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Generalized Quantum Stochastic Processes
on Fock Space

By

Nobuaki OBATA*

Introduction

As is highlighted in the excellent books by Meyer [21] and by Parthasarathy
[26] quantum stochastic calculus on (Boson) Fock space has developed into a new
field of mathematics keeping a profound contact with physical applications. Since
Hudson and Parthasarathy [12] first formulated quantum stochastic integrals of
Ito type in 1984 a crucial role has been played by three basic quantum stochastic
processes:

(0.1) A - fads, A,* = fads, A, - fad^ds, t > 0,
Jo Jo Jo

where the notation is after our convention, see below. These are called the
annihilation process, the creation process and the number (gauge) process,
respectively. Afterwards there have appeared many developments and variants of
approaches, among others see Belavkin [1], [2], [3], Lindsay [16], [17], Lindsay-
Maassen [18], Maassen [19], Meyer [20] and Parthasarathy-Sinha [27].

In this paper we study another aspect of quantum stochastic processes on the
basis of white noise calculus, which has been recently established as a Schwartz
type distribution theory on Gaussian space [7], [8], [9], [15], with an interesting
application to operator theory on Fock space [23]. In fact, in the operator theory a
principal role has been played by an integral kernel operator

(0.2) Elni(K) =

where d, and <?,''" are respectively the annihilation and creation operators at a
point teR, and K is a distribution in / + m variables. For example, the three
operators in (0.1) are integral kernel operators of this type. Under the name of
white noise calculus, we make a special choice of test and generalized functions
on the Gaussian space (£*,,u) and we work on a particular Gelfand triple
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where the middle space is a realization of the Fock space via the Wiener-Ito-
Segal theory. It is thus natural to discuss continuous operators between these
spaces. In particular, dt e Jz"((E),(E)), d* e &'((E)*,(E)*) and E l m ( K ) e ^((E),
(E) ), which are important consequences of our approach. The integral kernel
operator (0.2) was first formulated in [10], though similar expressions have
appeared in various contexts, see e.g., [4], [5], [13], [21]; among others Belavkin
[1] discusses norm estimates introducing an idea of Fock scale where a common
spirit is observed.

The idea of integral kernel operators has developed into the theory of Fock
expansion [23]. An important consequence is that every continuous operator in
^((EXCE)") admits an infinite series expansion in terms of integral kernel
operators with a precise estimate of convergence. On the other hand, since ^in

(0.2) is considered as scalar-operator-valued distribution, it is natural to introduce
an integral kernel operator of the form:

(0.3) S

where L is an J/ ((E),(E)~)-valued distribution on Rl+l". This operator was first
introduced in [25] to construct a quantum Hitsuda-Skorokhod integral. Moreover,
Huang's idea of quantum stochastic measures [11] are included as a particular
case. Thus we believe we are in a good position to discuss quantum stochastic
processes along with the integral kernel operators and the theory of Fock
expansion.

We briefly sketch the contents: In Section 1 we recapitulate some results in
white noise calculus. The basic references are [23] and [24].

In Section 2 we propose the following

Definition,, A family of operators {Et\t e R} a y ((E),(E)*) is called a
quantum stochastic process (on Fock space) if the map r H> St is continuous. A
continuous linear map E: Ec -> J ( ( E ) , ( E f ) is called a generalized quantum
stochastic process. A generalized quantum stochastic process E is called regular
if it admits a continuous extension from £* into y ((E), ( E f ) . Here Ec denotes
the complexification of -7 (R), the Schwartz space of rapidly decreasing
functions on R.

The continuity condition is not very strong because, for example, the white
noise (x(t)} becomes a continuous flow in (E)" within the white noise setup.
Hence, the quantum white noise, i.e., the white noise regarded as multiplication
operators, is a (in fact, regular) quantum stochastic process in our sense. In this
section we discuss some fundamental properties of quantum stochastic processes
and obtain the Fock expansions.
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Section 3 is devoted to a study of quantum stochastic integrals without
assuming the adaptedness. For a quantum stochastic process {LJ the operator-
valued integral

is defined by a standard method of functional analysis and again becomes a
quantum stochastic process. Since {Lsds} and {cT£s} are also quantum stochastic
processes, we naturally obtain new ones:

[d*L^
Ja

These are called the quantum stochastic integrals of {L,} against the annihilation
process and the creation process, respectively. The latter generalizes a quantum
Hitsuda-Skorokhod integral discussed in [16], [17], [25]. By Riemannian
approximation, we obtain

P - P/ dA
Ja S S S " I S

where the right hand side is a natural extension of the quantum stochastic integral
of ltd type due to Hudson-Parthasarathy [12] to cover the non-adapted case.

In Section 4 we introduce the concept of an adapted process by using the
commutativity with dt and <?,' • Our definition is compatible with those due to
Hudson-Parthasarathy [12], Huang [11] and others. Then for an adapted process
{Ls} we have

where the right hand side is defined through the Riemannian approximation and
coincides with a stochastic integral of Ito type introduced in [12]. Moreover, we
derive a stochastic integral representation of an adapted process. By way of
illustration assume that E is an adapted and regular generalized quantum
stochastic process. Then it is expressed in the form:

f' f
(0.4) E'=l L(*,s)d^ds+\ d*M*(t,s)ds + ctI, t e R,

where
(i) L: RxEc -> ,/((£),(£)*) is continuous; linear in the second argument;

and suppL(f,-)c:(-«>,r] for all r e / ? ;
(ii) M:RxEc—> ^/((E),(E)) is continuous; linear in the second argument;

[M(s,^),dt] = 0 for any %£EC and 5,t eR; and suppM(r,-) c (-00,/1] for
all r e J ? ;

(iii) c\R-^C is a continuous function.
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For more details see §4.3. It is remarkable to have such standard expression as in
(0.4) and we may expect further applications, for example, to quantum
martingales [27].

General Notation,, Let $,£), ;•} be locally convex spaces.
y(X,%)): the space of continuous linear operators from X into £); equipped

with the topology of bounded convergence.
<j&(£,$)',$): the space of continuous bilinear maps from 3:x?) into $;

equipped with the topology of bi-bounded convergence.
^ep(£,!i9;<8): the space of separately continuous bilinear maps from 3£xg)

into $; no topology is needed.
3£*: the space of continuous linear functionals on 3E; equipped with the strong

dual topology after our convention above.
3E ® §): the Hilbert space tensor product when both 3E, g) are Hilbert spaces.
S®^: the completed 7F-tensor product. When there is no danger of

confusion, 0^ is denoted by ® for simplicity.

§1. Operators on Fock Space

§1.1. White Noise Triplet

Throughout let H denote the Hilbert space of JS-valued square integrable
functions on the real line R with respect to the Lebesgue measure dt, where the
real line is considered as the time axis. The norm and inner product are denoted
by H = Ho ar}d (v) > respectively. These are naturally extended to the norm and
the C-bilinear form on Hc, the complexification of H. Note therefore that ( - , -> is
not a Hermitian inner product of Hc.

