Equivariant K-Theory and Maps between Representation Spheres

Dedicated to Professor Yasutoshi Nomura on his 60th birthday

Ву

Katsuhiro KOMIYA*

§1. Introduction and Statement of Results

The equivariant K-theory has been successfully employed in the study of equivariant maps by Marzantowicz [5], Liulevicious [7] and Bartsch [3]. In the present paper, using the equivariant K-theory, we will obtain a necessary condition for the existence of G-maps $SU \rightarrow SW$, where SU and SW are the unit spheres of unitary representations U and W, respectively, of a compact Lie group G.

From Atiyah [1], [2] or Segal [8] we can see that the equivariant K-ring $K_G(SU)$ of SU is isomorphic to $R(G)/(\lambda_{-1}U)$, the complex representation ring R(G) divided by the ideal $(\lambda_{-1}U)$ generated by the Euler class $\lambda_{-1}U$ of U in $K_G(\text{pt}) = R(G)$. If there exists a G-map $\eta: SU \to SW$, then we obtain a ring homomorphism $\eta: R(G)/(\lambda_{-1}W) \to R(G)/(\lambda_{-1}U)$ which coincides with the homomorphism induced from the identity on R(G). This implies that the condition $\lambda_{-1}W \in (\lambda_{-1}U)$ is necessary for the existence of G-maps $SU \to SW$. If G is abelian, we will reduce this condition to more exlicit form.

Let $S^{1} = \{z \in C \mid |z| = 1\}$ be the circle group of complex numbers with absolute value 1, and Z_{n} the cyclic group of order *n* considered as a subgroup of S^{1} . For any integer *i* let S^{1} and Z_{n} act on $V_{i} = C$ via $(z, v) \mapsto z^{i}v$ for $z \in S^{1}(\text{ or } Z_{n})$ and $v \in V_{i}$. A compact abelian group *G* decomposes into a cartesian product

$$G = T^k \times \mathbf{Z}_{n_1} \times \cdots \times \mathbf{Z}_{n_l},$$

where $T^k = S^1 \times \cdots \times S^1$, the cartesian product of k copies of S^1 . Letting γ be a sequence $(a_1, \dots, a_k, b_l, \dots, b_l)$ of integers, denote by V_{γ} the tensor product

$$V_{a_1}\otimes \cdots \otimes V_{a_k}\otimes V_{b_1}\otimes \cdots \otimes V_{b_l},$$

Communicated by K. Saito, December 19, 1994.

¹⁹⁹¹ Mathematics Subject Classifications: 55N15, 57S99

^{*} Department of Mathematics, Yamaguchi University, Yamaguchi 753, Japan

which can be considered as a representation of G in a natural way. Let Γ be the set of sequences

$$\gamma = (a_1, \dots, a_k, b_1, \dots, b_l)$$

with $a_1, \ldots, a_k \in \mathbb{Z}$ and $0 \le b_j \le n_j - 1$ for $1 \le j \le l$. The set $\{V_{\gamma} \mid \gamma \in \Gamma\}$ gives a complete set of irreducible unitary representations of G, and so any unitary representation U of G decomposes into a direct sum

$$U=\bigoplus_{\gamma\in\Gamma}V_{\gamma}^{u(\gamma)}\,,$$

where $u(\gamma)$ is a nonnegative integer and $V_{\gamma}^{u(\gamma)}$ denotes the direct sum of $u(\gamma)$ copies of V_{γ} . We can easily see that the fixed point set U^G of U is {0} if and only if $u(\gamma) = 0$ for $\gamma = (0,...,0)$. Let

$$|\gamma| = |a_1| + \dots + |a_k| + b_1 + \dots + b_l$$

for any $\gamma = (a_1, \dots, a_k, b_1, \dots, b_l) \in \Gamma$.

We are now in a position to state our main theorem.

Theorem 1.1. Let U and W be unitary representations of a compact abelian group G, and decompose into

$$U = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)} \quad and \quad W = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)}.$$

Assume that there exists a G-map $SU \rightarrow SW$. Then

(1) if dim $U = \dim W$, then there is an integer m such that

$$\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} \equiv m \prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} \mod d,$$

where d is the greatest common divisor of $n_1, ..., n_l$, (if l = 0, then assume d = 0), (2) if dim U > dim W, then

$$\prod_{\gamma\in\Gamma}|\gamma|^{\mathfrak{u}(\gamma)}\equiv 0 \mod d.$$

From this theorem we obtain the following two corollaries.

Corollary 1.2 (cf. Liulevicious [7], Bartsch [4], Marzantowicz [6]). Let U and W be representations of $G = T^{k}$ with $W^{G} = \{0\}$. If there exists a G-map $SU \rightarrow SW$, then dim $U \leq \dim W$.

