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By
Todor GRAMCHEV* and Masafumi YOSHINO **
§1. Introduction

This paper studies the global regularity and solvability of operators which
could change their type at every point of the domain. Our object is to understand
such operators from the viewpoints of a WKB analysis.

To be more precise, let X be a compact manifold or an open domain in R".
We denote by C”(X) and C; (X) the set of smooth functions on X and the set of
smooth functions with compact supports respectively. We also denote the set of
distributions on X by Z’(X). We say that a differential operator P is globally
solvable (resp. globally hypoelliptic) in X if for every feC;(X) there exists
ue 2'(X) satisfying Pu=f. (resp. ueC”(X) when PueC”(X) and
ue 2'(X)). The operator P is said to be locally solvable (resp. locally
hypoelliptic) at a point p € X if there exists a neighborhood U of p such that for
every feCy(U), there exists ue 7’(U) satisfying Pu=f in U (resp.
p &singsupp(Pu) implies p ¢singsupp(u)). By definition local hypoellipticity at
each point p € X implies the global hypoellipticity in X, and the global solvability
implies the local solvability at each point p € X, while the corresponding inverse
implications are not true. ([7]).

Because the operators which we want to study are in general of mixed type
the structures of local solutions may change drastically in every part of the
domain. Therefore most of the methods such as those for degenerate elliptic
operators, and for weakly hyperbolic operators are not applicable to such
operators. (cf. [9], [17]). Moreover, because the structure of the characteristics
is so complicated that the usual characteristic geometry does not seem adequate to
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apply to our situation. On the other hand, there are examples of constant
coefficients operators on the torus showing that Siegel type conditions are
essential to describe global hypoellipticity and the global solvability (cf. [7]). The
above methods are, as far as the authors know, not adequate to say when such
diophantine analysis enters in the theory for operators with variable coefficients
of arbitrary order. In fact, it is not even clear how to define a Siegel condition for
variable coefficients operators invariantly under change of variables. We note that
the diophantine phenomena in [7] are quite discontinuous, hence, the situations
could change completely under very small perturbations.

This paper gives an answer to these problems by using WKB formal
solutions. We note that WKB solutions are formal power series with respect to a
large parameter whose coefficients may have poles with arbitrarily large order.
In spite of this we realize such formal solutions according to the situations which
we consider. The important points are that the results do not depend on the
realizations and that though WKB solutions are constructed algebraically, they
can explain transcendental phenomena. This implies that such formal quantities
play important roles in describing global phenomena precisely.

This paper is organized as follows. In §2 we give a fundamental necessary
and sufficient condition for the global hypoellipticity for first order systems.
Siegel conditions are invariantly defined under realizations and changes of
variables in terms of formal solutions which are substitutes of WKB solutions for
single equations. In §3 we shall give the proof of the theorem of §2. In §4 we
study single equations of variable multiplicity with complex coefficients. The key
is the existence of a smooth formal solution to a Riccati equation. (cf. §5). The
proof of the theorem in §4 is given in §5. In §6 we consider second order
operators and we study how diophantine analysis enters in the theory. In fact, it
will be shown that WKB formal solutions are useful to decide when a diophantine
condition is necessary. (cf. the cases (a), (b) and (c) in §6). In this paper we
mainly state the results on global hypoellipticity. Global solvability and Fredholm
property will be treated similarly.

Finally the authors would like to express their sincere thanks to the referee
for useful suggestions in preparing this paper.

§2. Systems

Let us consider an mXxm system of equations with smooth periodic
coefficients on T*

@.1) Pu:= <§x—>u—<z A (X)D™u = f(x,y)
1=0

where u='(u,,...,u,) and f(x,y) is an m vector smooth function. Here A, (x) are
smooth mXm matrix-valued functions and the negative powers of D,  denote



WKB AnaLYsis To GLOBAL HYPOELLIPTICITY 445

pseudodifferential operators on T with the symbol 1'” with modifications near
n=0. We assume

(C.1) The eigenvalues of A,(x) are distinct and 27 periodic functions.
By a partial Fourier transform with respect to y we get from (2.1)

22) Piv= ()i~ (3, 4, ()i = fxm).
1=0

Here u (resp. f) denotes the partial Fourier transformation of u (resp. f) with
respect to y. By a standard formal reduction procedure and (C.1) we can
construct a formal fundamental solution X(x,7) to the equation (2.2) in the form

(2.3) X(x,m) ~ (Y (x)+ Y (x)n™ +---)emm,

Here Yj(x),j=0, l,... are 27 periodic, smooth functions and Y,(x) is invertible
and the dots denote negative powers of 17 with coefficients smooth 2z periodic in
x. The matrix A(x,n) is a diagonal matrix given by

2.4) A(x,m) = diag(j0 A (t,n)dt,...,J; A, (t,m)dt)

in this order. Here A,(t,m) (1<j<m) is a formal power series of n~' with
coefficients 27 periodic in 1,4 (1)~ /l‘j(t)+n“2,', (t)+---. (cf. [19]) where
/13(1 < j<m) denote the eigenvalues of A;(x). We take any realizations i:(t,n)
of formal power series /'Lj(t,r])-k?(t) and we define /~\(x,77) by replacing 4, by
ij = ij’ + A% in (2.4). (For the precise definition, see Lemma 1 in the appendix).
Then we have

Theorem 2.1. Suppose that (C.1) is satisfied. Then P is globally
hypoelliptic if and only if the following conditions are satisfied.

(I Re l(j) (x) (1< j<m) do not change their sign on the interval 0< x <271 .
(II) There exists N > O such that forall j, 1<j<m

2

(2.5) liminf |l —exp(| A,(z,mndt)
0

n—ee.nel

In" >0 .

Remarks 2.2. (i) We point out that in view of the construction in Lemma 1
in the appendix if )Ij,(x,n) and /:sz(x,n) are two realizations of ﬂ.j(x,n), then for
every NeZ, we have

sup |2, (6m—A,Gem=0(n™) as 0| — .