In order to realize the Fock space over Hc we adopt a particular Gelfand
triple:

E = ̂ (R)dH = L2 (R) c £* = -S \R\

where -S (R) is the space of rapidly decreasing functions and *7 '(R) its dual
space, i.e., the space of tempered distributions. The canonical bilinear form on
E*xE is also denoted by < - , - ) • The Gaussian measure /a is by definition the
unique probability measure on E" of which the characteristic function is:

The probability space (ZT\jU) is called the Gaussian space. Let (Lr) = l}(E*,n)
be the Hilbert space of C-valued square-integrable functions on ZT with respect
to the Gaussian measure JJL. The norm is denoted by |-||().
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The Wiener- Ito -Segal theory says that (L2) is canonically isomorphic to the
Fock space over Hc. To be more precise, we introduce notation. The canonical
bilinear form on (E®")* x(E®n) is denoted by {-,-) again and its C-bilinear
extension to (E®")*x(E®n) is also denoted by the same symbol. The
"renormalized" tensor product :x®":e(Efn)*ym is uniquely determined by the
exponential vector:

Here, in particular, 00 is called the vacuum. With these notation every 0e(L 2 )
admits the Wiener- Ito expansion:

(1.1)
;/=0

In that case it holds that

(1-2) ml=

We next construct a sort of Fock space over Ec . Recall that the topology of
E is given by the (semi)norms:

where A = 1 + r2 -d2/dt2. The constant numbers 0 < p = ||A~I||0/, < 1 and 8 = \\A~l\\HS

<°° are frequently used throughout. In fact, p = l/2 and 8 = nl^7A . Suppose
that the Wiener-Ito expansion of 0e (L 2 ) is given as in (1.1). Taking (1.2) into
account, we put

Let (E) be the space of all 0e (L 2 ) such that |0||p < oo for all pe^ . Then (£)
becomes a countable Hilbert nuclear space with norms |H|p, pel?. For pel? let
(£)/? denote the completion of (E) with respect to the norm ||-||/?. Then
{(E)p\p e J?} constitutes a chain of Hilbert spaces in both directions and we have

(E) =projlim(Zi) = n(£)n as vector spaces .1
P>O

(Ef = indlimCE), = LK^X as vector spaces .
'

Finally we obtain a complex Gelfand triple:

(1.3) (E)e(L2)-L2(£ : : :,
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Elements in (E) and (£")' are called a test (white noise) functional and a
generalized (white noise) functional, respectively. We denote by <v> the
canonical bilinear form on (E)* x (E) .

For OE(£)* there exists a unique sequence Fn s(£®")*ym such that U^l:,, =

X ^ o " ! ! - and

«=o

for (j)e(E) of which Wiener- Ito expansion is given as in (1.1). In that case we
adopt a formal expression:

(1-4)
71=0

This is also called the Wiener- Ito expansion of 0 .

§1.2. Spaces of Continuous Operators

The Gelfand triple (1.3) suggests 3>((E\(E)*) and y\(E\(E)) as natural
classes of operators to be discussed. By definition their topologies are given by the
seminorms:

l | | B | . f i l = sup |
0efl, ,\i/zB2

1151,,= sup llSfll,, S e y'((E),(E)),
<t>zB

where B^B2,B run over the bounded subsets of (£), and p runs over R (or
equivalently p > 0). The natural injection: y ( ( E ) , ( E ) ) - * y ( ( E ) , ( E ) * ) is
continuous by definition.

Since (E) is reflexive, the adjoint operator of Se y"((E),(E)*) , denoted by
E" , again belongs to J/ ((£"),(£)*) • The relation is given as

Here one should note that {-,-^ is the canonical C-bilinear form on (E)* x ( E ) .

Lemma 1.1. The map Sh-»H" is a linear homeomorphism (i) from
y((E),(E)*) onto itself- (ii) from ,/((£),(£)) onto J/ ((£)*,(£)*); (iii)
y((E)*9(E)*)onto

In the above statement, according to our convention, y((EY\(E)'f) is
equipped with the topology of bounded convergence. The proof is straightforward.
Note also that y ((£)"", (£")"") is identified with the subspace of operators in
y((E),(E)v) which are continuously extended to those from (£)* into itself. By

the above lemma we do not need special care for y ((E)'\(EY).
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Recall the canonical isomorphism:

), (£)*) = ((£) ® (£))* = ind lim((£) (8) (£))_,,

which follows from the kernel theorem (see also [23]). Then, for p > 0 let
J//7 ((£),(£)*) denote the subspace of all He y'((E),(E) ) which correspond to

elements in ((£)<*> (E))_p. The topology of ^ ((£), (£)*) is naturally induced
from the norm of ((£)®(£))_p which is denoted by \\-\\_ p . With this notation,

(1-5) \m\_p<\\S

Note also that

p ((£),(£)*) = U ^, ((£),(£)*) as vector spaces ,

In particular, J^ ((£),(£) ) is identified with the space of all Hilbert-Schmidt
operators on (L2) .

Remark. By (1.5) there is a natural injection from yp((E),(EY) into
y((E)p,(E)_p), where y ( ( E ) p 9 ( E ) _ p ) is identified with the subspace of all

operators E e y ((£"), (£")"") which admit continuous extensions from (E)p into
(E)_p. Note that the injection is not surjective. In fact, we have

(E)p) = ((E)p ®x (E)/}f

and

yp((E),(E)*) = ((E) ® (E))_p = ((E)p (8) (E)p)* .

Thus very crucial is the difference between the n- and the Hilbert space tensor
products of Hilbert spaces. On the other hand, by a general result on a countable
Hilbert space we have

y ( ( E ) , ( E ) * ) = ] j y ( ( E ) p , ( E ) _ p ) .
p>Q

In particular, all bounded operators on the Fock space (L2) = (£)0 belong to

In general, the image of a bounded subset under E E y ((£),(£)) is again a
bounded subset.

Lemma 1.2. For E, e y ((£),(£)*) am/ E2 6 ,/((£),(£))

(1-6) I I ^ ^ B ^ I ^ J - l l ^ J B , ^ . ! ! ,
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where /?,, B2 e (E) are bounded subsets and p > 0. // £",, E2 e y ((£),(£)), then

where B c: (£") is a bounded subset and p > 0.

Proof. Suppose 5, G y ((£),(£)*) and E2 e ^((£),(£)). Then by definition,

which proves (1.6). The proofs of (1.7) and (1.8) are similar. qed

Proposition 1030 The bilinear maps

(1.9) ^'((£),(£f )x
(1.10)

defined by the composition of operators are separately continuous.

Proof. For a fixed E, e y ((£),(£)*) take p > 0 such that \\El\\_p < <*> . Then it
follows from (1.6) that E, \-> E}E2 is a continuous linear map from J/'(( £),(£))
into ¥((E\(E)*). Next let E2 e y ((£),(£)) be fixed. Then we see from (1.7)
that E} \-> E\E2 is a continuous linear map from y ((£"),(£)'") into y((E\(E)*) .
Thus the bilinear form (1 .9) is separately continuous. As for (1.10) we need only
to apply (1.8) and the fact that the natural injection y ( ( E ) , ( E ) ) -H» ,/((£),(£)*)
is continuous. qed

Corollary 1.4. The bilinear maps

(1.11)
(1.12)

defined by the composition of operators are separately continuous.

