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Abstract

Two classes of operator families, namely «-times integrated C-semigroups of hermitian and
positive operators on Banach spaces, are studied. By using Gelfand transform and a theorem of
Sinclair, we prove some interesting special properties of such C-semigroups. For instances, every
hermitian nondegenerate w-times integrated C-semigroup on a reflexive space is the n-times integral
of some hermitian C-semigroup with a densely defined generator; an exponentially bounded C-
semigroup on L''(/^)(l < p < «>) dominates C (a positive injective operator) if and only if its
generator A is bounded, positive , and commutes with C; when C has dense range, the latter assertion
is also true on L(in) and C()(Q.).

§1. Introduction

Let X be a (complex) Banach space. We denote by X the dual space of X
and by B(X) the space of all bounded linear operators on X. Let C e B(X), and
let 7X0 — {T(t)',t > 0} be a strongly continuous family in B(X). For «> 1,7X0 is
called an n-times integrated C-semigroup on X ([10], [11]) if it satisfies: T(t)C =
C7XO, 7X0) = 0, and

(1.1) T(s)T(t)x = —-— ( f+/ - P )(s +1 - r)""1 T(r)Cxdr for x e X, s, t > 0.
(n-\y. Ji Jo

(see also [1], [15], [20] for the case C = J ).7"0)is called a (0-times integrated)
C-semigroup (see [5], [6], [13], [21]) on X if it satisfies: T(0) = C, and

(1.2) T(s)T(t) = T(s + t)C for s, t > 0.

The classical C0-semigroups are C-semigroups with C equal to the identity
operator /.

7X0 is said to be nondegenerate if T(t)x = 0 for all t > 0 implies x = 0. In
order that 7X0 be nondegenerate it is necessary (and sufficient in case n = 0) that
C is injective. The generator A of a nondegenerate ^-times integrated C-
semigroup 7X0 is the closed operator A defined as:
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xeD(A) and Ax = y**T(t)x-tnCx/nl = I T(s)y ds for t > 0.
Jo

We know that R(^Q T(s)ds) c D(A) and

f T(s)dsAc A I T(s)ds = T(t)- — C for f > 0 .
Jo Jo «!

When n = 0, the generator A is identical to the infinitesimal generator, which is
defined as

\D(A) := {x G X; lim T1 (7(0* - Cx) e R(Q } ,+

1 AJC := C"1 lim T1 (F(f );c - Cx) for jc e D(A).
I /->o+

Furthermore, if a nondegenerate n-times integrated C-semigroup F(-) is
nentially bounded in the sense that there are M > 0 and co > 0 such that \\T(t)\\ <
Me031 for all t > 0, we have the following equivalent definition of generator:

f£KA):={*eX;C*e /?(*,, (A))},

\Ax:=(A,-Rn(K)-lC)x for jc 6 D(A),

where fln(A):= J~AV-^r(0</f for A>0). It is known [10] that an exponentially

bounded, strongly continuous family {T(t);t>Q} of operators is an «-times
integrated C-semigroup with generator A if and only if C~!AC = A and for all

large A, A-A is injective and (h-A)\~e-*tT(t)xdt = Cx for all x E X.

The (algebra) numerical range of an operator T e B(X) is defined as the
nonempty compact convex set

V(T) := [F(T); F e B(X)', \\F\\ =

An equivalent expression due to J.P. Williams is: V(T) = {A 6 C;||T-z/|| >|A — z|
for all z e C} (see [4, Lemma 22.1]), from which it is clear that both the dual
operator T and the left multiplication operator LT by Thave the same numerical
range V(T).

T is called hermitian if V(T) is contained in the real line M, or equivalently,
if |expOYT)|| = l for all re R. T is said to be positive (in the sense of numerical
range), in notation F> 0, if V(T) c [0,oo). Since V(T) is equal to the closed
convex hull of the spatial numerical range

W(T):={(Tx,x )-xeX,x eX ,||;c|| = ||jc'|| - (jc,;c > = !}

(see [3, p. 83]), the set of all hermitian (resp. positive) operators is clearly closed
with respect to the weak operator topology. It is well-known that V(T) always
contains the spectrum a(T) of F, and when T is a hermitian operator, a theorem
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of Sinclair shows that V(T) = coa(T) which is equivalent to that r(aT + fiI)
= \\aT + pI\\ for all complex a and j3, where r(T) denotes the spectral radius of

7(see [4], §26).
An ft-times integrated C-semigroup T(-) is said to be hermitian (resp. posi-

tive) if T(f) is hermitian (resp. positive) for all t > 0. The purpose of this paper is
to investigate some interesting properties of hermitian and positive n-times
integrated C-semigroups. Section 2 is concerned with hermitian ones, Section 3
concentrates on positive C-semigroups which dominate the operator C, and
Section 4 consists of some illustrating examples.

As is well known, a classical C0 -semigroup T(-) is always exponentially
bounded, and its generator A is bounded if and only if T(-) is uniformly contin-
uous on [0,oo). For a C-semigroup with C^ /, the situation is quite different, even
when it is positive. For instance, in Section 4 we give an example (Example 3) of
a C-semigroup T(-) on £, , which satisfies T(t)>C>Q for all t > 0, is not
exponentially bounded, is uniformly continuous on [0,°°), but has an unbounded
generator.