\e[0.27]

Hence the condition (2.5) is invariant under the choice of the realizations.
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(ii)) We note that the quantity dA/dx in (2.3) is formally invariant, that is,
invariant under formal change of unknown functions. (cf. Lemma 2 in the
appendix). Because such formal transformations correspond to the ones by elliptic
pseudodifferential operators on the torus this implies, in view of A(0,17)=0 and
(i), the invariance of (2.5) under such transformations. Especially, though the
formal solution (2.3) itself has an arbitrariness the condition (2.5) does not depend
on such arbitrariness. We also remark that formal solutions (2.3) play the role of
WKB solutions for single equations. (cf. Lemma 3 in the appendix).

Example 2.3. We will consider the third order operator

(2.6) P:=0—n’a(x)’, a(x)#0, d, =d/ox.

Clearly the equation (2.6) is written in the form (2.1). Smooth WKB solutions
are constructed because a(x)#0. Let S=37 77’S;(x) be any WKB solution.
Then, by substitution we have S_(x)=wa(x), w*=1 for some ®. Theorem 2.1
implies that the global hypoellipticity is equivalent to the following conditions:

1) Rewa(x) do not change their sign on T for all @ such that w®=1.
2) For every @ such that Rewa(x) =0 Siegel conditions are satisfied.

The first condition is equivalent to say that A ={a(x);0<x<2x} is contained
in one of the six sectors bounded by three lines L ={Rez=0}, L, ={Rewz=0}
and L, ={Rew’z=0} where @’ =1, w#1. Suppose that Ac A where A is one
of these six sectors. If A is not contained in the boundary dA of A then we are in
a simple situation, no Siegel condition enters. In fact the global hypoellipticity
follows. Note that the operators are of mixed type in general.

On the other hand if Ac JdA P contains a hyperbolic factor. We remark that
A is contained in one of the three lines L, L, and L, because a(x)#0. For
simplicity let us assume that Ac L . Note b(x)=Ima(x)#0 on T because
a(x)#0. Hence b(x) does not change its sign on T. Because Rea(x)=0 we
have, for w #1,

2.7) Re J:”a)ib(x)dx =—Im wjo'”b(x)dx = —(Imw) J:”b(x)dx £0.

Therefore the diophantine condition is necessary only for the WKB solution
corresponding to L,,i.e., w=1.

We again find a natural extension of Greenfield’s example [7] when a(x) is
constant. We also note that the diophantine condition is replaced by algebraic
conditions if a certain finiteness condition is fulfilled. (cf §6).

The similar assertions are true for general n-th order equations of the
following type

(2.8) P=9"-n"a(x)", a(x)#0.
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By the same considerations as above we see that WKB solutions

=37 n‘fSJ(x) are of the form, S_, =a(x)w with ®" =1. The global hypoel-

lipticity is equivalent to the following conditions.

(a) A={a(x);0<x<2m} is contained in one of the sectors bounded by » lines
Rewz =0 where @" =1. We denote the sector containing A by A.

(b) If AcJA then the Siegel conditions of the form (2.5) corresponding to the
line containing JA are satisfied.

For more detailed treatment of single equations we refer to §§4 and 6.

We note that among n different WKB solutions the Siegel conditions are
necessary for those which correspond to the line containing A. By the formal
invariance under the transformations stated above the conditions (a) and (b) are
invariant. (cf. [19]).

§3. Proof of Theorem 2.1

Proof of the sufficiency of Theorem 2.1. By the general theory of ordinary
differential equations we can construct a formal solution to (2.2) in the form
(2.3). (cf [20, Theorem 2.8-1]). We note that because the -eigenvalues
l(j)(x)(j=l,...,m) of Aj(x) are 2m periodic smooth functions of x by the
assumption (C.1) we can construct the matrix Y (x) as a 2z periodic smooth
function of x. Hence we can inductively determine the matrices Y(x)(j=12,..)
and /lﬁ(x)(j=1,...,m;k=l,...) as smooth functions on T. Hence by Lemma 1 in
the appendix we can construct an asymptotic fundamental solution
X(x)(= X(x,m)) of the equation (2.2), that is X(x) satisfies the equation

(3.1) PX(x) = R(x,1)

where for every a€Z,,d%R(x,n) is rapidly decreasing in 7, when n— e i.e.,a
smoothing operator.
By the method of variation of constant an asymptotic solution to (2.2) is given

by
(3.2) u(x) = X(x)c + X(x)J“X" ) ft,n)dt
0

where the constant vector c¢ is determined so that u(x) is 2z periodic, u(0)=
u(2m). This yields the equation

(3.3) X(0)c = X(27)c + X(27r)IJX" (O f(t,mdt.
0
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Because we can write X(x)=®(x,n)e™ " with ®(x,n) being a realization of

t{le formal sum, Y (x)(I+ Yl(x)n"l +...) it follows that ®(0,n)=®2xr,7) and
A(0,n)=0. Therefore we have

- - 27[ - A~
D0, m)c = (0, Me™*F e +B(0, n)eﬂM“ﬂ)fe-"A“-mcD(r, " F(em.
0

Because ®(0,7n) is invertible for large 7 by definition we have

(3.4) (I—e"i“z”"’))c=e”7“2”"”j— X(0) f(e, M.
0

Let us assume that (I—e™ ") is invertible for large 77. Then we get, from
(3.2) and (3.4)

(3.5) u(x) = X(x)((I — ™ @mm =1 gnic2z.m Hg("(t)f(r,n)a't + fX"(t)f(t,n)dt).
0 0

We shall prove the sufficiency of (I) and (II). Without loss of generality, we may
assume that Re/lj(x)z 0 for 1<j<j,, Red,(x)<0 for j,<j<m for some
Jo 21. It follows from (3.5) that

(3.6) u(x)= q)(x’n)(e(/"\( \~71)+7\(27r.77))17(1 _ ei\(Zn,n)n)—l
2T N . L R
x| e M) Fitmds-+ eFem [ e, ny e, myd)
0 0

— (I)(x, 77) (e/'uz:r,n)n(l _ ei\(zn.q)n )‘1fzne"“\“"’)_’.\("””d)(t, TI)_‘]?(L T])dt
0

+J° en(i\( \,n)~f\(r.n))q)(t’ r,)‘l f(t, n)dt)
0

- 2 - - A
— q)(x’ n) ((1 _ eTI/\(Zﬂ-TI))—l erl(/\( \.TI)—A(!J'I))(D(t’ n)—l f([’ T])dl

0
2z ~ _ A
_j e" AR (s ) F(2,m)dr) .

