in brackets are all Cw and positive on M, so z is Cw and ^0 in B.
Furthermore, on the set B® = B HAf ? we have

cf. (4.86), (4.84), (4.76). From g i^O on B? we now deduce z0^0 on U?.
Therefore, the quantities

i v / ^ f / X f o , i = l, . . . , / i (4.90)

are well defined on B?; moreover, they coincide with the w/ in (1.93), as follows
from the formula (2.104) forg.

The point is now, that z may be regarded as supplying homogeneous
coordinates for a function 0 : B-^M—P" (since z^O on 5). This function is Cw

in B (since z is), and it coincides with the (reparametrized) map 0 ? on the dense
set B r (as we have seen in the previous paragraph). But then it is routine to deduce
that 0? extends to a Cw map 0 from M into M By virtue of self-duality, the
analogous conclusion for b ? is plain. Therefore, we may conclude that 0 maps onto
M and has a Cw inverse b extending b?. Using Theorem 3.5, connectedness of Mf,
and real-analyticity of 0 and b, the first assertion of the theorem now easily follows.
Then the last assertion is clear from self-duality.
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Next, we prove (4.77). The points B» belong to M° and have coordinates

dj(eJ=x/N\/i\, 7jte3 = -2mj/N\0\ (mod 27T/|£|), y = l , . . . , 7 i (4.91)

in view of (1.93). By (2.82) and (A.29) this entails

£(£,) =diag(l, a*", ... , co'-OE diag(fi)-y, w~2*, ... , 1)~6>->E, v=0, ... , n (4.92)

where ~ denotes similarity. Using (A. 32) and S0/ = 0, it is then straightforward
to verify

(4.93)

(recall (1.94)). Now we choose a sequence pk^M° converging to ey as
Using (1.93) to write

, ...) (4.94)

it follows from (4.93) and the continuity of 0 (already established above) that 0
(i£v)=eV9 which entails (4.77).

We continue by proving

codimM? = 2 (4.95)

To this end we first observe that the variety Me defined by (4.79) amounts to P" \
C *", and so has codimension 2. Second, we note that

M?C0(Me) (4.96)

so that codim M° > 2. Third, we assert that there exists an open neighborhood N»
CM of e» such that

00V,)cjJf° (4.97)

Indeed, (4.77) and self-duality entail (p(e^=ev, so existence follows from £
and 0 being a homeomorphism. Fourth, we define

(4.98)

From ev^Nl we then deduce codim Nl = 2. But due to (4.97) we have 0QVJ) C
M°, implying codim M? < 2. Hence, (4.95) results.

Since M° is connected, it now follows that M°\M°:=Jl3r? is connected.



316 SIMON RUIJSENAARS

Therefore, it remains to show that M? is not simply-connected. To this end we
observe that the commutative diagram (1.85) may be invoked. (Indeed, the com-
ponents occurring in Theorem 3.5 are equal to the spaces in the diagram due to the
connectedness of M? just established.) Since #(!?#) is a regular covering projection,
we need only prove that Qr is not simply-connected. Because R is Cw in Or, it
suffices to show that the 0-part of R is multi-valued.

To prove this, consider the set N° defined by (4.98). Due to (4.97) this set is
a subset of M?. Therefore, M? contains the tori {(6, r) 1 7^ (~^/ \P \ , n/ \0 1 ]"}
for d^Bn sufficiently close to the alcove corner 6(e^). But as exp(/?7;) winds
counterclockwise once around S l, the corresponding 0, and — 0/+i clearly increase
by27T/|£|,cf. (1.85), (1.30). D

Corollary 4.1. The maps $ and /extend to mutually inverse Cw symplecto-
morphisms d>x = P2X^>and /x = P2Xb between (Q #c, a> *c> and {Q #c, & #c>, where

(4.99)

(4.100)

Proof. Obvious from Theorem 4.6. D

Next, we supply the details of the diagram (1.86) and its extension (1.102).
We begin by recalling that the first Z-f actor in the ZXZ-action on R 2 XM° has
generator G given by (2.39). The second factor corresponds to the quotient group
ZN/EN, cf. (1.42). One easily checks that its generator reads

G, : (5,, r, ; s, r) i — > (SS9 rs+WN\p\ • 6, ri-
(4.101)

Recalling self-duality, it should cause no surprise that Gq equals the map (2.40)
when hats are omitted and// is replaced by 0. By the same token, the dual generator
Gq = 0 o Gq o / is given by (2.39) with hats added and [i->/3. Since these gen-
erators map Qff onto itself, the projections in (1.86) are well defined. The map 0
is now defined so as to ensure commutativity.

We proceed by introducing

g: P" - >P", (z 0 , z i , . . . ,z n) I - > ( z n , z 0 , z i , ...,zn-i) (4.102)

g , :P" - >P", ( z 0 , Z ! , . . . , z n ) l — >(z0,a>-lzl,...,a)-*Zn), 0)=e2m/N (4.103)

One readily checks that these maps are symplectomorphisms w.r.t. COR whose Nth
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powers equal the identity. Moreover, viewing M° as C *"CP" via (1.93), we have

g(m)) (4.104)

g,(m)) (4.105)

Therefore, G and Gq extend to symplectomorphisms of <£2#c, co#c), with duals that
are obvious by now. The corresponding group actions are clearly free, so we obtain
symplectic manifolds

(4. 106)

Note that Q # may be viewed as a fiber bundle over

[0, 27T/JV|£|)} (4.107)

with fiber P" and transition functions g and g q w.r.t. the 8S and 7S tori, resp. The
map 0 x in the diagram (1.102) is now defined such that the diagram commutes.

Corollary 4.8. The maps 0 and 0 x in (1.86) and (1.102) are symplectomor-
phisms from (Or, &)> onto (Qr, a)} and from <£2#, &)#) onto <£3#, o)#), resp.

Proof. Clear from the above. D

4.4 The mb Map 0

In this section we shall obtain more information on the reduced harmonic
oscillator map 0, viewed as an involutory antisymplectomorphism of (P", coren), cf.
(1.103). To this end we introduce the involutory antisymplectomorphisms

k : (z0, ... , zj I - > (z0, ... , zj (4.108)

k: (z0, ...,zj I - > ( z 0 , z n , . . . , z i ) (4.109)

and the involutory symplectomorphism

p = kok = kok : ( z 0 , Z i , ... ,zj I - > ( z 0 , z « , ... , Z i ) (4.110)

Then we have

0ok = ko0 , 0ok = ko0 , 0op = po0 (4.111)
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by virtue of (2.119). Next, we set

t = g o g g = g 9 o g : (z0j ...,*,,) i — >(zn9 a)~lz0, ... , w~"z n _ i ) (4.112)

where we used (4.102), (4.103). One readily verifies

p o t o p = t-1 (4.113)

so p and t generate a dihedral group action on P". Using (4. 1 1 1) and the relations

</>°Q = 9q°<t>, 0°g* = g°0, 0ot = to0 (4.114)

(which follow from (2.40)), we deduce that $ commutes with this action.
Clearly, the generators g, g9, t and p are isometrics of the Riemannian

manifold <Pn, g/r5>, where gFS denotes the Fubini-Study metric. Indeed, they may
be viewed as pushdowns of unitaries on C N whose action on C^ can be read off from
(4.102), (4.103), (4.112) and (4.110), resp. For the first three cases the eigen-
values of these unitaries are the Nth roots of 1, and the corresponding eigenspaces
give rise to N fixed points. Obviously, for g and g q these are given by £ v and e v,
v = Q, ... , n, resp. Introducing

(4.115)

(so that PI, +#=70, one readily checks that t has fixed points p09 ... 9pn.
Next, we introduce the fixed-point space

0(z)=z} (4.116)

Since we have

P GO =/>*-!,, y = 0, . . . , n (4.117)

the only point/? „ that is fixed under p for any N is/? 0 , whereas for N even we obtain
an extra fixed point p N/2 . Now 0 commutes with the dihedral group action
generated by t and p, and for N odd we have just established that/? 0 is the only fixed
point under this action. Thus we must have/? QEzF for N odd, whereas for N even
we can only conclude that <f> leaves the set {p o , p N/I} invariant.

