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Circle Actions Higher Elliptic Genera

By

Yasuhiro HARA*

Abstract

For a manifold with an S -action, we define generalized elliptic genera by using the orbit map
and generalize Hirzebruch-Slodowy's formula in [9]. As a result, we have vanishing theorems of
higher elliptic genera and higher twisted A-genera. We also generalize elliptic genera of level N for
stable almost complex manifolds and have a similar vanishing theorem.

§1. Introduction

Elliptic genera were introduced by S. Ochanine [13]. The A-genus and the
signature are special cases of elliptic genera. We know many results concerning
the A-genus and the signature which are related with group actions (cf. [10]).
Some of these results were extended to the case of elliptic genera. For example,
the vanishing theorem of the A-genus [2] was extended to the rigidity theorem of
elliptic genera by Bott-Taubes [4]. For a manifold with an involution, Hirzebruch
and Slodowy [9] proved the relation between the elliptic genera of the manifold
and the elliptic genera of the fixed point set, which is a generalization of an old
formura for the signature. Moreover in [8], Hirzebruch defined elliptic genera of
level N for almost complex manifolds and proved the rigidity of those genera.

On the other hand, the vanishing theorem of the A-genus above was
generalized to the vanishing theorem of the higher A-genus by Browder-Hsiang
[6]. In their proof, they first generalized the A-genus by using an orbit map and
proved the vanishing of the generalized A-genus by using the equivariant surgery.
H-T. Ku and M-C. Ku [11] generalized the signature in a similar way and proved
the generalized G-signature theorem.

In this paper, we first define generalized elliptic genera in a similar way and
generalize the Hirzebruch-Slodowy's theorem above. Consequently, we have
some vanishing theorems of higher elliptic genera and higher twisted A-genera.
After that, we generalize the elliptic genera of level N for stable almost complex
manifolds and have a similar vanishing theorem.
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§2. Elliptic Genera

Let £lso be the oriented cobordism ring and A any commutative Q-algebra
with unit. A genus is a ring homomorphism

with <p(l) = l. Since O50 ®Q = Q[[CP2],[CP4 ],[CF6 ],...], q> is determined by the
logarithm

Following Ochanine [14], we call <p an elliptic genus if g(x) has the form

dt

with < S , £ G A . We remark that for any elliptic genus (p one has <5 = <p(CP2),

Let E be a real vector bundle over X. We write &(E) and S'(E) for the
exterior and the symmetric powers of E respectively, and set

S,(£) = X S' (E)t'
/>0

Define

and

Then ^(£) and 0</(^) are formal power series in q with coefficients in K O ( X ) .
Moreover

and

hence ^ and 0^ can be extended to KO(X).
For a closed ^-dimensional oriented smooth manifold M, we define

, (M) = (L(M)ch(y?q(T(M) - [n]) ® C), [M]}
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and

02 (M) = (A(M)ch(®cj (T(M) - M) ® C), [M]),

where T(M) is the tangent bundle of M, L and A are multiplicative sequences
for characteristic power series x 1 2 tanh(;t / 2) and * / 2 sinh(;c / 2) respectively.
Note that O, and O9 are genera with respect to the characteristic power series
<2,(;c) and Q2(x) respectively, where

x/2 ft (l + gV'Kl + gVl/q + g11)2

tanhOt/2)Lj (l-qne-*Kl-qne')/(l-qn)2

ft (l-q2"-le-^(l-q2"-le>)/(l-q2"-1)2
n 2 2 1 1 2 '

sinh(jc/2) - * - *

We now recall the following theorem due to D. Zagier.

Theorem 2.1 ([14], cf. [7]). (i) O, is an elliptic genus with

4 n=l d\n
cl odd

e = —FT
16*=, U + -7"

(ii) <X>9 is an elliptic genus with

d\n
d tiilcl

It is known that these genera have the modular properties. If we put q = e2mi

with TE§ (upper half plane), then the values of these genera are modular forms

on ro(2) = {^ *)eSL,(Z)| c = 0(mod2)}. Let Mk(2) denote the complex vector

space of all modular forms of weight k on F0(2). Then 5,<5eM2(2) and e,ee

M4(2). Moreover for the graded ring M, (2) = ©A e ZMA(2), we have

M,(2) = C[<5,£].

In particular, S and £ are algebraically independent.
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§3o Circle Actions and Higher Elliptic Genera

In this section, we consider manifolds with circle actions. We will assume
from now on (unless stated explicitly otherwise) that all S1 -actions are smooth
and effective. Hirzebruch and Slodowy proved the following theorem.

Theorem 3.1 ([9], cff. [3]). Let M be a 4k-dimensional closed spin
manifold with an S1-action. Let M1 be the fixed point set of the involution I
which is induced by the S1-action. Let F^ be a connected component of M1, and
d, the codimension of F, in M. Then,

A

where F^°FX is the self-intersection of F^ and £ is as in Theorem 2.1, (i).

For an m-dimensional closed oriented smooth manifold M and ze// ' (M;Q),
we define

O, (M , z) - (L(M)ch(^(T(M} - [m]) ® C) u z, [M]}.