Proof. Immediate from Proposition 1 .3 by duality. qed

Corollary Ie50 The composition of operators (E^E2) h-> E^E, is a (Jointly)
continuous bilinear map from yp ((£),( E)*) x y ((£),(£))-> y((E),(E)*) for a

fixed p > 0.

Proof. Immediate from (1.6). qed
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§1.3. Integral Kernel Operators

We first recall creation and annihilation operators at a point t eR. Let
e (E) be given with Wiener- Ito expansion:

n=0

For any y £ E* we put

where <8>, is the contraction of tensor products, see the end of this section. It is
known that Dl € ,/((£),(£)) and hence D* e :/ ((£)*,(£)*). For 0e(E)* of

which Wiener- Ito expansion is given as

we have

Since the delta functions 8{ belong to E* = -S '(R), we may define

d,=D8i, teR.

Then dt e y ((E),(E)) and d* e y ((£)*, (£)*) are respectively called the
annihilation operator and the creation operator at a point teR. Here we
emphasize that these are nor operator-valued distributions but continuous
operators for themselves. The annihilation operator dt is also called Hida's
differential operator.

For 0, ̂  e (£) consider a function on Rl+m defined by

It is known that 77^ e£"®(/+"" and 0, y/ h-> ^, 7J0 ^ ) becomes a continuous bilinear
form on (£") for any K e(E® ( / + m ))" ". Then by general theory there exists a unique
continuous linear operator Slm(ic)E y((E),(EY) such that

We employ a formal integral expression:

(1.13) ELm (K) = I /+ K(S} , • • • ,s, , r, , • • • , ri;i )(?;:'; • • • d*dt^ • • • d,m ds{ • • • dsfa • • • dtmJR +l"

and call it an integral kernel operator with kernel distribution K. The kernel
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distribution is unique if it is taken from the subspace

(F®(i+,,,)f - Lr e ( F ® ( l + m ) f - c (jc} - rl
V^C Aym (/,/») - t ^ C / ' ^/,/» VK ' ~ * J '

where sLm is the symmetrizing operator with respect to the first / and the last m
variables independently. This is related to the fact that [<?,<?,] = 0 and[d:,d?]=o.

The most basic examples of integral kernel operators are annihilation and
creation operators:

£> = ~0 , 00 - f y(t)d,dt, D* = S,0 00 = f tfstfds, yzE*.
JR JR

In particular, d, = E01(5,) and d* = Slo(S,), t e R.

Theorem 1.6. Let jre(E®"+"")*. Then ~Ln, (K) e y ((£),(£)) if and only if
ice (£*')» (£?")*. In particular, 3OM (K) e 3"((E),(E)) for any K e (£?" )".

The above result was proved in [10]. Moreover, we have

Proposition 1.7. The following commutative diagram holds:

(£?')» (£?"•)* -> (£®'®£c'")*
1 I

where all arrows are continuous.

Proof. By a general theory (see e.g., [28]) one can prove

®m f s in

Hence a linear map from (E®1)® (E®"1)* into J/ ((£),(£)) is continuous if and
only if the restriction to (E®')® (E®'")_p is continuous. This follows from the
norm estimates of S, see Theorem A.I in Appendix A. I . The rest of the
assertion is already clear. qe(j

It is possible to replace the kernel distribution K*in an integral kernel operator
(1.13) with an operator-valued distribution, for generalities for such distributions
see [24]. With each L e y(E®(l+m\ y ((£),(£)*)) we may associate an operator
E e y ( ( E ) , ( E f ) by the formula:

(1.14) « , 0 ? 7 »

That E is well defined is due to the characterization theorem of operator
symbols, see [23] and [25]. It is reasonable to write

(1.15) 3= \ dl
JR +l"
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In fact, if L is a scalar-operator-valued distribution (1.15) is reduced to an
integral kernel operator as in (1.13). The next result was shown in [25].

Theorem 1.8 (Fubini Type). Fix integers 0<a<l and 0 < / ? < r a . Given
KE(E®(l+"nY there exists Le y (£®(0f+/3), y ((£), (£)*)) such that

where rjl , • • • , r]a , £, , • • • , ̂  e £c . In that case

To be sure, we recall the contraction of tensor products. Let K e (E®(l+m)f .
For g,zE®' and gfl e E®" we define K®' (g/ ®s f l)e(E® ( I M + n ))* as a unique
element satisfying

Then ;r<B>'g is defined for any geE®"*"" by continuity and is called a /e/f
contraction. Moreover, it is easily verified that

(1.16) IFfx/sL^p2""!/^!,,, ^e(£®(/+"")*, geE® ( '+">.

The ng/z? contraction K®, g is similar, for details see [23, §4.3].

§2. Quantum Stochastic Processes

§2.1. Definition

For each t e R a generalized white noise functional <2>f is defined by

0 tW = ( : x : , S t ) = ( X , 8 t ) , t<=R.

In fact, since 8, e ZT = -JX '(R) for all r G R , we only need to follow the argument
at the end of § 1 . 1 . For simplicity we write x(t) = d>, ( x) . The family (x(t) } e (£)'" ,
regarded as a "generalized" stochastic process, is called the white noise. Among
many mathematical formulations of white noise, here is a noteworthy feature of
our approach; namely, tt-*®, is a continuous flow in (E) "\ This motivates us to
make the following

Definition 2.1. A family of operators [St',teR}c: y((E),(E)*) is called a
quantum stochastic process (on Fock space) if the map 1 1— » Et is continuous. A
continuous linear map E : Ec — > y ((£), (E)*) is called a generalized quantum
stochastic process. A generalized quantum stochastic process E is called regular
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if it admits a continuous extension from E^ into y((E),(E) "") . The extension will
be denoted by the same symbol.

If {Er; t e R] is a quantum stochastic process, so is [S*;t e I?} . This is called
the dual process. Similarly, the dual process of a (resp. regular) generalized
quantum stochastic process is defined and becomes a (resp. regular) generalized
quantum stochastic process.

Lemma 2,2. If a generalized quantum stochastic process E is regular,
there exists p > 0 such that t \-^> Et = S(8t) e yp((E),(E)*) is continuous. In

particular, {S(} is a quantum stochastic process.

Proof. By the canonical isomorphism J^((£), (£)*) = ((£") (8) (£")) we consider
a continuous linear map E* : (E) ® (E) — » Ec . (Here E* does not stand for the
dual process.) Hence for any p > 0 there exist C > 0 and q > 0 such that

\E*

Then, by duality we have

It is known that £ M> 8{ e E_p is continuous whenever p>5/l2, see Appendix A. 2.
For such p and q as above, the map t\-> Et e y p + ( i ( ( E ) , ( E f ) is continuous. qed

Not every quantum stochastic process is of the form of the above lemma.
From now on a regular generalized quantum stochastic process is also called a
regular quantum stochastic process.

A C-valued measurable function / is called slowly increasing if
lim|/Hoo(l + f2)~a |/(0| = 0 for some a > 0 . Every slowly increasing function

belongs to E^ and, as usual we write

Lemma 2.30 Let E be a regular generalized quantum stochastic process.
Then for any slowly increasing function f it holds that

0, V e (E).