Let 7, be the projection to the linear subspace spanned by the vectors whose
last m — j, components are zero and let us set 7z, = —7,. Then we have

) a 2 _ - -
(3.7)  u(x)=D(x,1) (A1 (1~ M>mmn)! joen(/\(\.r;)—/\u.m)nl(p(t,n)" f@mat
+J=en(]\(\.n)-A(r.n))nlq)(t,n)—lf(t,r,)dt
0

- z” - -~ ~
+ (1 _ eA(er.n)n )—l en(A( \J;)—A(/.n))n-oq)(t, n)—l f(t, n)dt
0

_“DH' oA« \Vm—i\(z,m)noq)([, ™ f(z, n)dt).

1
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Suppose that 7] tends to +eo. Then (3.7) and the definitions of 7, and 7, imply
that u(x) is rapidly decreasing when 77 tends to +eo. On the other hand if 7 tends
to — we have the same conclusion by changing the parts of 7, and 7,. We note
that if Re l‘; =0 for some j, then we use the assumption (II) in order to estimate
the growth of denominators in (3.7). This proves the sufficiency of (I) and (II).

Proof of the necessity of Theorem 2.1. We shall prove the necessity of (I).
For each j,1<j<m we denote by ]\I(t)sf\,(t,n) the j-th component of the
matrix A(z,17). We first prove that for each j=1,...m,1—e™ "M 20 except for
a finite number of 7’s.

Indeed, if this is not true for some j then it follows from the definition of A
that j(:'"Re/'t‘J)(x)dx=0. On the other hand, we get from (3.4) that the homo-
geneous equation (2.2) with f=0 has infinitely many nontrivial asymptotic
solutions X(x)cl = X(x,1n, ), for some n=mn,,(k=12,...), where ¢, = ,...,1,...,
0) is the j-th unit vector. Hence we have R (x,m,)= 13X(x, M )c, , where for every
a€Z, dR (x,m) is 2r periodic in x and is rapidly decreasing function of 7
when 7 tends to infinity.

If Re /l(l)(x) vanishes identically then X(x)c, gives a distribution which is not
smooth such that f’X(x)c, is rapidly decreasing. This contradicts to the global
hypoellipticity.

Next we consider the case where Re /1? changes its sign. By taking a
subsequence we may assume that 77, >0 or 7, <O for all k, k=1,2,.... Since the
argument is the same let us consider the case 71, >0. By the periodicity we may
assume that ReA’(0)>0. Hence we have & =max JoReA%(1)dt>0. Let the
maximum be taken at x =x,. Then the function exp(-7, x)X(x,n,)c, defines a
distribution solution which is not rapidly decreasing at x = x, when 77 =1, tends to
infinity. This contradicts to the global hypoellipticity. This proves the assertion.

In order to prove the necessity of (I) suppose that Rel?(x) changes its sign
for some x = x;. First we consider the case ReA (2m)>0. We take a point x,
such that Re A‘;n changes its sign from positive to negative at x=x,. Let 7, be a
projection to the linear subspace spanned by j-th unit vector. We take a f(t, )]
such that the support of the function n,d)(r,n)“];(t,n) is contained in a small
neighborhood of x, such that ¢ > x, and is rapidly decreasing when 11— . Then
the function

(3.8) q)(xo, n)ei\(2n.:7)n(1 _ ei\(Zn,n)n)—l Jbé(/'\( ‘o .17)»/\(/.11))1771.!(1)([’ n)—l }‘([’ n)dt
0
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is not rapidly decreasing when 7 tends to +co if we choose a rapidly decreasing
function Jz'jCID(t,n)'l f(t,n) appropriately. Then the second expression of (3.6)
shows that u(x) is not rapidly decreasing, which is a contradiction.

If Re ]\1(27:) <0 we take a point x, such that Re l?(x) changes its sign from
negative to positive at x,. Then we take f such that the support of the function
7tJ<I>(t,n)“f(t,17) is contained in a small neighborhood of x, such that 7> x,. By
the same argument as above we see that u(x) is not rapidly decreasing when 1
tends to —. If Re 1~\j(27r) =0 then by the same way as above the integral (3.8) is
not rapidly decreasing when n — o if Reﬂfj(x) changes its sign at x=x,. Hence
we have proved the necessity of (I).

We shall prove the necessity of (II). Let us assume that (II) is not true for
some j. By the argument as above we may assume (I) and that for every
kk=1,...,m,1— e 2 () except for a finite number of 7’s. Because the
integral joz”ReﬂL?(t)dt vanishes for such j it follows from (I) that Re/l(l)(x)
vanishes identically. Let 7, € Z(n=1,2,...) be such that |1—eA‘(2”‘"”)""[117,,|N -0
when n— o for every N=12.... We define f(t,n) such that f(t,n)=0 for
n#mn, and for n=mn,,n=12,... the components of the function CD(t,n)"f(t,n)
except for the j-th one are zero and the j-th one is given by (1-— et 2RIy A,
Then the function f(t,n) is a rapidly decreasing function of 7 because
Reﬂj(t, 1n)n is bounded in 7. It follows from (3.6) that u(x) is not a rapidly de-
creasing function of n for this f , which contradicts to the global hypoellipticity.
This proves the necessity of (II) . Hence we have proved Theorem 2.1.

