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By
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Abstract
We define "a crossed product by a paragroup action on a subfactor" as a certain commuting

square of type IIj factors and give their complete classification in a strongly amenable case (in the
sense of S. Popa) in terms of a new combinatorial object which generalizes Ocneanu's paragroup.

As applications, we show that the subfactor N c M of Goodman-de la Harpe-Jones with index
3 + A/3 is not conjugate to its dual M c M, by showing the fusion algebras of N-N bimodules and M-
M bimodules are different, although the principal graph and the dual principal graph are the same. We
also make an analogue of the coset construction in RCFT for subfactors in our settings.

§1. Introduction

Our aim in this paper is to introduce a notion of a "crossed product by a
paragroup action on a subfactor", which is a certain commuting square of type II1

factors, and classify them in terms of a combinatorial invariant generalizing
Ocneanu's paragroup [35]. Roughly speaking, the standard axioms of paragroups
together with a new axiom, the intertwining Yang-Baxter equation, characterize
our "canonical commuting cubes" which have information enough to recover the
original commuting squares by Popa'a deep theorem [44].

We will discuss relations among our new settings, Rational Conformal Field
Theory (RCFT) and 3-dimensional Topological Quantum Field Theory (TQFT).
Our new machinery also turns out to be useful for studies of ordinary subfactors,
and as applications, we will determine the fusion rules and the TQFT of the
subfactor of Goodman-de la Harpe-Jones [16] with index 3 + -\f3 , and initiate the
coset construction for subfactors, which is an analogue of the coset construction
in RCFT.

Since the pioneering work of V. F. R. Jones [21] on subfactors and his
celebrated knot invariant [22], the theory of operator algebras has experienced
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unexpected interactions with low dimension topology, quantum group theory,
solvable lattice model theory, and conformal field theory. From the operator
algebraic viewpoint, these interactions take place on combinatorial level of
subfactor theory, and the best theory so far in this point is Ocneanu's paragroup
theory [35]. Unfortunately he has not published details of his fundamental theory,
but through many efforts [11], [24], [25], [27], [65] and Ocneanu's several
lectures [36], [37], [38], the basics of the theory have been now fairly well-
understood. For analytic aspects of the classification, S. Popa solved the finite
depth case first in [43], and later the strongly amenable case in [44] in the ultimate
form.

A work of de Boer-Goeree [6] clarified a relation between subfactors and
RCFT, and work on the orbifold construction [10], [24], [63], [64] revealed a
further deep relation.

A relation between subfactors and 3-dimensional topology was clear from the
beginning [22]. E. Witten [62] proposed a general TQFT based on physical idea,
and a mathematically rigorous form was given by [49]. Another formulation [55]
based on triangulation of 3-manifolds [1] and the quantum -?/q(sl2) 6j-symbols of
Kirillov-Reshetikhin [28] also appeared. Ocneanu claimed a general 3-dimen-
sional TQFT of Turaev-Viro type arising from a subfactor of finite depth and a
converse construction in [38] and a detailed account was given in [11].

We first give a rather abstract motivation for our work in this paper. On one
hand, Ocneanu's basic idea for the paragroup theory [35] was to regard a
subfactor N c: M as a crossed product by an action of a paragroup on N. In this
way, a paragroup is regarded as a "quantization" of an ordinary group. A recent
deep analytic result [47], [48] by S. Popa further strengthens this viewpoint.

On the other hand, there have been studies of group actions on subfactors [7],
[23], [26], [29], [31], [45], [46], [59], [60], [61]. We regard "a paragroup
action" on a factor as an action of a quantum structure on a classical object, and
regard a group action on a subfactor as an action of a classical structure on a
quatum object. This suggests that there should be something to be called a
paragroup action on a subfactor.

In the theory of ordinary subfactors, what we have is a "crossed products of a
paragroup action", so in our setting, we also look for something to be called a
"crossed products of a paragroup action on a subfactor". Then we realize that a
certain commuting square of type IIl factors

M00 c M01

n n

M10 c Mu
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should be a "crossed products of a paragroup action on a subfactor". We regard
M10 cMn as a crossed product by a paragroup action on a subfactor M00 c M01

and also regard M01cMu as a crossed product by a paragroup action on a
subfactor M00 d M10 .

Next we give more concrete motivations for our work. We initiated the
orbifold construction for subf actors in [10], [24] based on an idea in solvable
lattice model theory [14], [15], [30]. In this method, we construct an action of a
finite group G on a subfactor N d M and make a simultaneous fixed point
algebras NG c MG (or simultaneous crossed product algebras W x G e M x G . )
First this method in [24] was used to construct a subfactor of type D2n from a
subfactor of type A4n_3 . Later this action on the subfactors of type A4n_3 was
identified in [7], [27] with the Z2 actions appearing in descendent sectors in

Izumi's work [18] and the general case was clarified by [63], [13]. Study of these
actions can be regarded in a sense as a study of the commuting squares.

N c M

n n (D

NxG c MxG

For example, Popa's notion of the co-standard graph [45], [46] can be naturally
generalized from this view point. That is, we regard a general commuting square

M00 C MQ\

n n

M10 c Mn

(with appropriate properties) as a "quantization" of the above commuting square
(1).

We have another motivation as follows. S. Okamoto recently considered a
problem when the commuting square

M00 c M01

n n

M10 e Mn

of approximately finite dimensional (AFD) type II, factors with M00eMu

having finite index and finite depth is of the following type:

N®P d M®P

n n

N®Q d

Here N c: M and P<^Q are subfactors of AFD type II j factors with the finite

index and finite depth. Unfortunately, his manuscript contained an error, and he
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could not fix it. From our viewpoint, this problem can be regarded as a "splitting"
of aparagroup action on a subfactor. That is, suppose that the subfactor N dM
in the above commuting square (1) has the relative McDuff property [3]
(N<^M) = (N®Rc:M®R), where R is a copy of the AFD type El factor. If the

action a of G splits as id®O" on N®RaM®R, where a is the model action of
a finite group G on R [20] , then the commuting square becomes

n n

N®(RxG) c M®(RxG)

For discrete amenable group actions on single McDuff factors, the right
condition for "splitting" is approximate innerness and central freeness as in [8],
[34]. In a subfactor setting, approximate innerness was studied in [31], and
central freeness was studied in [27], [45], [46]. Thus we expect that the right
condition for Okamoto's problem should be "approximate innerness" and "strong
outerness" in an appropriate sense. In Section 3, we will give a solution to this
problem.

With all the above considerations, we now give the right framework of our
theory. We always work under the following assumption in this paper.

Assumption 101. The four algebras M00, M01, M10, Mu are type IIj factors

with the following properties.
1 . The square

M00 c M01

n n

M10 c Mn

is commuting and co-commuting in the sense of [52, Definition 3.4].
2. [M n :M 0 0 ]<oo.

3. The subfactor M00 c M,, is extremal and strongly amenable in the sense of

[44].

We regard this commuting square as a "crossed product by a paragroup action
on a subfactor".

Condition 1 is equivalent to the condition that the above is a commuting
square and [Mn :M10] = [A/01 :M00] by [52, Corollary 7.1]. In this case, the

commuting square is non-degenerate in the sense of [44, 1.1.5].
In many concrete cases, we further assume that M00 c=MH is of finite depth

and all the type II j factors are approximately finite dimensional (AFD). Note that
it was proved in [56] that if M00 c M01 and M01 czMH have finite depth in the
above situation, then M00 dMn also has finite depth. (For an easier proof, see
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Lemma 3.2 below.) Commuting squares of type IIt factors have been studied in

[52], [51], [57], [56] in more abstract settings.

Also note that in general N a P and P d M are extremal if and only if
NdM is extremal ([44, 1.2.5(iv)]).

We will give a complete classification of the above type of commuting
squares of type IIj factors in terms of combinatorial invariants, and give

applications later.

In Section 2, we state the axioms for our new combinatorial system
generalizing Ocneanu's paragroup.

In Section 3, we give a bijective correspondence between the above type of
commuting squares and our system satisfying the axioms.

In Section 4, we show that RCFT gives non-trivial examples satisfying our
axioms.

In Section 5, we apply our theory to study of subfactors of Goodman-de la
Harpe-Jones [16]. This shows that our theory is also useful for studies of ordinary
subfactors.

