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Global Existence for Systems of
Nonlinear Wave Equations in Two Space

Dimensions, II

By

Soichiro KATAYAMA*

Abstract

We consider the Cauchy problem for the system of nonlinear wave equations

(*) (df -AX =Fl(u,u',u"} in (0,°°)xR2 , / = !,-••,#

with initial data «,(0,;c) = £0, (*) , (d,ut )(0,jc) = ey/"((jt), where Ft (i = 1 , - - - ,AO are smooth functions of
degree 3 near the origin (u,u',u") = Q,<t)l,il/l < E C ~ ( R 2 ) and £ is a small positive parameter. We
assume that Fl(i = \ , - - - , N ) are independent of u" for any j * i .

In the previous paper, the author showed the global existence of the small solution to the Cauchy
problem (*) assuming that the cubic parts of the nonlinear terms satisfy Klainerman's null condition
and that the nonlinear terms are independent of u)ukulu.m for any j,k,l,m = \ , - - - , N . In this paper, we
show the global existence without imposing further assumptions than the null condition on the cubic
parts of the nonlinear terms.

§1. Introduction

We consider the Cauchy problem for the following system of nonlinear wave
equations:

(1.1) Ou^Ffau'tU") in(0,oo)XR", i = l,-,tf,

(1.2) ul(Q,x) = £(/)l(x), dtul(Q9x) = e\i/l(x), j ceR", i = ! , • • • , # ,

where Q = ̂  - L'Li d? is tne d'Alembertian, dQ=dt=d/dt, dk=d/dxk

(* = l,-,/0, « = (*,), u=(ulcl) = (dau^ n/' = (iiM,) = (5fl^/) with j = l,-,N
and a,b = Q,l,-~,n. £ is a small positive parameter. We assume that the nonlinear
term F = (Ff)l=l N is a smooth function in its arguments and satisfies

near («,«', M/7) = 0 with some integer a > 2 . Suppose that the initial data

0 = (0,W ^ and ^ = (^7)/si. ,/v belong to C™(R"-RN).
Throughout this paper we always assume

(HI) F((i = l,--,N) are independent of u] ah for any j ^ i , i .e . ,
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- — = 0 for any j ^ i and a, b = 0, • • • , n ,
<**/,**

and furthermore Ft are independent of uim(=dful) for i = l , - - - , N .
We state some known results, restricting ourselves to the cases of n = 2 and

of n = 3. (For the results of « > 4 , see Hormander [4], Katayama [7],
Klainerman [10], Klainerman - Ponce [12], Li - Yu [14], Li - Zhou [16], Shatah
[21], etc.) Define the lifespan Te by the maximal existence time of the C°°-
solution to (1.1) - (1 .2), namely

= sup{r E (0,oo); there exists a (unique) solution

*/£C~([0 , r )xR' z ) to( l . l ) - (1.2)}.

We say that there exists a global solution when Te = +00 .
First assume that F does not depend on u explicitly, i.e., F = F(u',u"). Using

the energy estimate of wave equations and generators of the Lorentz group
(which are concerned with the Lorentz invariance of wave equations) introduced
by Klainerman [10], one can show the following provided that £ is sufficiently
small:
When n - 3,

Te >exp(c£~l), a = 2,

[TE = +00, a > 3,

where c is a positive constant depending on 0,y and F.
When n = 2,

fre>exp(c,-2), a = 3,

(See Klainerman [10] for n = 3 and Kovalyov [13] for n = 2.)
When F depends explicitly on u, i.e., F = F(u,u',u"), circumstances become

more complicated, because there is no natural estimate for the L2-norm of u
itself. In this case, the following results are known when £ is sufficiently small:
When ^ = 3,

I Te > c£~2, a = 2 (in general),

Te > Qxp(c£~l), a = 2 (if F(w, 0,0) = O(\u\3) near u = 0),

Te = +00, a > 3.

When n = 2,
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I T£ > c£~6, a - 3 (in general),

TE > exp(c£T2 ), a = 3 (if F(u, 0, 0) = O(\u 5 ) near u = 0),

Te = +00, a > 4.