We now observe that the points p v have already appeared above, cf. the
paragraphs containing (3.60) and (3.63). In particular, using (2.117) and (1.93)
one sees thatpo amounts to the point Po(0, 0). Thus, the above yields a new and
completely algebraic proof of (2.140) for N odd, as announced below (2.140).
(Indeed, the developments after Corollary 4.8 can be rephrased in the context of
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Lemma 2.3.) In view of (3.49) we actually have

Po^r (4.118)

for any N, which entails

pN/2^r (AT even) (4.119)

Next, we observe that

g( /> i / )= />v+i , g* GO =/>*-i (4.120)

and so

0(^v) = (0og l ;)(^o) = (g;o0)( Jpo)=g;(po)=p^-v (4.121)

Moreover, introducing the points

J v ^ k G O (4.122)

we have

= (0 ° k) (p „) = (k o 0) (p „) = RG>*-») = (k o p) G>*-J =

(4.123)

where (4.110), (4.111) and (4.117) have been used. Thus,

i> = 0, ... , n (4.124)

Since the map 0 is an antisymplectomorphism, its Lefschetz number equals O/
1 for n odd/even. Thus, F could have been empty for n odd, a priori. Note that
the fixed points are not Lefschetz, since 0 is involutive.

We continue by introducing the symplectomorphism

f = ko0 (4.125)

which satisfies

f2-p, f4 = id (4.126)

on account of (4.110) and (4.111). Using (4.56)— (4.58) one easily checks that for
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n = 1 this map has 2 and only 2 fixed points at

z± = (l, ±([rf(r)-r]/[7r-r-^(r)])±1/2), d(r) = Arcsin((sin r)1/2) (4.127)

More generally, for any n > I it must have at least N fixed points by virtue of
Lefschetz theory. In view of the convergence result we are about to prove, it is
plausible that the fixed-point space of f has the same characteristics as the
fixed-point space of the P"-automorphism f 0 that is the quotient of

FO=N-
ill I - I \

I 0) O)2 "' 0)?

(4.128)

In particular, we expect 3 and only 3 fixed points for N=3, and 2 and only 2
isolated fixed points for N=4. (Note F0 has eigenvalues 1, — 1, / for N—3, 4, the
first one being degenerate for JV=4.) After the following theorem we shall show
that one of the N=3 fixed points is in fact r-independent.

Theorem 4.9. The symplectomorphism f obeys

lim f(z)=f0(z), VzeP" (4.129)

where the limit refers to the Fubini-Study metric and is uniform on P". There exists
no rE: (0, n/N} such that f is the quotient of an invertible linear map on CN.

Proof. In view of (4.77) and (4.125) we have

Ke „ )=£„, v=0, ... , n, Vre(0, n/N) (4.130)

(Recall b equals 0 in the picture adopted after Corollary 4.8.) Now assume that r0

e (0, 7T/AO and M^GL (N, C) exist such that f is the pushdown of M. Then M
must satisfy

Me^m^i,, v = 0, ...,n (4.131)

for certain m y^C *. Moreover, as f is symplectic, M is unitary up to a scalar, so
mQ\ =-••= \mn =P- Recalling now f2 = p, it follows that M2e0

=A^o2e / 0e0 j cf.
(4.110). This is readily seen to entail m^^pe^/2

9 so we may as well take M=F0,
cf. (4.128).

Summarizing, the above assumption implies that f equals f 0 for r=r0 . Now
for N —2 the fixed points of f 0 are given by
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z ± , 0 = ( l , ±(2"2-l)± I) (4.132)

Comparing with (4.127) we conclude

-r) (4.133)

Since a(r) increases from 0 to (3 — 23/2);r as r goes from 0 to n/2, this contradicts
, 7T/2).

Next, let N > 2 and consider Tr L evaluated in the point

z x - ( l ,x , 0, . . . ,0), x£ER (4.134)

Using (1.97) and (4.70)-(4.73) one obtains

sin(x2Kx)) . sin(2r+r(x))sin(2r+x2r(x)) \1/2

x2 " sin(r+r(x))2sin(r+x2r(x))2/

/ • 2 X1/2

* n !-.., ,rj f f n, (4-135)i*i,2,N\ sin (x r ( x ) + (I— L)T) /

where

r(x) = (^-^Vr)/(l+x2) (4.136)

Clearly, Tr L can be analytically continued off the real axis. The function thus
obtained is two-valued : it has a square-root branch point at x=f(^Vrr/7r)1/2, e.g.

On the other hand, taking x^ — 1 one obtains from (4.128)

l (4-137)

Using (the duals of) (1.97) and (1.29) we can evaluate Tr L in this point, yielding

Tr L=Sexp(ry-(x, r)) (4.138)
7 = 1

where the functions r; are rational in x. Thus it follows that for T=TO the one-
valued function (4.138) equals the two-valued function (4.135), a contradiction.

It remains to prove the first assertion. We begin by noting

lim \v\6 v=x/N, v = 0, . . . ,« (4.139)
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uniformly on P", cf. (1.97). Hence,

lim A =diag(*"c*-1)/", e^
N-*/N

9 ... , e*K-"+0/*) = AQ (4.140)
r f f f / J V

lim L = -Sf=L0 (4.141)
r\n/N

uniformly on P", cf. (4.30), (4.69)-(4.73), (A.35).
Next, we introduce the matrix

(1), . . . f i iw ) (4.142)

cf. (A.37). FromLo^S^"1 and (A.36) one deduces

U$LQU0=A0 (4.143)

and using (A.37) one readily verifies

-l, k = l,...,n (4.144)

Consider now the unitary £7 denned by (4.81), (4.82) up to an overall phase.
We are going to prove that this phase can be chosen such that we have

lim 0=0 Q (4.145)
r\n/N

uniformly on P". First, we observe that (4.141)-(4.143) entail that L has eigen-
projections Pj converging to the projections on u(j\ j=l, ... , N, as T f n/N.
Furthermore, the convergence is uniform, since the limit (4.141) is uniform.
Therefore, the vectors a (;) = Py u

 (;) converge uniformly to the (constant) vectors
u ^J\ j= 1, ... , N. In particular, there exists £ > 0 such that a ̂  is non-zero for all
;<E{1, ..., N}9 z^P", and T^(n/N-e, n/N]. Restricting attention to this
r-interval, we deduce that the vectors b ̂  = a (7V \\ a ̂  \\ yield an orthonormal base
of eigenvectors of L converging uniformly to u ̂ j\ j=l, ... , N. Therefore, the
unitary matrix U' = Col (b (1), ... , b (jvr)) converges uniformly to U0 as T f n/N,

Denoting now the columns of U by c (1), . . . , c w, we may and will fix the phase
ambiguity in U by requiring c (1) =b (1) ; then one has c C;) =Xjb (;),j > 1, for certain
phase functions Xj '• P"~>5'1. We claim that this phase choice ensures (4.145),
uniformly on P".

To prove this claim, we need only show Xj~~* 1 uniformly, since we already
know 6(;)->w(;) uniformly. To this end, we use (4.140) and (4.144) to infer
(U'*AU'\ik+i =ck-> —I, uniformly on P" (withfc = l, ... , n). Next, we observe
that ck=XkXk+\nk, where nk= (U*AU^)kik+i and Xi = 1- Since |cfc |-> 1, we get
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|/ifc|-M, and since nk< 0 (recall (4.82)), this entails / x f c - > — 1, fc = l, ... , n.
Hence we obtain successively % 2 -^ 1 , .. . , % „ — * 1 , uniformly on P ", so the proof of
(4.145) is now complete.

