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§1. Introduction and Statement of Results

The equivariant K-theory has been successfully employed in the study of
equivariant maps by Marzantowicz [5], Liulevicious [7] and Bartsch [3]. In the
present paper, using the equivariant K-theory, we will obtain a necessary
condition for the existence of G-maps SU — SW, where SU and SW are the unit
spheres of unitary representations U and W, respectively, of a compact Lie group
G.

From Atiyah [1], [2] or Segal [8] we can see that the equivariant K-ring
K (SU) of SU is isomorphic to R(G)/(A_U), the complex representation ring
R(G) divided by the ideal (A_,U) generated by the Euler class AU of U in
K;(pt) = R(G). If there exists a G-map n:SU — SW, then we obtain a ring
homomorphism 71 : R(G)/(A_ W) — R(G)/(A_U) which coincides with the
homomorphism induced from the identity on R(G). This implies that the condition
AW e (A U) is necessary for the existence of G-maps SU — SW. If G is
abelian, we will reduce this condition to more exlicit form.

Let S' ={zeC| |z|=1} be the circle group of complex numbers with absolute
value 1, and Z, the cyclic group of order n considered as a subgroup of S'. For
any integer i let S' and Z, act on V =C via (z,0)>z'v for zeS'(orZ,) and
v eV . A compact abelian group G decomposes into a cartesian product

G=T'xZ, x--xXZ,,

where T' =5'x-.-x§', the cartesian product of k copies of §'. Letting y be a
sequence (a,,...,a;,by,....b;) of integers, denote by V, the tensor product

‘/"l ®®‘/(IA ®‘/l)| ®.”®‘/h,’
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which can be considered as a representation of G in a natural way. Let T" be the
set of sequences

Y =(a]s---.’ak,b],...,b1)

with ay,...,a €Z and 0<b <n -1 for 1<j<l. The set {V,|yel} gives a
complete set of irreducible unitary representations of G, and so any unitary
representation U of G decomposes into a direct sum

U=0y®
yell 4 ’
where u(y) is a nonnegative integer and Vy“”’ denotes the direct sum of u(y)
copies of V,. We can easily see that the fixed point set U of U is {0} if and only
if u(y)=0 for y=(0,...,0). Let

lYI=la|+---+la,| + b, +---+ b,

for any y =(a,,...,aq,,b,,....,b)) €T
We are now in a position to state our main theorem.

Theorem 1.1. Let U and W be unitary representations of a compact
abelian group G, and decompose into

U=@V"" and W=@V'?,
yel 7 el 14
Assume that there exists a G-map SU — SW . Then
(1) if dim U = dim W, then there is an integer m such that
H]y!u(}/) = mH]ylu(Y) mod d,

yel el

where d is the greatest common divisor of n,,...,n,, (if | =0, then assume d = 0),
(2) if dim U > dim W, then
Ty =0 mod d.

yel’
From this theorem we obtain the following two corollaries.

Corollary 1.2 (cf. Liulevicious [7], Bartsch [4], Marzantowicz [6]). Let
U and W be representations of G=T" with W€ ={0}. If there exists a G-map
SU — SW, then dim U < dim W.

Ceorollary 1.3 (Liulevicious [7], Marzantowicz [6]). Let U and W be rep-
resentations of G=1Z, with n any. If G acts freely on SW and if there exists a G-
map SU — SW , then dim U < dim W.



MAPS BETWEEN REPRESENTATION SPHERES 727

Remark 1.4. If U is an orthogonal representation of G=T" or Z, with n
odd and if U®={0}, then U can be considered a unitary representation. In
general, if U is orthogonal then U @ U becomes unitary. Since the join of two G-
maps SU — SW gives a G-map

SUU)=SU*SU - SW+*SW=S(WeWw),

Corollaries 1.2 and 1.3 follow for orthogonal representations U and W.

Remark 1.5. We should refer to a recent paper [6] of Marzantowicz. Using
the Borel cohomology theory, he also studies equivariant maps between
representation spheres, and obtains a necessary condition for the existence of such
maps. A detailed study is done for the case of G=T" or Z,f(= Z,x-xZ,). It is
also shown that his condition is sufficient in some case.

§2. A Necessary Condition in Terms of the Euler Classes

Let U be a unitary representation of a compact Lie group G. The sequence
2.1 -+ = KX(DU,SU) - K. (DU) = K(SU) — K2 (DU, SU) = -+
is the long exact sequence of the equivariant K-theory K, for the pair (DU,SU)

of the unit disk DU and the unit sphere SU of U. Segal [8; Proposition 3.2] or
Atiyah [2] gives the Thom isomorphism

0. : K, (pt) = K, (U) = K (DU, SU)
such that @ ¢ (§)=¢&-A U forée K, (pt), where ¢ :K;(U)— K;(pt) is the
homomorphism induced from the inclusion map ¢:{pt} > U,

AU =Y (-1y AU eK2(pt),

and A'U is the i-th exterior algebra of U. Since K (DU,SU)= K (U)= K (pt)
=0 and Kg(pt) = R(G), the sequence (2.1) yields the exact sequence

(2.2) R(G)—= R(G)—> K,;(SU)— 0,
where the first homomorphism is given by multiplication by A_ U . This argument

is done in the same manner as in Atiyah [1; Lemma 2.7.4, Corollary 2.7.5] where
G is finite abelian.