§4. Single Equations with Variable Multiplicities

We want to weaken the condition (C.1) in §2 for single equations. In this
section we consider operators of order m=3. Second order operators will be
studied in the next section. Let us consider

m

4.1) Pu=f(x,y), P:= H(&\ —bj (x)D,)+ E aaj(x)8;Df",
J=1

a+j<m-I1

on (x,y)eT? where m=>3, b (x)1<j<m) a,(x) are 27m periodic complex-
valued functions and Jd =d/dx,D =i"'d/dy. Let us consider a WKB
approximate solution y

“.2) )= exp( | S, St = 328, (0
J=1

to the partial Fourier transform P of P with respect to y
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n

(4.3) Pi=p i+ Y n%a,(x)d'a, p, =11, —b,m,
J=1

o+j<m-1

where 7] is covariable of y. We easily see that S satisfies a Riccati equation

m

(4.4) R(S):=[]@, +S~b,(x)m(S-bm)
=2
+ Y a, (N (@, +S8)7S+ Y, a,(xm*=0.
a+j<m—1.521 asm—|

If we substitute the expansion of §, (4.2) into (4.4) we have

4.5) R(S)=[1(S—-b,(x)nm+( terms with power <m—1) = 0.

=1
By substituting the expansion of S in (4.5) and by equating the terms with power
n" in (4.5), we have that []',,(5_,(x)—b,(x))=0. Suppose that S_(x)=b,(x) for

=
some k. Then by comparing the coefficients of 71" in (4.5) we have

m—1

(4.6) Sy ()1 (b, (x)—b,(x)) = terms containing S_,(x).

JEZN
We easily see that S (x)(j=12,...) satisfy the same type of equations as (4.6).
Now we assume
(C.2) Forevery S (x)=b(x)(1<k<m)S (x) are smoothly defined on T for all
j=0,1,2,....

We write a formal solution S(x,7n) corresponding to b, (x) by S"(x,n). We
assume
(C.3) There exists a point x, € T such that b, (x,) (1< k <m) are distinct.

In order to state our theorem we take realizations §‘(x,n) of formal WKB
solutions S*(x,n) 1<k <m) where S*(x,m)= Y SH(x)n~. Indeed, we take
smooth functions y (1) with supports being contained in [n|2c, where the
constants c, are taken so large that the following sum converges:

4.7) St am= Y07 x, (St (x).

=1
For more precise definition of y (1) we refer to Lemma 1 in the appendix. Then
we have

Theorem 4.1. Assume that (C.2) and (C.3) are satisfied. Then the
operator P is globally hypoelliptic on T’ if and only if the following conditions
are satisfied.

(I) The functions Reb,(x) (k=1,...,m) do not change their sign.
(IT) There exists N 20 such that the Siegel conditions,

2r

(4.8) lim inf 1" | exp(}]  G(x,mdx) -1
0

n—es.ne

>0
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are satisfied for G(x,n) = S*(x, nNA<k<m).

Remarks 4.2. (i) The condition (C.3) is unnecessary for the proof of the
necessity of (4.8).
(ii)) We point out that in view of the constructions above if S“l(x,n) and
5’2 (x,m) are two realizations of any formal solution S(x,7), then for every NeZ,
we have
sup 1S,(x, 1) =5, (x, = 0(nI™) as |n = e
xe0,27]
Hence we see that the condition (4.8) is invariant under the choice of the
realizations of the formal power series.
We note that we do not assume any condition on the behavior of
characteristic point. Hence it may be degenerate elliptic and weakly hyperbolic
with infinite degeneracy at some points in the domain.

§5. Proof of Theorem 4.1
Because b, (x) are periodic, we may assume that x, =0 in (C.3). Hence the

condition (C.3) implies
(5.1) bk(O);tb](O) forevery kand j (1<k,j<m).
We want to write the equation Pu =f in the vector-matrix notation, where f‘

denotes the partial Fourier transformation of f as in (4.3). For the sake of

brevity we write

~ d m d
P= Hom + , B Yo
(dx) %p,(x ﬂ)(dx)
and set
u 0 1 0
74 0 1
(5.2) U= . |Ax:= , F(x) =
0 1 0
ﬁ(l"_l) ~D TP v TP f

Then the equation Pii= f can be written in the form
(5.3) LU :=U"-A(x)U = F(x).

Let W, = exp(J S*dr) be a realization of a WKB formal solution. We set
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Ipl o V?m
(54) Z(x) = WI l//m
y"l(ln—l) . li/,(,;”_];

Because lf/, is an approximate solution to the homogeneous equation Pi=0, it
follows that f’!f/, = R(S‘j )1/7] with R given by (4.4). Hence Z(x) is an approximate
fundamental solution to (5.3)
(5.5) LZ(x)=Z'(x)— AZ(x) = R(x)D(x),
where D(x) is a diagonal matrix given by
(5.6) D(x) = diag(y/, (x)....,¥,,(x))
and R(x):= R(x,n) is a matrix whose components are rapidly decreasing functions
of n when 7 tends to infinity.

In order to write the equation (5.3) in the form (2.1) we define the matrix
B(n) by
(5.7) B(n) = diag(1,m,m°,....n"").

Suppose that n#0. If we set B(n)X(x,n) = Z(x,n) and if we multiply (5.5) with
B(n)™" from the left the equation (5.5) can be written in the form (2.1), where the
matrix A(x) is replaced by B(n)™" A(x)B(1).

We want to check that the formal solution X(x,1) can be written in the form
(2.3). To this end we set X(x,1n)=Z=(x,17)D(x). We want to determine the matrix
Z(x,7m). By the relation y’ = 311/7, we have
(5.8) Z.m =@ ) . L =((S,0" +0M N, (x,m) = BODECx, ))D(x).