We can generalize the theorem above as follows.

Theorem 3=20 Let M be an m-dimensional closed spin manifold with an
Sl -action. Let I, FA and dx be as in Theorem 3.1 and p:M-$M/S] the orbit
map. Then for x^H (M/S';Q)

,
A

0,(Af, />

where /A : F^ ° F^ — > M is the inclusion.

Proof. Following the proof of [6, Theorem 1.8] (cf. [5]), for any x e
// '(M/S'jQ) there exist a transverse framed S1 -submanifold N of M x R A and
c e Q - {0} such that

j [ N ] = cpxn[M]

where S1 acts trivially on the Rk and j : N — > M x Mk is the inclusion. Then

O, (AO = (j (L(M)ch(^(T(M) - [m]) ® C)), [N])

= (L(M)ch(^(T(M) - [m]) (8) C), j [N])

= (L(M)ch(.^(T(M) - [m]) ® C), cp x n [M])

= c(L(M)ch(^(T(M) - [m]) ® C) u p jc,[M])

= cO,(M,/7 x).
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We put FA = (FA xRk)nN . We denote the normal bundle of FA in N and the
normal bundle of FA in M by VA and VA respectively.

Let 7A : FA -> FA x R* and /ZA : FA -» M be the inclusions. We denote the Euler
classes of VA and VA by e(vA) and e(vA) respectively. Then

A)~lc^

Cv.r'c/^^

= (L(FA )L( VA )-' ch(^(T(F, ) - VA - [m]) ® C) u *( VA ), JA, [FA ]}

-(LCF^LCv,)-1^^

- c(L(FA )L(vA r ' ch(,9?(T(F, ) - VA - [m]) (g) C) u *( VA

If m-l^Q (mod 4), then O I(M,p'jc) = 0 and O,(FA ° FA , /A/7'jc) = 0 for any
A. If ra-/ = 0(mod4), it follows from Hirzebruch-Slodowy's theorem above
that

Therefore

Let M be a closed oriented smooth manifold and K(TZ, 1) an Eilenberg-
MacLane space. For a map /: Af — » AT(7T,1) and ^ e //'(^(^:,1);Q), we call
O,(Af,/ 'x) a higher elliptic genus (cf. [12]).

From Theorem 3.2 and [6, Theorem 1.1], we have the following corollary.

Corollary 303. Let M, FA and dK be the same as in Theorem 3.2. Suppose
that f : M — » ^(TT, 1) w a m<3/7 with / : ̂ ,(M) -> n surjective and that a : n — > n'
— n / f:i, (7t{(S

1)) is the quotient map where i : Sl — > M is the inclusion induced by
the Sl -action. Then for x^H (K(n',l)\Q)

§4. Vanishing Theorems

Let M be a closed connected spin manifold with an S] -action, and P a Spin-
structure for M. The Sl -action is said to be of even type if it lifts to an action on
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P. Otherwise is said to be of odd type. Let / be the element of order 2 in Sl. If
the fixed point set M1 of / is not empty, then

TO (mod 4) if the action is even,
codim(Ml) = \

[2 (mod 4) if the action is odd

(see [1]). We get the following theorem by Theorem 3.2.

Theorem 4010 Let M be a closed connected spin manifold with an odd
type Sl -action. Let p:M-$M/Sl be the orbit map. Then for any
J C G / / (Af /S ' jQ) ,

Proof. Let / be the element of order 2. If M1 = 0, the theorem is clear by
Theorem 3.2.

In case M1 ^ 0, let FA be a connected component of M7. Since the Sl -action
is odd, dx = codim F^=2 (mod 4). By Theorem 3.2,

As we see in the proof of Theorem 3.2, O,(Af, p x) equals the elliptic genus of
some manifold up to a constant multiplication. So is O,(FA oFA , i^p x) . Hence
they are polynomials in 8 and £ with coefficients in Q. Since d^ -2 = 0 (mod 4),
EAd>,(FA oF A , / A p jt)£('/A~2)M eQ[<5,£]. However (EAO,(FA oF A , / A p ;c)e(f/A"2)/4)£1/2 =
O,(M,/7 Jc)EQ[5,e]. Hence EAO,(FA oFA , ikp x)£(fl^2}/4 = Q. As a result,
o,(M,p'jc) = o. n

For an m-dimensional closed oriented smooth manifold M and z e // (M; Q),
we define

d>2 (M, z) - { A( Af )cA(0/r( Af ) - [m]) ® C) u z, [M]} .

Since 8 and £ are algebraically independent, we may replace O, and £ in
Theorem 3.2 with c£»2 and £ (in Theorem 2.1 (ii)). We denote the coefficient of
q in Qq(T(M)) by 0'(r(M)). Then we have

Theorem 4.20 Let M be an m-dimensional closed spin manifold with an
Sl -action, and let p : M —> M/ Sl be the orbit map. Suppose that I is the element

t j *> • c\ ri £ • - i • codim M1 , .of order 2 in S . Then, for a non-negative integer i with i< and for

x e H (M I Sl; Q), we have

(A(M)ch(Q' (T(M)) ® C) u p jc, [M]} = 0.
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Proof. Let FA and dx be those in Theorem 3.2. Then

for / < —. Therefore we have
4

Since the constant term of £ e Q[[g]] is zero, the coefficient of ql in £^ /4 is zero

3re we have

(A(M)ch(& (T(M) - [m]) ® C) u p' jc, [M]} = 0

for i < C° l™ .Since &(T(M)) = ̂ I=Q 0;

4 '

(A( M )cA(0' (7XM)) ® C) u p' jc, [M]} = 0

r . codim M1 ._.for *< . D

We get the following corollaries from Theorems 4.1, 4.2 and [6, Theorem
1.1].