In Section 6, we make the coset construction for subfactors as an analogue of
the coset construction in RCFT.

In an early stage of the preparation of this work, conversations with D.
Bisch, D. E. Evans, V. F. R. Jones, S. Okamoto, S. Popa, and F. Xu were
inspiring, and around the end of the preparation, comments of U. Haagerup, M.
Izumi, H. Kosaki, A. Ocneanu, T. Sano, and Y. Watatani were useful. The
author thanks for the help of these people.

§2o Combinatorial Axioms for Paragroup Actions on Subfactors
and

Triple Sequence of String Algebras

In this section, we list the combinatorial axiomatization for paragroup actions
on subfactors, which generalizes Ocneanu's paragroup in [35]. Our object is a set
(j/1, T, JLL, i, j3p /32, W) of a connected unoriented graph ^ a map r from a subset
of the vertices of ^onto itself, a real-valued function JJL on the vertices of the
graph j/, a map i defined on a subset of edges of the graph 5fonto itself, positive
numbers /?p j32 matrices [/,, f/2, and a "connection" W on the graph & We do not
assume that the graph %/ is finite, but assume that %/ is locally finite in the sense
that the number of edges connected to each vertex of *§ is finite.

The vertices of the graph & is a disjoint union of the eight sets y^, where

(i,j, k, /) =(0,0, 0,0), (0 ,0 ,0 , !),(!, 1 ,0 ,0 ) , (1 , 1,0, 1),
( 0 , 0 , 1 , 0 ) , ( 0 , 0 , 1 , 1 ) , ( 1 , 1 , 1 , 0 ) , ( 1 , 1 , 1 , 1 ) .
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We write £''/^tJ for the graph whose vertices is the union ^j^ u^, <^,r and
whose edges are the edges of & connecting a vertex in ^u to a vertex in ,v^>r

where

(/', 7', *', /', /, 7, M) = ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1), (0,0,0, 1, 1, 1,0, 1),
(0 ,0,0,0, 1, 1,0,0), (1, 1,0,0, 1, 1,0, 1),
(0,0, 1 ,0,0,0, 1, 1), (0,0, 1, 1, 1, 1, 1, 1),
(0,0, 1,0, 1, 1, 1,0), (1, 1, 1,0, 1, 1, 1, 1),
(0 ,0 ,0 ,0 ,0 ,0 , 1,0), (0,0,0, 1,0,0, 1, 1),
(1, 1,0,0, 1, 1, 1,0), (1, 1,0, 1, 1, 1, 1, 1),
(0,0,0, 1 ,0,0,0,0) , (1, 1,0, 1,0,0,0, 1)9

(1, 1 ,0 ,0 ,0 ,0 ,0 ,0) , (1 , 1,0, 1, 1, 1,0,0),
(0,0, 1, 1,0,0, 1,0), (1, 1, 1, 1,0,0, 1, 1),
(1, 1, 1,0,0,0, 1,0), (1, 1, 1, 1, 1, 1, 1,0),
(0,0, 1,0, 0,0, 0,0), (0,0, 1, 1 ,0 ,0 ,0 , 1),
(1,1, 1,0, 1,1, 0,0), (1,1, 1,1, 1,1, 0,1).

(Thus 'f&Z1' ='tr&
k
k'r and we have 12 different ^J^'s.) Each graph 'f&tf' may

not be Connected, but we do require that $&%,$&%,$&% and ™&\\ be
connected. Note that the graph j/7 looks like a cube whose eight vertices
correspond to the eight sets of vertices and whose 12 edges correspond to the 12
sets of edges.

00 <f 00
00 ' 01

00 £=00
00 10

11 ^00

11^00
11 10

^Nv

00 £"
00

oo £; 10
00 11

1 1 £ i i

, I £ O I

?r oo 11 r<$
oo 10 oo n i 005

Figure 1.

There are two distinguished vertices *00 e Oo^o'*n E 11^1- The function ju
assigns a positive numbers > 1 to each vertex of & and satisfies ju(*00) =

//(*!,) = 1-

The first axiom corresponds to the Harmonicity Axiom [35, page 148]. For
two vertices jc, j E ̂ , we write m(jc,v) for the number of edges of ^connecting x

and v.
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Axiom 1 (Harmoelclty)o We have the following identities.

A AM') = 2«(*,30M30, ./or* 6,,^,
V6,j^/

where i =1,0, /or i = 0,l, respectively.

Note that if the graph ^ is finite and each graph 1'f &1'/' is connected, the

numbers A»A anc* tne function //(•) are determined uniquely by the Perron-
Frobenius theorem.

We require that ris a map from 00^00 u 00^n u H^00 u n^n onto itself with

order 2. The next axiom corresponds to the Initialization and Parity axioms in [35,
page 150].

Axiom 2 (Contragredieet map). We require

_ 00 c^OO OOc^Ol _ 00^00 00^:10
' ^ ~~ 00'^ 01 " O0'y 11 ~ 00'y 10 OOcV 11 '

In the above formula, the identity T- °?^S 'T= oo^m ' oo^?i means tnat f°r

oo^oo anc^ ^ e 00^11' we §et m(t(x),T(y)) = S-6(X)^OI wx(jc,z)m(z,^).

A cell (^,£2,^3,^4) is a quadruple of edges of the graph & with

where a, b, c, d are four vertices of & in mutually different v^/'s. The complex-

valued map W is defined on the set of cells, and called a connection. We also use
the following symbolic notation for
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We sometimes drop the labels for edges or vertices if no confusion arises. We
also use the convention that if (^19<f;2,<fJ3,^4) is not a cell, the above symbol denotes

the number 0.
The bi-unitarity axiom on Win the paragroup setting in [35, page 151] is split

into the two parts as in [24, §1]. The first "half" corresponds to the following
axiom in our settings. We write v(£) for the set of two vertices of an edge £ of
the graph ^

Axiom 3 (Bnltarlty)o Choose four edges £,,£2>£p£2 of the graph &with
v(ql) = {a,b], v(£2) = {6,c}, v(£') = {a,b'}, v(£) = {b',c}, so that b and V belongs

to the same tj&kl. Suppose that there exist edges £3,^4 of & such that £1?<f;2,^3,^4

makes a cell. Then we have

We also have the following axiom which corresponds to the Inversion
symmetry axiom and the Rotation symmetry axiom in [35, pages 150 - 151]. From
our viewpoint, this gives the other "half" of the Bi-unitarity axiom in [35, page
151]. This also corresponds to the crossing symmetry in solvable lattice model
theory. Note that our convention of normalizing constant is different form the one
in [35] and this is the reason the second formula in the next axiom looks different
from the Rotation symmetry [35]. Our convention is compatible with the ones in
[10], [11], [19], [24], [25], [37].

Axiom 4 (Renormalizatlon)0 For a cell (Ij,^,^,^), we have the

following two identities.

=

Note that the above imply the following, which looks more familiar.
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_

~
We also use the following (standard) convention for the symbols.

b b ad c c d

Note that here we dropped the labels for edges for simplicity.

Next we work on an analogue of a partition function as in [35], [37], [24].
We choose one of *00 and *,, and write * for it. We choose four sequences of

edges (£p£2,...,£„), (£,£,...,£„). ( r jp77 2 s . . . , r j 2 l l ) , and (r j f . r j j ....rjJJ, and next
four sequence of vertices (f l 0 , f l p . . . , f l 2 / I) , ( a ^ a ( ^ . . . , a ' 2 n ) ^ (Z? 0 ,^ j , . . . ,Z? 2 m ) , and

(&Q,&p... ,K,7 i) with the following properties.

1. v(|1) = {a0,a1}, v(|2) = {flpa2}, ..., v(^2ll) = {a2ll_pa2ll}.

2. v(^) = K.fln. v(^) = K,flJ}, . . - , v(^n) = {^ l l_pflj l l}.
3. v(rj1) = {fto.fr,}, v(7j2) = {*p&2}> ..., v(?72n) = {fc2ll_pfc2ll}.

4. v(?71') = {*0
/,*1

/}. v(rjj) = {^,&2'}, ..., v(r\'2n) = {b'2^b'2n}.
5. a0= a2n =a'0= a'2n = bQ = b2m = b'Q = b'2m = *.
6. In case of * = *00, we require ^h,^ e0^0^, and in case of * = *n, we

require ^.ge^JJ. (1 < A < 2n.)