Our main theorem (Theorem 3.3) about positive C-semigroups states that a
closed operator A generates a C-semigroup T(-) satisfying T(t) > C >0 if and
only if C~lAC = A,R(C)^D(An),A"C<=B(X) and A"C>0 for all n>l, so that

tn

T(t) = ̂ =Q — A"C. In case the space is a Lebesgue space If(ti) with

l < p < o o (orL',C0 under the additional assumption that R(C) = X), the above

condition becomes that A and C are commuting bounded positive operators
(Corollary 3.4). The proof of it for spaces C0(O) and Lr(ju), 1 < p < °°, p ^ 2, uses

the fact that a bounded linear operator on any one of these spaces is hermitian
(resp. positive) if and only if it is a multiplication operator by a bounded, real
(resp. positive) valued function (see [22], [12], and [19]). It is unknown whether
a similar statement as Corollary 3.4 holds for C-semigroups of positivity
preserving operators on Banach lattices, although it is true for the special case: C

It is known that an (n + l) -times integrated semigroup need not be the integral
of some /7-times integrated semigroup (see e.g. [1]), that is, it is not necessarily
differentiate. A hermitian «-times integrated C-semigroup T(-) turns out to
possess better regularity. In fact, T(-) is rc-th continuously differentiate in norm
on (0,oo) and T(n)(-) is locally bounded on [0,oo); in case n > 1, T(-) is (w-l)- th
continuously differentiable in norm on [0,oo) (Theorem 2.3, (b)-(e)). If T(-) is a
hermitian nondegenerate rc-times integrated C-semigroup with generator A,
where n > 1, then T(ll}(t)x converges to Cx as t — > 0" for x in D(A) (Corollary
2.4). Thus, if A has dense domain (this is the case in particular when the space X
is reflexive), then T(-) is n-th strongly differentiable on [0,°°) and T(n)(-) is a
hermitian C-semigroup (Theorem 2.5). Nevertheless, this conclusion is not true in
general (see Example 2.) We also deduce that if T(-) is a hermitian n-times
integrated C-semigroup on a reflexive space X with generator A , then T (•) is a
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hermitian ft-times integrated C -semigroup on X' with genetator A' (Corollary
2.6). It is unknown to us whether the same property is shared by nonhermitian C-
semigroups, although the affirmative answer for the case C = / is well known.

Another interesting phenomenon is that every hermitian n-times integrated
semigroup is exponentially bounded (Theorem 2.3 (g)). This is similar to Arendt's
result [2, Proposition 6.7] for positivity preserving integrated semigroups on
Banach lattices. In general, integrated semigroups are not necessarily exponen-

tially bounded (see [9] and [7, p. 1 10]).

§2o Hermitian C-semigroup§

In this section we study some properties of n-times integrated C-semigroups
of hermitian operators on a Banach space X.

Lemma 2.1. (i) ///: [0,°°) — >C is a continuous function satisfying

(2.1)

then either f = 0 or there is a complex number a such that f ( t ) = eai for all
t > 0 ;/(?) G R (resp. f ( t ) > 1) for all t > 0 if and only if a e R (resp. a > 0).

(ii) Let n be a positive integer. If g: [0,<*>)— »C is a locally integrable func-

tion satisfying

(2.2) s(f)s(j) = _!_jp_ [
(n-l)l [Jt Jo

1 f
then either g = 0 or there is an aeC such that g ( t ) = - - — (t - s)n~* e* ds for

(n — i)l Jo

all t>Q.

Proof, (i) is well-known. We deduce (ii) from (i). It follows from (2.2) that
g(s0)^0 for some SQ > 0 implies g,g','~,g(n} are continuous, g(Q) = -- =
g("-»(0) = 0, and g(n) satisfies (2.1). The result then follows from (i).

Lemma 2.2. Let O be a nonempty set, and let p, q be two real-valued
functions on O such that /J, := sup{\exp(q(cQ)s)p(G))\\ 0 < s < t, G) e O} < °o for all
t>0. Then

1 f'^
!inr?7—TTTTM (t + h~rYl~

(2.3) "><»-!>!* Jo

- f (t-r)"-lexp(q(Q))r)p(co)dr}
Jo

1 3 e*1

= —L—?-f (f-'•)""''(n-l)lolfJo
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uniformly for (t,a>) in /xO, where J is a compact subset of (0,°°) in case
n = l,or of [0, °o ) in case n>2.

Proof. Clearly, /?, is increasing in t and j30 = sup{|p(co)|; 0) e Q} . First, we
consider the case n > 2. Fix any & > 0 . We have for co e O and t > 0

— [— -j- f (r-rr- |^ ( f f l l 'p(0))dr = 7-^- f (t-r)"-2e
(n-\)l dt Jo O-2)! Jo

Moreover, for 0 < t < b and \h\ < 1 with J + h > 0 we have

(n
1 f f /+/1 f ' 1
±-—< (t + h-ryi-]e(l(a})lp(co)dr-\ (t - r)n~l e11^1' p(co)dr\

-l)lh [Jo Jo J

(n-2)! Jo

—-i— l/i-1 f ? j r (s - r)'"2 zxp(q(CQ)r)p(co)dr
(n-2)! Jt [Jo

- r »-7 i
Jo CXP q j S

(s - r)"~2 exp(q(G))r)p(ct))dr

+ f [(5 - r)-2 - (r - r)"-2 ] exp(q(a))r)p(G))dr\ds\
Jo j

(n-2)!

