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Global Existence of Small Solutions to Semilinear

Schrodinger Equations with Gauge Invariance

By

Hiroyuki CfflHARA*

Abstract

We present the global existence theorem for semilinear Schrodinger equations satisfying gauge

invariance. Combining the local existence results and a priori estimates, we construct global solu-

tions with small initial data.

§1. Introduction

In this paper we study the initial value problem for semilinear Schrodinger
equations

d<u-iAu=F(u,Vu), in (0,oo)xR" f (1.1)

u(0.x)=tt0(r), in R", (1.2)

where u(t,x) is complex-valued, i = J—l, dt = d/dt, dX}=d/dX}, (j = l, • • - ,#) ,

= S/Li9j, and JV^N. We assume that the nonlinear term F(u,q) '• C X C*— »
satisfies

(1.3)

\F(u,q)\<C(\u\*'+\q\p9), near (u,q) -0, ^ = 2,3,-. (1.4)

We see the second variable q corresponding to V u= (dxiu, ~°,dXNu). We define
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_ _
du 2\dv dw' du 2\dv d

JL=l/_9__ • d \ _9_=l/_9_ , .
l

/ = ! , ••• , N.

The purpose of this paper is to prove the global existence of small solu-
tions to (1.1) -(1.2). Generally, Schrodinger type equations have so-called loss
of derivatives because of the first order terms and therefore we cannot obtain
classical energy estimates. More precisely, the classical energy estimates hold if
and only if

.(1.5)

It was difficult even to prove the local existence unless (l. 5) holds. But recent-
ly, several results on the local existence appeared without the condition (1.5)
(see A. Soyeur [15], C. E. Keing-G. Ponce-L. Vega [9] N. Hayashi-T. Ozawa
[5] and H. Chihara [1] [2]) . Then studies on the global existence have been
mainly concerned with the case (1.5) or the special cases without (1.5). These
results are the following.

(1) Assume (1.5). If N (ft,- l)2/2ft,>l, namely

5, (ft, = 2),
2, (ft, = 3),
1, (ft,=4),

then (1.1) - (1.2) has a global solution with small initial data (see S.
Klainerman-G. Ponce [10] and J. Shatah [14]). They established so-called Lp —
Lq method and applied to several nonlinear equations. N. Hayashi [4] studied
some quadratic nonlinear equations in the case of N=3, 4. Using some operators

which have good commutation relations to elAt, he proved global existence re-
sults (see also T. Ozawa [13, Theorem 1]).
(2) If N=l, the problem (1. !)-(£. 2) is easier than the case of JV>2, because
a gauge transform

( 1 f*x /5J7* \
—-^ I lm~^-(u,dxu} ( t , y ) d y )LI j —oo oq /

eliminates the bad first order term lm(dF/dq)dxu (see N. Hayashi-T. Ozawa
[5] and H. Chihara [1]). Recently, S. Katayama-Y. Tsutsumi [8] studied the
global existence of small solutions without (1.5). If pw

 = 3, F is gauge invariant
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(see (1.7)) and the cubic term of F satisfies "null gauge condition" which was
introduced by Y. Tsutsumi [17] , then the global existence results hold. Even if
we assume (1.5) additionally, we can see their results as some extension of
[10] [14] (see also Y. Tsutsumi [17]).
(3) If the nonlinear term satisfies

for any u^C1 (RN) and /, k=l, • • • , JV, which is equivalent to the condition that
there exists a real-valued function G (M) such that

(1.6)

for any w^C1(R jV) and/ = l, • • • , N, then a gauge transform

u(t,x)*-+v(t,x) =u(t,x) expf — -yG(u(t,x)} )

is available similarly to the case of N=l. Under this assumption, it is easy to
see that analogous results to [10] [14] hold. This fact appeared basically in A.
Soyeur's work on Ishimori equations [15] . T. Ozawa [13] also studied the glob-
al existence for some quadratic semilinear equations with this type of nonlinear -
ity.
(4) Recently, N. Hayashi-T. Ozawa [6] studied radially symmetric solutions.
In this case, the difficulty coming from the loss of derivatives reduces to that of
one dimensional case. Then they proved the global existence of small solutions.