7. In case of * = *00, we require bh,b'h e QQ&U for some A:, /, and in case of

* = *n , we require bh,b'h e n^ for some k, I. (Q<h< 2m.)

8. The edges r\h and r]'h belong to the same ','f^u''' •

Then we have the following definition of the "partition function" as in the
paragroup case in [35, page 127], [37, II.2], [24, §1], First, the dotted lines inside
the following diagram means the "filling" of the large rectangle with edges from
the graph & and each choice of the edges is called a configuration. Figure 2 means
the product of the 4nm connection values of a chosen configuration.
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Figure 2.

Then Figure 3 means the value of the sum of the above values over all the
possible configurations, which is a direct analogue of a partition function in
solvable lattice model theory. (In [35], Ocneanu called this energy.)

,2

&,,„_,,

Figure 3. partition function

With this convention, we write the following axiom. This corresponds to the
identity T(**^) = T(**^ ) in the Initialization axiom in [35, page 150], but has a

more complicated form because later we will not require the trivial relative
commutant condition for the subfactor.

Axiom 5 (Initialization). There is an injective map i with I4=id
defined on a subset of edges of the graph & with the following property. For each

), xev(e2),

1^ = [e, 'e2\e} e ̂ ^e2 e *K *00 e v(e^ T(X) e v(*2), v(el)nv(e2)^ 0}.

Then i(/o,r) = /ui(/i,r) = /2.rl(/2»^) :=/3,x l( /3.J = /o.r- Furthermore there is a
complex constant c with modulus I such that the following identity holds for any
x e 00jfu and for any £ e ™&\\ with s(%) = *00 and r(£) = x .



CLASSIFICATION OF PARAGROUP ACTIONS 49 1

-
T(JC) j3(|) *oo

The next axiom is the most important one, the Flatness Axiom, which is an
analogue of [35, (PT), page 153].

Axiom 6 (Flatness). We have the identity as in Figure 4.

fl. «•» a2,,-\

Z~-$"~~~~ -

f.

a2n-\

Figure 4. Flatness

Next we need a new axiom which does not correspond to any axiom in the
paragroup case. First we choose six edges £p £2, £3, £4, £5, ̂ 6 so that they make a
hexagon in the graph ^ as in Figure 5.

g. ,
|2

§4

Figure 5.

Then we have the following axiom.

Axiom 7 (Intertwining Yang-Baxter Equation). We have the
following identity.
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«2 6_

V°\JT
aX-

'"•^'^X/l /|4 "•*'•*"«• $6\ ^
o £»O -> -*o

^5 «5 ^ ^5

where the both hand sides mean the sum of the products of three connection
values over all the possible choices of a7,£7,£8,£9 for any fixed choice of

^p^ 2 »^3»^4 '^5»^6 as above. On the lift hand side, the vertex a1 is chosen from
the corner marked with o in Figure 5, and on the right hand side, it is chosen from
the corner o.

In the above identity, we used the following convention as in Figure 6.

Figure 6.

(We again dropped the labels for edges.)
If the graph & is finite, which corresponds to the finite depth condition of

subf actors, the above system of axioms are enough for our purpose, but we would
like to work on subf actors of infinite depth with strong amenability later, so we
need an extra axiom for this strong amenability in the sense of [44].

First we construct a triple sequence of string algebras {Ajkl}jkJ>Q starting from

*00 as follows. Choose the starting point * to be *00 e OQ&OQ . Construct the three

sequences of string algebras {Ay00}7>0, {A)*oK>o' (A)o/}/>o starting from * with the
graphs °°^°°, oo^oo ? 003*00 respectively. Then use the entire graph & and the

connection Wto get the triple sequence as in [37, II.2], [24, §1]. That is, we use
the following rule of changes of bases as in [37,11.2], [24, §1].

Note that the first part of the sequence looks as in Figure 7.
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( X ) / " 10 V

-^ >A»,, ,,„,„
NO I ' 11

Figure 7.

Here arrows mean embeddings, and we look the graph from the same direction as
in Figure 1.

Furthermore, we fix the following identifications of edges. First for any edge
£eff^S!connecting *00 and *Gn^0 0 , we identify it with a pair of edges

I'ElJJ^i and £"e}!^j» with i(£) = £'•£". Second for any edge $€*&{{

connecting *1} and *e00J?n, we identify it with a pair of edges £'e°°^°° and

£"eoo^n with i(£) - £' • £". Then as in [25, pages 134-135], we can extend the

definition of the string algebras Ajkl to the case j,k,le Z, k > -j, I > -j .

We define a normalized trace tr on vjUAjU as follows. For a string

(<SL,£-)eA^, we define tr((£+,£_)) = P?~kP?~*fi(r(£+)), the notation r(£+) denotes

the endpoint of the path £+ (and .y(£+) denotes the starting point of £+). By Axiom
1 and the embedding rule of the string algebra, this tr is well defined on u ,,A ,,.

Jkl jkl

Then we define A^ to be the von Neumann algebra obtained by the GNS-
completion with respect to tr. We define the vertical Jones projections ek e A0k+ll

and f, e Aox/+1 as in [37, II.2], [24, §1]. That is, ek is given by the following.

,(a • v • v, a • w • w),

a is any path from * in the graph gJ^JJ, and v, w are chosen so that the

compositions are possible in gg^?g, and |-| denote the length of a path. We also

define the Jones projections pj in AJ+100 similarly.

The following corresponds to [44, 1.4.2 (vii)] and is equivalent to factoriality
of the von Neumann algebras A^ u.

Axiom 8 (Ergodlcity)0 For the vertices in 00^, the vector //(•) is the

unique ^-bounded eigenvector of ^^(^^y corresponding to the eigenvalue
j3,j32, where /,y = 0, 1.
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Note that if the graph & is finite, then this factoriality automatically holds as
usual, because the four graphs °°^°°, ff^U, ^J, and °°^}° are connected.

The following corresponds to [44, Theorem 5.3.1(vii)]. (Also see [37, page"
35], where Ocneanu defines his amenability in a slightly different way from
[44].)

Axiom 9 (Amenability). We have the following.

£*,-,,-,^,_,_ (P, ) = ^,.2,-2nA.,... (P2 ) = A'2 A'2 •

Note that py is the Jones projection for AJ-} x „ c A7 ̂  ^. This condition

means extremality of the model inclusion. See arguments preceding the main
theorem in Section 3.

The operator EA, ] A (p}) can be expressed as lim^, ^ A (p{) and

there is an explicit formula for EA, nA in [36], so in principle, the above

amenability axiom can be checked by computation.
We now define an equivalence relation between two systems satisfying the

above axioms. This is an analogue of the definition in [35, page 154]. (Our
convention is slightly different from the one in [35].)

Let (St, f i , i , Pi, f}2> W) be a set satisfying the above axioms. A perturbation
u of the connection W is a set of unitary matrices (w(£,T])), associated to each

pair of adjacent vertices x, y of ^ where <^,rj are edges of & connecting ;c and v.

We require that M(|, r\) = «(& 7?) • The perturbed connection W# is defined by the
following formula.

\

= 2 "(^M^M^.M'Va^Wf^
«,.&•£,.&

We assume that the Initialization Axiom is preserved. The systems
) and (SX/M,/?,, j82, W

#) are called equivalent. We simply
write (Jfr,//, z,/3P/J2, W) for denoting the equivalence class. Two systems
(Jf r, ^, z, j3p )82, W) and (^'r', ̂ , i', j8,, /J2, W) are called isomorphic if there is

a perturbation W# of W and a graph isomorphism

?' with n'-8 =/u , r1 • z / - 0 = i, 0-1 • r / - 0 = T, and W / - 0 = W*.
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§3. From Commuting Squares of Type IIj Factors

to Combinatorial Data and Back

In this section, we construct combinatorial date satisfying the axioms in §1
from commuting squares of type IIj factors with Assumption 1.1 and give the

converse construction based on bimodule approach. For basics of the bimodule
theory over factors, see [11], [38], [42], [65].

For simplicity of notations, we write IJXkl for a bimodule M XMu where

/, j, fc, / = 0, 1 . We also write <8>y for the relative tensor ®M for bimodules and

EtJ for EM . We often regard von Neumann algebras as bimodules and in such

cases we have to take L2 -completions with respect to the trace, but we often drop
L2() for simplicity of notations. For example, Oo(^oo)oo means the M00-M00

bimodule L2 (M00 ) .