which converges to 0 (as /z —> 0) uniformly for (t,co) in [0,/?]xQ.
Next, we consider the case n = l. Without loss of generality we assume / =

[f , , t>] for some 0 < tl < t2 < oo. Let £>0 be arbitrary. There are numbers R} < 0
and R2 > 0 such that

exp(ar3) < e /(I + 2j80) for all a < /?,

and

exp(-a t2)<el(\ + 2/3^ ffih ) for all a > R2 ,

where f 3 = f , / 2 . Let 5, : = {fl)e Q;^(fl>) </?,}, 52 : = {fi)efl;/?, <^(fl})< /^j and
53 :={coeQ;^(a;)>/?2}. Thus for ( tfES, and re/

1 f— exp(q(6))r)p(co)dr
hj,

I fh+h

— I exp(g(co)r)ar-exp(^(ft))f,
«• J/,
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for all 0 < \h\ < t3. For G) e S2and t e J we have

1 f /+/7

- I Qxp(q(co)r)p(co)dr - exp(q(co)t)p((D)

Ii f/?
- exp(q(Q))r)dr-
n Jo

-I exp(q(co)r)dr-l
n Jo

uniformly for (t,co) in JxS2 as h-^>Q. Finally, we have for c t ) E S 3 , teJ, and
0 < \h\ < t3,

pt+h
1 1°- exp(q(Q))r)p(Q))dr - Q\p(q(o))t)p(o))
fi Jt

^ J ' 7

This proves the lemma for n - \ , and completes the proof.

Theorem 23. Let T(-) be a hermitian n-times integrated C-semigroup on
a Banach space X.
(a) // C > § , then T(t) > 0 for all t > 0.
(b) // n > I , then T(-) is norm continuous on [0,<>o) .
(c) // n>2, then T(-) is norm differentiate on [Q,°°) and r'(-) is a norm

continuous hermitian (n — l)- times integrated C-semigroup.
(d) Ifn=l, then T(-) is norm differentiate on (0,oo),r'(-) is hermitian, locally

bounded on [0,«>), and norm continuous on (0,oo), and T'(t + s)C= T'(t)T'(s)
for all r,5 > 0, where we define T'(Q) = C.

(e) If n = 0, then F(-) is norm continuous on (0,oo).
(f) Ifn = 0 and T(t) > C > 0 for all t > 0, then T(-) is norm continuous on [0,°°) .
(g) If C = I, then there exist M > 0 and 0) e R such that \\T(t)\\ < Meml for all

t>Q; in case n = 0, one can take M = 1 .

Proof. Let AT be the Banach subalgebra of B(X) generated by T(-) , C and /,
the identity operator on X. Let ///T be the carrier space of AT, i.e. the space of all
nonzero multiplicative linear functionals on AT .

Let 0 e ///T be arbitrary. By (1.1) and (1 .2) we have for all t, s>0

if n = 0, and
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f/-M fs \

- \(t + s-r)"~lT(r)dr
Jt Jo )

if n > 1 . It follows that 0(7(-)) = 0 if (and also only if for the case n = 0)
0(C) - 0 .

Let 0 e ///; := {0 e mT ;0(7(-)) £ 0} . If w = 0, Lemma 2.1(i) implies that

(2.4) 0(7(0) = exp(<y)0(Q,f£0

for some a0 e R . For the case ft > 1 we temporarily assume that 70 is norm
continuous on [0,°°). Then one can move (/) inside the integral so that

+ s- r)"-' 0(7(r))</r - 0(C)

for all r, s >0. It follows from Lemma 2.1(ii) that there is an a0 e R such that

(2.5) 0(7(0)- — - — f (t ~ s)"-1 exp(a.s)ds • 0(C) for all r>0 .
(n- 1)1 Jo

Next, we show that the nondecreasing function

(2.6) p, \= sup{|exp(a05)0(C)|;0 G //,;,0 < 5 < r} < oo for all r > 0.

If a 0e/,,; has a 0<0, then iexp(a00'0(QI^IIQ for all r > 0 . Suppose /3T=oo
for some T > 0. Then we have

/3T := sup{|exp(«0T)0(C)|; 0 e /^,a0 > 0} < oo,

and so for every r > 0 there is a 0T e /,/T such that a0 > 0 and |exp(c^ r)0, (C)|>r.
Then, since a hermitian element has norm equal to its spectral radius, we have
for t > I

||7(OI-sup |0(7(0)!-sup |0(7(0)!

i r= sup I (t - s)n

0e*T; ( n - l ) ! J o

1 f VI-1

^T-^TTT! ^-^^'^-r

in case ;t > 1, and ||7(0||>|exp(a01T)0/(C)| > r in case n = 0. Since r can be
arbitrarily large, this is a contradiction.

To prove (c) and (d) we define Ah(t) := h~}[T(t + h)- 7(0] for f > 0 , / z ^ 0 with
f + / z>0 . Since 7(-) is hermitian, Ah(t) is hermitian for all r > 0 , / i ^ 0 with
r + / i>0. Since



632 YUAN-CHUAN Li AND SEN- YEN SHAW

- r)"-1 exp(avi.— L)ln J0

for 0 E /^ and f > 0 , / z ^ 0 with t + h>0, we can apply Lemma 2.2 to
= 0(C), and ^W = a(j)((/)<= ///£) , and it follows that the limit

converges uniformly for (r,0) in Jx/?^ , where J can be any compact set in
(0,°°) (resp. [0,°°)) in case n = I (resp. n > 2). Hence we have for such set /

sup{||A /7 |(0-A /72(f)l;re/}

i /9 r
<sup{|0(A/7 (r))-, * ,-Jr (t-rY-1 (n — 1)! dt J0

+ sup{|0(A/? (2 (n- I)!

