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Symmetric Flat Connections, Triviality of
Loi's Invariant and Orbifold Subfactors
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Abstract

We define a notion of symmetric connections on subfactors and get a sufficient condition for a
subfactor to have a symmetric connection. We also give a necessary and sufficient condition for Loi's
invariant of a non-strongly outer automorphism of a subfactor to be trivial in the case with a
symmetric connection. We apply this result to non-AFD SU(n)k subfactors and construct orbifold
subfactors of non-AFD SU(n)k subfactors as well as the AFD case, as conjectured in our previous
work. This generalizes constructions of Evans-Kawahigashi and Xu.

§0. Introduction

Orbifold construction coming from the technique in conformal field theory
was first used in the subfactor theory by Y. Kawahigashi in [Kal]. It is a method
to construct new paragroups from paragroups with certain symmetry. He showed
that subfactors of AFD factor of type II, with principal graph D9m are obtained
from those with principal graph A4/;;_3 by taking simultaneous Z9-crossed
products. The assumption of being AFD has later turned out to be not essential.
Indeed, we generalized the orbifold construction to non-AFD subfactors with
principal graph A,/II+1 as well as in the AFD case by using bimodule technique in
[G]. In these cases, non-strongly outer automorphisms on these subfactors with
principal graph A2m+l give symmetries of the connections. And results of the
orbifold construction are determined by trivialities of Loi's invariants ([L]) of
these non-strongly outer automorphisms and some values of certain partition
functions which originally meant the flatness of a connection in [Kal].

D.E.Evans and Y.Kawahigashi generalized this orbifold construction to
subfactors arising from SU(n) solvable lattice models in the AFD case. (See
[EK1].) In this work, the flatness of the connections of the orbifold subfactors is
also determined by the values of some partition functions. In general, it is very
complicated and hard to compute these partition functions, but F. Xu overcame
the difficulty by using the technique of conformal field theory and obtained the
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values of them in [XI]. He showed that the values of these partition functions are
the exponentials of the conformal dimensions.

We conjectured in [G] that we can also apply the orbifold method to non-
AFD SU(n)k subfactors by using the values of these partition functions. We will
prove this conjecture in this paper with a new general method. To solve this
problem, first, we have to take the connections of the subfactor symmetric,
because the values are not well-defined unless we do so. So we define a notion of
symmetric connections and give a sufficient condition for a subfactor to have a
symmetric connection. The next important problem is triviality of Loi's invariant
of the non-strongly outer automorphism on the subfactor. In the case of subfactors
with principal A9|H+1, it was trivial because the higher relative commutants are
generated by Jones' projections. But in the case of SU(n)k subfactors, triviality of
Loi's invariant is not trivial. So we deal with this problem in more general
situation and give a necessary and sufficient condition for it. This result is also
related to the relative Connes invariant

Ct(M,/V)nM(M,AQ
^ ' ; Int(M,AO

for subfactors introduced in [Ka2]. Popa [PI], [P2] has shown that the central
triviality of automorphisms of strongly amenable subfactors of type II, is
equivalent to their non-strong outerness. It has been known by Loi [L] that the
approximate innerness of an automorphism of a strongly amenable subfactor of
type II, is characterized by triviality of his invariant [L]. Thus it is necessary to
determine which non-strongly outer automorphisms of a subfactor have the trivial
Loi invariant, in order to compute j (M,N) for strongly amenable subfactors. Our
result here gives a solution to this problem.

In section 3, we apply our result to non-AFD SU(n)k subfactors in Theorem
3.2 and Theorem 3.4. This result is a generalization of Theorem 3.9 in [G], i.e.,
in the case of n = 2, we can get non-AFD subfactors with principal graphs D2m

from those with principal graphs A4m_3 by taking simultaneous Z, -crossed
products. We will also apply our method to generalize Xu's computation [X2] of
the flat parts of non-flat orbifold constructions to non-AFD case. Even in the
AFD case, our proof is simpler than Xu's.