KO -t
Hence we have

(5.9) E(m=Bm) S @ +o0m™) L, L, -

A0, m-1
On the other hand we have §/(Jc)=(b](x)+0(1’rl ))n. Hence if we expand Z(x,7)
in the descending power of Z(x,7m)=Y,(x)+ Y,(x)n"' +... we see that the matrix
Y, (x) is given by
(5.10) Yy(x)=(b,(x)"), . . -
ALO. =1
We shall show that the matrix Y,(x) is invertible. To this end, we set

Y(x):=detZ(x,n). Then, by (5.4) the function ¥ satisfies the differential
equation
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(5.11) W(x)==p, (x, M¥(xX)+ Alx, MY, (%), (x),

where the function A(x,7) is a rapidly decreasing function of 77. Hence we
obtain

(12 ¥@=¥Oexp(- | p, i)
0
+exp(- j Pt [ exp( | p, (5. AN O+, (s
0 0 0
On the other hand, we can easily see that

pm (x’ n) = aO.m—l (x) - nJZH bl (x)
J=1

Hence we have

t
-n| b,

...l]/m(t)e M)y2m

~n[ b (s)ds

exp<f D (5. (8)- 1, (1) = b ()"
0

(s)ds

We note that ¥, (1)exp(—n}, b, (s)ds) = O(1)(k =1,...,m) when 11— . Because the
function A(t,7) is a rapidly decreasing function of 7 it follows that the integrand
in the second term of (5.12) is a rapidly decreasing function of 7. We have

(5.13) det Z(x,1) = det(¥, (x)+ ¥, (x)”" +...) = (det D(x) det B(17))"" det Z(x, )
= (det D(x)det B(m))™" ¥(0) exp(-—j' . (L, 1)dD)
0

+(det D(x)det BODY” exp(- | p, (L. O ™),
0

where O(n™) denotes a term which is rapidly decreasing in 77. We can easily
see that (det D(x))™' exp(—J, p, (t,mdt)=0O(1) when |n|— . Hence the second
term of the right-hand side of (5.13) is a rapidly decreasing function of 7. In
order to get the expansion of the first term in the descending power of 1 we note
by (5.9)

(det B(m)™")W(0) = det(B(m)~' Z(0,m)) = det X(0,7)
= det(£(0,7)D(0)) = det(¥, (0) + ¥,(0)n" +...)det D(0).

By (5.10) and the assumption (C.3) the first term in the expansion of
(det B(m)™")¥(0) in the ascending power of 1" does not vanish. It follows that the
right-hand side of (5.13) can be written in C(x)+O0(n™"), where C(x)#0. In
view of (5.10) this implies that det ¥,(x) does not vanish.

If we can construct a fundamental solution X(x,7) then all arguments in the
proof of Theorem 2.1 is valid in the present case. Hence we have Theorem 4.1.

In the following we shall give an essentially different proof of the necessary
part of Theorem 4.1 based on factorization of differential operators. More



WKB ANALYsIS To GLoBAL HYPOELLIPTICITY 455

precisely we shall prove the necessity of (4.8) under (/). The advantage of this
new proof is that we do not assume (C.3) or (5.1).

Let S be any realization of a phase S of a WKB solution to 13, which exists
by Lemma 1 in the appendix. We first show that if we divide the operators P by
d/dx - S from the right then the remainder is given by R(S) where R is a Riccati
operator given by (4.4). Indeed, by writing d/dx =Jd we denote by a=b if a—b
is divisable from the right by J— S in the class of differential operators in x with
coefficients smooth in x and 7. Then we have, for ue C”

(@-=b,m...(d —bmMu

=@-b,n)...0-S+S—bmu=(d-b,n)...(d—b,n)S —bnu

=@-b,m...0—-S+S5-bn)(S —bmu=@-b,m...(5—b,n)S - bnu
+@=b,M)...(S—bm@—S)u+(@@-b,m...[0- 85,5~ bnlu

m

=(=b,1)...(5=b,n)(S —bmu+(d—b,m)...(5 —b,mI3,S - bnlu

m

=(@-b,M)...(d -b;n)Tu,

where [a,b]:=ab—ba is a commutator of a and b, and where the function 7, is
given by T, :=(d+S-b,m)(S—bn). By the same calculations the right-hand side
of the above expression is equal to the term

@=b,Mm)...(0~S+S ~bmTu

=(@=b,m...(S=byMTu+(d=b,m).. T,(0 = S)u+(@-b,n)...[0 -5, T, 1u

m m

=(3—b,,,n)...(S—b3n)Tu+(o7 b,m...0Lu=©0-b,n)...(d —b,n)T,u,

where T, := (@+S8 —b,mT, . By repeating this calculation we have

(5.14) (a—b,,,n) (@=bmu=(3d-b,n)...(d—b,n)S —bmu
=..=Tu, T,=0@+S-b,n)...0+S-bn)S-bmn).

On the other hand we have

(5.15) c}”u=a/-'(a—S‘)u+ar'§us(%'iu=(9/—2(c9—§J:§)Su~ )
=929 -8)Su+728u=0"[d-S5,Slu+3"25(d - S)u+d"*Su
=97 [d - S,Slu+ 91282y = 912 9Su+0728%u = 9" 2 Au,

where A, :=(d+ $)S. By repeating this argument we finally obtain

d'=(d+8)7'S.
This proves the assertion in view of (4.4) and Lemma 1.
We shall prove the necessity of (4.8). By the above calculations we have
(5.16) P=0Q(d/dx—-S)+R(S)

for some differential operator Q and R given by (4.4). For the sake of 51mpllclty
we denote the pseudodifferential operators determined by Q, R(S) and S via
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inverse partial Fourier transform with the same letters. Note that R is a Riccati
smoothing operator.

Suppose that (4.8) is not fulfilled for some 5’——-5]. Then by an evident
adjustment of the arguments of Hounie (cf. [9]) we can find a distribution u €
C=(T!: 2’(T,)\ C=(T?) such that (d, —SueC”(T?). By (5.16) this contradicts
to the global hypoellipticity of P, because R(S)u € C*(T*) by definition.