^0 as /z,,/z2 ^0+.

This implies that jf(-) is norm differentiable on / and T'(t) = \imh^+ Ah(t)
uniformly for t in /. Hence T'O is norm continuous on /. When n > 2 , / can be
any compact subset of [0,oo) so that T'(-) is a norm continuous hermitian (n-l)-
times integrated C-semigroup, i.e. (c) is true. When n = 1, / d (0,°o), so r'(-) is
norm continuous on (0,°o). Also, we have

- exp(oy)0(C) for f > 0 and 0 e //.;.

This implies that \\T'(t)\\< fy for r>0 and hence T'O is bounded on [0,t] for any
f > 0 . If we define r(0) = C, then r(-) satisfies r'(r + j)C= T'(t)T'(s) for all
r, 5 > 0 , and is locally bounded on [0, °°) . This shows (d) .

We have shown (2.5), and assertions (c), (d) under the assumption that TO is
norm continuous on [0,°°). It turns out that this assumption is superfluous. Indeed,
applying (c) to the norm continuous (n + l)-times integrated C-semigroup S(t):=

jlT(s)ds implies that r(-) = S'O is norm continuous on [0,°°). Hence (2.5), (2.6),

(c) and (d) hold for any hermitian n-times integrated C-semigroup.
Clearly, (a) can be seen from (2.4) and (2.5), and (b) and (e) follow by

applying (c) and (d), respectively, to S(-) . When n = 1 and C = /, we have /?, =
sup{exp(a05-); 0 e ,,/T , 0 < s < 1} < °o . Hence there is a 0) E R such that a$<CD for
all 0e//,y. This means that \\T'(t)\\ < exp(cot) for all t > 0, which shows assertion
(g) for the cases n = 0 and n = 1 . To show (g) for n > 2 one can apply (g) to the
integrated C-semigroup T(n~])(-) and then take integration n times.
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Finally, we show assertion (f). If 0 e „£, then 0(7X0) ̂  0(C) > 0 for all t > 0

implies a, >0. Let e > 0 be arbitrary. Let r>0 be such that ~— < £ for allF ^ exp(a)
a > y r . Then we have that as t -> 0+ , 0(7X0-Q = [exp(«00-l]0(Q -> 0

uniformly for those 0 e /^ with 0 < a0 < r. For those 0 e /^ with a0 > r and for

0 < r < — one has

Therefore we have proved that ||(r(0-C)| = sup|0(7XO)-0(C)|->0 as r -»0 + .
06//,f

The proof is complete.

Corollary 2.4. Let T(-) be a hermitian nondegenerate integrated C-
semigroup on a Banach space X, and let A be its generator. Then T'(-)\X} is a
hermitian C\X{ -semigroup on X} := D(A) and it is norm continuous on (0,°o).

Proof, (d) of Theorem 2.3 asserts that r'(-) is hermitian, locally bounded,
and norm continuous on (0,«>), and CT'(t + s) = T'(t)T'(s) for all t,s>0. Since
T(t)x-tCx = l'{) T(s) Axds for all x e D(A) and r > 0 , one has that as t -> 0+,

\\T'(t)x - Cx\\ = ||r(OAjc|| -> 0 for all x e D(A), and hence for all x in Xl, due to the
local boundedness of T'(-) on [0,°o). Restricting F(-) to the invariant subspace X}

we come to the conclusion.

Theorem 2.5. Let n> I. If the generator A of a hermitian nondegenerate
n-times integrated C-semigroup T(-) on X is densely defined, then T(-) is n-th
strongly differentiate on [0,°°) and T(n)(-) is a hermitian C-semigroup with
generator A. In particular, every hermitian nondegenerate n-times integrated C-
semigroup on a reflexive space is the n-times integral of some C-semigroup with
a densely defined generator.

Proof. The first part of the theorem follows from Theorem 2.3 (c) and
Corollary 2.4. For the second part we need only to show that the generator A of a
hermitian nondegenerate integrated C-semigroup T(-) on a reflexive space must
have dense domain.
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Since T'(f) exists for all t > 0 and A is closed, from the identity: T(t)x — tCx

= A£ T(s)xds, x e X , t > 0 one sees that R(T(t)) c D(A} and AT(t)x = T'(t)x - Cx

for all x E X and t > 0. Since X is reflexive, the local boundedness of F'(-)
implies that for any x E X and for any sequence tn —> 0 , the sequence {t~]T(tn)x

= t~] I" T'(s)xds} has a weakly convergent subsequence, say t~*T(tn^)x—> y

weakly, so that A(t~* j "k T(s)xds) = t~lT(tn^ )x - Cx converges weakly to y —» Cx .