Note that our result can be applied to non-AFD SU(n\ subfactors of type II,
obtained from the construction of S. Popa [P3] and F. Radulescu [R].

In this paper, we assume that all the factors are of type II, for simplicity. But
the exactly same method works also for 5"(/(n)A subfactors of type II^ and type
III, if we use the general bimodule theory. (See [Yl] , [Y2].)

The author is grateful to Professor Y. Kawahigashi for constant encourage-
ment and many important suggestions.
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§1. Non-strongly Outer Actions on Subfactors

In this section we discuss non-strongly outer actions on subfactors. We refer
readers to [Ol], [O2] and [O3] for a notion of connections and the notations. We
also refer readers to [CK] and [Ko] for a notion of strong outerness of
automorphisms. We use the same notations as in [G]. In the present paper, we
mainly deal with the principal graphs of subfactors in order to get the triviality of
Loi's invariant. This is a different point of the previous paper [G], where we
used the dual principal graph. So we need the following theorem and can easily
prove it in the same way as in the proof of Theorem 2.2 in [G].

Theorem 1.1. (Choda-Kosaki, [CK, Theorem 2], [Ko, Theorem 3])
Let a e Aut(M, N) and /3 = a\N. Then the following are equivalent.

(i) There exists a non-zero element a e Mk such that an = a(n)a for all n e N.
(ii) N ( M k ) N > N ( f t N } N .

Remark. In the above theorem we can regard an element a e Mk with an =
a(ri)a for all n e N as an element a e Hom(yv(M /)M, /v (aM,)M) if k = 2i is even,
( a e Hom(N(Ml)N,N ( a M l ) N ) if k = 2i + 1 is odd). Then we have the relation that a
is equal to a (1) up to scalar multiplication. Here a means the Frobenius dual of
above a. Indeed, if we take a basis yf of (Mt)M as a right M-module when k = 2i
is even,

= [M, :MTl/2a

And similarly we can show the same relation when k = 2i + 1 is odd. This
relation plays an important role later.

Corollary 1.2. For all x£.N'c^Mk there exists an element £e

H o m ^ ( M k ) N , N N N ) such that £ l ( l ) = x.

Let N d M be a pair of factors of type II, with finite index and with trivial
relative commutant. We denote its principal graph by ^ and denote its dual
principal graph by // . So we have the following graph

M - M bimodules —-—> M - N bimodules

"I 'I
N - M bimodules —-—> N - N bimodules
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We also denote the vertices of the graph % by %(0) and the edges of the graph ,?
by .^ (1). For the graph 2? , we use similar notations.

We identify a vertex X E ^ ( O ) with the corresponding bimodule. An
(oriented) horizontal (resp. vertical) edge <^E.^ ( I ) with source vertex (bimodule)
XE^(O) and range vertex (bimodule) FE.^ (O) represents an intertwiner £E
Hom(X(8)M,F) (resp. £e Hom(M®X,F)). Here M represents the bimodule

MMN or NMM .
First of all, we assume the following conditions (Al) and (A2).
(Al) % and 2? are finite, i.e., the subfactor N c: M has finite depth.
(A2) there exist non-trivial automorphisms a E A u t M and fteAutN such

that M(aM)M E ;r<°>, „(,#)* e ^(0), and M(aM)M ®MMN = MMN ®N(ftN)N

i.e., a\N=p.
In this case (X and /? are non-strongly outer automorphisms and appear in the
same depth of the graphs 3? and % . From condition (Al), there exists an integer
n E N such that M( ,,M)M =MMM , that is, a" E IntM . We denote the outer period
of the automorphism (X by n. Now we also assume the following condition.

(A3) P" = 1N with the same integer n as above.
We claim in the next lemma that condition (A3) follows from the following
conditions (A4) and (A5).

(A4) pn Elnt /V with the same integer n as above, i.e., a and P have the
same outer periods.