The above-mentioned works, except for [2] [9] , delt with the case of (1 . 5)
or the case in which the gauge transform is available. C. E. Kenig-G. Ponce-L.
Vega [9] succeeded in getting local solutions to general semilinear equations

with small initial data. Analyzing local smoothing property of elAt, they con-
structed the inverse of Schrodinger type operators essentially. More precisely,
they proved that the operators dxj (dt~iA] , / = !, • • • , N were bounded in some
sense. To get the inverse of Schrodinger type operators by Neumann series, the
coefficients of the first order terms must be small. In semilinear equations, these
coefficients are functions of solution. Therefore the smallness of solutions is
essential for their method. It seems to be defficult to extend their results to
global existence. On the other hand, S. Doi [3] established a rather simple and
useful method for linear Schrodinger type equations. Actually, in [2] , using his
method with some modifications, we proved the local existence theorem for
general semilinear equations with large initial data. In this paper we will con-
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struct a global solution to (1 . l) - (l . 2) with this local existence results and a
priori estimates. Our main results are the following.

Theorem 1.1. Let N^ 3 and let m be a sufficiently large integer. Assume
that F satisfies (1.3), (1.4) with pw = 3 and gauge invariance

F(ei6u,eldq)=ei6F(u,q), for (u,0)eCXC" f 0€=R. (1.7)

Then there exists a constant £o> 0 such that if UQ €= r\^=o'Hm+2~i'i satisfies
||MO II n £?#"-" = £ ^£o, then the initial value problem (l.l) - (1.2) possesses a unique

solution u^ nJLVC([O f oo) ; Hm+2-j'j) . Here

HS'°=HS. d and s&' denote Schwartz class and its topological dual space respectively.

Remark 1.2. The infinum of the integer m is determined by two factors.
One is embedding and we require [m/2] ̂ JV+2. Another is concerned with the
properties of pseudo-differential operators and we need m>N/2 + l* with some
/* ^N. It may be sufficient provided that m>8AT.

Our idea of proof consists of local existence and a priori estimates. Concern-
ing the former, let us consider

dtu -iAu + Z bj Or) dx,u + Z A Or) dXju=g (t, x) , (AT> 2) .
j=i j=i

Im (bj (x} ) dx,u gives loss of derivatives and j8> (x) dX]u does not. But if we try to
use linear theory with some transformation K (see S. Doi [3] and S. Mizohata
[12]), then we can eliminate Im(bj(x))dx,u certainly but another loss of deriva-
tives comes from f}j(x)dx,u because the transformation K generally has the

property Ku^Ku. To avoid this difficulty, we study 2x2 systems of (u,u) .
Combining diagonalization and S. Doi's method, we can easily get local solutions
to (l.l) ~ (1.2) . Concerning a priori estimates, since our method is based on
linear theory, it is necessary that Im (dF/dqj) , j — 1, °", N, which are imaginary
parts of coefficients of dxju, are integrable on any line segment in M,N and these
integrals are uniformly bounded (see J. Takeuchi [16] and S. Mizohata [12] ) .
Then we need to introduce weighted Sobolev spaces. But direct estimates in the
weighted Sobolev spaces are useless for global existence because a commutator
[<x}p, A] gives another linear terms. To avoid this difficulty, we assume gauge
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invariance (1.7). More precisely, we consider the following well-known oper-
ators

Jk(t)u=e «""««+»2t (1 + 0 dxk (e -'<*"«<"«„) = (Xft + 2i (1+0 9»)«,

) 1? — I •«• /\r r— (Ti * * * T\ri <vi}i~i<5'fipR' / > " -L» » lV. _y vlj j JNJ odLlollCo

[9,-iA/fc] =0, [9^,/fe] = <5/fe, /, fe=l, —, AT. (1.8)

Under the assumption (1.7) , / acts on F as if it were the usual differential
operator, and then we can use chain-rule with respect to /. Hence we can get
estimates in the weighted Sobolev spaces without giving another linear terms
(see §3).