This, together with the facts that r,"1 J "* T(s)xds —> 0 and A is closed implies that

_y —> Cx = AO = 0, and so Cx = w-limt~lT(tn )x. Since {tn} is arbitrary, we must

have that Cx = w - lim/^0+ t~lT(t)x E D(A). Hence C is a hermitian operator with

R(C) c D(A). Since { exp(iYC); f e R} is a unitary group, it follows from the mean
ergodic theorem for semigroups on reflexive spaces (see e.g. [18]) that X = N(C)
0 R(C). The nondegeneracy of T(-) implies that C is injective, and so we have
X = R(Q = D(A).

Corollary 2060 Let F(-) be a hermitian n-times integrated C-semigroup on
a Banach space X. Under each of the conditions'. (1) n > 1; (2) n = 0 and
F(f) > C > 0 for all t > 0; (3) n = 0, T(-) is nondegenerate and X is reflexive, the
dual family {T (t); t > 0} is a hermitian n-times integrated C -semigroup on X .

Proof. Since the dual operator of a hermitian operator is also hermitian, the
assertion for the cases (1) and (2) follows from (b) and (f) of Theorem 2.3. For
the case (3) one can apply case (1) and then Theorem 2.5 to the integral of T(-).

Theorem 2.7. Let T(-) be a nondegenerate hermitian C-semigroup on a
Banach space X with an infinitesimal generator A. Then
(a) R(T(t)) e D(An) for n = 0,1, • • • and t > 0 ;
(b) A"T(t) e B(X) is hermitian for n = Q,l,--- and t > 0 ;
(c) A'T(-) is norm continuous on (0,°<>) for n = 0,!,-••
(d) | |A lT(0||<max{r / IMJC||,(j32 ,j8,M2H)1/2}/orr>OanJ n = 0 , l , - - - , where ft :=

sup{|exp(a^)0(C)|;0 E M'T ,0 < s < t},t > 0, and Mn := sup{ane~a \a > 0} = nne~\
72 = 0 , 1 , - - - .

Proof. From the proof of Theorem 2.3 we see that ft is finite and increasing
in f. Let 5+ :={0E//^;a0 >0} and S_ :=///; -S+. Since ft is finite, if 0 E 5 ^ , w e
have for all n = 0,1, • • •, and t > 0

0 < a;|0(C)| < a; exp(-cgft < Mnft ,
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and

a; exp«vWQI < [exp(2a0OI0(Qi]l/2[a;-"|0(C)|]1/2 < (j82,AAf2n)1/2 .

If 0 e 5_ , then |aj exp(a0r)0(C)| < r"MJ|C|| . Hence we have

(2.7) |a; exp(cy)0(C)l ^ max{r"MJ|q|,(^A^2J
1/2}

for all £ > 0 and « = 0,1,--- . Thus (d) follows from (2.7), condition (b), and the
following assertion:
(d') If 06 /^ \ /*; then 0(A'T(-)) = 0 , n > 0; if 0 e //^ , then 0(A'T(0) =

aj exp(a/)0(C) for r > 0, n>0.

We shall prove (a)-(c) and (d') by induction on n. (c) for n = 0 is (e) of
Theorem 2.3, and (a), (b), and (d') are obviouus for n - 0. Suppose they are true
for H = 0 , l , - - - , k. We show that they are also true for n = k + 1. Since A is the
generator of T(-) , we have AJ r(s)ds = T(f) - C for t > 0. By the induction hypo-

thesis for n = k we have for f, h > 0

1 f
Ji

= /T1 [AA T(t + h)-Ak T(t)]

are hermitian operators, and 0(/z~ lA^+1 r(s)ds') = 0 for all 0e/// r \ /*y , r > 0 ,

/ z ^ O with f + / z > 0 . Let 7 = [f , , f 2] be an arbitrary close subinterval of (0,°o). We
claim that

and lim /T'A*+1 f
/!^0+ J,

in operator norm uniformly for r in /.
To show this we let Q = //^,^(0) = a0 , and p(0) = a^+1 exp(«0f3)0(C) for

0 G ///^ , where f3 = f, /2 . Then by (2.7) we have for t e / and 0 e /^

K1 exp«y)0(C)| ̂  max^-'Af^l C||,(A, A^2(t+.,)"2}.

Thus we can apply Lemma 2.2 to obtain that
>t+h

lim (t)(h~lAk

/^o+

- liiri /z"1 [aj exp(a0 (r + A)0(C) - a* exp(a/)0(C)]
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uniformly in (r,0) on J x /,/T , and which is equal to a^+] exp(a0f)0(C). Since each

h~lAk+l 1 T(s)ds is hermitian, this shows that for h{ ,/z2 > 0

/»/+/?! /ef+/?o
1 T(s)ds-h^Ak+l ~T(s)ds\\teJ]
Jt Jt

;f € 7,0 e

as /z,,/z2 -^0+.

Since J is an arbitrary compact interval in (0,°o), the closedness of A and the
induction assumption for n = k show that (a)-(c) are true for n = k + 1, and we
have for <f> e //^

= lim h-l[6(AkT(t + h})-(b(AkT(t)}}
+

= Urn ft-' [a*

for t > 0. For (f) e /*T \ /^ we have

(f)(Ak+lT(t))= Umh
h^0 +

Therefore (d5) is true for n = k + 1 , and the proof is complete.

Corollary 2080 Let T(-) be a hermitian C0-semigroup on a Banach space
X with infinitesimal generator A.
(a) // AeB(X),then A" is hermitian for /i = 0 , l , - - - .
(b) // AeB(X) and A > 0 , then An >0 for /z = 0, l , - - - .