We continue by fixing z^£Pv and introducing the renormalized vectors

1/2

gM(z)> v=0 ..... " (4-146)

cf. (4.75), (4.76), (4.83). Then we obtain

lim
T t X/N

_ £* gren(z), ze^v (4.147)
*" V

(Indeed, this follows from (4.139) ; note, in particular, that the product in (4.72)
and (4.73) has limit 1.) Moreover, a straightforward calculation yields

U/2 -(F0(zo,z ,,..., zny)k,k=\,...,N, VzeP" (4.148)

We are now ready to exploit the paragraph containing (4.88). It entails that
f = k o 0 : B -> P" may be written

where the function p k denotes the product of all square-root factors at the rhs of
(4.88). Thus we have

lim p k (z) = (sin (;r/AO )1/2 = p (4.150)
TfTT/JV

and using also (4.145), (4.147) and (4.148) we now obtain

lim f(z) = P.l/2 -^-F0(z0, ... ,zny, Vz^Bd0>» (4.151)
(Z,Z)

w.r.t. the Fubini-Study metric. From this one easily deduces (4.129).
Finally, we prove the uniformity assertion. Since P" is compact, it suffices to

show that (4.151) holds uniformly for z in an arbitrary compact KdB. Now the
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limit (4.147) is clearly uniform for zEiK, and so is the limit (4.150). Since the
limits £7f(z)-^£/o and $Ok(z)-+i7i(N+l-2k}/N are uniform on Pn, it follows
from (4.149) that (4.151) holds true uniformly on K. D

For n = l one obtains from (4.61)-(4.65)

I \ l /2

lim
r iO

9 ± Arg w 6E (0, TT) (4.152)

± w > 0 (4.153)

Thus, though 0 (and hence f ) has a pointwise limit for r | 0, the limiting map is
discontinuous. Probably, f has a pointwise limit for n > 1, too, but again the
limiting map cannot be a diffeomorphism. One way to see this is to observe that

r iO
i, ...,wj=e0, VwGE(0, oo)» (4.154)

(Indeed, from (1.93) and (2.82) one deduces that for these points one has L -> 1 N

as T | 0.)
For the last topic of this section it is convenient to write F=P" and use

suffixes 0, r, &, e for F just as we did for M and &. In particular, we have

F° = C*", Fe = F\F°, F?=F°n0(Fe) (4.155)

so Ve is the union of the N complex hyperplanes P"~1CF obtained by requiring
z Oz i • • -z „ = 0. Next, we introduce

F, - 0(Fe), F! = ¥envb (4.156)

and note that 0 may be replaced by f in these formulas. (Indeed, k and k leave Ve

invariant.) As we have already seen, F| is empty for n = l. Now let n > 1 and
consider the projective variety

Vl(fl/N) = Fenf0(Fe) (4.157)

Clearly, it consists of N2 copies of P"~2, and it is the limit of the space VI as r f
, cf. (4.129).
It is a remarkable fact that F| is actually r-independent for N=3 :

^=3 (4.158)
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Possibly, this is true for N > 3 as well. The proof of (4.158) that we shall now
sketch does not generalize to N > 3, however. Let us put

(4.159)

Pvp = C,,nfo(Cp) (4.160)

Using (4.128) it is routine to verify

Poo=(0, 1, -1), P0i=(0, I,*-"*3), P02=(0, l,e'W3) (4.161)

P io=(l ,0, -1), Pn = 0, 0,e'V3), P12=(l, O,*-^3) (4.162)

P2o=0, -1,0), P21=0,*-"*3,0), P 22=0, a*73, 0) (4.163)

Then one easily checks

Poo - *Poo (4.164)

Poi - ^P2o - >Po2 - >Pio - >Poi (4.165)

Pn - >P2i - -P22 - >P« - >Pn (4.166)

where the arrows symbolize the map f 0.
To prove (4.158) it suffices to show

C2nF6-{P20 ,P2i ,P22} (4.167)

(Indeed, sufficiency follows from

g(F,)=go0(F e)=0og9(F e)=0(F e) = K, (4.168)

g(C2)=C0 , g2(C2)-d (4.169)

cf. (4.102), (4.114).) To verify (4.167) we first calculate the symmetric functions
of the Lax matrix L in the points (1, w, 0), wEEC *. (We need not consider (1, 0, 0)
and (0, 1, 0) : these points are equal to 0(e i) and 0(e 2), resp., and £ ve F°.) From
(1.97) and (4.70)-(4.73) we obtain

w / sin (a - 3r/2) sin (a + 3z/2) V/2 - , ,
-r( •, ___ ̂ ,*\^r»i^n\ > S2=Sl9 S3=l (4.170)w I \ sin (a — r/2) sin

where
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a = 3r/2+(7r-3r)/(l+ w|2)(E(3r/2, 7r-3r/2) (4.171)

Next, we observe that (1, w, 0) belongs to Vb iff L(l, w, 0) has a minimal
spectral gap. In turn, this holds iff cr(L) can be written

[-;r+3r, 7r-3r] (4.172)

But if a(L) is of this form, one gets

|Si| = |2cosr-e'*| >2cosr- l (4.173)

with equality iff 0 = 0. (Note COST > 1/2 for JV=3.) On the other hand, from
(4.170) one readily deduces

with equality iff a=n/2.
The upshot is, that if L (1, w, 0) has a minimal spectral gap, then one must have

0 = 0 in (4. 1 72) and |w = 1 in (4.171). Using 5 3 = 1 , we then obtain three possible
cases, viz.,

aCL) = {-*±fr, 1), fe'c-*/3±T), -e-™}9 {e^/3±T\ -el"/3} (4.175)

It follows from the above that these cases actually occur iff w= — 1, e ~I7r/3, em/*9

yielding the points P 20,^21,^22, resp., cf. (4.163). Thus, (4.167) and (4.158) are
now proved.

An interesting corollary of (4. 158) is that (4. 164) -(4. 166) hold true under the
action of f, too. In particular, one obtains a r-independent fixed point

f(0, 1, -1) = (0, 1, -1) (4.176)

(To see this, one need only recall (4.129) and observe that f leaves VI invariant.)
Furthermore, it follows that one has

=P», 140=00,12,21 (4.177)

)=P22 (4.178)

This state of affairs is depicted in Figure 4.
Finally, let us point out that one can directly verify that P 12 (say) is fixed under

0. Indeed, using (1.93), (1.94) and (4.69)-(4.73) one obtains
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Figure 4. The action of the map <p on the points Pvp for //=/ and r=?r/6. For clarity the
non-fixed points are slightly displaced from the edge midpoints.

«/3^\ e^/3~T\ -e^ (4.179)

0 e ~/7r/3 sh 2p 2chp sin r/2
L(Pi2)= -1 0 0 (4.180)

0 -2chpsinr/2

g(P12) = (0, e-/(7r/6+r/2)shpchp, e-zW3shp) (4.181)

where we have set

shp= (2cosr-l)1/2 (4.182)

A long, but straightforward calculation now yields

/(;r/6+r)

COS T/ ^ chp chp 2e ~^ sin r/2

together with

(U*AV}(P^=L(fny, (C/*L£/)(P12)=^(P12) (4.184)

Thus one gets <t>(f\-i)=Pn, as advertised. Note that U(P\-^) is symmetric, as
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should be the case on the fixed-point space of 0, cf. (2.137) ; note also that one can
now reobtain (4.177), (4.178) and (4.164)-(4.166) by using the maps p, g, gq

and k.

5 Dynamics and Scattering

Sol The Cases !!!„ and Mm-

The above construction of the action-angle maps $ and 0 and their harmonic
oscillator extensions 0 * and 0 * has not involved any Hamiltonian. On the other
hand, the construction does make essential use of the Lax matrix (2. 1) and the dual
Lax matrix (2.24), and these matrices can be used as generating functions for a
large collection of commuting Hamiltonians. We begin this section by studying
Hamiltonians on Q — R 2 XM defined by

(5.1)

Here, ^ denotes the class of non-constant entire functions of the form 2
r^EiR. (Since L is self-adjoint, we could just as well allow all CR (M) -functions,
but ^ is large enough for our purposes.) Note that the choice h (x) =x 2/2 yields the
Sutherland Hamiltonian (2.2).