Corollary 1.3 (Liulevicious [7], Marzantowicz [6]). Let U and W be representations of $G = \mathbb{Z}_n$ with n any. If G acts freely on SW and if there exists a G-map $SU \to SW$, then dim $U \leq \dim W$.

726

Remark 1.4. If U is an orthogonal representation of $G = T^{k}$ or \mathbb{Z}_{n} with n odd and if $U^{G} = \{0\}$, then U can be considered a unitary representation. In general, if U is orthogonal then $U \oplus U$ becomes unitary. Since the join of two G-maps $SU \to SW$ gives a G-map

$$S(U \oplus U) = SU * SU \rightarrow SW * SW = S(W \oplus W),$$

Corollaries 1.2 and 1.3 follow for orthogonal representations U and W.

Remark 1.5. We should refer to a recent paper [6] of Marzantowicz. Using the Borel cohomology theory, he also studies equivariant maps between representation spheres, and obtains a necessary condition for the existence of such maps. A detailed study is done for the case of $G = T^k$ or $Z_p^k (= Z_p \times \cdots \times Z_p)$. It is also shown that his condition is sufficient in some case.

§2. A Necessary Condition in Terms of the Euler Classes

Let U be a unitary representation of a compact Lie group G. The sequence

$$(2.1) \qquad \cdots \to K_G^n(DU, SU) \to K_G^n(DU) \to K_G^n(SU) \to K_G^{n+1}(DU, SU) \to \cdots$$

is the long exact sequence of the equivariant K-theory K_G for the pair (DU,SU) of the unit disk DU and the unit sphere SU of U. Segal [8; Proposition 3.2] or Atiyah [2] gives the Thom isomorphism

$$\varphi_{L}: K_{G}(\mathrm{pt}) \to K_{G}(U) = K_{G}(DU, SU)$$

such that $\varphi \varphi (\xi) = \xi \cdot \lambda_{-1}U$ for $\xi \in K_G(\text{pt})$, where $\varphi : K_G(U) \to K_G(\text{pt})$ is the homomorphism induced from the inclusion map $\varphi : \{\text{pt}\} \to U$,

$$\lambda_{-1}U = \sum_{I} (-1)^{I} \Lambda^{I}U \in K_{G}^{0}(\mathrm{pt}),$$

and $\Lambda'U$ is the *i*-th exterior algebra of U. Since $K_G^1(DU, SU) = K_G^1(U) \cong K_G^1(pt)$ = 0 and $K_G^0(pt) \cong R(G)$, the sequence (2.1) yields the exact sequence

(2.2)
$$R(G) \to R(G) \to K_G(SU) \to 0,$$

where the first homomorphism is given by multiplication by $\lambda_{-1}U$. This argument is done in the same manner as in Atiyah [1; Lemma 2.7.4, Corollary 2.7.5] where G is finite abelian.

From the exact sequence (2.2) we obtain

Proposition 2.3. $K_G(SU) \cong R(G)/(\lambda_{-1}U)$.

Let $\eta: SU \to SW$ be a G-map for representations U and W of G. Since the sequence (2.1) is functorial, we see that the composite

KATSUHIRO KOMIYA

 $R(G)/(\lambda_{-1}W) \cong K_G(SW) \xrightarrow{\eta} K_G(SU) \cong R(G)/(\lambda_{-1}U)$

coincides with the homomorphism induced from the identity on R(G). This implies the following.

Proposition 2.4. If there exists a G-map $SU \to SW$, then $\lambda_{-1}W \in (\lambda_{-1}U)$ in R(G).

§3. Calculation of $K_G(SU)$

In this section we will calculate the ring $K_G(SU)$ for the case where G is abelian.

We first recall the following facts about the complex representation rings of G:

(1) $R(S^1) \cong \mathbb{Z}[x, x^{-1}]/(1 - xx^{-1})$, in which the representation V_i corresponds to x^i if $i \ge 0$ and to $(x^{-1})^{-i}$ if $i \le 0$.

(2) $R(\mathbf{Z}_n) \cong \mathbf{Z}[x]/(1-x^n)$, in which V_i corresponds to x'.

(3) $R(G_1 \times G_2) \cong R(G_1) \otimes R(G_2)$.

From these facts we obtain

Proposition 3.1. If $G = T^* \times Z_{n_1} \times \cdots \times Z_{n_l}$ is a compact abelian group, then $R(G) \cong Z[x_1, x_1^{-1}, \dots, x_k, x_k^{-1}, y_1, \dots, y_l]/(X, Y),$

where

$$X = \{1 - x_i x_i^{-1} | 1 \le i \le k\},\$$

$$Y = \{1 - y_i^{n_i} | 1 \le j \le l\},\$$

and (X, Y) is the ideal generated by $X \cup Y$. The isomorphism sends the representation V_{γ} to the monomial $x_1^{a_1} \cdots x_k^{a_k} y_1^{b_1} \cdots y_l^{b_l}$ if $\gamma = (a_1, \dots, a_k, b_1, \dots, b_l)$.