(A5) there exists an N-N or N-M bimodule F E ̂ ((3) such that F=^F.

Lemma 1.3. (cf. [I, Lemma 3.3]) // we have conditions (A4) and (A5),
then we can choose a representative of P so that P" =1N.

Proof. Suppose there exists an N-N bimodule F such that ^ =N(^Y)N. Set
P=End(YN). Then there exists a unitary M E//(F) such that wEHom( / vF y v ,

N(pY)N). So the unitary M satisfies the following.

W ( H ' y } ~ n ' u ( y ) = P(n)u(y), for all n e N and 3; E F.

So ft(n) = unu for all n e N. Now from the condition (A4), there exists a unitary
VE//(AT) such that /J" = Adw" = Adv. We have N'nP = C because of the
irreducibility of NYN , so there exists a scalar c E C such that u" = cv and

u"=uu"u = u(cv)u =c/3(v),

hence /?(v) = v. So the obstruction of /? is trivial (cf. [C]). Therefore, there
exists a unitary w E //(N) such that (Ad w o /})" =\N.

In the case when there exists an N-M bimodule NYM such that NYM =N(pY)M,
we can prove the lemma in the same way. O E D
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Corollary 1.4. If we have condition (A3) (or (A4) and (A5)), we can
take (X and /? so that

a " = l M , /?"=!„, «!„=£.

Proof. From conditions (A2), (A3) and Lemma 1.3 we can take (X and /3 so
that

a"e!ntM, a l ^= j8 , j 8 l l = l / v ,

and in this case a" =1M because WnM = C. Q.E.D.

From the above corollary, the automorphism OC becomes a Zw -action on the
subfactor W d M . So we can consider the simultaneous crossed product subfactor

We call this new subfactor the orbifold subfactor of N a M . It is well known that
Jones' tower of this new subfactor is the following,

By computing the higher relative commutants (N*ia Z7I)'n(MA xa Z ; I), we obtain
the (dual) principal graph of this orbifold subfactor.

§2. Symmetric Connections and Triviality of Loi's Invariant

To compute the higher relative commutants of the orbifold subfactors, we
need a symmetry of the connection.

Let N c M be a pair of factors of type II, with principal graph Z and dual
principal graph // . As in the section 3, we use the same symbols , ' / (0 ) , £ ( 1 ) and
so on.

Definition 2.1. A subfactor N c. M of type II, is said to have a
symmetric connection if there exist a graph automorphism (7 and a choice of
bimodules and intertwiners on the graphs ^ j , ^ , ^ and r//4 (V^
\ = // ) satisfying the following condition.

In this case, a connection of the subfactor N c: M with the graph
automorphism (J satisfying the above condition is called a symmetric connection.
Moreover if there exists a natural number n such that o" =id,,,f and
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ak ± id,^,^, u, when k < n, k e N, then we call this connection a $sn-symmetric
connection. It is clear that if a subfactor N e M has a Z;J-symmetric connection
and n = mk for some m, & e N , then it has a Z^-symmetric connection because
we may take r = ak as the symmetric graph automorphism.

Let N c M be a pair of factors of type II, which satisfies assumptions (Al)
~ (A3). Then we can regard the non-strongly outer automorphism a (resp. /?) as
a Z;i-symmetric graph automorphism on the graph ,&" = %4 (resp. & = &2) as
follows. We define the mapping ga on the graph ^" as follows,

as a mapping on JT(0), we define / T^X
if X =aX

and as a mapping on ^(1), ga(%) e ^!(1
(
)
X) (X) if % e ^'^ (X, F

then ga is a Z;I -symmetric graph automorphism because a" = 1M and it has

inverse mapping g _, . Here the symbol /^ly m^ans the set of edges (intertwiners)
of the graph ,7f with source vertex (bimodule) X and range vertex (bimodule) Y .