Proof, (a) By Theorem 2.3 (g) there is a 0) e R such that ||T(0|| < ^wr for all

r > 0 . Since T(-) is hermitian, so is (A-A)"1 := e~^T(t)dt for all A > fi). Since

A e fi(X) , we have for all /i = 0 , l , - - - ,

|| A A" (A - A)"1 - A"|| = ||A/!+1 (A - A)'1 1 < J^- -> 0 as A -> -
A-||A||

Using this fact and the equality A" (A - A)'1 = AA"'1 (A - A)'1 - A"~l , one can easily
show by induction that A" (A -A)"1 and A" are hermitian for all A > Q) and n > 0.
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(b) By (a) we have that A" is hermitian for n = l , 2 , - - - . The result follows
from the spectral mapping theorem.

Proposition 2 09 8 Let T(-) be a hermitian CQ -semigroup on a Banach
space X with infinitesimal generator A. Then A e B(X) if and only if there is a
real number (0 such that ewlT(i) > I for all t > 0.

Proof. The sufficiency follows from Theorem 2.3 (f) and the fact that a
uniformly continuous C0 -semigroup has a bounded generator. To see the necessity
we apply Corollary 2.8 (b) to the hermitian C0 -semigroup em*T(t\ It follows that

l>I for all t > 0.
;i=0

§3. Positive C-Seraigroups which Dominate C

The following theorem presents some properties of positive C-semigroups.

Theorem 3.1. Let T(-) be a nondegenerate C-semigroup on a Banach
space X such that T(t) > C > 0 for all t>0, and let A be its generator. Then
(a) R(T(t))dD(A")for n = 0 ,1 , - - - , and t > 0;
(b) A"T(t)eB(X) and AnT(t) > 0 for n = 0,1,-", and t > 0;
(c) A" 7X0 is norm continuous on [0, «>) for n = 0, 1, • • • ;
(d) ||A'T(OII<032,AM2n)1/2 for t>0 and H = 0, l ,»- , where /J, := sup {| exp(a^)

Proof. From the proof of Theorem 2.3 we see that /?, is finite and increasing
in t. The hypothesis: T(t) > C >0 , t > 0, implies that 0(C) = 0 f or 0 G ,»T \ ,„? and
a0 > 0 for 0 E ///^ (Lemma 2.1 (i)) so that

0 < aJ0(C) < a; exp(-a,)fl < MJP

The estimation in the proof of Theorem 2.7 yields

(3.1) |

Thus (d) follows from (3.1), condition (b), and the following assertion:
(d') If 0 e ///7 \ ///; , then 0(AfT(-)) = 0 , n>0 ; if 0E/// ; , then 0(AT(0) =

aj exp(a^r) 0(C) for f > 0 , n > 0 .
We shall prove (a)-(c) and (d') by induction on n. (c) for n = 0 is (f) of

Theorem 2.3, and (a), (b), and (d') are obviouus for n = 0. Suppose they are true
for fl = 0 , l , - - - , k. We show that they are also true for n = k + 1. Since A is the

generator of T(-) , we have AJ T(s)ds = T(t)-C for t>0. By the induction
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assumption for n = k we have for all r > 0 , / z > 0 , <j)(h~lAk+l J"' T(s)ds) = 0 if

0 e / \ /? and

M 'l(s)ds) = h~l l<j)(Ak T(t + A)) -

= /T1 (

>0

if 0E// / ; . Hence h~]Ak+l ̂  T(s)ds is positive for all t>0 and / z > 0 .

Let Z? > 0 be arbitrary. We claim that

R(T(t)) c D(Ak+l) and lim h~lAk+l T(s)ds = Ak+lT(t)
/J->0+ Jt

in operator norm uniformly for t on [0, b]. First, using integration by parts we
write

$(h~lAk+l rW)&)Jf
(r + A))-

o

\t + h -
o

Applying Lemma 2.2 with O = /^,/?(0) = ^+~0(Q » a^d ^(0) = a0 , we obtain that

lim 6(h-lAM I T(s)ds)
ii-*o+ J,

uniformly for (r,0) in [0,^?]x/^. This shows for /zp/*2 >0

-i-A'+1 f V(5)^-J-AA+I f
h} Jt h2 J,

as h},h2 ->0+.
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Since b > 0 is an arbitrary, the closedness of A and the induction assumption for
n = k show that (a)-(c) are true for n = k + 1, and we have for 0 e ///T

= lim h
/!->0 +

= lim /r![ai exp(a,
/?->()+ 9 ^

= a*+l exp(oy )0(C)

for t > 0. Therefore (d') is true for n = k + 1, and the proof is complete.

For exponentially bounded positive C-semigroups we have the next theorem.

Theorem 3»2. Let T(-) be a nondegenerate exponentially bounded C-
semigroup, say \\T(t)\\< Me03' for some constants M > 0, CD e R and all t>0. If
T(t)>C>$, then the infinitesimal generator A of T(-) has the following prop-
erties'.