Since λ_{-1} is multiplicative, i.e., $\lambda_{-1}(U_1 \oplus U_2) = \lambda_{-1}U_1 \cdot \lambda_{-1}U_2$, Propositions 2.3 and 3.1 give the following.

Proposition 3.2. Let $U = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)}$ be a unitary representation of $G = T^{k} \times \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{r}}$. Then

$$K_G(SU) \cong \mathbb{Z}[x_1, x_1^{-1}, \dots, x_k, x_k^{-1}, y_1, \dots, y_l] / (X, Y, z_U),$$

where $z_U = \prod_{\gamma} (1 - (\mathbf{x}\mathbf{y})^{\gamma})^{u(\gamma)}, (\mathbf{x}\mathbf{y})^{\gamma} = x_1^{a_1} \cdots x_k^{a_k} y_1^{b_1} \cdots y_l^{b_l}$ if $\gamma = (a_1, \dots, a_k, b_1, \dots, b_l),$ and (X, Y, z_U) is the ideal generated by $X \cup Y \cup \{z_U\}$.

728

§4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Let $G = T^{k} \times \mathbb{Z}_{n_{1}} \times \cdots \times \mathbb{Z}_{n_{l}}$ be a compact abelian group, and

$$U = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)}, \quad W = \bigoplus_{\gamma \in \Gamma} V_{\gamma}^{u(\gamma)}$$

its unitary representations. Assume that there exists a G-map $\eta: SU \to SW$. If $W^G \neq \{0\}$, then the theorem is trivially valid. So we assume $W^G = \{0\}$.

For the representation

$$V_{\gamma} = V_{a_1} \otimes \cdots \otimes V_{a_k} \otimes V_{b_1} \otimes \cdots \otimes V_{b_l},$$

let

$$\overline{V}_{\gamma} = V_{|a_1|} \otimes \cdots \otimes V_{|a_k|} \otimes V_{b_1} \otimes \cdots \otimes V_{b_l}$$

and

$$\overline{U} = \bigoplus_{\gamma \in \Gamma} \overline{V}_{\gamma}^{u(\gamma)}, \qquad \overline{W} = \bigoplus_{\gamma \in \Gamma} \overline{V}_{\gamma}^{u(\gamma)}.$$

Since $V_{a} \cong V_{[a]}$ as real representations, we see $U \cong \overline{U}$ and $W \cong \overline{W}$. Therefore $\eta: SU \to SW$ induces a *G*-map $\overline{\eta}: S\overline{U} \to S\overline{W}$, and then $\overline{\eta}$ induces a ring homomorphism $\overline{\eta}: K_G(S\overline{W}) \to K_G(S\overline{U})$. From Proposition 3.2 we obtain a ring homomorphism

$$\overline{\eta}^{+}: \mathbb{Z}[x_{1}, x_{1}^{-1}, \dots, x_{k}, x_{k}^{-1}, y_{1}, \dots, y_{l}]/(X, Y, \overline{z}_{W}) \to \mathbb{Z}[x_{1}, x_{1}^{-1}, \dots, x_{k}, x_{k}^{-1}, y_{1}, \dots, y_{l}]/(X, Y, \overline{z}_{U}),$$

where X and Y are as given in Proposition 3.1,

$$\overline{z}_U = \prod_{\gamma \in \Gamma} (1 - \overline{xy}^{\gamma})^{u(\gamma)} , \qquad \overline{z}_W = \prod_{\gamma \in \Gamma} (1 - \overline{xy}^{\gamma})^{w(\gamma)} ,$$

and

$$\overline{\mathbf{x}}\overline{\mathbf{y}}^{\gamma} = x_1^{|a_1|} \cdots x_k^{|a_k|} y_1^{b_1} \cdots y_l^{b_l}.$$

As in Proposition 2.4, we see $\overline{z}_w \in (X, Y, \overline{z}_u)$. Then there are polynomials f_i $(1 \le j \le l+1)$ in $\mathbb{Z}[x_1, x_1^{-1}, \dots, x_k, x_k^{-1}, y_1, \dots, y_l]$ such that