§6. Second Order Equations and Diophantine Phenomena

We shall study equations of second order. We want to make clear how the
Siegel conditions enter in the theory. This will be done in terms of WKB
solutions. (cf. the case (a), (b) and (c) which follow.) Equivalent expressions to
the Siegel condition (4.8) are also presented.

Let us consider the equation

(6.1) Pu=(D, +ia(x)D,)(D, +ib(x)D, Ju+y(x)D,u

on (x,y)€ T, where a(x), b(x) and y(x) are 2z periodic complex-valued func-
tions. By the partial Fourier transform with respect to y we have

(6.2) Pi= —(5;)2& +(a(x)+ b(x))n(gx—ﬁ + ()N + y(x)N — a(x)b(x)1* )i = 0,

where 7] is a covariable of y and & denotes the partial Fourier transformation of
u with respect to y. Let y be a WKB solution to (6.2) given by (4.2). We denote
by S arealization of S in (4.2). Then we have

Theorem 6.1. Suppose that there exists a smooth WKB solution (4.2) to
the equation (6.2). Then the operator P in (6.1) is globally hypoelliptic on T if
and only if Rea(x) and Reb(x) do not change their sign and that there exists
N2>0 such that the condition (4.8) is satisfied for G(x,n)zg(x,n) and
G(x,m) = (a(x) +bOe)N =S(x,1).

We note that § satisfies a Riccati equation
(6.3) R(S):=-8>-S"+(a+bnS+b'n+yn—abn® =0.

A WKB solution exists if we assume

(C.2) Either (a(x)—b(x))"' D*y(x) or (a(x)—b(x))" D!(y(x)—a’(x)+b’'(x)) is
defined as a smooth function on T for k=0,1,2,...and /=1, 2, ....

One gets from (6.3) that S (x) verifies S* —(a+b)S_, +ab=0 i.e. S, is
either a(x) or b(x). The term S;(x) is given by
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_Y(X)+b'(x) -8, (%)

S0 = T b0 —25.,(x)

and clearly in order S,(x) to be smooth function we must choose S_(x)=b(x) if
the former half of (C.2)" holds while in case the latter half of (C.2)" is true we
take S_,(x)=a(x). Then we proceed by induction (cf. [6]).

The condition (C.2)" is fulfilled if the function a—b#0 is analytic and if,
either ¥y or y—a’+b" is flat on the set {x:a(x)=5b(x)}. In case a—b is not
necessarily analytic then (C.2)’ is satisfied if either ¥ or ¥ —a’+b’ vanished in
some neighborhood of the set {x:a(x)=>b(x)}. We note that if y=0or y=a’-b’
then (C.2)" holds without any restriction on a and b. The condition is, so to speak,
a Levi condition.

Let us assume that a WKB solution S(x,m)=27__,17’S (x)(S_, =a, orb) to
(6.2) is smoothly defined on the torus. Three cases are distinguished.

(a) Rea(x)#0 and Reb(x)#0.
(b) Either Rea(x)=0 or Reb(x)=0 holds. There exists j =0 such that

_ah Re S, (x)dx # 0.
0

(c) Either Rea(x)=0 or Reb(x)=0 holds. In addition the following condition
J"' ReS, (x)dx =0
0

holds for all j=1,2,....

We note that one of the three cases (a), (b) and (c) occurs. As we shall see
later, the diophantine analysis may enter only in the case (c). Note that WKB
solutions give a criterion for this.

Suppose that there exists a smooth WKB solution. Moreover, assume that
either the condition (a) or (b) is satisfied. Then the operator P is globally
hypoelliptic on T? and globally Fredholm solvable if and only if Rea(x) and
Re b(x) do not change their sign. In the case (a), the sufficient part is also true for
the perturbed operator P+ 8(x) with sufficiently small supremum norm of the
zeroth order term 8(x). Here we say that P is globally Fredholm solvable if there
exists a finite dimensional subspace .# of C”(T?) such that the equation Pu= f
has always a solution u € C” provided [[ f¢dxdy =0 for all p e .4 .

Indeed, if (a) or (b) is fulfilled then (4.8) automatically follows. Hence the
former half of the above assertion is a special case of Theorem 6.1. The latter
half is almost clear from the proof of Theorem 6.1. (cf. [6]).

Remark 6.1. The above result can be viewed as a result for degenerate
elliptic operators. We recall that D. Fujiwara and H. Omori [3] established
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global hypoellipticity for D} +@(x)D?, where ¢ is C~(R)2x periodic real-
valued nonnegative function, identically equal to 0 and 1 on some subintervals of
[0,27]. Concerning this we note that among the operators satisfying the condition
(a) there are operators which may be identically degenerate elliptic in some sub-
domain and weakly byperbolic and of mixed type in other regions.

The remaining case (c) is the one where diophantine analysis enters. In order
to see this we begin with a rather special case, where the diophantine condition
can be replaced by an algebraic condition. We set

2 2
(6.4) T, :=J‘ Ima(x)dx, Tz, :=JA Imb(x)dx.
0 0

Then we have the following assertion.

Suppose that the condition (c) is satisfied. Moreover, suppose that Rea(x) and
Reb(x) do not change their sign. If Rea(x)=0 we assume the following
condition

(6.5) 7,/(2m) is a rational number

(respectively Reb(x)=0 implies that 7, /(2r) is a rational number).
Then in view of (6.5) if

(6.6) j' " ImS, (x)dx % —n7, mod 247 (respectively, % -1z, mod 27Z)
0

for all n e Z the operator P is globally hypoelliptic.