Proof. As in the proof of Lemma 2.2 let E* : (E) (8) (E) —> Ec denote the
adjoint of E. Then

C^,^)^^^^^

which belongs to Ec , i.e., is a rapidly decreasing function of t. Therefore
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= I /(0£*JR

as desired. qed

§2-2. Basic Examples

Example 1, It follows from Lemma A. 3 that

is a continuous linear map. Therefore, by definition S01 is a regular generalized
quantum stochastic process. In particular, {dt = SQl(8t)} is a regular quantum
stochastic process. In that case t h-> dt e y\(E),(E)) is continuous. Similarly SKO

is a regular generalized quantum stochastic process which is the dual process of
S01. In particular, {<?*} is the dual process of {<?,} and £ h-> <?,"" e y ((£)*>(£)*) is
continuous.

It is known that each d> e (E)* is regarded as a continuous operator in
J/((£),(£)*) by multiplication. The operator is denoted by the same symbol.
Then by definition

«00, yo> = <#, 0v>> 0. v E (£)> * E (£)*•
Thus we obtain a natural injection: (EY -> ,/((£),(£)""). It is known that @e
y ( ( E ) , ( E ) ) if and only if <Pe(£) . Furthermore, we have the following

commutative diagram:

(E) -> (£)*

i I

./((£),(£)) -> ^((£), (E)*)

where all arrows are continuous linear maps.

Example 2. Let t\-*0{E(EY be a continuous flow. Then, regarded as
multiplication operators, it forms a quantum stochastic process. This is the
standard way to regard a classical (generalized) stochastic process as a quantum
stochastic process. In particular, the white noise {x(t)} regarded as multiplication
operators is a quantum stochastic process. This is called the quantum white noise.
The well-known relation:

(2.1) x(t) = dt+d*9 tzR,

implies that the quantum white noise is regular.
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Example 3. Consider the integral kernel operators:

(2.2) A, = I l[0t](s)d,ds= I' dsds, Af = f l[0ifl(5)<?> = f d*ds,
JR Jo J/? JO

which are called the annihilation and creation processes, respectively. These
processes will play a central role in quantum stochastic integrals. In the work of
Hudson-Parthasarathy [12] a crucial role is played also by the number (gauge)
process which is expressed as an integral kernel operator:

(2.3) A = I T[0t](s,u)d*dttdsdu= \d*d,ds,
JR- ' Jo

where T[0/] e (E® £)* = ^\R2) is defined by

Obviously, A* = At . It is straightforward to verify that the above {A,} , {A*} and
{At} constitute quantum stochastic processes. The integral interval [0,f] can be
replaced with an arbitrary finite interval [a,t] or (-°°,f]. In §3 we discuss another
aspects of these processes.

Example 4. The quantum stochastic process defined as

(2.4) Q{ = A, + A; = f (<9s + d* )ds, t > 0,
Jo

is called the quantum Brownian motion or the position process. It applies to the
vacuum 00 e (E) to obtain a classical Brownian motion. In fact,

g00 W - *, i 0 < / - *,(*), jc e £*, t > o,

whence E(B,) = 0 and E(B^Bt) = s*t for 5, f > 0 . Therefore the quantum
Brownian motion Qt coincides with Bt as multiplication operator.

Example 5. Let />0 be a constant. The quantum stochastic process
defined as

Pt = A, + V/J2 +lt=\ (d^ds + -Tl(d* +ds) + l)ds,
Jo

is called the quantum Poisson process. For the naming see [12], [26].

§2.3* Fock Expansion of Quantum Stochastic Processes

The theory of Fock expansion [23] says that every He y\(E\(E)*) admits
an expansion in terms of integral kernel operators:
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(2-5) 2 = £ ELm(KLJ,

where the series converges in y ( ( E ) 9 ( E ) * ) and the kernel distributions Klm e

(£® ( / + m ))*y m ( / m ) are uniquely determined. For Ee Y ((£),( £)) the kernel distribu-

tion KUn belongs to (E®1 ) ® (E®m f , namely, Elm(Klm) e y ((£),(£)) by Theorem

1.6 and the series converges in y ((E)9(E)) . For E e J/ ((£),(£)*) the function on
£c x Ec defined by

(2.6) S(^,?7) = <S^,^>, £ T J G E C ,

is called the symbol of S. Since the exponential vectors {0,; £ 6 Ec} span a dense
subspace of (£), the symbol recovers the operator uniquely. If 2
(£)*) ,p>0, we have

(2.7) |S(£ r?)| < \\ELP e x p ( i a ^ +|r?|;), §, r\ e £c.

In fact,

S(£7?)| = |<S05,0,>h^

from which (2.7) follows immediately. Then, applying the result in [22, §5] or
[23, Theorem 4.4.6] with (2.7), we come to the following

Lemma 2.4. For 2 e yp((E),(E)*\ p>0, let E = ̂ m=QElin(Klm) be the

Fock expansion. Then

(2-8) KJ_ ( / ,+ 1 )<G, ..... £3\_p,

where

(2.9) G, ..... ̂ (/'m'")-"2(e
352(l + P

2"))</+""/2.

We now consider the Fock expansion of a generalized quantum stochastic
process.

Proposition 2.5. Let E be a generalized quantum stochastic process and
let

(2-10) 2($)= £ Elm(Klm(^ £e£c,
l.m=Q

be the Fock expansion. Then, there exist C > 0 and p > 0 such that

(2-11)



682 NOBUAKI OBATA

where Glmp is defined in (2.9). In particular, £\->Klm(%) is a continuous linear

map, namely, Khn E *\Ec,(lg
l+m>)*ym{ljtt}).

Proof. By definition E : Ec -> 3"((E)9(E)*) = ((E) ® (£))* is continuous.
Hence by the general theory of countable Hilbert spaces (see e.g., [6, Chapter
I]), there exist p > 0 and C > 0 such that

(2.12) ||£(£)|L,<q£|,, ^Ec.

In that case £"(£) e J^ ((£),(£) ) for any %E£C. Then (2.11) follows from
Lemma 2 .4 and (2.12). qed

Suppose that a generalized quantum stochastic process E is regular. Then,
for any p > 0 there exist q > 0 and C > 0 such that

IE(f)\\_(r+(i)<C\f\_r, /e£*,

see the proof of Lemma 2.2. Then, modifying the proof of Proposition 2.5, one
obtains the following

Proposition 2060 Let E be a regular generalized quantum stochastic proc-
ess with Fock expansion given as in (2.10). Then for any p > 0 there exist q > 0
and C > 0 such that

In particular, the map %\->Klm(%) is continuously extended to a linear map from

El into (£?"""');„,„ ...... namely, KIJ,, e^ (£*, (E^"'%m ,,„„).

As for a quantum stochastic process we only mention the following

Proposition! 2o7o Let {E{} be a quantum stochastic process and let

be the Fock expansion. Assume that for any finite interval [a, b] there exists p > 0
such that t\-> St e yp((E),(E)*) is continuous on [a, b]. Then t h-» Kljn(t) e

(E®(t+m))^ym(lj)i} is continuous on [a, b].