To study these dynamics (and the dual dynamics to be defined later on) we
shall exploit the relations

L(f)~L(f), A(f)~A(f), P^Q, P = 0#(P)EE£#C (5.2)

where ~ denotes similarity. First, we claim that the flows Qxp(tHh), h^<&, are
complete and commute. To prove this, we set

Hh^Hho/* (5.3)

and use (5.2) to obtain

8k(S,,t,',u9v) = %h(dj) (5.4)
7 = 1

where (cf. (1.50), (1.73))

(5.5)

Thus, fih generates the flow
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(- t N

,,7,, u, v -^ ,,r, Nj=i j ,uicosta>h)l VisintoM , ...

i f ^. fC\... , «;„ cos a)h,n ii„sin w A > n y

where the oscillation frequencies are given by

(5.7)

This flow is manifestly complete, and letting h vary over ^ clearly yields commuting
flows. Thus, the above claim now follows from Corollary 4.2.

We continue by noting that the above can be used to obtain complete and
commuting flows on the reduced phase space M. Specifically, we may take ds,rs =
0 in (5.1) and view the resulting functions as Hamiltonians on M (again denoted
Hh). In view of the product structure of 0* (cf. (1.74)) we can then use the
relations

L(m)~ L(m), AM~A(m\ mGM, m-0(m)<EM (5.8)

to obtain

Cff* ob) («,») = SA(0,) (5.9)
7 = 1

where Qj is given by (5.5) with S s = 0. The corresponding flow on M is then given
by (5.6) with the first two coordinates omitted.

In the Sutherland case h (x) =jc 2/2 the flow just defined actually arises quite
naturally : it describes the center of mass frame motion. More precisely, the flow
(5.6) leaves the submanifold {(0, 0)} XM—M invariant and coincides with the
flow on M just detailed. Thus, this holds true for the Sutherland flow exp(tff) on
{(0, 0)} XM, too. Note that the center of mass frequencies

are rationally independent except on a set of measure zero. Thus the orbit closure
is generically n -dimensional. As a consequence, the commutant of the reduced
Sutherland Hamiltonian is abelian.

Obviously, the point (0, 0) EE J# is left invariant by all of the reduced flows
. More generally, the equilibria for a fixed h£E%> are the points in the set

eh = {(u, z;)£ER2« uf + vf*Q=*a)kJ(u, tO=OJ=l, ... , n} (5.11)
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In the Sutherland case all of the frequencies are positive on all of J$ (cf. (5.10)),
so that

S*={(O fO)}, *Cx)=xV2 (5.12)

For other dynamics, however, eh in general contains tori T-7', jEi {1, ... , n}.
Returning to the 6h flow on R2XJ$, the equilibrium set is given by

7 = 1

a>A.y(0)=0, 7 = 1, . . . ,n} (5.13)

In particular, this yields

A={(0,f l ;0 ,0) 0EER}, /z(*)=*2/2 (5.14)

in the Sutherland case. Thus the points (1.109) are the only equilibria of the H
flow, as announced. (Recall (4.33).) It readily follows that 3 has a global mini-
mum at the points (q e

a , 0) and no further critical points. (The vanishing of 73 at
(qe

a, 0) can of course be seen directly, cf. (1.1).)
It is not hard to verify that these properties hold true more generally for the

dynamics

Hk = lThk(JL\ hk(x^^x2k, fc=l,2,3, ... (5.15)

Specifically, Hk has a global minimum

(5.16)

and no further critical points. (Observe that &>hk,i > 0 whenever ^f=\ Ofk~l = Q.)
Next, we derive a representation for the position part q(f) of the flows

Qxp(tHh). This involves the matrix- valued function on RXO given by

Ah(t,f) ^^(P)exp(^/2/(L(P))) (5.17)

Theorem 5.L Let h GL% t eR and P^Q. Then the matrix A h (f , P) has simple
spectrum on the unit circle. Its eigenvalues a \ (0 , . . . , a N(f) can be ordered such that
the position part of the integral curve exp(tff/,) (P) is given by

7 = 1.-^ (5-18)

Proof. This follows from the chain of similarities



ACTION-ANGLE MAPS FOR SUTHERLAND SYSTEMS 331

p(^/i/(L (P)))^(exp(^,)(P))^(exPaH,)(P)) (5.19)

cf. (5.2). (The second step is most easily verified first on Qc, using the coordinates
(1.50), (1.64) ; its validity on Q*c then follows by continuity.) D

Combining the equilibrium property

exp(tfffc)(?e, 0) = (f ', 0), V(t fc)6ERX {1, 2, ...} (5.20)

and (5.19), we obtain an isospectrality relation that is quite non-obvious, viz.,

a(diag(&>", &>"~2, ... , <y~")exp(irE7))

= {w",co"-2, ...,6)-"}, V(r, m)eRX{l, 3, 5, ...} (5.21)

with^i given by (A. 31).
We proceed by examining partition functions for the Hamiltonians (5.15). In

keeping with the physical picture sketched in Section 1.1, these make no sense on Q
(due to 'infinite volume divergence')- However, the Hamiltonians are invariant
under the Z-action (1.12) in view of (2.44). Thus they descend to smooth
Hamiltonians (again denoted H fe) on Q, cf. the diagram (1.74). Moreover, it is
clear that the corresponding flows on Q are complete and commute. Since one is
now dealing with particles on a ring, one expects that the partition functions (cf.
(1.14))

Zfc(r) = f &v(-Hkb,p)/T)dxdp, re(o, «>), k=i, 2, ... (5.22)
J Q

are finite. This expectation is borne out by the following result, which expresses Zk

in a far simpler form.

Theorem 5.2. One has

(5.23)

where A N is defined by (1.49).

Proof. We may restrict the integration in (5.22) to Qr, since Q\Qr has
measure zero. Now we use the action-angle map 0 : Qr -

 >Qi Gc,/0 I - > (*,/0
(cf. (1.67), (1.68)) to change variables. Since 0 is canonical, the Jacobian equals
1, so that (5.23) follows from (1.48) and (5.15). D
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We continue by studying a collection of dual dynamics defined on the extended
dual phase space fl#c = R2XM, cf. the diagram (1.74). These are given by

Dh = TT (/zGl)+h.c.), h&«€ (5.24)

Here, ^ e is the class of all non-constant entire functions and h.c. stands for
hermitean conjugate. (The dual Hamiltonian (1.106), (1.107) is obtained by
choosing h GC) =;c/2.) Note that Dh is a Cw function on R2 XM, since A is.

We claim that all of the flows exp(^D^) are complete and commute. Indeed,
setting

Dh=Dho0* (5.25)

we have

&k(&, 0) = S (A (exp W;) +c.c.) (5.26)
7 = 1

Thus, on Q we get the complete commuting flows

exp(tDhKq, 0) = (qi, ...,qN, 0i + tvh,i, ... , 0 + tvhtN) (5.27)

where

vhj = -//(exp^OA'Cexp MJ) -c.c.) (5.28)

Now Corollary 4.2 entails that the flows exp(?DA) on R 2 XM are complete and
commute. Using (5.8) as before, we can also obtain complete and commuting flows
on the reduced phase space M

To obtain the analog of Theorem 5.1 we introduce

L k ( f , P) = L (P)-r//a(P)^a(P))-h.c.) (5.29)

Theorem 5.3. Let h^%e, t^R, and Pe<Q#c. Then the matrix Lh(f, P) has
simple and real spectrum. With the eigenvalue ordering A i (0 > • • • > A N(t\ one has

A/0=0y(0 (5-30)

where 9j(f) is given by the integral curve exp(?DA)(P) and (5.5).

Proof. We have
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(5.31)

where the second step follows from (5.27), (5.28) and (2.1). Recalling (2.5), the
assertions readily follow. D

Next, we use this result to study the long-time asymptotics of the quantities
<9/(r). Fixing P^R2 XM, we set (g, 0) = /* (P) and introduce the distinct-velocity
subset

(R 2 XM) A j ^- {P^R2X]&\vh,i, ..., v h, N distinct} (5.32)

This is an open dense full measure submanifold, since h is a non-constant entire
function.