Note that the number of edges in tf^Y *s eclual to tne dimension of the intertwiner
space Hom(X (8) M, 7) . And we take these intertwiners so that they make an
orthogonal basis. So if the graph &' has some multilines, then we defines the

above graph automorphism ga so that it is a one-to-one map between these

multilines. It is obvious that we can define ga in such a way because

dim Hom(X ® M, Y) is equal to dim Hom^X ® M,aF) .

In the case of the graph ^/ = % , we can define a Z/; -symmetric graph

automorphism g^ in the same way. Note that these mappings ga and g^ are

defined only on the horizontal edges. So in order to deal with a symmetric

connection we also have to define the mapping on the vertical edges. We also note

that the horizontal paths and the vertical paths are not symmetric in our graphical

representation. Because we pass to horizontal direction by tensoring M (more
precisely MMN or NMM) from the right, but to vertical direction by tensoring M

from the left as in the following diagrams,

resp.

where M is either MMN or NMM . So we label the edges for these graph in the

following way.

M - M bimodules ( // ("> ) — ̂ > M - N bimodules ( ̂  )
L

Af - M bimodules (."^) —^—> A/" - A/" bimodules (."^^)

Here "^ = t2 = // (dual principal graph) and ^ = ^4 = ^ (principal graph).
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Consider the following condition (A6).

(A6)For each bimodule X e ^ ( 0 ) and Fe/r ( 0 ) , the sets of bimodules

LA X}'A
zIo anc* ta* ̂ K'=o ^ave * or n different equivalence classes. And any

two fixed points of the graphs 9 and ,?/" by the mappings ga and g^

are not connected.

This condition is not essential, but we assume this for technical simplicity. Now

we have the following proposition.

Proposition 2.2. If a subfactor N c M of type II, with finite index

satisfies condition (A1)~(A3) and (A6), then it has a Z f /-symmetric connection.

Proof. (Step I) A construction of the ZH -symmetric graph automorphism aa .

We define the graph automorphism oa on the both graph Z and ^ as follows.

First we define aa = gp on ^ ( ( ) ) and aa = ga on / / ( ( } ) .

Next we define it on the horizontal edges, i.e., on the graph ?2 and r</4 so that

it has the following property. We take £ e 7/ ( I ) and s(£) = X, r(^) = y, (X,Fe
r ^ ( 0 ) ) . Here s(£) represents the source bimodule of £ and r(£) represents the

range bimodule of ^. We take the following intertwiners.

: X (8) M -> F, <^' = £ : aX ® M ->ttF,

Here u and v are surjective isometrics between the two bimodules. We may and

do take u and v so that u" = 1 and v" = I. Then aa is defined by the following.

if neither X nor Y is not fixed by oa

OH, if X is fixed by aa

o £', if Y is fixed by aa.

In the case of the graph "^, we define the mapping aa so that it satisfies the same
property as above.

Finally we define oa on the vertical edges, i.e., on the graph \ and % as

follows. We take r j £ , ? ( l ) or /T(1) and s(T)) = X,r(T]) = F,(X,Fe.^ (0) or JT (0 )). We
take the following intertwiners.

? :M(8)X-> F, n (a (8) l v ) :M(x) X^» K

Here aX (resp. aF) represents ^X (resp. ^F) if the bimodule X (resp. F) is a
left /V-module. Then oa is defined by the following.
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7](cc ® \x), if neither X nor Y is not fixed by oa

ri(a ® «), if X is fixed by cra

v o77(a®lx), if Kisfixedbycr a .

Because the both graph ^ and ^ are finite we can construct this mapping in
finite procedure and we can easily verify that this definition is well-defined. In
order to verify the well-definedness of this mapping we have only to check the
following conditions.

(i) [ri(

(ii) [r\(a ® u)}~ = u °

(iii) [v o r](a ® 1)]~ = f\(a ® v).

Where 77 is the Frobenius dual of 7] . We can easily check these by writing the
Frobenius dual explicitly as in [O3] and [Yl].