(See Lindblad [20] for n = 3, Li - Yu - Zhou [15], Li - Zhou [17] and [19] for n
= 2. See also Li - Zhou [18] for the results when n = 2 and a = 2.)

Remark 1. Strictly speaking, these results are proved for single equations
(namely, N - 1). But all the above results hold also for systems by the same
proofs, except the cases of n = 3, a = 2 and F(w,0,0) = O(\u3) in (1.5) and of n =
2, a = 3 and F(w,0,0) = O(\u\5) in (1.6), because some rewriting of the nonlinear
terms is used in the proofs for these two cases, and it only works for single
equations. It is not known whether the same results hold or not for these two
cases when we consider systems.

Concerning the global existence for the case of n = 3 and a = 2 , Klainerman
introduced some sufficient condition, which is called the null condition. Here we
recall the definition of the null condition.

Definition 1.1. Let G = G ( ( u l ) \ ( u j a ) \ ( u j a h ) ) be a smooth function of

Uj(j = l~-,N), u^(j = l-JN,a = 0,-,n) and u j a h ( j = 1,---,AU,£ = 0,»- , /x) .
We say that G satisfies the null condition when

for all A , j U,veR w and all X = (X0,X,, •••,*„) e R"+1 satisfying X* - X? -

Klainerman showed in [11] that if the quadratic part of the Taylor expansion
of F around the origin satisfies the null condition, then Te = +00 , provided that £ is
sufficiently small (see also Christodoulou [1] and John [6]).

For n = 2 and a = 3 , Godin [2] proved that if F = F(u) and the cubic part of
F satisfies the null condition, then TE = +00 for sufficiently small £. (See also

Hoshiga [5]. He showed the same result for F = ̂ ahfah(u')dadhu.) When n = 2,
a = 3 and F depends explicitly on u, the author showed in [8] that if we assume
(H2) The cubic part of F satisfies the null condition,
(H3) F(w,0,0) = 0(|«|5) near w = 0,
then TE =+<*> for small £ (observe that the condition (H3) appears also in (1.6)).

If we compare this result for n = 2 with Klainerman' s for n = 3, the condition
(H3) seems removable. In fact, there are some examples which do not satisfy
(H3), but admit global solutions. For instance, if we consider the Cauchy problem
for the single equation
(1.7) {^u = u4 in(0,°o)xR2 ,
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we can see from Li - Zhou's result (1.6) that there exists a global solution for
sufficiently small initial data. Observe that F = u4 satisfies (H2) but does not
satisfy (H3). Another example is

(1.8) nu = cu((dtu)2-\VKu\2) + H(u,u') in (0,oo)xR2 ,

where c e R and H(u,u) = O(\u\4 + u 4) near (u,u) = 0 . Simple calculations yield

(1.9) , t6 / 2

Define w = u-cu3 16. Then, because the right-hand side of (1.9) becomes a
function of degree 4 with respect to w and w' , we can show that TE = +<*> for
small £, again from Li - Zhou's result (1.6). This example also satisfies (H2), but
not (H3) in general, because H(u,u) may contain u4 . These examples suggest us
that the assumption (H3) is not needed for the global existence. Our aim in this
paper is to establish the global existence under (HI) and (H2) without (H3). The
main theorem is the following:

Theorem 1.2. Let n = 2 and F = O(\u\3 + \u'\3 + \u"\3) near the origin.
Assume that F satisfies (HI) and
(H2) The cubic part of the Taylor expansion of F satisfies the null condition, that

is, Ft can be written in the form

Fl(u,u\u") = Gl(u,u\u") + Hl(u,u',u"), i = !,•••, AT

in some neighborhood of (u,u',u") = Q, where G, (/ = l,-~,N) are homo-
geneous polynomials of degree 3 satisfying the null condition and
Hi(i = l--,N) are smooth functions with Hl (u, u',u") = O(\u4 +\u' 4 + u"\4)
near (u,u\u") = 0.

Then, for any fay e (^(R^R^) there exists a positive constant £Q such that the
Cauchy problem (1.1) - (1.2) has a unique solution u = (u{(t,x))l={ N e

For the proof of this theorem, it would suffice to get some a priori estimates,
because we have the local existence theorem. It seems reasonable to state the
difference between the proof of the former result in [8] and that of our present
one here. To state it clearly, first we introduce some notations. In the rest of this
paper, we assume that n = 2 .