Lemma 3.1. Under Assumption 1.1, we have natural isomorphisms
M01 ®00 M10 = Mj, as M01 - M10 bimodules, and M10 ®00 M01 = Mn as M10- M01

bimodules.

Proof. We define a map n : AfOI (8>00 M]0 — > MH by ;T(JC ®00 v) = xy for
* G M01 , 3; e M10 . For *,, ^2 e M01 and yp v2 e M10, we get

(*i ®oo Jp^2 ®oo J2 ) = (

where we used the commuting square condition £00 = EIQ on M01 . Thus n extends

to an isometry and it is surjective by [52, Corollary 7.1]. The other isomorphism
is proved similarly. Q.E.D.

Next we make basic constructions vertically and horizontally from the initial
commuting square, and get a double sequence of type IIj factors Mkl as in [52,

Section 7]. Note that the square

Mu c Mu+l

n n
MA+U ^ Mk+lJ+l

is again commuting and co-commuting. Then the increasing sequence
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is the Jones tower of the subf actor M00 c Mn , and for this subf actor, we choose a

tunnel

Here we give a simple proof of a theorem in [56], which was mentioned in
the Introduction.

Lemma 3*2* Under Conditions 1, 2 of Assumption 1.1, the following are
equivalent.

1. M00 cz Mn has finite depth.

2. M00 c M01 am/ M00 c M10 have finite depth.

Proof. We have 00(M,J00 = 00(M,?0 ®00 M0J00 by the above lemma. So

00(M/m)00 has only finitely many mutually non-isomorphic irreducible components

if and only if both of Oo(^o)oo and oo(^o«)oo have only finitely many mutually

non-isomorphic irreducible components. Q.E.D.

Note that the above form looks slightly different from the theorem in [56], but
both are equivalent. For example, if M00 c M01 and Af01 c Mn have finite depth,

then M0{ c M02 has finite depth, so by the above lemma, M01 c M12 has finite

depth, then M_10 c Mp has finite depth, which implies that M00 cz Mn has finite

depth.
Next we construct a triple sequence (Xjkl) of bimodules inductively as

follows. Let X0oo = oo(Moo)oo- If W are even> then set X,.LM = Xju ®oo(Moi\i
and xj,k+\,i =xjki®o\ ( M n)n- If k is even and / is odd, then set

XJ.LM = xjki ®oi (Moi)oo and xj,k+u = xju ®oi (Mii)n - If * is odd and / is even,
then set X y < A < / + 1 = XjU ®10 (Afn)n and Jy A+1 ; = XyA/ ®10 (M]0)00. If ft, / are odd,

then set XJtU+} = XjU ®n (Mn)10 and XJ<A+U = XjU ®n (Mn)01 . If j is even, then
set x

J+i,Lt= I I ( M H ) ® O O ^ . and if 7 is odd, then set Xy+K, l =00(M I1)®11 XyA/.

With natural isomorphisms

oo W)i®oiM i 1)1 1=00(^1 1)11 -OO( M IO®IO M H)IP

01(M01 ®00 Af I O)1 0 =0 1(Mn) I O =01(Afn ®n Mn)10,

10(M10 ®00 M01)01 = 10(MU)01 = 10(MH ®n Mn)01,

n(MH ®10 M10)00 = 11(M11)00 = n(Mn ®01 MOI)00,

.we know that this construction is compatible. Thus X ,, is an M Mrnrnr ^ [j][j] l^ J [ / J

bimodule, where [/"] denotes 0 [resp. 1] whenj is even [resp. odd].

We set BjLl=End(Xjkl), where End(XjU) means the set of bounded linear

maps on the Hilbert space XjU which commute with the left and right actions of
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the type II, factors. Note that this is isomorphic to M'_j ,_, nMw by [41] and thus

finite dimensional. If k,l are even, we regard BjU as a subalgebra of BJmkJ+l with

the embedding ^e End(X/w) h^ §®00 id00(M()i)m G End ̂ ,/+1 and define the other

embeddings similarly. Because the embeddings are compatible, we get a triple

increasing sequence of finite dimensional algebras Bjkl . By looking at the

isomorphism between each BjU and each M'_} _y n Mkl and the embeddings of the

both triple sequences, we can conclude that the sequence (Bjlcl) and the sequence

of the higher relative commutants (M' ;_ ;nM f c /) are isomorphic, as in the

ordinary paragroup case. (For the ordinary paragroup case, see an exposition

[27], for example.)

We make irreducible decompositions of the bimodules X2j^2L2l
 to Set a set °f

(isomorphism classes) of all the M00- M00 bimodules arising in this way. Set this to
be the vertex set 00^0 . Similarly, we make vertex sets Oo^p oo^o' OO^P
ii^o' ir^ii' ii^o' and 11^1 from tne irreducible decompositions of the bimodules

^2;,2A.,2/+l» ̂ 2/,2A.+l,2/' ^-2j,2k+\,2l+\-> ^2j+\, 2k, 21 ' ̂2/+l, 2k. 2/+1 ' ̂ 2j+\, 2A+1, 21 an(* ^2/+l. 2k+\, 21+]

respectively. For an M,,-M00 bimodule X e 00^0 and an M00-M00 bimodule
FG nj|0, we make edges in ™&™ so that their number is equal to the multiplicity
of Y in ,,(Mn ®00 X)00. Note that by Frobenius reciprocity in [38], [65], the

number of edges is also equal to the multiplicity of X in Oo(^n ®n ^)oo- We

similarly make edges for the other parts of ^ Note that ™&w and ™&\\ are

connected because these are the principal graph and the dual principal graph of

the subfactor M00 eMH . If this subfactor M00 c Afn is of finite depth, our graph

& is finite. In general, S1 may be infinite, but it is always locally finite because

the index [Mn :M00] is finite. We set *oo = 00(00 M00)00 and *„ = l l ( l l M l l ) l l for a

bimodule lfXu in the vertex set of ^ we define the function jj, by

/y XdimXu , where /, y, k, I = 0, 1 . Because we assume extremality

of the subfactor M00 c M, , , we have /i(00 XQQ ) = dim 00X = dim X00 , /l(00 X01 )

= [M01 :M00]~ I /2dim 00X, and other similar equalities. From these, we get the

Harmonicity Axiom.

For M00-M00 bimodules, M00-MH bimodules, Mn-M00 bimodules, Mn-Mu

bimodules, we define r(X) = X , the conjugate bimodule. Then it is clear that we
have the axiom on the contragredient map.

We have to define the connection next. For an M00-M00 bimodule XGO O^O

and an Mn- M00 bimodule Y e U&QQ , suppose that the number of edges connecting

X and Fis n. Then we choose intertwiners £, , . . . ,£„ GHomd^Mjj ®00 X)00, nF00)
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so that each is co-isometry and the initial projection of £y are mutually

orthogonal. We have n edges and give them orientations going from X to Y. We

assign each intertwiner ^ to each edge, and to the same edge with the reverse

orientation, we assign its Frobenius dual MuE>J eHom(00(Afn ®n F)00, 0cAo)- (See

[38], [65] for the Frobenius dual.) We know that M"^y 's are co-isometries and

their initial projections are mutually orthogonal. We make similar assignment of

co-isometry intertwiners to each edge of the graph ^ Take the following square

made from ^,

If AEO OJ^O , ^ G O O ^ J , C E U ^ J , and £>E U J^ O , then we set
£3(£4®idMoj)(idM]] ®£)£. If AEO O^O , BEOO^P CE00Jfp and DEO O^O , then

we set W(£j, £2, £3, £4) = £3(£4 (8) idMn )(id/v ® /r)(£n ® idw )^ . where n is a natural

isomorphism from 00(M01 ®01 Mj,),, to 00(M}0 ®10 MU),, . In the general case, the

square is one of the above two types, so we make a similar definition of W in
each case. Then the Unitarity Axiom holds by co-isometry condition of ^.