Theorem 5.4. Let h^<ge and Pe (R2XJ#\ *, and let a^SN be such that

Vh,a(\} >'">Vh%aW (5.33)

Then one has

0 j (0-0oO)-tt/k.aO)->0, t-* ±00, j=l,.mm,N (5.34)
N-j+l

Proof. In view of Theorem 5.3 we need only determine the spectral
asymptotics of

(5.35)

This can be read off from Theorem Al in I, yielding (5.34). D

To conclude, we consider the exceptional set

(5.36)

cf. (4.79). As we have seen above, this set is characterized by at least one of the
differences #/ — 07-+i being equal to |//g|. Fixing h^^e and PEiR2XM, the orbit
exp(tDfc) (P) either belongs to R 2 XM e or meets R 2 XM e for a discrete set C^p of
times. In view of Theorem 5.4 the latter possibility applies (with \Chp €EN)
whenever P belongs to (R 2 Xjy r ) A > ^. Now the phase factors exp (//#_/ (1s)) are
distinct, so one can find h^^ e such that the velocities vh, i(P), ... , vh,N(P) are
distinct. As a consequence, there exists no P£R2XM e for which the orbits
exp(tDA) (P), r^R, belong to R 2 XM e for all h^%e ; equivalently, for any P£R2

XMe one can find P°eR2XM°, h^%e and r^R such that P = exp(fD/l)(j
30).
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Consequently, the extension R2XJ# of R2XJI?° is minimal in regard to
completing all of the orbits exp(fDA)(P0), P°eR2XM°, as denned piecewise—
namely, for tt=J&\Ch>pQ—via the map /. More precisely, adapting the minimal
extension procedure introduced in II (cf. the paragraph containing (6.140)), the
map Q I—>P=exp(tDh) (P°) between equivalence classes Q of triples (P°,h,t\P°
eR2XJl£°, /ze^e ,r£R, and points PeR2XJIf is a well-defined bijection.

Of course, these considerations apply with obvious changes to the various
reduced flows and phase spaces.

5o2 The Cases nrei and ffl rei

We proceed along the same lines as in the previous section. First, we consider
a class of dynamics on Q defined by

tfA^TrAGS-'lnL), h^% (5.37)

(Recall L is positive in this case ; thus, its logarithm can be defined in the obvious
way.) Clearly, the Hamiltonian (2.52) is obtained by choosing AGO =ch/&.

Defining Hh by (5.3) (with <f# the Mrei map, of course), we infer from (5.2)
and (2.56) that (5.4)-(5.7) still hold true. Using Corollary 4.5 we then deduce
that all flows expGfO, Ae^, are complete and commute.

As before, we obtain commuting complete flows on M by taking dS9 7*—0 in
(5.1). The point b(0, 0) is an equilibrium for all of the flows, and more generally
the set of equilibria is given by b(e&) with eh defined by (5.11). Similarly, the Hh

flow on Q has its equilibria at the points of /*(£&), with Eh given by (5.13).
Next, consider the dynamics

I.-*), *=1,2,... (5.38)

which correspond to the functions A&GO—ch^foc. Since (4.33) and (4.30) still
hold, we obtain in the same way as before

(5.39)

(5.40)
7 = 1

Moreover, it follows again that no other equilibria occur ; correspondingly, Hk has
a global minimum at (qe

a, 0) and no other critical points.
The analog of Theorem 5.1 involves the matrix

Ah(t, P) -^4(P)exp(^A/(^"1 lnL(P))) (5.41)
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Theorem 5.5. The assertions of Theorem 5.1 hold true in the nrei case, too.

Proof. Substituting L (P) ->£ -1 In L (P) in (5.19), the proof of Theorem 5.1
applies verbatim. D

As the analog of (5.21) we obtain the remarkable isospectrality relation

a(diag(o>", ... , a) -")exp(i> (£*-£-*)) = {a)n, ...,0)-"}, V(r, fc)<ERXN

(5.42)

(Recall (4.55), (A.29).)
Next, we consider the partition functions (5.22).

Theorem 5.6. One has

\N ,.

-T7T f exp(-;£ch(^)/rW fc = l ,2 , . . . (5.43)
I// 1 / JA ^ j=i /

\N

T7T
I// 1 / JAN

Proof. This follows in the same way as (5.23). D

By means of (5.24) we obtain once more a class of real-analytic dual
Hamiltonians on R 2 XM Defining Dh by (5.25), we deduce again (5.26)-(5.28),
so Corollary 4.5 yields completeness and commutativity of the flows exp (tDh).

Instead of (5.29) we now need the matrix

Lh(f, P^L (P)exp(-^U(P)/i/a(P))-h.c.)) (5.44)

Theorem 5.7. Let h^%e, reE, and PeO#c. Then the matrix Lh(t, P) has
simple and positive spectrum. With the eigenvalue ordering A i (0 > • • • > A # (0, one
has

0XO (5-45)

Proof. We have

L h (t, P~)~L (P)exp(-f// (A (f)h'(A (P)) -h.c.)) ~L (exp(r/5A) (P))

~L(exp(^,)(P)) (5.46)

where the second step follows from (5.27), (5.28) and (2.51). Thus, the assertions
follow from (2.56). D
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With the definition (5.32) in effect, we are prepared for the next result.

Theorem 5.8. Fixing h^<ge, P^(R2X$\t^ and a^SN such that (5.33)
holds, one has

9 j (0-
k<J

r —±00 , j=i9 ..., # (5.47)

where

(5(0) =@~l In I H V~i— (5.48)
\ . 2 1^1 /\ sin q I

Proof. By virtue of Theorem 5.7 we need only calculate the spectral
asymptotics of

L(P)exp(r diag(t;*f iCP), ... , t;*,*(/>)) (5.49)

Combining Theorem A2 in I (or an obvious specialization of Theorem Cl in II)
and Cauchy's identity (A.2) one readily obtains the above result. H

To conclude this section, we observe that the discussion below Theorem 5.4
also applies to the case in hand, with Theorem 5.8 playing the part of Theorem 5.4.

5.3 The Case Hb

In this section we study the set of C w Hamiltonians on Q #c = R 2 X M defined by

(5.50)

More precisely, via (2.82) the rhs yields a function on QC = R2XMQ, and this
function has a Cw extension to £?#c(since L has, cf. Section 4.3). Using (2.125),
(4.101) and (2.82), we deduce that all of these Hamiltonians are invariant under
the Z X Z-action on Q #c, so they descend to smooth Hamiltonians (again denoted
Hh) on £?#, cf. the diagram (1.102). The Hamiltonian (1.4) and its cover Hc arise
by taking h (x) =x/2 in (5.50).

We proceed by studying the above dynamics along the same lines as in the two
preceding sections. The role of (5.2) is now played by
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L(f), A(f)~A(f), Pefl*% P = 0x(p)ei5*c (5.51)

First, setting

6h=Hhog* (5.52)

we obtain

8h(8s,rs;z0, ...,f,) = S (ft(exp/S^)+c.c.) (5.53)
y = l

where (cf. (1.50), (1.93)-(1.99))

The corresponding Hamiltonian flows read

(5'54)

~ t N

=(5,, f*+-rr 2] V h , j ' , 2 o , 2 i exp(ito*,i), ... ,fB expG'to*,,,)] (5.55)

where

' *
(5.56)

(5.57)

(Use (1.64), (1.93) to check this.)
Using Corollary 4.7 we now deduce that all of the flows exp (£#/,), h £^e , are

complete and commute. As before, we can obtain complete commuting flows on M
— P" by omitting the first two coordinates. (Of course, in this case completeness
already follows from compactness of M. )

We proceed by examining special orbits, considering first the reduced flows on
M Using (the reduced version of ) (5. 55) and (4.77), we begin by noting

exp(tff *)(£•„)=£•„ V(f, A, v ) G E R X # e X {0, ... , n] (5.58)

That is, all of the flows have equilibria at the points £ 0 , ... , £ n- These N equilibria
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need not be the only ones, however. The generalization of the equilibrium set
(5.11) reads

eh={z^M\ifzVlz^O, thena)/k f y i(«)=fi}A i ,2ft)} f co*,o^0 (5.59)

cf. (5.55). Since the frequencies depend only on £0 | , ... , \zn , additional equi-
libria belong to tori Ty',yE: {1, ... , w}.