Proof. Since

/,/;;=()

is the Fock expansion of Hs -Et E y'p ((£),(£)*), we see from Lemma 2.4 that

K. W ~ ̂ ,,,(OL(,+1) < G / J f I < I ||S, - 5?|L;, 5, f E [fl, fc] .
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Then the assertion is obvious. qed

§2.4e Stochastic Integral-like Eepresentatlon

For a generalized quantum stochastic process E we consider the Fock
expansion divided into three parts:

(2.13) 3(&= £ S^(xr /Jfl(«)) + 1 S/.O(K,
/>0,m>l />!

Note that the third term is a scalar operator. Since

is a continuous linear functional on Ec , there exists c E E^ such that

The first and second terms in (2.13) are respectively rewritten as generalized
integral kernel operators. The main purpose of this section is to prove the
following

Theorem 2.8» Let E be a generalized quantum stochastic process. Then
there exist L e J$(EC,EC\ y ((£),(£)*)), M e ̂ (£c,£c; y ((£),(£)))

, 77), ̂  ] = 0 /or a// %,r}EEc and teR,and CE E* such that

(2.14) S(£)= \L(^t)dt
JR

(The integrals are generalized integral kernel operators for a fixed £e£ c , see
§1.3)

The proof is divided into Lemmas 2.9-2.1 1 below.

Lemma 23. There exists L e J$(EC,EC; y ((£),(£)*)) such that

Proof. By Proposition 2.5 there exist C > 0 and p > 0 such that

(2.16) ^(^l-.^n^CG,,,,,^!,,, £e£c .

We fix such a pair of C > 0 and p > 0 throughout. For / > 0, m > 1 we put

(2.17) L,J1I(5>i7) = S,ja.1Oc,

Letting £ e £"c be fixed, we apply the Fubini type theorem (Theorem 1.8) to
obtain
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(2-18)
JR

We shall prove that the infinite series

(2.19) X A,,,,(^)0> ^r]€Ec, 0e(£)
/>0.«i>!

converges in (£)*. For q > 0 we see from Lemma A.2 that

IIA,,(^.'7)0I-( Î, =l-5/JB_, (

+i -

On the other hand, by (1 .16) we have

(2-21) K,,,,^)®, 7j|_uw/+1

and by the definition of the norms we have

(2-22) l^(ai-(^/+i)^P(/+'"1^(ai-(,+1)-

Then, inserting (2.16), (2.21) and (2.22) into (2.20), we obtain

(2.23) IZ^

Using the explicit forms of C /m_1/m/+1 and G / / ? ( / 3 (see (2.9) and Appendix A.I),
we have

\ogp

Take a sufficiently large q > 0 such that

( /+/ / / ) /2

Then, summing up both sides of (2.23) we come to

(2.24) X \\LL,,,
/>0,/»>1

where

We have thus proved that the infinite series (2.19) converges in (E) "\
We now put

Then it follows from (2.24) that
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In other words, the 3-linear map B : Ec x Ec x (E) — > (E)* is continuous. By the
repeated application of the kernel theorem, there exists a unique L

-&*((£),(£)*)) such that

(2.25)
/>0,W>1

This L is what we are seeking. In fact, by definition (1.14) we have

7)^,0C », 77, f 6 £c.

On the other hand, a straightforward computation with (2.25) and (2.17) yields

Since l/so,IIIy^/,III(^/,,n(^))0 converges in (E)' for any £ e £c and 0e(£) , the last
expression coincides with the symbol of L/>O,,,,>I£/ /M(K/ ,„(£))» anc^ therefore
identity (2.15) holds. qed

Lemma 2.10. There exists M e jff(EC9Ec'9y ((£),(£))) such that

(2.26)

where the right hand side converges in (E) . Moreover, [M(g, 77), dt] = 0 /or
^, 77 e £c an J r e 1? .

Proof. Let C > 0 and /? > 0 be the same as in the proof of Lemma 2.9. For
simplicity we put

M, (£ 77) = S0</_, Oc/<0 ($) ® , 7?) , £ 7J E Ec , / > 1 .

We follow the proof of Lemma 2.9 using Lemma A. 3 instead of Lemma A. 2 to
obtain

for any ^ > 0, r > 0, ^ e £c and 0 6 (Zs) . Replacing q with ^ + 1 , q > 0, and in
view of (2.16) we obtain

(2.27) ||M,(

On the other hand, by explicit computation we have
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Take a sufficiently large q > 0 such that
2p

Then, summing up both sides of (2.27), we obtain

*> C" , r e E, 0 e

where

Therefore

converges in (E) and £ becomes a continuous 3-linear map from EcxEcx(E)
into ( E ) . Then, in a similar manner as in the proof of Lemma 2.9 we see that
there exists Me c£(Ec,Ec\ ^ ((£),(£))) such that B(£, rj, 0) = Af(£ r/)0, namely,
(2.26) holds. Since the integral kernel operator M , ( ^ r j ) contains only
annihilation operators by construction, [M/(£, TJ), dt] = 0 and therefore [M(<;, rj),
5J = 0 . qed

For Me^(£c,£c;^((£),(£))) define M* e .^(£c,£c; j/ ((£)*,(£)*)) by

» - <<&, Af (5, 17)0>, £ ?? € £c , 0 e (£), <P e (£)* .

Lemma 2.11. 7r holds that

The proof is to show the coincidence of the symbols by a straightforward
computation, cf. the proof of Lemma 2.9. We have thus completed the proof of
Theorem 2.8.

By similar arguments we have the following results.

Theorem 2.12. Let E be a regular generalized quantum stochastic
process. Then there exist L e ̂ (E*,£c; y((E), (£)*)), M G^(E*,Ec'9y'((E),

(E))) with [M (/, 77), <?, ] = 0 /or a// / e E* , 7] e £c , f e « a^ c e Ec such that

(2.14) /zo/^5. In particular,

E{ = L(t, s)d
JR

where c; ={5;,c> = <S /00,00>.
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Theorem 2.13. Let [E{] be a quantum stochastic process. Assume that for
any finite interval [a, b] there exists p > 0 such that fh-» Et e yp ((£),(£)*) is
continuous on [a, &]. Then there exist continuous maps t h-> Lt e 2"(Ec,

(£)*)), f i^M, eyX£C'^(£)»(£)))fl"d *^ c / e C ' t E [a, b], such that

te[a,b].

§30 Quantum Stochastic Integrals

§3.1. Integrals against Time

In this section we discuss integration of a quantum stochastic process {Ls}
against ds. Let L\OC(R) be the space of all C-valued locally integrable functions
on R. We begin with the following

Lemma 3.1. Let {Lt} be a quantum stochastic process. Then for any

a,beR and f e L\OC(R) there exists a unique operator Ecih(f) e y ((£),(£)") such

that

Proof. Suppose a, b are fixed. Since s h-» Ls is continuous, the closed interval
[a, b} is mapped to a compact subset K e y ((£),(£)*) = ((E)<8> (E)f . Hence
there exists some p > 0 such that

(3.2) C= sup||LJ| <oo .
a<\<h

Then for any s e [a,b] we have

l ^W

and

If
K«

Therefore the right hand side of (3.1) is a continuous bilinear form on (E) and
there exists a unique operator S a h ( f ) € y((E),(EY) such that (3.1) holds. qed

The above constructed operator E a h ( f ) is denoted as
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Unless the continuity of t\-> f(t}Et e y'((E), (£)*) is assumed, ( f ( t ) S ( t ) } does
not necessarily constitute a quantum stochastic process in our sense. The next
result follows immediately from the definition.