The next axiom is the Renormalization axiom. If the square involving
£j,£2 ,£3 ,£4 is of the above first type, then this axiom is just standard Frobenius

reciprocity as in [38], [65]. If it is one of the second type, the equality is proved
as follows. For simplicity, we assume AE O O ^ O , BEOO^P CEOO^P and

as above. In this case, the following square

B li D
Q ^.Q

has a value £3
Mu (£2 ®idMn )(id5 ®^/)(^r°1 ®idM[o)(g4 , where TF' is a natural

isomorphism from 01(M01 ®00 M10)10 to 01(Afn ®n M,,)10. We denote this value by

W and the value of the original square by W. We prove the identity

W'= r(A)M(C)W as follows. We choose a right basis [dl}l for DIO, a right
* ll1 10 S

basis {^7}; for Cn , a right basis {1} for (M01)01, and a right basis {1} for (Afn)n .

Using the same notations as in [38], we make the following computations.
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't wa" • i-'KfeM > •»

dl di

dim B0i dim C,, y

ii~i *" dim C* W^
dim^ojdimCj, n

where &dt = limn ^<f ®zI
(.l), with <'^ e 00A10 and z,^ e 00(M10)10. This proves

the desired equality.

The anti-isomorphism between MQ 0nMH and M1
/
1nM22 and the conju-

gation of the intertwiners give the Initialization axiom. We can choose c = 1.

The next axiom is flatness. For ordinary paragroups, this axiom follows from
commutativity of the tensor product operations from the left and from the right as
in [38]. The same proof works in our setting.

The next axiom is the new one, the Intertwining Yang-Baxter Equation. In

the formula of the Axiom, the both hand sides are equal to the inner product of
"the two intertwiners £ 3 - £ 2 - £ 1 and £ 4 - £ 5 - £ 6 , so we get this equality. (When

making the compositions, we dropped " ®id " for simplicity.)

If the subfactor M00 nMn is of finite depth, the above is enough, but in

general, we still need two more axioms.
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We can now make a triple sequence of the string algebras AJkl as in Section 2

and the sequence is identified with the sequences of the higher relative
commutants (Af^t_, nMw) . We need one lemma.

Lemma 3.3. Under Assumption 1.1, we choose a generating tunnel

• • • c M_2 _2 c M_! _! c M00 c Mu

for the subf actor M00 dMn. Then vk (M'_k _k n Afiy ) = Afy /or z, j > 0 .

Proof. If / =7, we get the conclusion with the definition of the generating
tunnel. Let / = 0, j = 1 . In the following commuting square,

v;(M^nM01) c M01

n n

c M

we have ^J(M^_J_J nMu) = Mn, which implies v^ (Af'y _7 n M01 ) = M01 . The other

cases are proved similarly. Q.E.D.

Now we discuss the two remaining axioms. We now have the flat connection
W with the intertwining Yang-Baxter equation, so we can make a triple sequence
[Ajkl] of string algebras as in Section 2 and this system is isomorphic to

{Af '7 _y n Mw } . By the above lemma, v}Ajkl is a factor, which implies the

Ergodicity Axiom.
Next we check the Amenability Axiom. With the above identification of the

two systems of [Ajkl] and {Af'7_y nMw) , our p} e M'O+1)_O+I) nM^ is the Jones
projection for the subfactor M_(j+l}_(j+l} d M _ j _ j by the generating property. This
implies the desired identities.

Thus we have constructed the system satisfying Axioms 1-9. We call the
system the standard invariant of the commuting square. Note that the algebraic
axioms do not need the AFD condition of the type II j factors.

We now give the converse construction. Next suppose we have a
combinatorial system (^, r, //, i, /J,, /J2, W) satisfying the axioms in Section 2. We
will prove that this indeed comes from a commuting square of type II, factors

satisfying Assumption 1.1.
From a given (& , i;, JLI, i, /Jp /J2, W) , we construct the triple sequence {Ajkl} of

the string algebras as in Section 1, and define Mkl = A^kJ for all fc,/eZ. By the

Ergodicity Axiom, these are AFD type II, factors. By the commuting square

condition coming from the Renormalization axiom, we know that the square
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M00 C M01

n n

M10 e Mu

satisfies the first two conditions of Assumption 1.1. Then by [41, Proposition 1.2
2°], we know that the double sequence {Mkl}kJ>0 are obtained by the basic

construction from the above commuting square as at the beginning of this section
and that

• • • c M_2i_2 c M_L_, d M00 e M,,

is a tunnel. Note that E^ n/^ (Pj) = p\2p22 f°r J ^ 1 by the Amenability

Axiom.

We will prove that Ajkl = Mf_j_j nMw for 7, &, / > 0 by an argument of [37,

page 35]. Note that elements in A^^^ and A / loooo commute for n > 0 by the

Flatness Axiom and [24, Theorem 2.1]. Without loss of generality, we may

assume j" = 0 and k - /. Take ^ e A ^ 0 0 n A o o j l J k and set xn = EA^ (x) e A'm n Ankk

for n > 0. Then Jc w eA / 1 0 0 0 0 is written as a finite sum Z/^/Vi^ > where

a[,bl e An_j ̂ ^. Then

Because limn ||jc - xn\\2 = 0, we get [|jc —^ ;?||7 =0 for all n > 0, and in particular

X = XQ G AQ^^ .

Then e}f} e A022 is the Jones projection for the subfactor M00 cMn , and it is

also the Jones projection for the subfactor A_2<o0t00 e A_KOO<OO by the identification

based on the Initialization Axiom. (Note that Ajoooo is a factor by the Ergodicity

Axiom.) We now get £M, ^K/J) - £A_12>i/i) = ̂ ,. J^/i) = A~W> thus

MI, c:M22 is extremal. By [44, Theorem 5.3.1 (ii)], we know that the subfactor

M00 c M,j is strongly amenable and the square

M00 e M01

n n

M10 e Mn
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satisfies all the conditions of Assumption 1.1. Now M'7_7 nMw is given by Ajkl,

thus we get back the original system (&, T, fi, I, /J15 /?2, W) by the above procedure

in this Section.
We have thus proved the following theorem.

Theorem 304 (Main Theorem)„ There is a bijective correspondence
between isomorphism classes of commuting squares of type II, factors

satisfying Assumption 1.1 and isomorphism classes of combinatorial systems
(§*, t, )U, I, A, /?2> ^0 satisfying Axioms I -9 in Section 1.

Roughly speaking, our classification deals with the objects which is one-
dimensional higher than ordinary paragroups for classification of subfactors. Thus
we have the following correspondence table.

Sub fact or

(dual) principal graph

(canonical) Commuting square

double sequence of string algebras

Paragroup action on sub/actor

(dual) principal connection

(canonical) commuting cube

triple sequence of string algebras

Table 1.

With this theorem, we can give a solution to Okamoto's problem which was
mentioned in the Introduction. Of course, one way to get a characterization is to
compare our standard invariant and that of the commuting square arising as a
tensor product of two subfactors, but it is not easy to see what kind of conditions
we have as a characterization in this way. Another way of writing down a
characterization is as follows.

Proposition 3o5» Suppose that the commuting square

M00 c M01

n n

M10 d Mn

satisfies Assumption 1.1. This commuting square is isomorphic to the following
type of commuting square

N®P c

n n

N®Q c

if and only if the following three conditions are satisfied.
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1. M0 '0nM0yeM1 '0nM0; for all j>0.

2. M'00nMj0^M'ol^MjQ for all j>0.

3. M'MnMjk=(M'nnMok)®(M'wnMjQ) for all M>0.

Proof. By Condition 1, we get M'00nM0j cM^nM^ for all even n > 0,

and by comparing the dimension of the both hand sides, we have the equality.
Similarly, we get MQQ n MjQ d MQ 2n n My 2n for all even n > 0. Choose a

generating tunnel

• • • cM_ 2 _ 2 cM_ ,_ j cM00 cMn.

Then by Condition 3 , the square

n n

is identical with

(M:,,,_,, n M_,,,0 ) ® (M:,,,_,, n M0._n ) c (M!,,.,, n M_,,, ) <8> (M'^n n M0,

n n
(M:,,,_,, n M_,,,0 ) ® (M:,,,_,, n Af ,_„ ) c (M:,,_,, n M,,,, ) ® (M:,,_,, n ML

and by the above, this is identical with

( Af 0% n M0^0 ) ® (M:^ n M0<0 ) e (M^_n n Moa ) (8 (M'_,^ n M0<0 )

n n

for even n > 0.
Because M00 c: M01 and M00 c M10 are strongly amenable by [44], we get

the conclusion.
The "only if" part is trivial. Q.E.D.