Notations. Following Klainerman [10], we introduce F0 = tdt -£?=, *,<?,,
O0j = Xjdt +tdj (j = 1,2) and O12 = jc,<92 - x2d} . Then simple calculations yield

(1.10) [ro,n] = -2n,[«fl,,D] = O f o r a n y 0<a<b<2.

Let 'H = ('nab)atb=Q^2 =diag(-l,l,l), then we can show that
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(1.11) [n^J = ^-^A.

(1.12) [Qab9aul] = r,aiQu

d.i4) irQ,da] = -da

for all a,b,c,d = 0,1, 2. Define r ,=Q O I , F2 = O02 , F3 = Q12 , F4 = dt , F5 = 5, and

r 6 =<9 2 . For any multi-index 7 = ( / 0 , / 1 , - - - , / 6 ) we write F7 = rjY/' --T^ . We
can easily verify from (1 .10) that if v satisfies QV = / , then F7v satisfies

with appropriate constants Cu . Note that C7/ = 1 , and C/y = 0 for any multi-index
J with |/| = |/| and J ^ I . For any smooth function v = v(f, x) , (1.10) - (1 .14) imply
that

\K\<\I\+\J\-\

and especially that

(i.i6) r75flv = ̂ r7v + £ Icj;;^ryv for fl = 0,1,2

with some appropriate constants C" and CjjJ .
For any non-negative integer s and for any scalar or vector-valued function

v(t,x), we set

(1-17)

(1.18) l | v ( O l l f , . , = j v ( f , J t ) l f ^ for !< /?<
~

(1 .19) BKOIL
XER 2

When 5 = 0 we write HOI,, for IKOI p,0 (1 ̂  P ^ °°) • Note that ||v(OH/7 coincides
with the usual Z/'-norm of v(f,-) .

To show the global existence theorem under the assumptions (HI) , (H2) and
(H3) in the former paper [8], we got a priori bounds for | | M ( O I I ? 9 A > l lw'WII??^ and
\u(t,x)\k+7 with some decay with respect to time and space variables, where k is a
sufficiently large positive integer. To treat the cubic parts of the nonlinear terms
in the estimates of u(t,x)\k+2 and of | |M(OII 2 2A' we use tne pointwise estimates for
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the functions satisfying the null condition, which were first derived by
Klainerman [11] (see Lemma 3.2 below). Then we can get an extra decay with
respect to time and we can regard the cubic terms as if they were the terms of
degree 5 from the point of the decay rates. In this case, the worst terms which
cause the singularity of the solution are terms like uaubucud. More precisely,
because even the L2-norm of the solution to the linear equation n^-0 is not
expected to be bounded in two space-dimensional case, terms of the form
uaubucud have insufficient decay and cause the problem in the estimate of
||w(OII •? ?£• Therefore we must exclude such terms and this is the reason why we
assumed (H3) in [8].

In this paper, we will get control of \\u(t)\\ 7 with some small 7 > 0, instead
H/~

of \\u(t)\\2i_k. In the estimate for \\u(t)\\ 2 , terms like uaubucud cause no trouble,
T1?'

but as we must make utility of Lemma 3.2 to treat the cubic terms, we need a
priori bound for \\u'(t)\\22k+l (a bound for \\u(t)\\pak+l with some p > 1 is not needed,

because of Corollary 3.5). Note that when we try to get a bound for \\u(t)\\2^2k, we

only need a bound for IM'^)!?-)* and not \\u'(t)\\9n+1 although we use Lemma 3.2,

because we can estimate \\u(t)\\22k in terms of some norms of |nw(f,Jc)|2A_, (see

Proposition 3.4 in [8]).T This causes the difficulty. Namely, when we use the
energy inequality (Lemma 2.4) to get a bound for ||M'(O||TU+I, we have to get

control of \\u(t)\\pU+l with some p > 1 to estimate \uaithucud(t}\22k+l when the

nonlinear terms contain uaubutud (otherwise, we do not need it because of

Corollary 3.5). Summing up, we need some information about u(t,-)\7k+l to get

control of \\u(t)\\ 2 . In other words, we meet a kind of the loss of derivative. Of
i1?'

course we can estimate ||w(OII 2.2^+1 in terms of IIM/(OII2,2^+1 using Poincare's

inequality or the relation u(t) = w(0) + l'Qdtu(s,x)ds, but these estimates give the

loss of the factor l + t in the decay rate of the nonlinear terms. This is the main
difficulty in the proof of our theorem.