Lemma 3.2. Let [Lt] be a generalized quantum stochastic process. Then

for any f e I^OC(R) and a < b.

Theorem 3.3. Let {Lt} be a quantum stochastic process and let
f e Ljoc (R) . Then for any fixed tQ<=R,

is a quantum stochastic process.

Proof. It is sufficient to prove the continuity on any finite interval (a, b).
Taking constant numbers p > 0, C > 0 as in the proof of Lemma 3.1 , we obtain

(* a<t, <t2 <b, 0,

Then for bounded subsets B},B2 c (£) we have

Mds, a<t}<t2<b,

from which the continuity follows immediately. qed

Corollary 3.4. Let L be a regular generalized quantum stochastic process.
Then

Proof. Modelled after the argument as in the proof of Lemma 2.3. qed

Remark. Unless a generalized quantum stochastic process L is assumed to be
regular, s H > l [ a r ](s)L s is not well defined even as an element in y(Ec,y((E),
(E)' )) . In that case we have no way to define

within the present formulation.
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Theorem 3.5. Assume that two quantum stochastic processes {Lt}, {Et}
are related as

St = Lsds, teR.

Then, the map t\-^>Et is differentiate with respect to the topology of
(E)*) and it holds that

Proof. We prove the differentiability at a fixed teR. For that purpose, it is
sufficient to show that given bounded subsets B},B2 e (E)

(3.3) l i m + \ - z = 0 .
*-*°ll h \\B,,B2

It follows from definition that

c( *>+"h *' ~ LI )0> y} = i r '<<(L| ~ L> ̂
Since 5 H-» L( is continuous, given e > 0 there exists some 5 > 0 such that

\\^-L,lB]^<8, \s-t\<S.

Hence, if 0 < \h\ < 8 , we have

|h+/'"^' - L> I - 1 f '+"||L> - L'U «, * ds<e-II n lie, ,5. '* •'/

This proves (3.3). qed

Corollary 3.6. For the annihilation process [At] , the creation process
[A] } and the number process [At] defined in (2.2) and (2.3) it holds that

d -. d * ^* d _*^

^A'=^" ^A =^" *A=^"
with respect to the topology of y ((E),(E)" ) .

§3.2. Quantum Stochastic Integrals

We begin with the following

Lemma 3.7. // {LJ is a quantum stochastic process, so are both {Ltdt} and
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Proof. We first prove that n-> Ltd{ e J/ ((E),(EY) is continuous. To this end
fix r e R and finite interval (a, b) containing t. Take p > 0 such that

see the proof of Lemma 3.1. Let B},B2 a(E) be bounded subsets. Then, in view
of Lemma 1 .2 we have

\\LA -MIB,.B: *BM^ -<?,)iiB, . f l2

and therefore

limlL^-V,|fliA -0,

as desired. That t \—> dt Lt is continuous follows by duality. qed

The above lemma and Theorem 3.3 lead us to the following

Definition 3*8, Let fL7} be a quantum stochastic process. Then the
quantum stochastic processes defined as

PI
d^ds, I d'^L^ds

are called the quantum stochastic integrals of [Lt] against the annihilation and
creation processes, respectively.

Obviously by Lemma 3.2,

(3.4) L^ds = d*L*ds.

The number process {At} defined in (2.3) is the quantum stochastic integral of
{<?*} against the annihilation process as well as the quantum stochastic integral of
{d{} against the creation process.

In [16] and [17] Lindsay introduced a quantum Hitsuda-Skorokhod integral by
means of the gradient operator V . In our context the gradient operator is given as

and is a continuous operator from (E) into (E)®EC, see [23, §5.1]. It is then
easy to see that a quantum Hitsuda-Skorokhod integral introduced by Lindsay
coincides with a quantum stochastic integral against the creation process in
disregard of technical details.
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In [25] we also introduced the notion of a quantum Hitsuda-Skorokhod
integral Qt for a regular quantum stochastic process {Lt}. In fact, Qt is defined
as a unique operator satisfying

with the help of the characterization theorem of operator symbols. We see easily
that this Qt is a particular case of a quantum stochastic integral against the
creation process:

fl = [d*L.ds.\'
Ja

On the other hand, if [Lt} is a regular quantum stochastic process, one may define
a quantum Hitsuda-Skorokhod integral over an infinite interval like (-00, t) by
(3.5).

§3.3. Rlemanniaii Approximation

For a quantum stochastic process {L,} we shall define a quantum stochastic
integral against the annihilation process {At} by Riemannian approximation. Let
[a, b] be a fixed interval. For a partition

A:a = sQ<s{ < •••<$„ =b,

we consider the Riemannian sum of Ito type:

(3-6) SA = %L (A -A )=S
y=0 /=0

Obviously, EA e y"((£),(£)*). The symbol is given as

(3.7) £(£ 77) - ((S40 0J) = XM
/=o '

Lemma 3.9,, Let {Lt} be a quantum stochastic process. Assume that for

any finite interval [a, b] there exists p > 0 such that t\->Lteyp((E),(E)*) is

continuous on [a, b]. Then {EA} cz y ((£),(£)*) is a Cauchy net with respect to

the usual order of partitions A .

Proof. Note that n-> Lt e Yp((£),(£")*) is uniformly continuous on [a, b].

Therefore given e > 0 there exists a constant 7 > 0 such that

(3.8) ||Ls-L,||_/;<e, j , r e [ f l ,H | j - f |<y.

Let A' be a refinement of A . Then every small interval [s^ s^] belonging to A
is partitioned into a sum of smaller intervals belonging to A', say,
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„ _ fd) <td) < . . . < fO)_ 9A7 *0 ^ *l ^ ^ 'in, *j+\ •

Then, in view of (3.7) we have

iCx^)-^(<^)i<I X iC>(^)-M
7=0 /=0 '

Suppose \A\ = max\sj+l -Sj\ <J (then \A' <j too). Then by (2.7) and (3.8) we

come to

Therefore,

(3.9)

where

In view of the precise result in [23, Theorem 4.4.7], we conclude from (3.9) that
there exist q > 0 and M > 0 (independent of the partitions A with \A\ < j ) such
that

Namely, {EA} is a Cauchy net in y((E)p+c/+],(E)_(r+c/+])) and therefore in
£)*)- qed

The above lemma says that there exists a unique limit of {E^} c J/((£),
^) . The limit is denoted by

fLs^As = limY Ls (As -As ).
Ja * / /+i /

This is called the quantum stochastic integral of ltd type against the annihilation

process and coincides essentially with the one introduced by Hudson-

Parthasarathy [12]. However, only for the existence of the limit we do not need

to take Ls as a representative value of L, on the interval [5 ;,s /+1]. Our special

choice called Ito type will be important later in §4.