(Step II) Symmetry of the connection.
Now we prove that the choice of bimodules and intertwiners such that the graph
automorphism aa satisfies the above property makes the connection of this
subfactor symmetric. From the above construction of oa , the period of the
symmetry is obviously n. We will show the following equality.

A -*-> B <7(A) -^^-> a(B)

(*) U i* =*(H I**-
C -^ D <7(0 -^r^ cr(D)

(i) In the case where any of the four bimodules A,B,C,D is not fixed by aa ,
we get the above equality (*) in the following form by writing down bimodules
and intertwiners explicitly.

M®B

I I & _ §|.Dr®ll8lA / I I

M — |— > D

where £ ; 's satisfy one of the following

or

or
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and A = s(£2 ) = j(£, ), B = r(& ) = s(q, ),C = r(& = s&)

The value of the left hand side of the equality is

€ 4 ° ( £ ® l M ) ° < l * ® & ) ' o (

and that of the right hand side is

So the above equality holds.
(ii) In the case where some of the four bimodules A,B,C,D are fixed by oa ,

we will show the above equality when B and C are fixed points, and other cases
are proved similarly. In this case, the equality (*) is written in the following way.

A f ® A ® A f IM®^- ) M®B M®aA®M

£,®IM I I £, _ « C ° £ I < « ® I > ® I M I

- D

Here UB : B-^aB and uc : C— >aC are surjective isometry between these
bimodules. The left hand side of the equality is

and that of the right hand side is

So the above equality holds. Q.E.D.

Now we will give a necessary and sufficient condition for triviality of Loi's
invariant of a non-strongly outer automorphism on a subfactor with a symmetric
connection.
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Theorem 2<3o Let N c M be a sub/actor satisfying assumptions (Al) ~

(A3) and (A6). As to the automorphism $GAut(M, N), the following are equi-

valent for each k>0.

(ii)

for all £ e Path ^ and 77 e Path2^,

(iii) For all r] E Path2A+2 9, there exists a path £ e Path ft 5 such that

a (»7)

where the bimodules * =/v/VA/

and P = N ( p N ) N and the symbol Path;
x /^/ represents the set of paths on the

graph ^ with source vertex jc, range vertex y and length /.

Proof. Before we prove this theorem, we claim that oa(ri) = T](a® 1). We
can easily show this by using the fact that the automorphism

on

is the same as the one on Mn extended by tt(et) = et(i = 1 , 2 , - - - ,«) as above.
(i) => (ii) . If a | N,nMk = 1 N.nMk , then we set

where %e Path ^^ and 7] e Path2A+2r^ . If we denote rj (1) by a®\£N(Mk}N ®

^^ and denote ^ (1) by 1® fr e^^V)v ®^(AfJ^, where leNnN(L2(N))N,

then
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(i) - (\ML ® £ )(«-' ® I)?? (i) - (i^ ® | )«*-'

f"(i) = (7j' ®i,,t )£'(i) = (77 ®iA f 4

And from the triviality of Loi's invariant a~l(a) = a because a^N'nMk by

Corollary 1.2. So f (1) = £''(!) and hence f = £'• So the value of the above

partition function is one.
(ii) => (iii) is trivial.

(iii)=>(i). We use the same notation £ = 77(0?®!) ° (1M ®^) and

1M ). And if the equality (iii) holds, then we have

Hence £' = £. So oT'Oz)®^ & = fl®^ ^ . This means a~1(a) = a, because a~\d)

and 0 are elements in higher relative commutants N'r\Mk and if xe^kb = Q and

& * 0, xeN'nMk then ;c = 0 . Indeed, if xe™kb = 0 then

fr'e^jc xe^b = b E^(x x)e^b

= b tr(jc A:)e^fe = 0.

So jc = 0. Hence a~*(a) = a for all a<EN'r\ML such that a = rj ( l ) , r j e Path2A+2:^ .