We will overcome this difficulty as follows. The solution of linear wave
equation behaves like (l + r + |jc|)"1/2(l + |f-|jc||)~1/2 (see Lemma 2.2). If the
behavior of the solution to (1.1) - (1.2) is similar to that of the solution to the
linear problems, we have

'"Roughly speaking, this comes from the fact that ||w'(f)||2 can be estimated in terms of ||n«i2 by the
energy inequality. Estimates like this do not hold for ~LP -norms of u when p * 2 and generally we
need some norms of (nw)' to estimate | |«'(f)|,.



NONLINEAR WAVE EQUATIONS, II 65 1

Then, since u(t,x) is compactly supported for any fixed t, we can estimate the
right-hand side of the above inequality in terms of ||w'(OII 79^+1 (see Lemma 3.3
below, which is more precise than the Poincare's inequality in some sense) and
this shows that

Therefore no information about \u(t,x)\u+l is needed and no loss of the decay rate
appears. This is the main idea of our proof.

Our plan in this paper is as follows. In Section 2, we state some known
estimates for linear wave equations in two space-dimensions almost without
proofs. We get estimates of nonlinear terms in Section 3, and derive some
estimates to overcome the difficulty mentioned above. Finally in Section 4, we
prove Theorem 1 .2 by deriving a priori estimates.

§28 Preliminary Results for Linear Wave Equations

In this section we recall some estimates for the linear wave equations. First,
using F's, we get L1 - L°° estimate for wave equations, which was first derived
by Klainerman [11] in three space-dimensions and was extended by Hormander
[3] to arbitrary space-dimensions. We state here only the two space-dimensional
case.

Lemma 2.1. Let v be a solution of nv(f, x) — f ( t , x) in (0,°°)xR2 with
initial data 0. Suppose that 0 < K < 1 . Then

/ 2 .
O \i i T )

provided that f is sufficiently smooth and the right-hand side of (2.1) is finite.
Here C is a constant depending only on K.

Proof. See Hormander [3]. See also Katayama [8] for the above expression
of the assertion. Q

For the Cauchy problem with non-zero initial data, we get the following.

Lemma 2,2, Let v be a solution of

in (0,°o)XR2 ,

Suppose that (f),ij/ e C^(R2) . Then we have
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_1 _1
(i) \v(t,xy<CE(l + t + \x\)~*(l + \t-\x\\)~2 in (0,oo)xR2,

i i
(ii) \\v(t)\\ p < Cp£(l +1) ~ p for any p>2 with some positive constant Cp.

Proof, (i) is a consequence of Lemma 2.1. (For the direct proof, see
Kovalyov [13] for instance.) Observing that

i + f + H) 2d + \t-
-

2 p

for p > 2, we obtain (ii) immediately from (i). a

The next lemma is due to Li - Zhou [17] (see also Li - Yu - Zhou [15]). We
state it without the proof.

Lemma 2.3. Suppose that v is a solution to

nv(f, *) = /(*,*) i/i (0,oo)xR2

with initial data 0. Let p > 2 be given. Then there exists a positive constant C
such that

(2.2) HOI <cfV(T)||^T11 (-1

holds for t > 0, where q satisfies

We conclude this section with the well-known energy estimates.

Lemma 2 A. Let v be a smooth function satisfying

)- Z yah(t,x)dudhv(t,x) = f(t,x) in (0,oo)XR2 .

Suppose that I^J/^fo*)! < 1/2 for all (t, x) 6 [0, oo) x R2 . Define

where PtJ = 8IJ + yy for any ij = 1,2 with StJ =l(i = j) and SIJ =0(i^ j).
Then there is a positive constant C{ such that
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(2-3) ^-\\v(t)\\E < Q\Y'(t)\\Jv(t)\\E + lf(OI2 , t > 0,
at

where ||y'(f)|L = max f l /7 t ||<?67^<XOL. Furthermore,

(2.4) ^l|v(r)||£<||v'(OI2<C2|v(r)||£
C2

holds with some positive constant C2 .