Theorem 3.10. Let [Lt] be a quantum stochastic process. Assume that for
any finite interval [a, b] there exists p > 0 such that t \-> Lt e yp((£),(£)*) is
continuous on [a, b].
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Then
Fb Fb

L^dAs = Ljsds.
Ja Ja

Proof. For simplicity we denote by E and 12 the left and right hand sides,
respectively. It follows from Lemma 3.9 that

On the other hand, by definition

Therefore {£$*, 0n }> = ^^^ 0^ )> . which proves the assertion. qed

Here is a simple example. The number process is expressed as

A,= [d*d,ds= foAs.
Jo Jo

In a similar manner, for a quantum stochastic process [Lt] satisfying the
same condition as stated in Theorem 3.10, one may prove the existence of limit:

f -A*)Lt s ["dA*L*.v, s/ s/ Jw

Here again we adopt the Riemannian sum of ltd type, though it is not necessary
just for ensuring the existence of the limit. The next result is straightforward
from the above argument and (3.4).

Proposition 3.11. For a quantum stochastic process {Lt} satisfying the
same condition as stated in Theorem 3.10, we have

Fb / Fb \* Pb

dA*Z=(\L,dA\ =\d*L*ds.
ci \Jii ) Jci

§4. Adapted Processes

§4.1. Definition

As introduced in § 1 .3 we put

Dx =S O I ( jO= \y(t)dtdt, D*=S}Q(y)= I y(ttfdt, y e
JR ' JR
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It follows from Theorem 1.6 that for y = 7jeEc,D* e&((E),(E)) and D^ is

continuously extended to an operator from (E)* into itself, i.e., D^ e 5* ((£)*,

(£)*). Thus for Se&((E),(E)*) the commutators [D^.S] and [D*,S] are

meaningful.
Motivated by Hudson-Parthasarathy [12], we make the following

Definition 4.1. A generalized quantum stochastic process EeJ^(Ec,
£"((£),(£)*)) is called adapted (with respect to the filtration generated by
{<?„<?,*}) if

for any choice of t€.R, %,r]eEc such that supp £ c (-00, t) and supp rj e (f, +<*>).

Lemma 4.2. Assume that a generalized quantum stochastic process E is
regular. Then it is adapted if and only if [Dn, St] = [D^ , Et] = Q for any t e R and

rj£Ec with supp 77 c (f,+°°) .

Proof. First we assume that E is adapted. Given t e R and rj e Ec with
supp 77 c (f,+°°) , take s < t and a (5-sequence £;i e Ec such that supp £;I c (-°°,0
and ^ — > <5S . Then , since S(£n ) — > E(5s ) = Hs , we have

and hence [Dr?,HJ = 0 for any s < t. Letting s^t , we obtain [D^SJ = 0 as
desired.

We prove the converse. Given £5T]e£c such that supp ^c(-«>,0 and
supp rj e(f, +00) take t{< fas supp ^ (Z (-00, r,) . Then by Lemma 2.3,

(4.1) D^

On the other hand, we have by assumption

Hence (4.1) becomes

(4.2)

Consequently, it follows from (4.1) and (4.2) that DnE(%) = E(%)D?1 . qed

Taking the above result into account, we make the following definition which
is consistent with Huang's one [11].

Definition 4.3. A quantum stochastic process {Et} is called adapted if
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for any t G R and 7] e Ec with supp 7] c (£,-

§4B20 Fock Expansion of Adapted Processes

We first study operators commuting with Dn. By a straightforward
computation using the canonical commutation relation we obtain

(4.3) [DT1,Sim(Klin)] = lSl_im(Klm ®' 77), rjeEc, Klm £(E®{l+"1})lym(lmr

(See also [25].)

Lemma 4040 Let Se J/'((F),(F)*) and let

l.m=0

be the Fock expansion. Given 7] e Fc, [D7?, E] = 0 if and only if K, m ®' 7] = 0 /or
all l> I and m > 0.

Proof. In view of (4.3) we obtain

which is the Fock expansion of [D^E]. Because of the uniqueness of the Fock
expansion [D^S] = 0 if and only if Et_^m(Kljn ®! 7]) =0 for all / > 1 and m > 0;
and therefore, if and only if *c/m ®] r] = 0 for all / > 1 and m>0. qed

The support of a distribution jce(£®")" ", denoted by supp K", is the smallest
closed subset F c J^" such that K vanishes in R" - F . Therefore supp K e F , F
being a closed subset of I?" , if and only if /evanishes outside F.

Lemma 485 e Let E e y((E),(E)*) with the Fock expansion given as in
(4 A). Let teR be fixed. Then [Dir S] =0 for any rj e Ec with supp 7jc(r,-H»)
if and only if supp Klm c (-<*>, f]7 x R'"for all I, m with I + m > 1 .

Proof. By Lemma 4.4, [D^,^] =0 for any r? e Fc with supp ?]c:(?,+°o) if
and only if

(Klm (8)1 7], 7]f(M) ® ̂ ®'») - {jC/if|| ®f|I ^» IW ,77® TJ,^'-1*) - 0

for any ^9rj}eEc and 77 G Fc with supp Tjc(f ,+oo) . Therefore ^ /n ®WI ^®f"
vanishes outside (-<*>, t]x R'~l . Since K"/ /;/ ®;n £®m is symmetric by assumption, it
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vanishes outside (-°°,t]1 . Consequently, Klm vanishes outside (-^J]1 xR"1 . The
converse assertion is clear. qed

Lemma 4.6. Let 5 e y((E),(E)*) and let ttR be fixed. Then [D^S] =
[D*, E] = 0 for any 77 e Ec with supp 77 d (t,+°°) if and only if the Fock expansion
of E is of the form:

where supp Kl m e (-°°,f]/+'" for all /, m > 0 wz'f/z I + m> I.

Proof. Note first that [D*,E] = 0 if and only if [D^E*] = 0. Then the

assertion follows from Lemma 4.5. qed

Combining Proposition 2.5 and Lemma 4.6 above, we obtain

Theorem 48?8 Let E be a generalized quantum stochastic process and let

fee f/ie Fock expansion, where Klm e y(Ec,(E®(l+m})*ym(Lm}) and c e E*. Then E is

adapted if and only if supp KLm(%) c: (-oo,r]/+'» /or a^j choice of r e J ? , § e £c

supp £ e (-^,0 aid / + m > 1 .

Similarly, by Proposition 2.7 and Lemma 4.6 we obtain

Theorem 4.8. Let {E{} be a quantum stochastic process and let

fee f/ze FocA: expansion. Then {Et} is adapted if and only if supp Klm(t)c:
(-oo,f]/+»< for any t e R and / + m > 1 .

The annihilation and creation processes:

defined as integral kernel operators are adapted. Similarly, the number process

is adapted. It is also obvious that {<?,} , {<?*} and {«9*<9,} are adapted.
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§4.3. Stochastic Integral Representation

In §2.4 we established a stochastic integral-like representation for a quantum
stochastic process. We now consider the case of adapted processes.