In order to see this we shall show that |exp(JSdt)—1/=c¢ >0 for some ¢>0
independent of 77, [n7|>>1. Indeed, we have that exp(] Sdr) = exp(it,n+if Im Sydt
+[ReS,dt+0(n™")). Hence the estimate is clear if [ReS,dt#0. Let us assume
that [ReS,dr =0. By (6.5) we can write T, =2mg/p for mutually prime integers
p and g. It follows that the quantity 7,77+ [ImS,dr takes only finite number of
values mod 2zxZ when 7 moves on Z. Because of (6.6) we have
lexp(it,n+ifImSydr)—1 =¢">0 for some ¢’ >0 independent of 7. This proves
the assertion. Hence we have (4.8). Now the result follows from Theorem 6.1.

Suppose further that [ReSdr=0 and (6.6) is not true. Then P is globally
hypoelliptic if and only if

2
(6.7) there exists j =1 such that J Im Sj(x)dx #0.
0

Indeed, for the set of 7 satisfying the relation (6.6) we have the estimate
lexp(] Sdr)—1= ¢ >0 for some ¢ >0 independent of 7. If 17 does not satisfy (6.6)
we have the inequality |exp(]Sdr)—1=c[n|™” >0 for some ¢>0 if 7 is large.
Hence we have (4.8). Conversely, we can easily show that (4.8) does not hold if
(6.7) is not true because of the defintion of S. We note that if (6.5) is fulfilled
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then no diophantine phenomena occur because e« takes only finite number of
values when neZ.

In the case where the finiteness condition (6.5) is not true one encounters a
diophantine condition of the form (4.8). More precisely, by Theorem 6.1 we have
the following assertion. Assume that there exists a smooth WKB solution and that
the condition (c) is satisfied. Then P is globally hypoelliptic on T? if and only if
the functions Rea(x) and Reb(x) do not change their sign and there exists N =0
such that the Siegel condition

(6.8) lim ingmlNlexp(f G(x,mdx)—1> 0,
n—eo NE 0

is fulfilled for G(x,1) = S(x,1) and G(x,1n) = (a(x)+ b(x))n—S(x,n) where S(x,7m)
is a realization of WKB solution to (6.2).

In order to see the transcendency of the phenomena more clearly, let us
consider a rather special operator (6.1) such that y=0 or y=a’—b". We denote
the operator by F,. (cf. [5]). First we note that an irrational number T is called a
non Liouville number if and only if there exist C>0 and N >0 such that
lt—plq2Clq", peZ, geN.

We assume that Rea(x) and Reb(x) do not change their sign. Then if
Rea(x)=0 (resp. Reb(x)=0) the equation Fyu = f has a solution u € 7'(T*) for
every feC™(T?) such that [[" ;" f(x,y)dxdy if and only if

(6.9) T,/(2r) (resp. 7,/(2m)) is an irrational non Liouville number.

Moreover the condition (6.9) is necessary and sufficient for the global hypo-
ellipticity of F,.

First we note that, S(x,m)=nS_(x) for F,. Then the condition (6.9) is
equivalent to the corresponding Siegel condition in Theorem 6.1. The global
solvability follows from the result of [9] and the observation; The operator F, can
be factored as a product of first order operators (cf. the proof of Theorem 6.1).
In order to prove the necessity, let us suppose that Fy=LL, where L =D +
ib(x)D, and L, =D, +ia(x)D,. If 7,/(2x) is an irrational Liouville number or a
rational number, it follows that the equation Lv = f is not globally solvable for
some feC”. Hence we see that the equation B =L/, L,u=f is not globally
solvable. If 7,/(2r) is an irrational Liouville number or a rational number and
T,/(2m) is an irrational non Liouville number it follows that L,v=f is not
globally solvable for some f orthogonal to the constant function 1 and L, is a
globally solvable operator. Hence the equation Fyju =L, f is not globally solvable.
Indeed, if otherwise we have L (L,u— f)=0 and therefore L,u—f is constant.
This constant is equal to zero in view of the orthogonality condition on f, which is
a contradiction.

In case P, is the following constant coefficients operator L we find a
classical result of [7].
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,=10,)(d, —ud,),on T*,9, =axi, 7>0,u>0.

J

(6.10) L:=(0

Then we can easily see that 7, =277, 7, = 27mu . Hence the above results read:

Lu= f is solvable for any f such that [" |" f(x,y)dxdy =0 if and only if T
and u are irrational non Liouville numbers. (Siegel condition).

Remark 6.2. In 1974, S. Greenfield and N. Wallach [7] showed that a scalar
constant coefficients differential operator P(D) on the n-dimensional torus is
globally hypoelliptic if and only if its full symbol satisfies a Siegel type condition.
An interesting example is a globally hypoelliptic hyperbolic operator on T?,
D +cD,, where ce R\O is an irrational non Liouville number. This result is
extended for linear systems with constant coefficients on T" by P. Popivanov (cf.
[14]). Later on he used Siegel type conditions in order to establish regularity in
Schwartz class .7 (R") of rapidly decreasing functions on R" for certain second
order operators with polynomial coefficients (cf. [15]). J. Hounie [9] gave a
necessary and sufficient condition for global solvability for first order systems
du+b(t)A, where A is an essentially self-adjoint operator on a compact
manifold. The second author has also obtained results for global hypoellipticity on
tori for operators not satisfying Siegel type conditions [20], and for the Mathieu
operator [21].

Proof of Theorem 6.1. Let S be a phase of a WKB solution and let S be a
realization of §. We note that the existence of a WKB solution implies the
complete factorization of P to a product of first order operators mod a Riccati
smoothing operator

(6.11) P =(D, +i(a(x)+b(x)D, =iS(x, D,))(D, +iS(x, D)+ R(S)(x, D)
=L L, +R(S)(x,D,),

where R(S)(x, D,) is a pseudodifferential operator with smoothing kernel given by
Riccati equation and the realization of S. Because the global hypoellipticity of P
is equivalent to that of the operator L,L, we may assume that P =L L,. Suppose
that the conditions of Theorem 6.1 are satisfied. Assume that L L,ueC” and
ue 7’. Then by the result of Hounie (or by simple modifications of the
arguments in §3) the operators L, and L, are globally hypoelliptic. Hence it
follows that ue C™.