Proof. See Klainerman [9] for instance. ®

§3. Estimates of Nonlinear Terms

Now we turn our attention to the Cauchy problem (1.1) - (1.2). For any
smooth functions /and g, define

(3.1)

(3.2) Qab(f,8) = dafdbg-dbfdag for fl>& = 0,1,2.

These forms are closely connected to the null condition. In fact, if G(u,u',u") is a
homogeneous polynomial of degree 3 satisfying the null condition, then G is a
linear combination of v ,Q(v 2 ,v^) , where v, is any of u O' = l, • • - , # ) ,
dcut (c = 0,1,2, y' = !,•••,#) or dld(ju/ (c,d = 0,1,2, j = l , - - - , ^ V ) , v2 and v3 are any
of Uj (j = l,'~,N) or dtuf (c = 0,l,2, y' = !,-••,#), and Q is any of the forms (3.1)
- (3.2) (see Katayama [8]).

Simple calculations yield the following (see Klainerman [11]):

Lemma 3.1. For any smooth functions f and g, we have

(i)

(ii) Q0j(f,g)(t,X)=l-(d,fn0lg-a0lfd,g)(t,X), 7 = 1,2,

(iii) Qa(f,gXt,x) = -(Qolfd2g-amfdlg

for t>0.

From (1.11) and (1.14), we can verify that

(3.3) r'Q0(f,g) = Q0(r'f,g) + Q0(f,r
lg)+ X

\J\+\K\<\l\-\
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0.4) rjQab(f9g) = Qab(r
l

c,d=Q\J\+\K\<\I\-l

for any a, b- 0,1,2 with appropriate constants C1
JK and Cj£"cd . Observing these

facts, we can obtain basic estimates of nonlinear terms for our proof of Theorem
1.2.

Lemma 3 e 2 0 Assume that F(u,u\u") = (Fl(u,u,uf'))i=l N satisfies the
assumption (H2), namely we assume that Ft can be written as

F, O, u\ u") = G, (u, u, u") + H, (u, u, u"), i = l,-~9N

near the origin, where Gt (/ = !,..., AT) are homogeneous polynomials of degree 3

satisfying the null condition, Hl (i = l,...,N) are smooth functions of degree 4. Let

s be an integer >0. Suppose that \u(t,x)\r^ is sufficiently small (\u(t,x)\r^ <1,
[d+2 id+2

say). Here [m] represents the largest integer which does not exceed m. Then we
have

(3.5) |Gl(«,ii/,ii")(r^)|

where m} = (m°,mj,m;), /, = (/7°, • • - , / ' ) are multi-indices, d"1' = df'df'd? ,
/ /° /6

F ' = ro' •••^6
l and the summation above is taken over the set

(3.6) |//X^W')a,*)ls <

where n} = (n^n^n^}, J; = ( /° ,--- , /y
6) ar^ multi-indices, and the summation

above is taken over the set

S2 (s) = J|/J < ̂ ] (7 - 1,2,3), |/4 < j, |m;| < 2 (j = 1,2,3,4)J.

Proof. Because G,(^,w',w") satisfies the null condition, it follows from
Definition 1.1 that G((w,0,0) = 0 for \<i<N. Therefore, if we apply Leibniz'

formula, we can see that V'G^u.u^u") is a linear combination of
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IlJ=i r '(d'"' uk(J]} with |my |<2, Z]=1 |/w; ^ 0 , X^=11/7 = |/| and £(7) E {l ,--- , /V} for

7 = 1,2,3. By (1.16), this can be written as a linear combination of Flj=i dm'T Juk(J}

with |mj<2, Z*=1|roy|*0 and £*=11/7| < |/|. Since we may assume |/J < |/2| < |/3|,

(3.5) holds for t<\.
On the other hand, noting (3.3) and (3.4), we obtain from Lemma 3.1 that

r'Go (/»&) and r7g^(/,g) are linear combinations of j<?'"T/l
i/T

/2g or

l^'T^r72/ with m , = l , |/,| + |/2|<|/| + 1, and |/J<|/|. Since G, is a linear
combination of v,Q(v>2 ,v3) with v, = urdcurdcddur v2, v3 = u/,dcu], this implies