Since for all j t e W n M A there exists an intertwiner £ e Hom(yv(MA)yv ,A ,7VA/) by

Corollary 1.2 and these intertwiners in H o m ( N ( M k ) N , N N N ) are linear combina-

tions of the basis Path2 A 4 2^ , we have a'l(a) = a for all a e / V ' n M A . Q.E.D.

Remark. The same partition function was used in [EK2] page 363 to get the

triviality of the Loi's invariant in the AFD case, but their method works only in

the AFD case.

§3- Orblfold Subfactors of the Non-AFD 5 U(n)k Subfactors

In this section we will apply the result of the previous section to non-AFD

SU(n)k subfactors. In this paper if a non-AFD subfactor N c: M has the same

paragroup (higher relative commutants) as an AFD SU(n)k subfactor PC Q, then

we call it a non-AFD SU(n)k subfactor. (We mean by SU(n)k subfactors the

subfactors arising from SU(n)k WZW models as in [BG].) We consider the

following non-AFD SU(n) subfactors with level k.

[(1) n\k, if n is odd,

[(2) 2n | Jt, if n is even.
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In this case these subfactors satisfy conditions (Al) - (A3) and (A6) and have Z;I

symmetric connections as in [EK1], [XI]. So we can construct the orbifold

subfactors N^a
rLn d MxiaZ,?. If we make a symmetric choice of bimodules and

intertwiners, the following partition functions become well-defined, because the

values do not depend on the gauge choice any more. So we can show the

following proposition in the same way as in [XI].

Proposition 3ol8 (Xu [XI]) For each rLn symmetric connection W on a

non-AFD SU(n) sub/actor with level k such that n \ k , if n is odd, or 2n\k, if n is

even, we have the following equalities.

for all % £ Path ^ and rj e Path2/+2.9, where the bimodules * =NNN
 ana

(ii)

for all <|;e Path ^ and rje Path2'*,2?

for all £ePath ; # and 7]ePath2/ ff . Here the bimodules *=MMM and
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Now we can compute the higher relative commutants of the orbifold
subfactor NxaZn c M xaZn, i.e., (NxaZn)' r\(M,xaZn). If we take I^o^We

j?)'n (M;xiaZJ, jc( eM ;,Ad« = a, then jt,'s satisfy the following,

c, e M/, fix, = jc,a' (ri) for all n e N9 and a(jt, ) = xl , (1 < / < n - 1),

where the first equality (N' nM,)a = Af'nM, holds because Loi's invariant of the
automorphism OC is trivial from Proposition 3.1 (i) and Theorem 2.3.
If the strong outerness of the automorphism a e Aut(M, N) breaks at the r-th
extension M, , then the following hold from Theorem 1.1.

x,=0 (/ = 0,l,2,--,r-l),

• there exists a non-zero element jt, e Mt

such that nxt = xta
l (n), for all n e N, (I = r),

When / = r, the above xt can be represented by the linear combination of a's

such that a = rj' (1), 77 e Path2^2?. From the computation of the partition function

of (ii) in Proposition 3.1, a~'(xl) = xi for ally eN . Hence a(xl) = xl. So the

higher relative commutants increase at the r-th level (A^xiaZ /?)'nM / xaZ/7 in the

same way as in the AFD case. Similarly we can compute the higher relative
commutants (MxaZ;/)'n M, ̂ aZn by using the equality (iii) in the previous

proposition.
Now we have completed a proof of the following theorem.

Theorem 3.2. Let N e M be a non-AFD SU(ri) subfactor with level k
which has the same paragroup as the AFD SU(n)k subfactor PdQ. Here k
satisfies the following; n | k , if n is odd, or 2n\k, if n is even. And let OC be the
automorphism in Aut(M,Ar) satisfying conditions (A2) and (A3). Then GL induces
a Zn -action on this subfactor N d M , and we can construct the orbifold subfactor
N XaZn c M *aZn. The paragroup of this new subfactor coincides with that of the
AFD orbifold subfactor P xaZn c Q xaZn .