Before the end of this section, we present the organization of this paper. In
§2 we study some linear Schrodinger type systems and obtain a sufficient condi-
tion of L2-wellposedness. §3 consists of preliminaries. We give the local exist-
ence theorem and consider the relation between the existence time and the reg-
ularity of initial data. Besides we prepare properties of nonlinear term and some
useful embedding concerned with /. Finally in §4 we will complete the proof of
Theorem 1.1.

§2. Some Linear Systems

In this section we will rewrite the results in [2, §2] as a convenient form
to apply to the global existence. Let us consider the following linear systems

(dt+iH(t))v=f(t,x), in (0,T)xR", (2.1)

v(0 fx)=vo0i:) , in RN, (2.2)

where v (t, x} =' (vi (t, x}, v2 (t, x)) is C2-valued, / (t, x) =t (fi (t, x), /2 (t, x}), and
the operator H(t)=h (t,x,D) is defined by

' ?l2 0

o -|?l2

biij(t,x)

m,n = l f 2 , ; = !,-. N.

' = $>°° (RN) denotes the set of C°°-functions on RN whose derivatives of any
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order are all bounded. It is convenient to use the notations

0

0 0

In applications to (1 . 1) - (1 . 2) , we see (u, u) as (vi, v2) .
We here prepare pseudo-differential operators. Let m^R and let Sm be a

class of symbols defined by

\p\P> < + <*>, 1=0, 1, 2.-.},

where

\p\r= sup

is a Frechet space with respect to the family of seminorms | B |jm), / = 0f 1, 2,
If p (x, £) ^Sm is given, then p (x, £) defines the operator P by

where d^= (2ii) ~Ndt~, and ti (£) denotes the Fourier transform of u Or) . Con-
versely, if the operator P is given, then its symbol ff(P) (x,f) is calculated by

The properties of pseudo-differential operators are the following.

Lemma 2.1.
(1) Let p (x, f ) e 5m, m e R. T/i^n P =/> (x, D) e ^ (jyrs+m, ̂ rs) /or any 5 e R

and C = C(s,N) >0

where £ (X, Y) denotes the set of all bounded linear operators from the normed vector
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space X to the normed vector space Y, and \\ • ||s is Hs~norm.

(2) Let p(x, f) £ESm and p' (x, $) esw'f w, w'<ER, and tet a, a,
Wig define

, /or

"Os — " denotes oscillatory integrals (see H. Kumano-go [11]). Then, {

is bounded in sm+m'-\a+a'\ and for any jeN, there exist / '^N and Ci>0, which are
independent of 6^ [0, 1] , such that

(3) Let p(x,&<ESm and p' (x, ?) ^Sm\ m, m e R. Then a (PP7) (x, ?)
and

a(PP'} (r,f)=0s- f f /-If'^(a:f•/ •/ R x R

(4) (Sharp Garding inequality) Let p (x, £) e 51 wf/i Rep (x, f) > 0, for
. T/i^n f^re onto /eN and C=C(R,N) >Q such that

where ( • , • ) and || • || denote L2~inner product and L2~norm respectively.

Concerning the details on pseudo-differential operators, see H. Kumano-
go 's textbook [11] .

A simple sufficient condition of L2-wellposedness for (2. 1) - (2. 2) is

Theorem 2.2. Assume that there exists a nonnegative and nonincreasing

function 7(5) <E$°°[0,°o) flL1^,00) with d2n+1r/ds2n+l(0) =0, n^N and there ex-
ists a nonnegative function 0(0 ^(^[O, T] such that

\(lmbnnj(t,x))j=1,...,N\<(f>(t)r(\^, n = l, 2. (2.3)

T/ien (2.1) - (2.2) is L2-wellposed. Namely, for any v0 (x) e (L2) 2 and /or an^

/ (t, x) e (LLc (0, T ; L2) ) 2, (2 . 1) - (2 . 2) possesses a unique solution v e (C ( [0, T] ;

L2) ) 2 which satisfies the following energy inequality
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Ik; (0 ll<Cr(kll +/o'||/(r) ||dr), for te [0, T] ,

constant Cr>0. || a | denotes (L2)2-norm.