(3.5) for r > l .
Similarly, since If, is a function of degree 4 and \u(t,x)\r, <1, it follows

from Leibniz' formula that \Hl(u,u\u"ys<C,I<\U*=ir
Jldttluk(l)\, / = !,•••,# with

S^=i I-//I ^ -^ and |«7| < 2. Since we may assume |/,| < |J9| < |/3| < |/4 , we immediately

obtain (3.6) using (1.16). n

The following two lemmas will be used to conquer the difficulty we
mentioned in the introduction. These lemmas are essentially due to Lindblad [20],
but since they play important roles in our proof of Theorem 1.2, we recall the
proofs here.

Lemma 3.3. Let v E C !([0,r)xR2). Suppose that

supp v(t, •) c [x e E2; \x\ < t + p}

with some p > 0. Then

(3.7) 9,v(f,-)| |2 forI l i + k - i
where df = ̂ 1

J=l(xf /\x\)df and Cp is a constant depending only on p.

Proof. First let w = w(x) G C'(R2) and supp w c {x e R2; ;t| < R] with some
/?>0 . We claim that

(3.8)

In fact, switching to the polar coordinates, we get

f \w(xf j f*[* \w(r,0)\2 ^ ^
dx= \ -rdrdO .

jR 2 ( l + /?-|;c|)2 Jo Jo (l + R- r)2

By integration by parts, we have
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f* \w\2r . £R w2 + 2wdwr .- dr - _ - L — jr
Jo (l + R~r)2 Jo l + R-r

^ 1 f R W^rW J< -2 - '- - rdr .
Jo l + R-r

By the Schwarz inequality, we get

This implies (3.8) immediately.
Applying (3.8) to v(£,;t), we get

Since l + p + r-|jc| < (l + p)(l + |/-W|), this completes the proof. •

Lemma 3.4. Let v eC]([Oj]xR2). Then we have

(3.9) (l + \t-\x\\)\dav(t9x^<C\v(t9x^ for a = 0,1,2.

Proof. By direct calculations we have

— —(/rov(r,Jc)-Jc,Q01v(r,Jc)-j:,Q09v
t + \x\

— — (tQ,0]v(t,x)
t + \x\

(t-\x\)d}v(t,x) =

Therefore (3.9) holds when |r-|jc||>l. On the other hand, it is clear that (3.9)
holds when \t - \x\ \ < 1 . m

Lemmas 3.3 and 3.4 give us the next estimate.

Corollary 385e Let v, , v7 and v3 be smooth functions. Suppose that
2supp v3(f,-)c {^eR2;|jc| <t + p] with some positive constant p. Let \<p<2.

Then we have

Iv.^v^VjWI^CjIlv.WIIVjWUI^v^Ollj for a = 0,1,2,

where \l q = \l p-l/2.
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Proof. By Holder's inequality, we have

h(^2)v3(oi,<|^
Lemma 3.3 shows that [[(l + lr-HI)"1 v3(r)|2 < Cp||v^(r)||2 . On the other hand, as it

follows from Lemma 3.4 that

(3.10) Kl + lf-HDv^v^r^^Cl

we get
IKi+k-HDv^v^n^qi

This completes the proof. ®

For the later convenience, we prepare the following lemma before
concluding this section.

Lemma 3.6. Assume that a smooth function v(t,x) satisfies

with some M > 0 . // (X and p are positive constants satisfying ap(\-K) > 2, then

holds for 0<t<T with some positive constant CapK.

Proof. By straightforward calculations. See Katayama [8; Lemma 3.6] for
the details of the proof. •

§4. Proof of Theorem 1.2

In order to prove Theorem 1.2, it suffices to get the following:

Proposition 4.1. Let u£C°°([Q,T)xR2\RN) be a solution to the Cauchy
problem (1.1) - (I 2), i.e.,

fnw = FO,w',w") m(0,°o)xR2 ,
\
[M(O, jc) = £0U), dtu(Q, jc) = ey(x).