Check the above conditions in the case of the following commuting square.

N c: M

n n

c MxG

where G is a finite group giving outer actions on M, N. Then we reach an
"interpretation" of the above conditions as follows. The first two conditions are
regarded as an "algebraic analogue" of approximate innerness of the paragroup
action. (More precisely, these conditions are "triviality of the Loi invariant for
paragroup actions", as understood from the special type of commuting squares
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like (1). One of these two does not imply the other, so we need two conditions.)
The third condition corresponds to the "strong outerness" of the paragroup action,
which is an algebraic counterpart of central freeness. If the commuting square of.
type IIt factors is like (1), then it is enough to check the third condition for 7 = 1 ,

because of the vertical depth is 2. Also note that the condition MQO nMn =C in
[51] is also a kind of strong outerness because both M00 c M01 and M00 e M10

have depth 2 in [51]. Thus we can interprer the above theorem as saying that
"centrally free and approximately inner paragroup action splits", which is an
analogue of a group action classification in [34]. (Also see [31], [45], [46].) A
more detailed comparison with [46] would be interesting.

We got a characterization in the above form, but this is not so interesting
because the above conditions, especially Condition 3, are very strong, and this
kind of commuting squares are rather trivial, so we can ask a question: Do we
really have many examples of commuting squares of type IIj factors satisfying

Assumption 1.1 and having non-integer indices which are not of the tensor product
type? In the following sections, we will give many such examples and discuss
their relations to RCFT and TQFT.

§4B Rational Conformal Field Theory and
Paragroup Actions on Sebfactors

In [6], de Boer-Goeree constructed a paragroup from a Rational Conformal
Field Theory in the sense of Moore-Seiberg [32]. In particular, if we start with a
Wess-Zumino-Witten model with a level fc, we get a corresponding paragroup.
For example, the subfactors of Jones of type An [21] and those of Wenzl [58] are

now obtained as such subf actors corresponding to SU(N). Flatness is the most
important axiom for paragroups, and the proof of flatness in [6, Section 4] is
based on regular isotopy invariance of partition functions associated to knotted
graphs, but if one looks at the proof carefully, one notices that it does not use the
Yang-Baxter equation, i.e., invariance under Reidemeister move III. We show
that we can construct a system (^, i, JJL, i, /}p /?2, W) satisfying Axioms 1-9 from

an RCFT with essential use of the Yang-Baxter equation. In some "good" cases,
the Yang-Baxter equation implies flatness as pointed out in [10], but in general
neither of the Yang-Baxter equation and the flatness implies the other. So our
construction here shows the missing role of the Yang-Baxter equation in
paragroup/subfactor theory and this can be regarded as a result of a principle that
"RCFT has a higher symmetry than ordinary paragroups".

We proceed so that our construction generalizes that in [6, Section 4]. Fix an
RCFT. Our notations are slightly different from those in [6] and compatible with
those in [63]. Choose fields x, y from the RCFT. Tentatively, we set all the
eight l y^y's to be the set of the primary fields in the RCFT. For
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ae00^00 and b e 00^01 , the number of edges in QO^OI connecting a, b is given

by N*a, which is the multiplicity of b in xa. Similarly, for the graphs
11 <&QO QQ<g>lQ \\<&\\ 00<g?00 IK&OO 00<g>01 l\<g>0\ 00<g>00 00<g>01 00<g>lQ anr| 0 0 < g > I I '
11^01' 00^11' 10^11' 00^10' 11^10' 00^11' 11^11' 11^00' 11^ OP n^ iO ' a i l u 11^11'

we use the multiplicities Nb
w, <, Nb

m, Nb
ya, N

b
w, <, N^ Ic^^a, Ic<^c

fl.

^CN*CNC
XCI, and ^CN*CNC

W respectively. Let & be the connected component

containing 1 e 00=^0 of the resulting graph. We set f}{ = SQx /S00, and ($2 = 50v /S00.

We set *oo-l eoo^o anc^ * n - l e n ^ i - The contragredient map is defined by

We define the connection as follows. If
ae00Jg0, be00&ol, ce00^,, dE00Jf0 ,or aen^0 , b E n^l9 c E n&u, rien^0, then

we set as in Figure 8.

Here if any of N^9 Nc
dx, Nd

av, Nc
bv is bigger than 1, we actually need labeling for

the edges, but we omit the labeling for simplicity as in [6]. Similary, if
ae 0(r^00,6e 00^01,ce n^01,de u^00, or a e 00^10, b e00^n, ce H^n, Je u^10,

then we set as in Figure 9.
j\>

A
X

b

Figure 9.

If fl600^0, fce,,^,, ceu^0, ^e00^0, or
then we set as in Figure 10.

ay~d

Figure 10

Then we set the other values of the connection so that the Renormalization Axiom
holds. (Note that our convention of normalizing constants is different from that of
[35], so we do not need the coefficient of 4th roots which they have in [6] for the
definition of the connection.) We get the Unitarity Axiom by the unitarity of
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braiding matrix as in [6]. The Initialization Axiom follows from natural
identification of edges, and flatness follows from the same argument as in [6]
based on the regular isotopy invariance of the partition functions associated to-
knotted graphs. The Intertwining Yang-Baxter Equation follows from Figure 11.

x

Figure 11. The Yang-Baxter equation

Here we set z = x,y. Because the graph & is finite, the other two axioms hold
automatically. This system is far from being that of a tensor product of two
subf actors.

As a very simple example of this construction, take a Lie group SU(2) and
set level k to be n - 1. In this case, we have a flat connection on the graphs An as
in [35], and it is well-known that it satisfies the Yang-Baxter equation. (It follows
from the flatness of the Jones projections. Also compare the formula with the one
in [2].) So we can construct an action of a paragroup of type An on a subfactor of
type An. It is easy to identify this commuting square with the following. Take a
subfactor NdM of type An, and make a basic construction A f c M c M j . Set
e = A/-Iexp(^V-I)/2(n + l), j8 = 2cos(;rl(n +1)), and u = £ + £$e, then u is a
unitary, and we get a commuting square

N c M

n n

uMu c M{

(Also see [16, Example 4.2.10].)

Furthermore, the orbifold construction [10], [24] has been clarified by Xu
[63], [64] in the settings of RCFT. It is easy to see that the same construction
works in our settings here. That is, if the obstruction for flatness arising from a
conformal dimension is trivial as in [63, formulas (2), (3)], then the orbifold
construction with an RCFT gives a system satisfying our Axioms 1-9 . This is
because the Yang-Baxter equation is preserved in the orbifold construction as in
[10]. The axioms except for the flatness and the Intertwining Yang-Baxter
Equations are automatically satisfied as in [10].



CLASSIFICATION OF PARAGROUP ACTIONS 507

§5. Topologkal Qeatum Field Theory for
the Goodman-de la Harpe-Jones Sebfactors

In this section, we look for another paragroup action which does not come
form RCFT and discuss the construction of subfactors by Goodman-de la Harpe-
Jones [16] based on the Dynkin diagrams. Goodman-de la Harpe-Jones
constructed some new subfactors in [16, Section 4.5], and their subfactor with
index 3 +A/3 has caught special attentions, because it is one of the few known
subfactors with non-integer indices which do not come from Wess-Zumino-
Witten models and it has relatively small index. (Note that most of the known
subfactors come from Wess-Zumino-Witten models, their orbifolds, and
group/Hopf algebra actions.) Okamoto computed its principal graph and showed
that the subfactor has finite depth in [39]. (Also see [25, Remark 2.2].) From the
commuting squares in [16, Section 4.5], we have a bi-unitary connection [53],
[36], and the flatness of the Jones projections implies the Intertwining Yang-
Baxter Equation with the formula (S') in [50, page 405], as noted by Jones. So
we can make a triple sequence of the string algebras as in Section 2 from this
connection. In the case of E6 and An, our graph, which gives the Bratteli
diagrams of the commuting cube, looks like Figure 12.

• • 'Ml

G2

E<> J

G,

X^f ^^ ^

Figure 12.

Here the graphs G1? G2 are as in Figure 13.

G, G

Figure 13.

