Norm Additivity Conditions for Normal Linear Functionals on von Neumann Algebras

Ву

Masaharu KUSUDA*

§1. Introduction

Let *M* be a von Neumann algebra and let φ and ψ be bounded linear functionals on *M*. We then have the norm inequality $\|\varphi + \psi\| \le \|\varphi\| + \|\psi\|$. On the other hand, it is well-known that if φ and ψ are positive, then $\|\varphi + \psi\| = \|\varphi\| + \|\psi\|$. In general, however, such an equality does not necessarily holds if both φ and ψ are not positive. The purpose of this paper is to investigate when the norm equality $\|\varphi + \psi\| = \|\varphi\| + \|\psi\|$ holds for given normal linear functionals φ and ψ . Then the fact to play an essential role is the following:

Let M be a von Neumann algebra and let φ be a normal linear functional on M. Then we have

$$\varphi(\cdot) = |\varphi|(v \cdot), \quad |\varphi|(\cdot) = \varphi(v \cdot \cdot), \quad and \quad ||\varphi|| = |||\varphi|||$$

for all partial isometries v' in M satisfying that $\varphi(v') = ||\varphi||$, where $|\varphi|$ denotes the absolute value of φ (c.f. [1, Lemma 2.3]).

In connection with this fact, we may expect that the set of those elements x, in the unit ball of M, with $\varphi(x) = \|\varphi\|$ has nice information on norms and absolute values of normal linear functionals on M. In fact, by employing such a set, we will give necessary and sufficient conditions for a pair of normal linear functionals φ and ψ to satisfy that $\|\varphi + \psi\| = \|\varphi\| + \|\psi\|$ or that $|\varphi + \psi| = |\varphi| + |\psi|$ (Theorem 2.1).

§2. Results

Let *M* be a von Neumann algebra and let φ be a normal linear functional on *M*. By the *polar decomposition* of φ , we mean the following expression: $\varphi(\cdot) = |\varphi|(v \cdot)$ and $|\varphi|(\cdot) = \varphi(v' \cdot)$

Communicated by H. Araki, November 9, 1994. Revised December 15, 1994. 1991 Mathematics Subject Classifications: 46L10.

^{*} Department of Mathematics, Faculty of Engineering, Kansai University, Yamate-cho 3–3–35, Suita, Osaka 564, Japan.

for some partial isometry v in M and a unique positive linear functional $|\varphi|$ on M which satisfies that

$$\|\varphi\| = \||\varphi\|\|$$
 and $|\varphi(x)|^2 \le \|\varphi\| |\varphi| (x'x)$ (*)

for all x in M (cf. [2, 3.6.7], [3, 1.14.4], or [4, III. 4.2]). Note that this condition (*) ensures the uniqueness of $|\varphi|$ (cf. [2, 3.6.7] or [4, III. 4.6]). More precisely, if a positive linear functional ψ satisfies that

$$\|\psi\| = \|\phi\|$$
 and $\|\phi(x)\|^2 \le \|\phi\|\psi(x x)$,

then $\psi = |\varphi|^{l}$. In general, there is some freedom for the choice of v, as is seen from [1, Lemma 2.3]. However, if vv' is exactly equal to the support projection $s(|\varphi|)$ of $|\varphi|$, i.e., the smallest of all projections p such that $|\varphi|(p\cdot) = |\varphi|(\cdot)$, then v is uniquely determined (cf. [3, 1.14.4], [4, III. 4.6]).

Now we set

$$M_{\varphi} = \{ x \in M \mid ||x|| \le 1, \ \varphi(x) = ||\varphi|| \},\$$

which is a non-empty and weakly compact face of the unit ball of M. Hence M_{φ} contains a partial isometry (cf. [2, 1.4.7], [3, 1.6.5], [4, I.10.2]).

Positive linear functionals φ and ψ on a *C*-algebra always satisfy that $\|\varphi + \psi\| = \|\varphi\| + \|\psi\|$ and $\varphi + \psi$ is positive. These are generalized as follows.