It is instructive to look at an explicit example for n=2. Consider the circle
(Kreis)

K = {(0, 1, elt} |f <= [0, 2/r)} CP2 (5.60)

From (5.54) we see that all points of K yield

01=±-4rOr-r), 02 = 0 (5.61)
3 IP!

Using now (5.56), (5.57) we conclude that on K

(5.62)

As a consequence, K consists of equilibria for the HH flow whenever
Next, we observe that K contains the points (4.161). From (4.177), (4.178)

it then follows that for all h^W the reduced Hh flows have a circle K = b(£) of
equilibria, connecting the points P 00 , P 10 and P 20 (cf . Figure 4) . However, for h EE
%> e \ # this need not be true. For instance, taking h (x) =ix/2, one gets on if

cosr, V h , 2 = — \ f i \ , (jL>h,\^(JL>h,2 (5.63)

which implies

{expfrff*) (Poo) IA GO =ix/2, r<ER} =K (5.64)

Returning to the general N case, we may use (5.53), (5.54) to infer

N

7 = 1

For h GO =x/2 this specializes to

y = 0 , . . . , n (5.66)

It is not hard to see that i> = 0 yields the (global) maximum of Hc. Similarly, when
N is even, the choice v=N/2 yields the minimum.
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We proceed by noting that the equilibrium set for the Hh flow on £?#C =
M is given by

7=1
ft(J. = 0, ifz^z^O, then o> *.„,(&, z)

=o> *,„,(<?.,*)}) (5.67)

cf. (5.55). Next, we introduce the special Hamiltonians

#^Tr(/i,(L)+h.c.), hk(x^±-xk, k = l,2.... (5.68)

Using (2.130) one infers that all of these functions on Q*c are ^-invariant.
Moreover, for all of them Eh is easily seen to contain the points

(5-69)

and from (5.52)-(5.54) one obtains

, 7T.T f -.^T 0 N (5'70)

On the compact quotient manifold Q # the above points give rise to two circles
of critical points for the quotient Hamiltonians (again denoted Hk\ cf. (4.102)-
(4.106). Specifically, one obtains

K + ={(a, 0 ;£ 0 ) ! f lG[0 , 2tf/AT|0|)} (/even) (5.71)

K-= {(a, Q-,£N/2)\a^ [0, 2x/N\fi | )} (/ odd, JV even) (5.72)

K-={(a,x/N\13\ ;£(^i)/2)|ae[0, 27r/JV|//|)} (/ odd, N odd) (5.73)

when the coordinates in (4.107) are used. Clearly, these circles belong to Q ; w.r.t.
the coordinates Oc, p) in (1.41) they can be written

(/even) (5.74)

(/odd) (5.75)
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Of course, the quotient Hamiltonian H \ equals the Hamiltonian (1.4) on Q. Note
that H i attains its maximum/minimum on the circles K +/K - .

In order to present the analog of Theorem 5.1, we introduce the matrix-valued
function on RXD # C

Ak(t,f) ^(P)expO//a(P)/iU(P))-h.c.)) (5.76)

and the vector- valued function on Q *c

j=l, ...,N (5.77)

In contrast to previous cases, P varies over a phase space that is not equal to the
cotangent bundle of a configuration space. Even so, it is natural to refer to q (P) as
the position part of P.

Theorem 5.9. With <& and Q replaced by <# 'e and Q #c, the assertions of Theorem

5.1 hold true in the Wb case.

Proof. As before, this follows from

(5.78)

(The second similarity is readily verified on Qc
r by using (2.61) and (5.55)-(5.57).)

n

Applying this theorem to the equilibria (5.69) for the Hk flow, we obtain once
again the isospectrality relation (5.42).

The partition function for Hk diverges on O#c due to the infinite range of
variation of 6S (on which H k does not depend) . On the compact quotient manifold
Q # we do get finite partition functions, of course. Since Q # \ Q has measure zero,
the latter are given by (5.22), with (1.41) in force.

Theorem 5.10. One has

N

7=1

3, fc = l, 2, ... (5.79)

with Ab
Ngiven by (1.78) and FN(JJL) by (1.15).
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Proof. We may restrict the integration in (5.22) to Qr, since Q\Qr has
measure zero. Then we can use the canonicity of the map 0 : Qr-*Qr w.r.t. the
coordinates (x, p) on Qr and (x, p) on Qr. (The latter are defined by dualizing
(1.41) ; this yields the integration region in (5.79), cf. also (1.35), (1.36) and
(1.40).)

In the remainder of this section we restrict attention to the reduced phase space
M equipped with the renormalized symplectic form coren. By now, it will be plain
how corresponding results for Q *c = R 2 X M and its quotient Q # can be obtained. In
contrast to the situation in Section 4.4, it is notationally and conceptually more
convenient to view 0 as a symplectomorphism from (M, a)ren) onto <M, —0)ren)
with inverse b.

First, we study the limit r f n/N at the level of dynamics. To this end we recall
that we have

lim exp(£07)=exp[iVr(tf+l-27)/tf] =x/0), j=l, ... , N (5.80)
rt n/N

on all of M, cf. (5.54) . Thus, for the entire function h Ge) = 2 T=o a kX k we obtain
from (5.53)

lim #A(z)=2JV £ (-)*(JV-°ReaJt = rA, VzQlf (5.81)
r t n/N fc&/VN

We can get finite and non-constant limits, however, via an appropriate renormali-
zation. Specifically, setting

Hh,ren = Cff*-rA)/Or-tfr), Hh,ren =Hh>ren o b (5.82)

we obtain from (5.53) and (5.54)

=/S Cx/0)*'(x/0))-c.c.)

-27) 2 1 U 12 L VkU | 2 ] \ fe o-)\j | Z j f e | — r 7 2 _ j K | Z f c | (,5.»j;
\ IV V^> ̂ -y \k=J M k = l ) ]

Introducing

/ / N
X"1 *, X~" „. 7 1 f"c OC\

(*)h,l,0= 2»i Vh,j,0 ^7 2_i Vh,j,0, / — I, ... , /I VJ.OJy



342 SIMON RUIJSENAARS

this can be rewritten

^,0(z) = (f1Z>,z)/(f,z) (5.86)

where

Dh =diag(0, <i)h,i,o, ... , 6>h,n,o)+Chlii (5.87)

ch = -^r 2 (N+l-2j)vh,j,0 (5.88)
ZlV ;=1

The flow generated by the Hamiltonian (5.86) on <M? — a)ren) is given by

(itoAf ,,0), ... ,£» exp (/to *,„ ,<>)) (5.89)

cf. the paragraph containing (1.104). This agrees with the limit of the flow exp
(tHh, ren) (z) for T f 7T/JV, as should be the case, of course. (To calculate this limit,
recall co ren differs by a factor \f}fJL\/2(x—NT) from co R , cf . (1.103), and use (5.55)
-(5.57).) Introducing

(5.90)

and recalling k and f0 are the quotients of complex conjugation and Fourier
transformation F0 on C^ (cf. (4.128)), resp., we also conclude

$DhF0 (5.91)

For the special Hamiltonians (5.68) we have (using obvious notation)

vkj>0=-2k sm(;*(tf+l-27')/AO, fc = l, 2, ... (5.92)

so we may as well restrict attention to k < N. Then we obtain for N=2

cui , 1.0= -2, ci = l, Di = diag(l, -1) (5.93)

and for AT > 2

l)? fc = l, . . . ,n (5.94)

-» (5'95)
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* = !,..., n, v,p = 0,...,n (5.96)

Specializing to fc = l, we obtain from (5.91)

„ (z, /Uz
l ' o - 2(z,z) IsinOr/W)-' GV>2)

where Aper is the periodic lattice Laplacean

/ 0 1 — 0 1 \
1 0 — 0 0

Aper= : : "'. ': i
0 0 - 0 1

\ 1 0 — 1 0 )

(5.98)

It is straightforward to verify directly that the Hamiltonian (1.4), divided by n—
NT, yields the limit (5.97) upon taking T f n/N. (Recall (1.30), (1.98) to write exp
(@pj)-^Zj\Zj-i\/\Zj\Zj-i (with ZN = ZQ), and use (5.77) to obtain the limits of