Define

f - -

X6R 2 I
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where k is some fixed integer with & > 5, j and /Ll are constants satisfying
0 < 7 < 1 and 0 < // < 1 /10 respectively.

If we choose sufficiently small j and }Ji, then there exists a positive constant
M0 < 1 such that for any M < M0 ,

supD e(r)<M

implies that

supDe(r)<C0(£ + M3),
o</<r

where C0 is a positive constant which is independent of T, £ and M(< 1).

Once we establish Proposition 4.1, we can obtain a priori estimates. Choose
M,(<M0) and £, to satisfy C0M,2 < l / 4 and C0£} <M}/4. We can find some £2

such that D e (0)<M,/2 holds for any £ < £ 9 . By the classical local existence
theorem, there exists a solution ueC°°([Q,T)xR2;RN) to (1.1) - (1.2) with some
T > 0 . Let £ < £0 = max{£p£2}. Then, from the continuity of D£(t) with respect to
t,

sup De(t)<Ml
0<t<T(]

holds with some F0 e (0, T]. Let T0 be the maximal of such T0 e (0, T]. Now
assume that F0 < T. Then, since Proposition 4.1 implies that

sup DE(t)< (

it follows from the continuity of De(t) that

sup D£(t)<Ml
0<t<T(] +8

holds with some 5>0 . This contradicts the definition of TQ . Therefore T0 =T.
This means that D£(t)<Ml holds as long as the solution to (1.1) - (1.2) exists,
provided that £ < £0. Combining this a priori estimate with the local existence
theorem, we get the global existence of the solution to (1.1) - (1.2). This shows
Theorem 1.2.

Now we prove Proposition 4.1 to complete the proof of Theorem 1.2.

Proof of Proposition 4.1. Since 0,^ e C^R^R^), there exists a positive
constant p such that

supp 0 u supp \jf e {jc e R2 ;|jc| < p}.
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Then it is well-known that

supp u(t, •) c {jc e R2; x\ < t + p]

holds for the solution u(t,x) to (1.1) - (1.2). In what follows, we assume that M is
so small that the assumption of Lemma 3.2 is fulfilled.

Stepl: L°°-estimates. Let |/| < k + 2 . Since Y!u satisfies

) = Z CUTJF

for 0<t < T, from Lemma 2.1 with /c = l/3 and Lemma 2.2, we have
j_ \_

(4.2) (l + t + \x\)*(l + \f-\x\\)*\T'u(t9xy

< C £ + -
1 Jo

for 0 < t < T. From Lemma 3.2 we have

S,U+3)

/=!

where 5,(-) and S^(-) are defined as in Lemma 3.2.
When m3| = 1, from the Schwarz inequality and Lemma 3.6 we get

<CM3(1 + T/ 2 for 0<

because + l<^ + 2 and ^ + 3<2^ + l for k>3.

If |m^ = 0 , |m,| or m9| & 0 because S"]=1 |w;| ^ 0 in S,(A: + 3). Therefore we

can apply Corollary 3.5 to get

/=!

as above. Summing up, we obtain

(4.4) V i I I^ ' "T ' ' M (T) l <C(1 + T)""^A^ f o r O < T < 7 \
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On the other hand, observing that \d"4rj4u(r,x)\ < C\u(T,x)\k+5 in S2(k
and that k + 5 < 2k, from Holder's inequality and Lemma 3.6 we get

(4.5) n0nTy'ii(T)i <
/=!

3 1+y

< CM4 (I + r ' T - for 0 < T < T ,

because -- 1 + 2 < Jfc + 2 for k > 3. From (4.2) - (4.5) we get

\_ i_
(4.6) (1 + 1 + \x\)~2 (l + \t- M|) 3 \u(t9 x)\ k+2

< ce + M3 (1 + T)"^ + M4 (1 + T)"+^' 1(1 + T)~* dr
J

< C £ + M'
o

' f
Jo

for 0 < / < T ,

7 1provided that we choose sufficiently small 7 and JJL to satisfy jU + - --- < 0 .
2 6

2: L117 - estimates. Let \l\<2k. Then Tlu satisfies

Z CuT
JF(u,u',u") for 0 < r < T .