(a) R(T(t))c:D(A'l)for n = 0 ,1 , - - - , and t > 0 ;

(b) A"T(t)eB(X)and AnT(t}> % for n = 0 ,1 , - - - , and t > 0 ;

f°°

o
(d) limM"/?(A) = A"C in operator norm for n = 0, ! , - • • ;

(e) A"^(A)£fi(A r) and A"^(A)> ® for all A>« and n = 0,l,

(f) |A"C|| < ffl"||q| anrf | |A" /? (A) | |< -r | |C | | / or« / / Kxoand n = 0,1,- .
/i — ft)

Proof, (a) and (b) have been proved in Theorem 3.1 , and the first part of (f)
follows from (d), (e), and the second part of (f). Note also that (f) follows from
the following assertion:
(f)

and 0(A"/?(A)) = - ^— 0(C) for 0 e /*r , A > 0,0,1,2,---,
A - a0

where c^ is treated as zero whenever 0 e ///7 \ ///7.
We shall prove (c)-(e) and (f) by induction on n. First, let us consider n = 0.

Since || 7X01 < Ate0" and T(t)>C> 0 for all / > 0 , it follows from Lemma 2.1 (i)
that for every 0 E mT there is a positive number a0 < CD such that (f)(T(t)) =
0(C)exp(a00 for all f > 0 . Thus, by Theorem 2.3 (e), we have for A > G )

e~*'T(t)dt)=

A -
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and

)- C}\ =
A - (X^ A -CD

uniformly for 0 on mT, as A-»oo. Since A#(A)-C is hermitian, we have
||A/?(A) - C|| = sup{|0(A#(A) - Ol;0 e mr} -> 0 as A -> °o . Also, the positivity of T(-)
implies /?(A) > 0 for A > co . This proves (c)-(e) and (f ) for the case n = 0.

Now, assume that (c)-(e) and (f) are true for M = 0 , l , - - - , k. First, we see
from AJ?(A) = A#(A) - C for A > ft) and (b), (e) for n = k that (c) holds for n = k +
1 and AA+1#(A) = AA*/?(A)-AACe£(X) is hermitian. Then (f5) (with n = k )
implies that

A

- 0(AAC) -
A -

for all 0 e ///T and A > t o . Hence AA+1/?(A) is positive. This proves (e) and the

second part of (f ) for n = k + 1 . To prove (d) and the first part of (f) for n = k +
1 , it suffices to show that R(C) e D(Ak+]) and lim AAA+I/?(A) converges to AA + IC

A-»°o

in operator norm.
For every 0 e /,/T and A,/^ > (O

A -

which converges to 0 uniformly for 0 in ///T, as / x , A — >°o . Hence AAA+1/?(A)
converges in operator norm to a bounded operator E. This with the induction
assumption ||AAA/?(A)- AAq -> 0 implies R(AkC)dD(A) and AA+1C = £e£(X)
because A is closed. Hence (d) holds for n = k + 1. Next, we have for every

AaA+1

(j)(Ak+lC) = lim 0(AAA+1/?(A)) - lim - *— 0(O = aiA^OO A-^OO A - a0

This proves the first part of (f) for n = k + 1 , and the proof is complete.

Theorem 3.30 Let C e B(X) be an injective operator, and A be a closed
operator on X. Then A is the generator of a C-semigroup F(-) that satisfies T(t)
> C > 0 and \\T(t)\\< Me™ for all t >0 if and only if A has the properties: C'1AC
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= A,/?(C)cD(A"),A' !Ce£(X),A"C>0 and \\A"C\\< M'co" for some M'>||C|| and
+n

«=0

00 t

all n — 0 ,1 , - - - . Moreover, we have T(t) = ^°° —-A"C.
n\

Proof. The necessity follows from Theorem 3.2 To show the sufficiency,
tn

define T(t) := £J=0 -=-j- A"C for r > 0. The hypothesis implies that T(t) > C >0 and

|| < Me"1 for all t > 0. Next, we have for A > o>

(A - A) I"* e~liT(t)dt = ( A - A) Y f <TAf . ̂ - A "Oft
Jo ~ Jo n!

Since C~1AC = A, it follows that T(-) is a C-semigroup with generator A (see
[10]). This completes the proof.

Corollary 3.4. Let C e B(X) be a positive, injective operator, and A be a
closed operator on X = Lp(/ii)(l < p < °o). Then A is the generator of an
exponentially bounded C-semigroup T(-) on X which satisfies T(t) > C > 0 for all
t>Q if and only if AeB(X), A > 0 , and AC = CA. Under the additional
assumption that R(C) = X , the assertion also holds for the spaces X = Ll(S,ju) and
X = C0(O) with O a locally compact space.

Proof. Since, as mentioned previously, a hermitian (resp. positive) operator
on each of the spaces C0(Q) and Z/(/i), l<p<°° , p ^ 2 , is a multiplication
operator by a bounded, real (resp. positive) valued function, the product of
hermitian (resp. positive) operators on these spaces is still hermitian (resp.
positive). Since the product of two commuting positive operators on a Hilbert
space is still positive, the sufficiency part of the corollary follows from the
sufficiency part of Theorem 3.3.

Next, we see that, as multiplication operators, positive operators on spaces

X = C0(Q), L /3(MX l< Jp<°°, P* 2, have the property:

0 < A < B implies ||A/|| < ||£/|| for all / e X.

Commuting operators on a Hilbert space H also have this property. Indeed, if
0 < A < B and AB = BA, then Al/2B = BAl/2 and ABl/2 = B[/2A so that

= (Bl/2ABl/2x,x) = (ABl/2x,Bl/2x)

<(BBl/2x,Bl/2x) = \\Bx\\2.