Corollary 4.3. Let M be a closed connected spin manifold with an odd
type Sl -action. Let f\M-^K(n,\) and a : n —> n' = ̂ /// ,(^,(51)) ^^ ^ /«
Corollary 3.3. Then for xeH (^(^,1);Q)

0,(M,/ a ) = 0 (/= 1,2).

Corollary 4.4. Let M be a closed spin manifold with an Sl -action and I
the element of order 2 in Sl. Let f : M -> K(n,\) and a : n -> ^' = n I f,i (n}(S

1))

be as in Corollary 3.3. Then for a non-negative integer k with k< and

for jce/f'(£(7r',l);Q)

(A(M)ch(& (T(M)) (8) C) u / a'x, [M]), = 0.

§5. Higher Elliptic Genera of Level N

In the following, AT is a fixed integer greater than 1 and the "variable" x runs
through the complex numbers. If is the upper half-plane of the complex numbers,

re| and q = e2mT. Let L = 2m(ZT + Z) be a lattice and a = 2m(±T+L) with

0<k<N,Q<l<N and a # 0. In order to define the genus for stable almost
complex manifolds, we introduce the function
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and we put

f ( x ) = e{UN}K®(x)®(-a) I <D(jt - a) .

The function /(jc) is elliptic with respect to a sublattice L of index N in L (see
[7], [8]).

Let M be a compact stable almost complex maifold and c the total Chern
class of M. If we write formally

then the elliptic genus of level N is defined as

It is known that if M has complex dimension m, (pN(M) is a modular form of

weight m on r,(^) = {Ae5L2(Z)A = [^ j](mod#)}.

We consider the case where M has an S} -action which preserves the stable
almost complex structure. For each fixed point /?, the circle acts in the stable
tangent space fp, hence integers ml,m2,...,md are defined such that g e Sl acts

by the diagonal matrix (#'"', g'"2, ..., g'"1'). Let v be an index for the connected

components (M5 )v of the fixed point set Ms . The numbers m,, w2, ..., md depend
on v and m, + m2 + . . . + md also depends on v.

Definition. The Sl -action on M is called Af-balanced if for the
components (Ms )v of the fixed point set the residue class of ml +m9 + ... + md

modulo N does not depend on v. If the action is Af-balanced, the common residue
class of ml + m2 + ... + md is called the type of the action and denoted by t.

In [8], Hirzebruch proved the following theorem.

Theorem 5.1 ([8]). Let M be a compact stable almost complex manifold
with the first Chern class c, =0(mod/V). // M has an S] -action which preserves
the stable almost complex structure and the type t of the action is $ 0(mod N) ,
then (pN(M) = 0.

We can consider generalized elliptic genera of level Af for a stable almost
complex manifold in a similar way of previous sections. For a stable almost
complex manifold M with the total Chern class
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and for z e H ' (M; Q) , we define

We can generalize Hirzebruch's theorem above as follows.

Theorem 5o2e Let M be a compact stable almost complex manifold with
the first Chern class c{ = 0(modW). // M has an Sl -action which preserves the
stable almost complex structure and the type t of the action is ^0 (mod N), then
for xeH\M/Sl;Q)

<pN(M,p x) = Q

where p : M — > MIS1 is the orbit map of the Sl -action.

Proof. As we saw in the proof of Theorem 3.2, for any jce H ' ( M / S l \ Q ) ,
there exist a closed framed transverse S'-submanifold X of MxR* and ceQ-
{0} such that

cp (x)n[M] = j[X]

where y : X — » M x R * is the inclusion. Then, cq>N(M,p'x) = <pN(X).
Since X is a framed submanifold of a stable almost complex manifold

M x R A , X is also a stable almost complex manifold. If c, (M) = 0 (mod N),
c, (X) = j c, (M x RA ) = 0 (mod N) . If the type of the action on M is £ 0 (mod N) ,
the type of the action on M x EA is ^0 (mod N) and the type of the action on X is
also ^0 (mod AT). Hence <pN(X) = Q from Theorem 5.1. As a result,

x) = Q. D

From this theorem and [6, Theorem 1.1], we have

Corollary 5.3. Let M be a compact stable almost complex manifold with
the first Chern class q ^ O O n o d A O . Suppose that M has an S] -action which
preserves the stable almost complex structure and that the type t of the action is
^0(modAO. Let f\M-*K(n,\) and a : n -» n' = nlfi (^(S1)) be as in
Corollary 3.3. Then for xeH

q > N ( M , f a x ) =
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