Our strategy divides into two steps. At the first step we diagonalize the
operator H(t) modulo bounded operators. Roughly speaking, its symbol

, ft,h (t, x,$) =

has two distinct eigen-values provided that |f| is sufficiently large. Thus we can
easily diagonalize h(t,x,£;) and therefore this system becomes essentially same
as two single equations. At the second step we apply S. Doi's method [3] to this
diagonalized system.

Diagonalization. We define the following pseude-differential operators

0

1 0

A (t,x, £) =I+Jl(t,x, f), X(t,x, & =I-Ji(t,x, & e (C([0, T] ;S°))2x2,

where I is the 2 X 2 identity matrix. Using A (t,x, £) and A' (t,x, £), we can di-
agonalize H(t) modulo bounded operators.

Lemma 2«,3c Under the above assumptions, we have

o(A(t)H(t)A(i)) (x, f) -a(?) -b***(t,x, f) =r1(t,x, ?) e (c([0, T] ;S°))2x2,

^/igrg yl (0 = X (t, x, D} and A (t)=Xf (t, x, D).

Proof. Direct calculations imply

G (A (t) H (t) A (t)) (x, f) = a( (I+A (t)) (A +B (t)) (I—A (t)) j (x, f)

= a(A+^(OA-^(0-^(0^(0)(r,f)

-AWB(t) i iw)(r ,«
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=o(£) +a(A(t)A-AA(t)) (x, f) +b(t,x, ?)
:,£), (2.4)

n (t, x, f) = - a (A (t) A A (t)) (x, f) + «r(^ U) B (t) ~B (t) A (t)

-A(t)B(t)A(t))(x,$. (2.5)

We have

a (A (t) A -AA (t)) (x, £) = 1 (t, x, ?) o (f) -o (?) I (t, x, f) +r3 (f, x, f)

°" (f , x.&+rt(t.x,$+r3(t.x.&, (2.6)

fr"oW) (?+0r?) ̂ (f.x+y. &dyd7])de, (2.7)

r4(f ,x,£)=&°' fU,x,e<?>-2 . (2.8)

Substituting (2.6) into (2.4) and putting ri=r2+r3+n, we obtain

(x, f) =a

It is easy to check n (t, x, f ) e (C ( [0, T] ; S °) ) 2x2. D

Now we will diagonalize the system (2 . l) in some sense. Note that

A' (t)A(t) = (I -A (t) ) (I+A (t) ) =I-A2 (t) .

Then

A (t) H (t) =A (t) H (t) (A (t) A (t) + A* (t) )
=A(t)H (t) A (t) A (t) +A (t) H (t) A* (t) .

Using Lemma 2.3, we have

A (t) H (t) = (A +Bdiag (t) +Rt (t) )A(t)+A (t} H (t) A2 (t)
= (A +Bdiag (t) ) A (t) -id (t) , (2.9)

where we put C(t)=i(Rl (t) A(t)+A (t) H (t) A2 (t) ) . By using (2.5), (2 . 7) and
(2.9), it is easy to see c(t,x,& e (C([0, T] ; S°))2 x 2 and there exist /^N and
C>0 such that
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(maxllWOIW4). (2.10)
m,n,j f

Here

8'=0'(R") = {«€=C'(R") Hu||»=Z sup|uCr)|< +
1 |<r|<I R"

Operating/I(f) on (2.1), we have

9, (A (t) v) +iA (t) H (t) v -A, (t) v=A (t)f, (2.11)

where

a(yl (a))(x,e)=9 (/l(f,x,$)-5^a,x,f)e(C([0,T];S-1))2x2 ,

„*(*) II, (2.12)
;

Substituting (2.9) into (2.11), we obtain

9,(/I( t)v} +i(A +Bdiag«) U(t)v) + (C ( t ) -At(t)}v=A(t)f. (2.13)

Our diagonalization is completed.