F. Xu extended [XI] to the case of AFD SU(n) subfactors with level k such
that n | k and 2n \ k in [X2]. And we get a similar extension of the Theorem 3.2
as follows.

Proposition 3.3. (Xu [X2]) For each Zn symmetric connection W on
non-AFD SU(n) subfactor with level k such that n\k and n = 2n is even, we
have the following equalities. We set k = nkr .
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i
*7

for all ^ePath ^ and rj e Path2/+2.^ , where the bimodules *=NNN and j8 =

for all % 6 Path Rl V and 7] e Path2

(iii)

for all ^GPath G and 7] e Path2' // . Here the bimodules *=MMM and a =

From this Proposition, in the case of non-AFD SU(n) subfactor N dM with
level k such that n\k, n is even and 2n\k, we also construct an orbifold
subfactor. In this case W xaZ2ii, c M xaZ2ij, and Wx :Z/;, cMxs :Zn, have the
same paragroups because of the following argument.

If we take X !Td-*X G (N x^ZJ'nCM, xttZ;;), jc, G Mp Adw = a, then */s
satisfy the following,

, e M/s HJT, = jc,a'(/i)for all n e N, and

where the first equality (N'nM,)a =N'nM, also holds because Loi's invariant
of the automorphism a is trivial from Proposition 3.3 (i) and Theorem 2.3.
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If the strong outerness of the automorphism a e Aut(M, N) breaks at the r-th
extension M, , then the following hold from Theorem 1.1.

x, = 0 (/ = 0,l,2,--,r-l),

there exists a non - zero element xl e Mt

such that nxl = xta
l («), for all n e N, (1 = r).

When / = r, from the computation of the partition function of (ii) in Proposition

3.3, (*-'(*,) = (-!)"*, for all j e N . Hence a(xl) = (-l)'xl. This means a(x2l)

= x2l. And if we take L'^x^u2' e(N*a2Zn,y n(M, x^Z,,,), J t 2 / eM, , Adu = a,
similarly, we have cr(;c9/) = jc7/ when / = r. So these two subfactors have the
same higher relative commutants. For the dual principal graph, we can get the
similar conclusion by using the equality (iii) in Proposition 3.3.

Thus we have the following theorem.

Theorem 3.4,, Let N a M be a non-AFD SU(n) sub/actor with level k
which has the same paragroup as a AFD SU(ri)k subfactor P c Q. Here n
satisfies the following; n\k, 2n f k and n = 2n is even. And let OC be an
automorphism in Aut(M,AO satisfying the condition (A2) and (A3). Then OC
induces a Z/? -action on this subfactor N a M, and we can construct the orbifold
subfactor N xi Z c M xi Z and N xi ,Z , c M xi ,Z ,. These two subfactors haveJ oc n (X n Q- n Q- n J

the same paragroups. And the paragroups of these new subfactors coincide with
that of the AFD orbifold subfactors P xaZn c Q xaZfI and P x^Z,,, c Q x^Z,,,.

This is a generalization of Xu's theorem in [X2] for the AFD case, and our
proof is simpler than that of [X2] even in the AFD case.

If we think of the case where n = 2 in the above theorem, we conclude that
the orbifold subfactors of non-AFD subfactors of type II,with principal graphs
A4/l/_, have the same principal graphs. This is a part of the result in Theorem 3.9
of [G].

Comment.
S. Popa and F. Radulescu showed existence of non-AFD SU(n)k subfactors of
type II, whose paragroups are the same as that of AFD SU(h]k subfactors of type
II, in [P3], [R]. So we can apply our result to these subfactors. Their subfactors
are not isomorphic to N ® P c: M ® P where N a M is of AFD SU(n\ sub-
factors of type II, and P is an arbitrary non-AFD factor of type II , .
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