Theorem 2.1. Let M be a von Neumann algebra and let φ and ψ be normal linear functionals on M. Then the following conditions are equivalent:

- (1) $M_{\omega} \cap M_{\psi}$ is not empty.
- (2) $|\varphi + \psi| = |\varphi| + |\psi|$.
- (3) $\|\varphi + \psi\| = \|\varphi\| + \|\psi\|$.
- $(4) \quad M_{\varphi} \cap M_{\psi} = M_{\varphi + \psi}.$

Proof. We first show that $M_{\varphi} \cap M_{\psi} \subset M_{\varphi+\psi}$. Without loss of generality, we can assume that $M_{\varphi} \cap M_{\psi}$ is not empty. For any x in $M_{\varphi} \cap M_{\psi}$, we have

$$\|\varphi\| + \|\psi\| = \varphi(x) + \psi(x) = (\varphi + \psi)(x) \le \|\varphi + \psi\|.$$

Since this mean that $(\varphi + \psi)(x) = ||\varphi + \psi||$, we see that $x \in M_{\varphi + \psi}$.

(1) \Rightarrow (2). Let v be a partial isometry in $M_{\varphi} \cap M_{\psi}$. Since $v \in M_{\varphi+\psi}$, it follows from [1, Lemma 2.3] that

$$|\varphi + \psi|(\cdot) = (\varphi + \psi)(v \cdot) = \varphi(v \cdot) + \psi(v \cdot) = |\varphi|(\cdot) + |\psi|(\cdot).$$

(2) \Rightarrow (3). Since $|\varphi + \psi|$, $|\varphi|$ and $|\psi|$ are positive linear functionals, we have

$$\|\varphi + \psi\| = \||\varphi + \psi|\| = |\varphi + \psi|(1) = (|\varphi| + |\psi|)(1)$$
$$= |\varphi|(1) + |\psi|(1) = ||\varphi|\| + ||\psi|\| = \|\varphi\| + \|\psi\|.$$

722

¹ As the definition of a polar decomposition, we adopt the (right) polar decomposition mentioned in [2, 3.6.7] and our absolute value $|\varphi|$ means $|\varphi'|$ in the sense of the (left) polar decomposition mentioned in [3, 1.14.4] and [4, III. §4].

 $(3) \Rightarrow (4)$. We have only to show that $M_{\varphi+\psi} \subset M_{\varphi} \cap M_{\psi}$. Take any x from $M_{\varphi+\psi}$. We then have

$$\varphi(x) + \psi(x) = (\varphi + \psi)(x) = \|\varphi + \psi\| = \|\varphi\| + \|\psi\|$$

Now denote by $\Re z$ the real part of a complex number z and by $\Im z$ the imaginary part of z, respectively. Since $\|\varphi\| + \|\psi\|$ is a real number, it follows from the above equality that

$$\Re\varphi(x) + \Re\psi(x) = \Re(\varphi(x) + \psi(x)) = \|\varphi\| + \|\psi\|$$

Here remark that

$$\|\omega\| \ge |\omega(x)| \ge |\Re\omega(x)| \tag{**}$$

for every bounded linear functional ω on M. We thus have

$$0 \le \|\varphi\| - \Re\varphi(x) = \Re\psi(x) - \|\psi\| \le 0.$$

Hence we conclude that $\|\varphi\| = \Re \varphi(x)$ and $\|\psi\| = \Re \psi(x)$. This and the inequality (**) show that $\Im \varphi(x) = 0$, i.e., $\|\varphi\| = \varphi(x)$. Similarly we obtain that $\|\psi\| = \psi(x)$. We thus see that $x \in M_{\varphi} \cap M_{\psi}$.

(4) \Rightarrow (1). Since $M_{\omega+\omega}$ is not empty, this implication is clear. Q.E.D.

Here recall that positive linear functionals φ and ψ on a C'-algebra are said to be *orthogonal* if $\|\varphi - \psi\| = \|\varphi\| + \|\psi\|$.

Corollary 2.2. Let M be a von Neumann algebra and let φ and ψ be positive normal linear functionals on M. Then the following conditions are equivalent:

(1) φ and ψ are orthogonal.

(2) $M_{\varphi} \cap M_{-\psi}$ is not empty.

References

- [1] Kusuda, M., Polar decompositions of bounded linear functionals on operator subalgebras, *Proc. Amer. Math. Soc.*, **118** (1993), 839–843.
- [2] Pedersen, G.K., C*-Algebras and their Automorphism Groups, Academic Press, London, 1979.
- [3] Sakai, S., C*-Algebras and W*-Algebras, Springer-Verlag, New York, 1970.
- [4] Takesaki, M., Theory of Operator Algebras I, Springer-Verlag, New York, 1979.