Proof of Theorem 2.2. The system (2.13) is a couple of single equations
essentially. Thus we can apply the theory of linear Schrodinger type equations.
The following arguments in this subsection are basically due to S. Doi [3].

First we define pseudo-differential operators which eliminate bad first
order terms in some sense.

° (c([o,r];s°))2x2,

e(c([0,T];S°))2*2,
0 «-'«*» J

where 7 (5) , (s ^ R), is extended to R as an even function. Since we assume

d2n+lr/ds2n+l(Q) =0, n<EN, the extension 7(5) belongs to S°° (R). Properties of
the transformation K ( t ) A ( t ) =k(t,x,D)X(t,x,D) are the following.
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Lemma 2.4. There exist I^N and Ci>0 such that

IMKcKt) (i+c|(t)) ( l l f fWAWwII+IWI- i ) <ci(0

/or owjy v S (L2) 2,

Proo/. Direct calculations give

a(R0 (t) ) Or, ?) = a (/-#' to * (t) ) Or,

,
-• _. 1 •/ Q *S *J R X K,

Then it is easy to verify Lemma 2.4. d

Theorem 2.2 follows from the next energy inequality with standard argu-
ments (see L. Hormander [7, §23 . 1] for instance) .

Lemma 2.5. Let v^(C [0, T] ; H2) H C1 ( [0, T] ; L2) ) 2, ffeen t^rg exists a
constant Cr>0 SMC/I that

Proof. Put /= (9* + iH (t)) v, then / (t,x) e (C ([0, T] ; L2) 2. Let N (v} =

\\K(i)A(t)v\\+\\u\\-i. Lemma 2.4 indicates that N (v) is equivalent to (L2)2-norm
for each t ̂  [0, T]. Hence we have only to obtain the energy inequality with re-

spect to N (v). We denote (L2) 2-inner product by ( • , • ) • We have

A
dt

= 2Re (Kt (t) A (t) v +K (t) dt (A(t)v),K (t) A (t) v).

(2.13) gives

-\\K(t)A(t}v\\2=-2Re(iK(t) (A+B""(t))A(t)v,K(t)A(t)v)dt11
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+2Re((Kl(i)A(i)+K(tHC(t)-At(t)))v.K(t)A(i)v)

K(t) A(t)f, K(t)A(t)v),

where

ff(Kt(t))(x,&=i

Using (2.10), (2.12) and (2.14), we get

j$K (t) A (t) vf<- 2Re (iK (t) (A +5diag (t) )A(t)v,K(t)A (t) v)

+ (CB(t)+\<t>'(t)\)C2(t)\\v\\\\K(t)A(t)v\\
(2.15)

(2.16)

We denote Poisson's bracket by{ • , • }. Noting that k(x& and a(£) +6diag(x,
are diagonal matrices, we have

«))(*,?)

0

(r.
0

i[ep(t-x'D\ -\D\2+b22(t,x,D)}

0

a (t (A +Sdiag (0 ) A" W ) Cr. f ) + {|$|2, ^} (t, x, & k (t, x,

= a (» u +Bdiag (t) ) 7f (0 ) (r, e) + 20 (t) z r (x;o e/ <?> -Jfe (t, x,

- «j( (i (A +B«™ (t ) ) + 20 (f) S r (ry) Di, < D> -1) K (t} ) (r, f)

+r9 (t, x, f) +r8 (f, x, & +r7 (i, x, f ) , (2.17)

where
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r7(t,x, f) = = i o s - e - ! ' ! " 7 ? fe (y) (t,x,

)) dydr])d6.
N _ 1 0

0 -1

and they are estimated by

r7, r8, r9e (c([0, T] ;5°))2x2, |r7(t)li0
0), kWiS', h(f) lS )<0(f)C 2 (0.

Substitute (2.17) into (2. 15), then

\\K(t)A(t}v\\.