2
From Lemma 2.2 and Lemma 2.3 with p = - , we get

1-7

(4./) 1 u(t)\\ 2 ^ C £ + | m v^-J4* ^^ y v ^ / n 9
H7 Jo —7 V 2-y

for 0 < f < r. From Lemma 3.2 it follows that

3

(4.8)
7=«
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Using Holder's inequality when |m3|^0 and Corollary 3.5 when ra3| = 0, from
Lemma 3.6 we get

(4.9)

+ "+" for 0 < T < 7 \

When |nj ^ 0 in S2(2k), Holder's inequality and Lemma 3.6 imply that

(4.10) U\dttT'>u(T)\ |-\:|U(|M'(T)||2.2i +||M"(T)||22A

< CM4(I + Tf-' < CM\\ + T)

(4.11)

1 + rr1 for 0<

Because it follows from (4.8) - (4.11) that

HF(W ,W',«")(T)IU_,

for 0 < T < 7 ,

from (4.7) we obtain

(4.12) (l + f)~"«M(OLL, t <C2(£ + M3) f o r O < f < 7 .
""

Step 3: The energy estimates. Finally let |/| < 2k+ 1. Then Y'ul satisfies

a+b>o duiMh

where

(4-14) R,., = I CuT
JF,(u,u',u")- I -%-dttdbT'u,
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= r'F,(U,u',u")-

|y|<2*

Since

dF,

CuT
JF,(u9u',u").

for 0 < t < T, we can choose M0 such that

M < M0, applying Lemma 2.4 with v = r7^ , we get

(4.15) — ir'MjL

< CM0
2 < 1/2. Then for any

< CM3 (1 + tf~} + \\RjJI 2 f or 0 < t < T ,

because ir'u,\\E < C\\u(t)\\22k+{ < CM(l + tY holds for 0 < t < T . From the
assumption (HI) and (1.16), we can show as in the proof of Lemma 3.2 that

7=1 7=1

where the summations are taken over the sets

3 3

£|/y| < 2k +1, fy < 2, XN,I ^ 0, |/7 < 2k when |m7 = 2
17=1 7=1

and

respectively. We may assume that |/,| < |/2| < |/3| and that |/,| < • • • < \J4\ . Then we get

{2k + 1, |mj < 1,
|/^/2|<^|< 3

[2^:, |m3| - 2,

Using Corollary 3.5 if necessary, we get

(4.17)
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< CM3(1 + tY~l for 0 < T < T.

When | nj ^ 0, we have

(4.18)

< CM4 (I + T)"~' for 0 < T < T.

If n4 = 0, observing that

obtain from Lemma 3.3 that

(4.19)

3 for 0 < T < r , we

1 + T) for 0 < T < T .

From (4.16) - (4.19) we get

(4.20) I^XT)!, <CM3(1 + T)^' for 0 < r < 7 \

Therefore, integrating (4.15) with respect to f, we have

(4.21) l|rX(OII£

+ -
H

<C^(l + tf(£ + M3) for 0<

Since \\u'(t)\\2ak+l < Cl|7|<2jl+1 ||r
7w||£, this means that

(4.22) (l + 0"A / |M /(Oll2.2A+ i^C3(£ + ̂ 3) for 0<

Finally (4.6), (4.12) and (4.22) imply the assertion of Proposition 4.1
immediately. This completes the proof, m
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Remark 2. Consider the Cauchy problem for single and semilinear wave
equations of the type

(4.23) uu = F(u,u') in(0 ,oo) X R 2 ,

(4.24) M(0, x) = e0(jc), dtu(Q, x) = £\j/(x),

where F = O(\u\2 +\u\2) in some neighborhood of (u,u') = 0 , and 0,y e C0°°(R2).
Assume that

(H4) The quadratic and cubic parts of F satisfy the null condition.
Making some change of variable stated in Katayama [8; Section5] (see also
Godin [2] and Klainerman [9]), the right-hand side of (4.23) becomes a function
of degree 3 with respect to the new variable, whose cubic part satisfies the null
condition. Therefore we can show from Theorem 1.2 that if F satisfies (H4), then
there exists a global smooth solution to (4.23) - (4.24) provided that £ is
sufficiently small. We omit the details here.
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