Finally, we study the question whether M— Pra is a minimal completion of M°
— C *" w.r.t. the non-complete flows on M°. Just as for the cases fflnr and fflrei, this
boils down to the question whether or not there exist points P in the exceptional set
Me=M\MQ for which the orbit union

0(P) = {exp(tfffc)(P) |r^R, Ae*.} (5.99)

belongs to Me. We begin with some (related) observations that are valid for any
T^ (0, 7t/N\

(i) The answer to the above question does not depend on whether or not one
renormalizes the Hamiltonians via (5.82) and the symplectic form via (1.103).
(Indeed, such renormalizations only give rise to a rescaling of the evolution
parameter t. )

(ii) For any P^M we have

(5.100)

Thus 0(P) either equals a point (viz., iff P=£0, ... , eB) or a torus Tj(p\j(P^ {1,
...,«}. (Fixing P^tif and letting h vary over # e , the vector (y h, i , - • • , v h, N) (P)
varies over all of R^, cf. (5.57); but then the vector (a)h,i, ••• , w f t > n)(P) varies
over all of R", since the connecting matrix has rank n, cf. (5.56) ; hence the
assertion follows from the reduced version of (5.55).)
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(iii) The 'superfluous' set

Msf= {P<EMe|0(P)CMe} (5.101)

is closed. (If P0^Me, f (ER* and h^%e are such that exp(rJyA)(P0)^Me, then
one has exp(rfrA) (P) ̂ Me for P near P0 .)

(iv) One has

ev£Mtf, *=0, . . . ,n (5.102)

Thus one can find open neighborhoods of e 0 , ... , e „ not belonging to Msf. (The
point p0^M° is a fixed point of 0, cf. (4.115)-(4.118) ; from (5.100) one then
infers that 0(p0) is n -dimensional and contains e0, ... ,en.)

(v) One has

)-(a»)c/ (5.103)

(This equivalence readily follows by combining (5.100) and (5.101).)
Next, we show that M is a minimal completion of M° for N—2, 3 :

Msf=0, VrEE(0, */#), N=2,3 (5.104)sf

For N=2 this is obvious : the setMe= {c, d] in Figure 3 lies on theUi-orbit (great
circle) through/? and q. (Equivalently, one need only specialize (5.102) to JV=2.)
For N=3 this can be seen as follows (cf. Figure 4) . Assume Msf is non-empty and
fix P^Msf. Now 0(P) is connected and e0, e \ , e2^Msf, so C?(P) lies above one
of the 3 simplex edges. Since T2 does not embed in C*, the orbit union 0(P) is
either a circle or a point. In the latter case it would follow that 0 (P) equals one of
the equilibria e o , e \ , e 2 lying above the bary center, a contradiction. Thus (P (P) is
a circle. But then we have (f> (0 (P)) CMe, cf. (5. 100) . Using the notation (4. 156)
and the corresponding identification, we deduce (9 (P) C VI . But VI consists of 9
points, cf. (4.158), so we arrive again at a contradiction. Hence, (5.104) is now
proved.

We now proceed to our last result, which says in particular Msf=0 for r near
7U/N. To this end we first introduce the orbit union and superfluous set for the
limiting r-value n/N by putting

00(P) = {exp(t^,o)(P) | ten, *e*J (5.105)

MtftQ= {PEEMe|00(P)CMe} (5.106)

It is easy to rephrase the observations (ii)-(v) for T=TT/N by using renormalized
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quantities

SVt0 = |zJ2/(z,z), v = 0, . . . ,« (5.107)

so we shall not spell this out. (Note that G?i, o, ••• , <5n, o) varies over the closure of
the Weyl alcove (1.8) with \ f i \ = n , c f . also (1.97).)

Theorem 5.11. One has

Msf>0=0, VN>2 (5.108)

There exists £ (JV) > 0 such that

Msf=0, VreOz/tf-eGV), ;r/W) (5.109)

and eQV) may be taken equal to n/N for N=2, 3.

Proof. Assume Msf> 0 is not empty and fix P£=Msfj 0 . Choosing a vector 0EE
C^\{0} that descends on P under the projection C^\{0} ->P", the assumption
entails that when we fix t ̂ R and h^^e, at least one of the coordinates of the vec-
tor exp(— itA h)<p vanishes. (Recall the latter vector descends on exp(tHh, o) (P). )
Letting t vary, it easily follows that at least one of the coordinates vanishes for all

That is, for any /ze<^e we can find p^ {0, ... , n] such that

(ep,exp(-fo4*)0)=0, Vr^R (5.110)

Equivalently, using (5. 91) we have

(5.111)

But if we now choose h such that the numbers DH, n, ... , DH,NN are distinct, then
we infer from (5.111) that 0 = 0, a contradiction. Thus the first assertion is proved.

Next, assume there exists a sequence rfc f x/N, fc->°°, such that Ms/(rfc) is
non-empty. Choosing PkeM5/(Tfc) CMe, we can find a subsequence P /fc with limit
P0^Me, as Me is compact. But then we may deduce $0(Po) dMe from ® (P/fc) C
Me, since 0 converges uniformly to k o f 0 > cf. Theorem 4.9. This contradicts
(5.108), so (5.109) results. The last assertion has already been proved, cf. (5.104).

n

We conjecture that in (5.109) one may takee(JV) =n/N forN=4, 5, ... , too.
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Appendix A. Some Algebraic Lemmas

In this paper we will make use of the Cauchy matrix from II, taking q, p —> a
and M-^-N. Thus we have

CCS, & g • a)jk=e-taJ/2 -- e-W, j, k=l, ... , N (A.I)

and Cauchy's identity reads

2 Psh — ( f ly—a k )
\C\=e -Kj'jU — -0 (A.2)

1<k sh — ( f l j —c

cf. n, Appendix B. The Lax matrix arising for the Mrei system (and for the Irei
system studied in I ) can be seen to be positive by using the following lemma.

Lemma A.I. Let &, g £ R * and fj, &"R For any q £ WN (where WN is defined
by (1.9)) the matrix

C'jk ^e^J/2C(iLt9 J3, g • q}jke^/2 (A.3)

is positive.

Proof. The restrictions ensure that C' is well defined and self-adjoint.
Moreover, C' has positive principal minors in view of (A.2). D

For the systems dual to the Hnr and Mrei systems, and for the ffib system
(which is self-dual) it is expedient to employ a different Cauchy matrix. This
matrix (denoted C) involves the quantities

B ,
-

r/A //, g ; fl) = //& /£, -g ; a) (A.4)

and its pivotal orthogonality property hinges on the following lemma.
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Lemma A.2. Let Q3, //,g, a}^C3+N be such that Cjk, lj,rk,j, k = l, ... , N, are
well defined and \C\ ^0. Then one has

(A.5)

Proof. This identity can be verified by a straightforward calculation using
(A. 2) ; cf. Lemma B2 in n for a slightly more general result. D

Defining now

(A.6)

it follows from the lemma that C^O(N, C). Since diagonal sign matrices are
orthogonal, this property holds true irrespective of the sign conventions for the
square roots.

In Chapter 2, however, we will wind up with positive quotients in the product
occurring in (A.4), and correspondingly we may and will take positive square roots
throughout. To be specific, the construction of the action-angle map in Chapter 2
leads to the inequality

, d = fig\ (A.7)

Here, one has in addition

a N < — < f l ! , £ = 0 (A.8)

aN<~-<al, £>0 (A.9)

<aN< • • •<a 1 <; r / | £ | , -i0 > 0, d<2z/N\0\ (A. 10)

for the cases Mnr , IErei, Mb, resp. A cornerstone in the construction is then that
this inequality entails a further restriction on the actions a \ , . . . , a N (implying in
particular positivity of the quotients in (A.4)).

We shall detail and prove this restriction in the next lemma. To this end we
introduce

\dj>d, 7 = 1, ...,N-l}9dj = aj-aJ+i (A.ll)

\dj>d, 7=1, . . . ,AT, -n/\P\ < aN, a , < n/\$\}9 dN
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Note the definition (A. 1 1) agrees with (1.49), whereas Fb
N is a fundamental set for

a Z-action on the set A b
N defined by (1.78) (cf. the paragraph containing (2.97)).