Theorem 4.9. Assume that a generalized quantum stochastic process E is
adapted. Then it is expressed as

(4.5) S(£)

where
(i) Le^(Ec,Ec'^'((E),(Ef)) such that supp L(£-) c (-«>,*]/or any % e Ec

with supp £ c (-00, t);
(ii) M e ^(Ec,Ec',y((E),(E))) such that [M(^,rj),dt] = 0 for any ^ T J E E C ,

t e R and supp M(£, •) d (-00, t] for any q E Ec with supp £ c (-00, t);
(iii) ce E*.

To see the above result we only need to follow the proof of Theorem 2.8
keeping Theorem 4.7 into account. If the generalized quantum stochastic process
E is regular, combination with Theorem 2.12 yields

Theorem 4.10. Let E be an adapted generalized quantum stochastic
process and consider the expression as in Theorem 4.9. // E is regular, then

E)*)), M £,rf (Ec,Ec
m,y((E),(E))) and C E £ C .

Recall that the delta functions S, belong to E_p for p > 5/12. On the other
hand, the separately continuous bilinear maps L and M in the above theorem
become jointly continuous on Ec_p x Ec . We thus come to

Corollary 4.11. Let E be a regular generalized quantum stochastic
process. If it is adapted, it is expressed as

(4.6) Et = I' L(t,s)dsds+ I' d*M*(t,s)ds + c,I9 re JR,
J —oo J —oo

where
(i) L : Rx Ec — > y'((E),(E) ') is continuous', linear in the second argument',

and supp L(t,-)c:(-°°,t]for all r e J? ;
(ii) M : Rx Ec — » J/(( £),(£)) /5 continuous; linear in the second argument',

[M(j,£),<9,] = 0 /or fl/iy ^e£c anJ s,teR\ and suppM(f,«) d (-«>,r] /or
a// r e / ? ;

(iii) c'.R—^C is a continuous function.
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§4o40 Quantum Stochastic Integrals of ltd Type

There is a close connection between quantum stochastic integrals of ltd type
[12] and our integrals. In case of an integral against the annihilation process the
result is already stated in Theorem 3.10 without assuming the adaptedness.

Lemma 4L120 Let {Lt} c: <¥'((£),(£)) be an adapted quantum stochastic
process. Then,

Proof. By definition [Diy,L/] = [D*,L/] = 0 for any T] e Ec with

supp rj c (t , +<*>) . Since L, e _§"((£),(£)), for any y e E* the commutator [/),LJ

is well-defined and belongs to :/((£),(£)). Put y = \,1+h}
 anc* take an

approximating sequence r]n e Ec with supp7];! c(f,+°o) such that r]n — » y in E * .

Since D^ = At+h - A{ , we have

[L, , A,+l, -A,] = [L,,DJ = li
/;->oo

as desired. qed

Lemma 40130 Let {Lt} a y((E),(E)) be an adapted quantum stochastic
process. Assume that for any finite interval [a, b] there exists p > 0 such that
t\-> Lt e &p((E), (E)'") is continuous on [a, b}. Then the limit

(4.7)

exists in ,/((£"), (£)'). Moreover

LSJA, =| I LM.
a

Proof. By Lemma 4.12 we have

Then, apply Lemma 3.9 to observe that

l imY(A -A )L =
A ^ » l + i », ^

The assertion follows by taking the adjoint. qed

The stochastic integral defined in (4.7) is essentially the same as one due to
Hudson-Parthasarathy [12]. The next result is clear for Proposition 3.11.
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Theorem 4.14. Let {Lt} d J/((£"),(£")) be an adapted quantum stochastic
process. Assume that for any finite interval [a, b] there exists p > 0 such that
t h-> L{ G ¥p((E), (£")') zs continuous on [a, b]. Then

rh ch

L*dA* = d*L*ds.
Ja Ja

§4o5o Invariance of Operator Symbols

It is possible to describe the adaptedness of a quantum stochastic process in
terms of operator symbols. We here prove the following

Theorem 4.15. Let {Et} be a quantum stochastic process. Then it is

adapted if and only if the function

is invariant under the translations: £ — > £ + £, and rj—>T] + 7ll where ^ l , r j l e Ec

with supp £, , supp 7], c (f,

Proof. Consider the Fock expansion:

Then

•F(^, 7]) - *-«•">£, (^, 77) = X <«-,,, (0, ?78' ® r " > + CM 5, 17 e £c .
/+iu>I

If St is adapted, it follows from Theorem 4.8 that supp KI m (t) d(-°°j]l+l" . Hence
for any ^ f y e ^ with supp^,, supp 77, e (f,+°°) we have

Conversely, we assume the invariance property of *F . Then, in particular,

for any £,,77, e £c with supp ^ , supp ?], e(f,+oo). Hence supp K l i n ( t ) e(-oo,f]/+'»
and H? is adapted. qed

Appendices: Norm Inequalities

§A010 Integral Kernel Operators

For /ce(£®(/+"")* we put

Obviously, \K\_p = \ K \ l m _ p _ p which is finite for all sufficiently large p > 0.
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Theorem A.I ([23, Theorem 4.3.9]). Let KE (E®(l+ln)f . Then for any
p G If , q > 0 and a, ft > 0 with a + /? < 2q , it holds that

/or a// 0 e (E) .

It is known that K e (E®(l+m})* belongs to the smaller subspace (E®')® (E®1")*
if and only if for any p > 0 there exists q > 0 such that W/ i n . / ,_ ( A , + 9 ) <

0 0 .
Specializing parameters in Theorem A.I , we obtain

Lemma A82e Ler K-e(£®(/+"°)*. Then, for any p > 0 w/r/z |K:|_ / 7<oo W6?

Lemma A038 L^r K<=(E®'"f. Then for any p&R and q > 0 with \K\_(p+tl)

we have

where

0 1-2qe\ogp

§A82e Delta Functions

Theorem A A, For any p > 5/12 and 0 < a < l with p-5/l2>a/2 there
exists a constant number C = C(p,a) > Osuch that

(A.I) \S,-8t\_p<Qs-i\a, s,teR.

In particular, t \- > 8t e E_p is continuous for p > 5/12.

Proof. For each j = 0, 1, 2, ... we put

where Hj is the Hermite polynomial of degree 7, see [23], [29]. Then {e,}^ ^s a

complete orthonormal basis of L2(R,dt). Note also that
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Then by definition

l/l%=|A- /?/l

In particular, for s,t e R ,

(A.2) |5, -
J=0

Since e' =^j/2 e}_\ -^(j + l ) / 2 ej+] , which is verified by a direct computation,

we have

where

y, =sup|e /(M)|, 7 = 0 ,1 ,2 , - - - .
iteR

Then (A.2) becomes

(A.3) |<Ss-5j^<22-2«|s^2«X(^
/=o

Now we recall Szego's theorem [29, 8.91.10]: Iim /_^o o71 / l 27 / exists and is finite.
Thereby the series in (A.3) converges for a-l/6-2p<-\ and we obtain (A.I).

qed
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