642 YUAN-CHUAN Li AND SEN-YEN SHAW

To show the necessity, we see from (b) and (f) of Theorem 3.2 that 0 < AC
<G)C, so that

\\ACf\\ < cd\\Cf\\ for all feX.

Hence A is bounded and ||A||<(j0 if C has dense range. Since injective hermitian
operators on reflexive spaces have dense ranges (see the argument in the proof of
Theorem 2.5), this is readily true for the case X = If (ii)(l < p < °°). Since both C
and CA(= C(C-1AC) = AC) are positive operators, for the case p = 2, C1 / 2 is an
injective positive operator with dense range, and (AC]/2x, C1/2*} = (ACx,x) > 0 for
all xeL2. Since A is bounded, this implies that A is positive on L2. For other
cases, there are positive functions h} and h2 such that Cf = hlf and CAf = h2f
for all / E X . The injectivity of C implies that h{(s)>0 for all seQ in case

X = C0(O) (resp. a.e. [//] in case X = Lp(/Li)). It follows that Af = h~lh2f for all
/ e X, and so A is positive. This proves the necessity.

Remarks, (i) In particular, Corollary 3.4 asserts that a positive C-semigroup
TO dominates C on a Hilbert space if and only if its generator A is bounded,
positive, and commutes with C. For a simple proof of this assertion for the special
case C = /, see e.g. [17, Proposition 5.1]. It is worthwhile mentioning that the
same assertion holds for positivity preserving C0-semigroups on Banach lattices
(see [14, Proposition 4.8 and Lemma 4.18 on pp. 274-279]).

(ii) Hermitian C-semigroups on the spaces C0(O) and l f ( n ) , 1 < /?<<*>,
/?^2, are C-semigroups of multiplication operators. For characterization of
abstract multiplication semigroups on Banach lattices, see [14, pp. 287-290] and

[16].

§40 Some Examples

In this section we include several examples as illustration of some results in
Sections 2 and 3. The first example is a hermitian, contraction C0-semigroup on

Example 1. Let X = l} with coordinate vectors e l , e 2 , - - - . Define
TO: [0,oo)->£(*,) by

T(t)x = (e~ntxn) for x = (xn)ell and f > 0 .

Let j ce -^ . If £>0 is arbitrary, then there is a positive integer N so that

£ |*J<e/2. Hence
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N

£ (l-e-'")\xn\

Taking lim sup we obtain that lim sup||7XO*-*|| < £ . Hence T(-) is strongly
t^Q+

continuous at t = 0. It is easy to see that F(-) is a hermitian (see [4, p. 92]),
contraction C0- semigroup. The infinitesimal generator of F(-) is the operator A

defined as

JD( A) :={(*„)€*, ;(-**„ )£*,} ,

[Ax := (-nxn ) for ;c = (xn ) e D( A).

Since A is unbounded, F(-) is not norm continuous at t = 0. By Theorem 2.3 (e),
we know that T(-) is norm continuous on (0,°o). This fact can also be seen from
the following estimate:

1(7X0 - T(s))x\\ = £ \e-at - e"»\\xn\ < sup(e~'» - e~nt )\\x\\
n=\ n>\

< { sup (e-™ - e'nt ) + *-"' }\\xl 0<s<t,N = l,29-.
\<n<N

Theorem 2.3 (d) asserts that a hermitian integrated C-semigroup T(-) is norm
differentiate on (0,oo) and T'(-)is norm continuous and satisfies T'(t)T'(s) =
T'(t + s)C on (0,°°). The next example shows that T'(t) need not be strongly
convergent to C as t — > 0+ .

Example 2. Let T(-) be a hermitian C-semigroup on a Banach space X
which is not norm continuous at 0 (for instance, the one in Example 1). For each

t>0 define a linear operator T(0 on B(X) by T(t)S := l'(T(T)SdT(S <= B(X)).

Clearly, T (•) is an integrated Lc-semigroup on £(X), where the operator Lc is

the left multiplication by C. Since V(LT(n} = V(T(t)) , T (•) is also hermitian. The

norm continuity of T(-) on (0,°o) implies that T (•) is norm continuous on [0,°o)
and T'(-) is norm continuous on (0,-). But ||(T'(0- Lc)(I)\\ = \\(T(t)- C\\ -/> 0 as
f ^ 0 + . That is, T'(-) is not strongly continuous at 0, although it is norm
continuous on (0,°°) and satisfies T'(t)Y(s) = T'(f + s)C, r, 5 > 0.

Finally, we exhibit a positive C-semigroup which dominates C, is not expo-
nentially bounded, is uniformly continuous on [0,°°), and has unbounded
generator.
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Example 30 Let X = l} and let C : £ , — > £ , be the operator defined as

= (e~"2xn) for x = (xn)e£l. Clearly, C has dense range. Define r(-):[0,«>)->

(ent-nxn) for x = (xn)e£l and t >0.

T(-) is a nondegenerate C-semigroup, with generator A defined as

Since T(t)> C>0 for all r >0, it follows from Theorem 2.3 (f) that F(-) is norm
continuous on [0,°°)- Because of Corollary 3.4, the fact that A is unbounded
implies that T(-) is not exponentially bounded. In fact, this is justified by the
estimate: \\T(2n)\\ > \\T(2n)en\\ = e"2 , n = l,2,-.
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