From the exact sequence (2.2) we obtain

Proposition 2.3. K. (SU)=R(G)/(A_U).

Let n:SU — SW be a G-map for representations U and W of G. Since the
sequence (2.1) is functorial, we see that the composite
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R(GY(A_ W)= K, (SW)—— K, (SU)=R(G)/(A_,U)

coincides with the homomorphism induced from the identity on R(G). This
implies the following.

Proposition 2.4. If there exists a G-map SU — SW, then A_ W e (A1 U)
in R(G).

§3. Calculation of K;(SU)

In this section we will calculate the ring K;(SU) for the case where G is
abelian.

We first recall the following facts about the complex representation rings of
G:

(1)R(S")=Z[x,x']/(1-xx"), in which the representation V. corresponds to
x'if i20 and to (x™")™ if i<0.

(2) R(Z))=Z[x]/(1-x"), in which V, corresponds to x'.

(3) R(G,xG,)=R(G))®R(G,).

From these facts we obtain

Proposition 3.1. If G=T"XZ, x---XZ, is a compact abelian group, then
RG)=Z[x,, x7 o ox x7 yy, - 3 (XY,
where
X={1-xx"| 1<i<k},
Y={l-y"|1<j<1),

and (X, Y) is the ideal generated by X WY . The isomorphism sends the repre-
sentation V, to the monomial x|" e xf oy eyl if ¥ =@y ag, by b))

Since A_, is multiplicative, i.e., A_,(U, ®U,)=A_U,-A_U,, Propositions 2.3
and 3.1 give the following.

V" be a unitary representation of G =

Proposition 3.2. Let U=9,.,V,

T'XZ, x--XZ, .Then
K (SU)=Z[x,,x7' o x x50y (XY, 2),

where 2z, =TL (1= (p) )", (xp)” =x{' - xfty? o3P if ¥ =(@pecnso b)),
and (X,Y,z,) is the ideal generated by X UY U{z,}.
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§4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Let G=T" XZ, x---xZ, be a
compact abelian group, and

U — (_B Vyu(}’)’ W — (_B ‘/yu(}’)

yel yell

its unitary representations. Assume that there exists a G-map n:SU — SW. If
W€ #{0}, then the theorem is trivially valid. So we assume W€ ={0}.
For the representation

vV, =V, ®'“®‘/u,\ ®V, ®--®V,
let

V,=V, ®-®V ®V, ®- -V,

len| lety

and

Uv=0v)", w=ev,”.

Since V, =V as real representations, we see U=U and W =W . Therefore

lal — -
Nn:SU— SW induces a G-map 7 :SU— SW, and then 7 induces a ring
homomorphism 7 :KG(SW)—AKG(SU). From Proposition 3.2 we obtain a ring
homomorphism

ﬁ‘ :Z[x,,xl_l,...,x,\,x;l,y,,...,y,]/(X, Y, ZW)—)Z[X|,xf[,---,x,\,x,\_l,yp---,y,]/(xa Y, Zu)a
where X and Y are as given in Proposition 3.1,

ZU:H(I—x_yY)u(}’) i ZWZH(1~J—@Y)W(7)’

yel’ yel

and
layl lagl by by

XyT =ty ey

As in Proposition 2.4, we see Z, €(X,Y,z,). Then there are polynomials
f,A<j<i+) in Z[x,x'5..., x, %, yp5..., ] such that

!
4.1 Zy =20 (=Y, )+ fra -2y

in Z{x,x',..ox,x7", y,...,y,1/(X). Multiplying (4.1) by x," ---x* for sufficiently
large m,,---,m, >0, we obtain

. -
(4.2) XXM 2y = 2 f, =y )+ fi Ty
/=1
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in Z[x,,....x;,y.....y,1, where f,(lSjSH-l) are polynomials in Z[x,,...,x,,y,
...y 1. Substituting x for all of x,,...,x,,y,,...,y, in (4.2), we obtain

4.3) x" A =Xy = Zgj(x)(l—x" )+ g ([ A — X"y,

yel’ yel

where m=m, +--+m, g (x)eZ[x](1<j<l+Dand |y|=la|+ - +|a|+b +--+b
if y=(a,,....a.,b,,...,0). If dim U = dim W, we can divide the both sides of (4.3)
by (1-x)X""  and obtam

4.4) x'”H(1+x+...+x17|—1)w<7)

yel’

= h(x)+ gy, ()1 = X)Z DL DT (14 x4+ 57y,

yel

where h(x)=X"'_g (x)(1-x")/(1- x)X*@ e Z[x]. Since

d,-l

=2 = (=0 xt e+ x)p, ()

for any divisor d, of n, and some p (x)€ Z[x], we see

! /
Y g -x")=1-x)1+x++x" Y g (xX)p,(x),
J=1

J=1

where d is the greatest common divisor of n,,...,n,. Since 1 — x and 1+x+--
+ x?°! are prime to each other, h(x) = (I+x+-+x" )g(x) for some g(x) € Z[x].
Therefore, substituting 1 for x in (4.4), we obtain

My =d-q+g,., O[Ty

yer yel
if ¥ u(y)=% ,w(y),and
iy =d-q

yel'

if ¥ u(y)>3% ,w(y).This completes the proof of Theorem 1.1.
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