Conversely, suppose that one of the conditions of Theorem 6.1 is not true. For
the sake of simplicity we assume that the top term in S(x,n) is a(x)n. Then
either L, or L, is not globally hypoelliptic. If L, is not globally hypoelliptic we
can find ue '\ C* such that L,ue C”. Since Pu= L L,ueC” this implies that
P =L/L, is not globally hypoelliptic.
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Suppose that L, is not globally hypoelliptic and L, is globally hypoelliptic.
Then the Siegel condition (4.8) to the operator L, is valid and Rea does not
change its sign. We can find a ve &\ C” such that Lve C™. Let v(x,n) be a
partial Fourier transformation of v with respect to y. By assumption ¥(x,7) is a
smooth function of x such that it is of polynomial growth in 7. Let lA,2 be a partial
Fourier transformation of L, with respect to y. In terms of the conditions on L, it
follows from the argument of Section 3 (or by a formula for first order ordinary
differential equations) that the equation L.i=? has a periodic solution a(x,n) if
7 is sufficiently large. Moreover, u(x,n) is of polynomial growth in 17. We write
V=9, +v,, where the function v,(x,7n) vanish identically if 7 is sufficiently large
and that the equation izﬁ =7, has a periodic solution u(x,7). It follows that we
can find a distribution ue€ 7"\ C” such that L,u=v , where v, is the inverse
Fourier transformation of v,. If we denote the inverse Fourier transformation of
v, by v, the function v, is a smooth function. Hence the function
Lyv,=Lv—Ly, is asmooth function because Lve C” by assumption. It follows
that Pu= L Lu=Lyv, is smooth. Because ue 7'\ C” this implies that the
operator P is not globally hypoelliptic. This proves Theorem 6.1.

Appendix

We shall show the next lemma.

oo

Lemma 1. Let Ulx,m=X7,n""U,(x) be a formal power series of 1
such that U(x) (j=-1,0,1,2,...) are smooth functions on T. Then there exist
X,(m (j=-10,1,2,..., x_, =1) such that the sum

Uem=3 0y mU, (x)

/==l

defines a smooth function U(x,1) of x on T satisfying for k=1,2,...,and BeN.

~ A
(A.1) DIUm,x)- Y, 17U, (x))=00*"*"") when 17— o.

=1
If tfzefunction U is given by (4.7), U=S then S satisfies (4.5) asymptotically,
R(S) is rapidly decreasing in 1 when 1 — oo,
Proof. We note that all U,’s are 27 periodic function of x. We put

(A.2) m = sup | DU (x)]. j=-1.

T, <)

For j20, we take x (1) eC”(R),0< X, <1 whose support is contained in || >
(m,)*"" + j¢ -1 and that

X, =1 on /> (m) + j¢
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where € >0 is a constant taken sufficiently small. Then the function

(A.3) UM, x):=nU_,(x)+ £oMUpy(0)+ 2, x,mn~U,(x)

J=1
is defined as a smooth function of n and x which is 27 periodic with respect to x.
Indeed, the right hand side of (A.3) is a finite sum for each n and x. Also it is
bounded when 1 — o except for the term nU_ (x). Furthermore, for each k=1
we have

- k
(A.4) Um.x)- 3, nU,(x)
J=-1

k oo
=ZO U, (x)(x, (m=1)+ z x,(mn~U, (x).
= faret
The first term in the right-hand side is bounded when 7 — e because y (1)-1
has a compact support. On the other hand,

2 x,mnU (x) =02 Sy (i TIRY (x).
J=h+1 J=k+1
ln_’leJ (x)| is bounded in x and 77, as 1 — o by the condition on y (7). Because
k—1-j<-2 and |n|>1, the sum is bounded for all i and x. This proves the case
B=0.The general case #0 will be proved similarly.
The latter half of the lemma follows from the definition of the formal sum
S(x,n) . This ends the proof of Lemma 1.

The following results are taken from Chapter 4 of [19] with modifications
necessary in this paper. Let us consider the equation of the form (2.2).

(AS) V=3 Aj(x)n"*')v =Av.

=0
The equation (2.2) can be written in (A.5) by an appropriate choice of the
coefficients matrices in (A.5). In the following we assume that the eigenvalues of
A,(x) are distinct. We take a formal solution Y(x,1)e™ " to (A.5)

(A.6) Fxmemtm = (3, ¥, (xn e,

J=0
where the diagonal matrix A(x,7n) is given by (2.4) and where detY,(x)#0. We
note that the coefficients Yj(x) are smooth functions on T. We say that the formal
matrix solution (A.6) is a basic formal matrix solution of (2.2) if the formal
power series Y(x,7) satisfies the formal differential equation

(A7) Y’ =AY —n¥A’.
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We note that (A.7) is equivalent to that Ye™ satisfies the equation (A.5)
formally. Let us consider a differential equation of the same type as (2.2)

(A.8) w=(Y B0 w.
J=0

Then the equations (A.5) and (A.8) are said to be formally equivalent if there
exists a matrix P(x,1)~ X7, P (x)n”’ with F(x) being invertible and all P’s
being smooth functions on T such that (A.5) is transformed into (A.8) by the
change of variables v = P(x,n)w. Under these preparations we have the following

Lemma 2. Let A be given in formula (A.6) for a basic formal matrix
solution to the equation (A.5). Then the diagonal entries of the matrix d\/dx are
formal invariants of the differential equation.

Lemma 2 is proved in §4.2 of [19]. By this lemma if we normalize A(x,n) so
that A(0,m1)=0 then A(x,m) is invariantly defined under formal change of
variables (A.8).

Lemma 3. Every formal equivalence class contains differential equations
for whose basic formal matrix solutions Ye®, the series Y is independent of x.

This lemma is proved in [19]. (cf. [18, Theorem 4.3-1]). Note that the above
formal solution plays the role of a WKB solution for a single equation.
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