(4.1)
$$\bar{z}_{W} = \sum_{j=1}^{r} f_{j} \cdot (1 - y_{j}^{n_{j}}) + f_{l+1} \cdot \bar{z}_{U}$$

in $\mathbb{Z}[x_1, x_1^{-1}, \dots, x_k, x_k^{-1}, y_1, \dots, y_l]/(X)$. Multiplying (4.1) by $x_1^{m_1} \cdots x_k^{m_k}$ for sufficiently large $m_1, \dots, m_k > 0$, we obtain

(4.2)
$$x_1^{m_1} \cdots x_k^{m_k} \bar{z}_W = \sum_{j=1}^r \tilde{f}_j \cdot (1 - y_j^{n_j}) + \tilde{f}_{l+1} \cdot \bar{z}_U$$

KATSUHIRO KOMIYA

in $\mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]$, where $\tilde{f}_i (1 \le j \le l+1)$ are polynomials in $\mathbb{Z}[x_1, \ldots, x_k, y_1, \ldots, y_l]$. Substituting x for all of $x_1, \ldots, x_k, y_1, \ldots, y_l$ in (4.2), we obtain

(4.3)
$$x^{m} \prod_{\gamma \in \Gamma} (1 - x^{|\gamma|})^{w(\gamma)} = \sum_{j=1}^{l} g_{j}(x)(1 - x^{n_{j}}) + g_{l+1}(x) \prod_{\gamma \in \Gamma} (1 - x^{|\gamma|})^{u(\gamma)},$$

where $m = m_1 + \dots + m_k$, $g_j(x) \in \mathbb{Z}[x]$ $(1 \le j \le l+1)$ and $|\gamma| = |a_1| + \dots + |a_k| + b_1 + \dots + b_l$ if $\gamma = (a_1, \dots, a_k, b_1, \dots, b_l)$. If dim $U \ge \dim W$, we can divide the both sides of (4.3) by $(1-x)^{\sum u(\gamma)}$, and obtain

(4.4)
$$x^{m} \prod_{\gamma \in \Gamma} (1 + x + \dots + x^{|\gamma|-1})^{w(\gamma)}$$
$$= h(x) + g_{l+1}(x)(1 - x)^{\sum u(\gamma) - \sum w(\gamma)} \prod_{\gamma \in \Gamma} (1 + x + \dots + x^{|\gamma|-1})^{u(\gamma)}.$$

where $h(x) = \sum_{j=1}^{l} g_j(x) (1 - x^{n_j}) / (1 - x)^{\sum_{w(\gamma)}} \in \mathbb{Z}[x]$. Since

$$1 - x^{n_i} = (1 - x)(1 + x + \dots + x^{d_i - 1})p_j(x)$$

for any divisor d_j of n_j and some $p_j(x) \in \mathbb{Z}[x]$, we see

$$\sum_{j=1}^{l} g_j(x)(1-x^{n_j}) = (1-x)(1+x+\cdots+x^{d-1})\sum_{j=1}^{l} g_j(x)p_j(x),$$

where d is the greatest common divisor of $n_1, ..., n_l$. Since 1 - x and $1 + x + \cdots + x^{d-1}$ are prime to each other, $h(x) = (1 + x + \cdots + x^{d-1})q(x)$ for some $q(x) \in \mathbb{Z}[x]$. Therefore, substituting 1 for x in (4.4), we obtain

$$\prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)} = d \cdot q(1) + g_{l+1}(1) \prod_{\gamma \in \Gamma} |\gamma|^{u(\gamma)}$$

if $\sum_{\gamma} u(\gamma) = \sum_{\gamma} w(\gamma)$, and

$$\prod_{\gamma\in\Gamma}|\gamma|^{u(\gamma)}=d\cdot q(1)$$

if $\sum_{\gamma} u(\gamma) > \sum_{\gamma} w(\gamma)$. This completes the proof of Theorem 1.1.

References

- [1] Atiyah, M.F., Lectures on K-theory, Benjamin, New-York, 1967.
- [2] , Bott periodicity and the index of elliptic operators, *Quart. J. Math.*, **19** (1968), 113–140.
- [3] Bartsch, T., On the genus of representation spheres, Comment. Math. Helv., 65 (1990), 85–95.
- [4] , On the existence of Borsuk-Ulam theorems, *Topology*, **31** (1992), 533–543.
- [5] Marzantowicz, W., The Lefschetz number in equivariant K-theory, Bull. Acad. Pol. Sci., 25 (1977), 901–906.
- [6] -, Borsuk-Ulam theorem for any compact Lie group, J. London Math. Soc., 49 (1994), 195–208.
- [7] Liulevicious, A., Borsuk-Ulam theorems and K-theory degrees of maps, Springer Lecture Notes in Math., 1051 (1984), 610–619.
- [8] Segal, G., Equivariant K-theory, Publ. Math. IHES, 34 (1968), 129-151.