Lemma A.3. Suppose (A.7) holds true. If, in addition, (A. 8), (A.9) or (A. 10)
are valid, then one has a ̂ AN, ANor Pb

N, resp.

Proof. Fixing k G: { 1 , ... , N — 1 } , let us assume dk=d. Then the factor with m
=k+\ at the Ihs of (A.7) vanishes, contradicting (A.7). Thus one must have
either dk^(Q, d} or dk > d. Let us now first start from (A. 8) or (A.9). We
assume that at least one dk is smaller than d and derive a contradiction to (A.7).
We distinguish three cases.

(i) One has

Taking j= 1 and k=N— 1 in (A.7), it easily follows that all factors but the one for
which m =N are positive, contradicting (A.7). This takes care of the special case
N=2, so we may now assume N > 2.

(ii) There exists k0^ {1, ... , N -2} such that

dk < d, k = l, ... , fc0, dko+l > d (A.14)

Taking j=k0+2, k=k0 , we then obtain positive factors at the Ihs of (A.7), but for
the factor with m =&0+ 1, a contradiction.

(Hi) There exists k0^ {1, ... , JV— 2} such that

dk

Taking once morej'=&o + 2, k~k0 in (A.7) we now obtain positive factors but for
the factor with I=k0+l. This contradiction completes the proof of the lemma
when (A. 8) or (A.9) is assumed to hold.

Finally, we start from the hypothesis (A. 10). First, we assume that there
exists at least one fc^{l, ..., N—l} such that dk<d. Then the above case
distinction and the corresponding conclusions apply verbatim. As this is not
immediate, we add two exemplary verifications. In the first case one infers posi-

\B\ \B\
tivity of sin — r— (a i— fl#+d)/sin — (fl \~ &N) by noting

dk<df k = l, ...,N~l=>al~aN< (N-l)d <2x/\/3\-d

\8\
and in the second case (taking k0 < TV— 2) one gets positivity of sin -^

I nl

sin — r— (fl*0+2— a*) by noting
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akQ+2~ciN=Qk0^i—aN—dk0+i < a\—aN—d < 2n/\&\ —d

As a consequence, (A. 1 0) implies dk> d,k=l, ... ,N— 1 . It remains to prove
dN>d. But this becomes clear when one takes y, k= 1 in (A.7) : assuming dN <
d, the factor with l=N is not positive, whereas all other factors are (note a \ — a N-\
= (a i-fl*) + (fljv-fliv-i) < 2x/\0 1 ~d\ D

The next lemma will be used in Section 2.3 to show that in certain phase space
points the spectrum of the Lax matrix consists of the Nth roots of a phase factor.

Lemma A.4. For any function G : (0, 2] -> C and any /£={! , . . . ,#— 1} one /ias

2
/C{1 AT}

Proof. We rearrange the sum such that subsets / related by cyclic permutations
of {1, ... , N} are grouped together. For any such group the factor I1G(---) takes
the same value. Therefore, fixing /0 with |/0 =/, we need only show

(A. 17)

where ~~ denotes cyclic equivalence.
First, consider the case where all cyclic translates of 70 are distinct. Then the

Ihsof (A. 17) reads

Since /£ {1, ... ,^—1}, this vanishes, as asserted. Next, assume that after M < N
cyclic translations of J0 one reobtains J0. This entails

so that one must have lM=nN, n^{l, ... , Af — 1} . But then the Ihs of (A. 17) can
be rewritten

n (oj= n
je/ \Je/

which vanishes, too. D

We proceed with Lemma A. 5, whose corollary Lemma A. 6 will be used in
Chapter 4 to find the points in phase space where the Lax matrix has minimal
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spectral gaps. (These points are the equilibrium points, cf. Chapter 5.) Lemma A.5
can also be exploited to find the ground state and ground state energies of the
quantized systems. Finally, a corollary of the proof will be quite useful in Sections
2.1 and 2.3.

Lemma A.5, Let y^CN, z^Cbe such that the matrix

with

n ^yj-y,-rzj
CJ — 11 i s x > J 1, ... ,

is well defined. Then the roots of the polynomial A I — > E— Al# | are given by

.

Proof. Due to Cauchy's identity (A. 2) the symmetric functions of E are given
by

We claim thatS* does not depend ony. Taking this for granted, we set yk = —kA,
A > 0, in E to obtain

lim E = diagG> (*-1)z, e <*-**, ...,e (~*+1)z) (A.25)

and the lemma follows. Thus it remains to prove the claim.
First, we note that Sk is symmetric in y\9 ... , yN, so we need only show

constancy in y i . To this end we fix y 2 , . . . , y N , z in general position, so that each
of the terms at the rhs has at most simple poles for y\=yt (mod 2m\ I > 1.
Clearly, Sk is 2m -periodic in y i and converges to a constant for Re y\-+± °°.
Therefore, by Liouville's theorem it suffices to prove that the residues vanish.
Moreover, by symmetry and periodicity we need only consider the pole at y \ =y 2 .

To show that the residue at this pole vanishes, we first observe that when the
index set I does not contain the indices 1 and 2 or contains both of them, then the
corresponding term in Sk has no pole at y i =y 2 . Next, we pair off the remaining /
by setting /i = {1} UJ, /2

= {2} UJ, where 1, 2^J. Then the residue sum for any
such pair vanishes. Indeed, omitting the singular factors l/sh(j;i— j;2) and
l/sh( y 2~~ y i) in / 1 and J2 , resp., and setting j; i =y 2 in the remaining products, the
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latter are manifestly equal. D

The application of this lemma to spectral properties of the Lax matrix arises
upon setting

(A.26)

Then one readily verifies

sin(-|:0-0+fc)
cj = n — =r(jz) (A.27)

•sin—

where

SlnNT (A.28)

Hence, setting z = IT, we may rewrite E as

Then

„ _,. 1 IN) (A.30)
T

reads

Lemma A.6. Let T& ± (0, 7T/JV) or ir^R *, and let E and E\ be given by
(A.29) and (A.30), resp. Then E and E\ have simple spectrum given by

= fe (^-1)fT, e (*-3)/T, ... , c ̂ -^+1^} (A.32)

a(Ed=i{N-\,N-l, ..., -N+l] (A.33)
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Proof. The assertion about E follows from Lemma A.5. To prove (A.33) we
rewrite E as

„ S S2 SN~l

N sinr . / TT\ . / 2;r

(A.34)

where S is the antiperiodic shift,

/0 1 - 0\

o o -» i (A'35)

V-i o - o/
Now S has eigenvalues

Sk=et*&-»/N9 k = l, ...,N (A.36)

and corresponding eigenvectors

up)=lf-Metx<v><-J-»'»9 k,j= 1, ... , N (A.37)

as is easily verified (and well known). Thus u (1), ... , u (jv) is an eigenvector basis
forE, and so (A.33) follows from (A.30) and (A.32). D

As a corollary we obtain the remarkable identities

sin NT 2 / ^-—=NelT^f+l~2k^9 k = l, ... , N (A.38)
sin(r+^r)

\ N /

Indeed, these follow upon combining (A.32), (A.29) and (A.34)-(A.36). (To
verify that the 1-1 correspondence works out right, one need only check (A.38) for

Our last lemma amounts to yet another functional identity, viz.,

^, j=l.....N (A.39)

It will be used in the proof of Lemma 2.3.
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Lemma A.7. One has

Cr=e(1-jv)zr, r = (1, 1, ... , 1) (A.40)

where C and r are given by (A.I) and (A.4), resp.

Proof. Putting j;,= -£a;/2, z=i/3ng/2 in (A.I), (A.4) one sees that (A.40)
is equivalent to (A. 39). To prove (A.39), we note that the Ihs is 2m-periodic in j;;

and bounded for |Re j;;|-^°°. The residue sums at the (generically) simple poles
yj=yi (mod liri) are easily checked to vanish, so that the Ihs does not depend on
yj by virtue of Liouville's theorem. Thus it is equal to its limit for Re y/->— °o,
which yields (A.39). D
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