Note that for the top face of the cube in Figure 12, we use the standard
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connection for An, for the bottom face of the cube, we use the standard
connection for E6, and for the four side faces, we use the connection appearing in

the Goodman-de la Harpe-Jones commuting square [16]. The explicit formula for
the last connection is given in the table in [50, page 418]. (Roche verified the
intertwining Yang-Baxter Equation by direct computation, but it is a consequence
of the flatness of the Jones projections as noted above.) From the triple sequence
of the string algebras, we get a commuting square

M00 c M01

n n (2)

M10 c Mu

satisfying Assumption 1.1. Here the subfactor M00 c M0] is of type An,
M10 cMn is of type E6, and M00 c M10 and M01 c Afu are the Goodman-de la
Harpe-Jones subfactor with index 3 +V3. (There are two flat connections on E6,
so we have two commuting squares as (2) corresponding to the two connections.)
The flatness of the Jones projection implies flatness with respect to the *, which is
shared by An, E6 and Gl, as in [25, Remark 2.2], so we conclude that the
original connection arising from the Goodman-de la Harpe-Jones commuting
square is the "principal connection" which is a part of our standard invariant. The
above graph G2 of Figure 13 cannot be a principal graph of any subfactor because

it is rejected by the " 2cos(7F/n)-rule" [18, Theorem 6.1], but it does not appear
as a part of the standard invariant of a paragroup action on a subfactor. Similar
results holds for the case E1 and £"8, for which [9] makes several computations.

We can compute the fusion rule of the N-N bimodules of the Goodman-de la
Harpe-Jones subfactor N cz M with index 3 + V^ with this observation on the
principal connection. The flatness of the Jones projections implies that all the
irreducible summands of Oo(^/)oo appear in the irreducible decomposition of

00(M0/)00 for large /. Thus Gl =00^00 anc* tne even vertices of the Au and those
of Gj are identified, and this identification means that these two systems of
bimodules are the same. (It is also possible to give more direct identification of
these systems of bimodules based on Ocneanu's parallel transport [35].) That is,
the fusion rule of the N-N bimodules for our subfactor is the same as that of the
subfactor of type An. With the labeling of even vertices as in Figure 14,

1 a ft Y 6 e

Figure 14.

we get the following multiplication Table 2.
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X

a

P
7
S
£

a
l + a + j3 + 7 + <5

a + 7 + 5

a + j3 + 5

a + /? + 7 + 5 + £

8

P
a + y + 8

1+0+5
a + 7 + £
a + p + S

7

7
a + p + S

a + 7 + £
l + p + 8

a + 7 + 5

ft

8
a + 0 + 7 + 5 + £

a + p + S

a + 7 + 5
l + a + 0 + 7 + 5

a

£

8

7

P
a
1

Table 2. Multiplications of the N-N bimodules

D. Bisch [4] tried to compute this fusion rule just from the principal graph,
but he had five possibilities, and could not determine the right one. Our
computation shows that the fifth table in [4] is the correct table for the N-N
bimodules.

Our commuting cube, however, does not satisfy the Initialization Axiom, so
we cannot compute the "dual principal connection" directly, which is the same
situation as the method in [39] did not give the dual principal graphs. Our next
aim is to compute the Bratteli diagram for this "dual principal connection".

First as pointed out in [25] (and independently noted by U. Haagerup), the
dual principal graph of the Goodman-de la Harpe-Jones subfactor N c M with
index 3 + V3 is the same as the principal graph G}. Because the proof was not
presented in [25], we give a sketch here. The Bratteli diagram for the higher
relative commutants N' r\Mk is as in Figure 15.

Figure 15. The Bratteli diagram for N' C\ Mk

Then the odd levels of this tower must coincide with the odd levels of the other
higher relative commutants M' n Mk, because they are identified with the anti-
isomorphisms /• V. This fact forces for the dual principal graph to be the same
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as principal graph.
We look for the graphs || ?°°, \^\\,\\^*\, and j j ? ™ . The above observation

shows that a connected component of the graph \ f f i \ is E6, and a connected
component of the graph \\%\\ is G,. Because the number of vertices in 00^n is
three, the number of vertices in n^00 is also three and two of them have the same
weight fi(-) by the contragradient map. Any connected component of the graph
|| &™ has the Perron-Frobenius eigenvalue 2cos(^/12), so each connected
component must be one of An, D7, and E6. The above observation on n^00 shows
that Jl^°° is connected and equal to E6, and it implies that \\^\ is connected and
equal to G,. It then implies that \1

Q&\\ has two connected components and the
other is another copy of E6, and this uniquely determines \\&™. The graph we got

are as in Figure 16.

a b c

Figure 16. The Bratteli diagrams for the dual principal connection

This is a non-trivial example where a disconnected graph appears as a part of
the standard invariant. It shows that the three even vertices of E6 are identified
with three of the six even vertices of ^ which is now the dual principal graph of
NdM. This shows that the fusion algebra of the M-M bimodules for our
subfactor N c M contains a sub-fusion algebra which is isomorphic to the fusion
algebra of even vertices of E6, which was computed in [18]. This determines the
fusion algebra of M-M bimodules. With the same labeling of even vertices of G,
as in Figure 14, we get the following multiplication Table 3.

a

P

a

1 + 2j8 + £

a + 8 1 + 27 + £

a
a

Table 3. Multiplications of the M-M bimodules
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This is the first table among the five in [4]. This means that the fusion algebras
for N-N bimodules and M-M bimodules of the Goodman-de la Harpe-Jones
subfactor N c M with index 3 + V3 are different, though the principal graph and
the dual principal graphs are the same. This subf actor is the first example of such
kind. A recent work of U. Haagerup [17] shows that this example has the
smallest index among such subf actors. (Note that different finite groups with the
same order give different fusion algebras on the same principal graphs, but these
two cannot be a principal graph and a dual principal graph of one subf actor.) In
particular, the subf actor N c: M is not conjugate to its dual MdM{. (M. Izumi
commuted the flat connection of this subf actor, and it also follows from his
computation that N c: M and MciMj are not conjugate. It, however, seems
difficult to see the difference of the fusion rules from the flat connection.).

Furthermore, a 3-dimensional topological quantum field theory (TQFT) of
Turaev-Viro type [55] based of triangulations arising from subfactors [38], [11]
is computed with 6/-symbols of only N-N bimodules (or M-M bimodules). So the
TQFT for the Goodman-de la Harpe-Jones subfactor with index 3 + V3 is the
same as that for the subfactor of type An. Similar results holds for the subfactors
in [16] arising from the Dynkin diagrams E1 and £"8.

The TQFT's arising from subfactors of type E6 use the sub-fusion algebras
of the fusion algebra of the M-M bimodules of the Goodman-de la Harpe-Jones
subfactor with index 3 +A/3 which gives the same TQFT as the N-N bimodules
of the same subfactor and as the Au TQFT. In this sense, the E6 TQFT's use just
a partial information of the An TQFT, but it does not necessarily mean that the
E6 TQFT's are less interesting. Indeed, Ocneanu said to the author that the E6

TQFT's do detect orientations of certain lens spaces by a computation of Ni^ica
and Torok [33], while it is easy to see that the An TQFT does not detect an
orientation of any 3-manifold. Also note that there are two subfactors of type £6,
and they correspond to two vertices j3, j of the dual principal graph of the
Goodman-de la Harpe-Jones subfactor.

If we make the same construction for the Dn diagrams, we again have a
graph Dn as a part of the standard invariant. The graphs D0/I+1 are impossible as a
principal graph [35], [18], [24], [54], but it does appear as a part of the standard
invariant of a paragroup action on a subfactor.

Furthermore, we obtained the following type of commuting square in the
computation of the flat part of the non-flat connections on E7 [12]. (See [13] for
relations with CFT.)

E,

We again have the Intertwining Yang-Baxter Equation from the flatness of the
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Jones projection, thus we can repeat the construction of the triple sequence of
string algebras. Then the computation in [12] shows that the above connection is
really a "principal connection" of our commuting square of type II, factors. This
shows that the graph E7 also appear as a part of the standard invariant of a
paragroup action on a subfactor.

§60 Coset Construction for Subfaetors

Finally we discuss an analogue of the coset construction of RCFT in a
subfactor theory. In [6, Section 10], de Boer-Goeree has a correspondence table
between four constructions in subfactor theory and RCFT. The orbifold
construction is one of them, and it has been studied in detail in [10], [13], [24],
[25], [26], [63], [64]. The tensor product construction is not so interesting in
subfactor theory, and the "extended algebras" is a construction of NxGd MxG
from Nc M. If we want to get a subfactor NxG<^MxG with finite depth from
a subfactor Af c: M with finite depth, this is essentially same as the orbifold
construction, so it is again not so interesting. The last one of the four is the coset
construction, which gives S' n N d 57 n M from a subfactor N <z M and 5 c N.

We regard this as a purely operator algebraic problem to construct a new
subfactor S' n N c 5' n M from a given subfactor N c M for an appropriate
choice of S d N.

To get factors S' n A/" and S'nM, the subalgebra S must be a factor. If S is
of finite dimension, there is nothing interesting, so we must assume that S is a
subfactor of N. If [N: S] < <*>, S' n N is finite dimensional, so we must assume
[N: S] = 0. Thus our problem can be also stated as follows.

For a given subfactor N c M, what kind of subfactors 5' n N c S' n M do
we get, where 5 is a subfactor of N with infinite index such that S'nN and
S'nM are factors? This can be regarded as a classification problem for S (for a
fixed N c M), too, and then the paragroup of S7 n N c S' n M is an invariant for
S.

Note that by the commuting square condition, we get
[S' n M: 5' n N] < [M: N], and we expect that natural constructions would give
an equality here. (The equality does not hold in general. Take a subfactor P c Q
with P'nQ = C, and then set S = P®Cd N = P® P c: M = Q® P. Of course, such
a construction is not interesting for us.)

First we note the following proposition.

Proposition 6.1. Let N c: M be a subfactor with finite index and S be a
subfactor of N such that S'nN and S'r\M are type II, factors with
[S' n M: S' n N] < [M: N]. Then it is possible to choose a tunnel.

• • • c c W c t f c M
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so that Nj^S and

•••cS'nMjCS'nW, czS'nAf czS'nM

is a tunnel for S 'nAfczS 'nM. We have W;nAfcz(S 'nAf y ) ' n (S 'nN) and

N'j n M c (5' n A^)' n (S' n M).

Proof. First choose a projection e 0 eS 'nM with Es,^N(eQ) =
[S' n M: 5' n N]~l = [M: A/T1. By the commuting square condition, EN(e0) =

[ M : N ] ~ l , so A^j=A^n{e 0 } ' gives a downward basic construction Nl a N cz M.
Because e0 e S' n M, we get N^S. Because 5' n Nl = (S' n AT) n [eQ Y, we also
know that 5'n ^ c 5'n A^ c S'nM is a downward basic construction. By
repeating this argument, we get a desired tunnel. The last two inclusions are then
trivial. Q.E.D.

We call a construction of S' n N c S' n M from Af cz M as above the coser
construction. The above proposition shows that the coset construction does not
decrease the higher relative commutants.

The next proposition gives a basis of the coset construction in our settings.

Lemma 6.2. Suppose that the following square satisfies Assumption 1.1

M00 cz M01

n n

M10 e Mn

We make a double sequence [Mkl}kl>0 of type lll factors with basic construc-
tions and further assume the condition MQO n M0/ cz M[Q n Mu for I > 0.

We define M^ as the GNS-completion of vk Mkl with respect to the trace.
Then

/£ £/ie Jones tower, and we get two equalities M^ 0 n M^ ; = MQO n MQl and
Mr

x j n M^ ; = MQJ n M0/ /or / > 1 , which imply that the subfactors M00 cz M0

M^ 0 cz M^ j are conjugate.

Proof. The Jones projections for the towers

are common for all &. From this fact and the commuting square condition, it is
easy to see that

is the Jones tower. Any element in MQO oM0/ commutes with any element in Mk
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by MQO n M0/ c M'IQ n Mu, so we get the inclusion Mg0 n M^ c M^ 0 n M^.
Take any jte M^0 c M^. Set xk=EM (X)E M'k0 nMkl. The inclusion

MOQ nM 0 / cM^o nM 2 A / implies Afg 0 nM 0 / = M^Q nM2 f c / because these two
higher relative commutants are isomorphic and finite dimensional. So
X2k e M2k,o n M2kj = Mo'o n Mo/ implies *0 = £MQ/ (*2,) = x2k, and then * = lim, x2k

= x0 G MOO nM0/, which is the converse inclusion.
Next MO, n M0/ c MQO n M0/ implies M^ n M0/ c M'Ql n Mj'0 n Mu, which in

turn implies M0', n M01 c M', n Mi; by [52, Corollary 7.1]. Then the same
argument as above shows M^ j n M^ 7 = M'Ql n M^.

The subfactors M00 c: M01 and Mx 0 d M^ t are conjugate by strong
amenability.

Q.E.D.

Lemma 6e30 Suppose that the following square satisfies Assumption 1.1

M00 c M01

n n

M10 c Mn

We ma/ce a double sequence {Mkl}kl>0 of type IIl factors and further
assume the condition M^r\MkQ= M^c^Mkl for k>0. Set S = M{0nMooQ

= vfel (Mj'0 n Mk0). Then S' n M^0 = MIO and 57 n M^^ = M,,.

If x e M/i, n M^o, then jce M^0 nM^0 = M^ nM f c l , so

If z e Mfj n M^j , then x e M^ n Mkl = MQO n M^0, so x G M'0 n MkQ, Thus we
have proved Mf0 n M^0 = Mf, n MH , and S = Mf, n M^ = v^ (M^ n Mkl).

Then the conclusion is a consequence of the strong amenability by [44,
Theorem 5.3.1 (iv)].

The above two lemmas show the following theorem immediately which gives
a relation between the coset construction and a paragroup action on subfactors.

Theorem 6040 Suppose that the following square satisfies Assumption 1.1

M00 c M01

n n

MIO c Mn

We make a double sequence {Mkl }k /ao of type //, factors and further assume
the following two conditions.

(I) M0'0nM0, cM^nM^/or / > 0 .
(II) M^0 n Mt0 = M'M n Mkl for k > 0.
Then there exists a subfactor S of M00 such that S' n M00 d S' n M01 w
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conjugate to M10 d M{ l.

We have the following example of Theorem 6.4.

Example 6.5* Take the following square (2) constructed from the triple
sequence of the string algebras {AjU}. Because the subfactor M00 c M01 is of type
An. Condition (I) of Theorem 6.4 is automatically satisfied. Next as in [25, pages
134-135], we can construct [A_lkl] for & > 0 , / > ! , then the flatness of the
Jones projection and the compactness argument [37, II.6] imply
M00 n MkQ = AQk0 = A_! u = MQJ n Mu, which is Condition (II) of the Theorem.
Thus we know that each of the two subfactors of type E6 can be constructed from
the subfactor of type An with the coset construction.

Similarly, each of the two subfactors of type Es can be constructed from the
subfactor of type A99 with the coset construction. (We can make a similar
construction for A17, but then the resulting subfactor is of type D10, not En. [12])

We have another example of the coset construction.

Example 6.6e Choose a connected, simply connected, compact simple Lie
group G with non-trivial center. Let G be a non-trivial subgroup of the center
Z(G). Suppose that the level k of the Wess-Zumino-Witten model associated with
G satisfies conditions (2), (3) in [63] so that the obstruction for flatness arising
from the conformal dimension vanishes. In this case, we have an action a of the
finite group G on the subfactor N d M obtained form a WZW-model G^ as in
[6]. Make the following commuting square.

M00 = N c M01 = M

n n

M]0=NxaG d Mn=MxaG

Because the action a has the trivial Loi invariant by [13, Section 6], we know
that Condition (I) of Theorem 6.4 is satisfied. Condition (II) is also satisfied
because the both vertical inclusions are crossed products by the same group. Thus
the subfactor N xa G c M xa G, which is conjugate to the orbifold subfactor
Na d Ma, is obtained from N a M with the coset construction.

Thus our orbifold construction in [24], [10], [63] can be regarded also as the
coset construction. This also menas that our "crossed products by a paragroup
action on a subfactor" can be interpreted as an orbifold construction for a
paragroup action. From this viewpoint, Condition (I) of Theorem 6.4 is regarded
as representing "approximate innerness" of the paragroup action.
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