Lemma 2.4 implies

- 2Re ( (t U +Bdiag (t) ) + 20 (0 Z r (ry) £»i < D> -1) ̂  (t) yl (t) v, K (t) A (t) v)

2Re Z2(Z(2^a)rfc)J5l,<D>-1+t6MXt,x)Z)J (ff (t) yl (f) V) „ Of (f) A (t) w) „)

Since (2.3) yields

N

sharp Carding inequality implies
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jj\\K(t)A(t)vf<(t(t)+\<t>'(t)\+CB(t))Ct(t)N(v)\\K(t)A(t)v\\

+2\\K(t}A(t)j\\\\K(t)A(t)vi

namely

fyfc(t)A(t)v\\<($(t)+\p(t)\+CB(t))^ (2.18)

(2.18) will be very useful later. On the other hand, we can get

JylMI-i < CB (t) \\v|| + H/ll-i < CB (t) C\ (t) N(v)+ \\f\\-i. (2.19)

Combining (2.18) and (2.19), we obtain

§3. Preliminaries

In this section we present the local existence theorem, chain-rule with re-
spect to / and some embedding lemma.

Concerning the local existence, we have

Proposition 3.1. Assume (1.3) and (1.4) with pw = 3. Let m be a suf-

ficiently large integer. Then for any UQ^ flj=o#m~H there exists a time T
= T (||Mo||ni_off».-w) > 0 such that (1.1) - (1.2) possesses a unique solution u ^

n}«0c([o fT) ;#*-'•').

Proof. Following [2], we give the outline of proof. First we consider

dtu
£-(e+i)Au£=F(u£,Vu£}, in (O.co) XR* (3.1)

u£(Q,x}=uQ(x), in R", (3.2)

with e^ (0,1]. We can easily solve (3.1) - (3.2) because the parabolic regular -
ization overcomes the loss of derivatives. The existence time depends on e e
(0,1]. But similarly to §2 (see also §4), we can show that there exists a time

T>0, which is independent of £ ^ (0, 1] , such that {u£} ee<o,i] is bounded in

n}=o£°° (0, T',Hm~hJ). Then using the standard compactness arguments, we can

get a solution u^ n)=0L°°(0, T ; Hm~JJ) provided e I 0. The uniqueness and the
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time continuity can be also proved by the same energy method. D

We shall prove Theorem 1 . 1 by a priori estimates besed on the energy ine-
quality obtained in §2. Then we need twice more regularity of the solution for
the validity of the energy inequality (see Lemma 2.5) . Let us consider the fol-
lowing situation. Under the same assumption of Proposition 3.1, let UQ ^

'j and let u be a solution to ( l . l)-(l .2). Proposition 3.1 gives

such that

M e fl C ( [0, To) ; Hm-JJ) and u e H C ( [0, TI) ; Hm+1-JJ) .
;=0 ;=0

Moreover we obtain

Lemma 3.2. Under the above assumption, To— TI holds.

Proof. Assume To>Ti, then Proposition 3.1 implies

limlu (OIL) „*-«-» = + oo.
M T i

We will derive a contradiction.
Put R==maxteio,T2}\\u>(t)\\r\}^Hm->j' Let q)k(x) and a^ (Z+)^ satisfy

' (fe = 0)' I I Im' (fe=0)' ^ Q^, x \ot\ = \ , x (3.3)
*f (fe = l , - f ^) f U-l, (fe=l, -,#).

Let / be the same integer as in §2. Operating <pk (x) d% on (1.1) - (1.2) and us-
ing Leibniz' formula, we have

N f)F N flF
dt (<Pk (x) dSu) -iA(<pk Or) 9^u) -t Z^1^ (p* (r) 9x"w) -t E^DX, (<pk (x) dSu)

j=i vqj j=i Uqj

+ Z 2a*f (u) (p« (x) diu+ 2 ZftJ? (u) ?>» (x) din =Gha (u) ,
n=Q 0 n=0 B

where ZliLoS^ means summing up on n, $ satisfying (3.3). It is easy to see

sup max (\\aig (u) \]f+\\ddg (u) \]f+\\b!g (u) ||̂ + ||9^*gf (u) t +||G*fl (u) ||
\
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Now let us consider the following system

j=l UCLJ

Z Zo# (w) w«fi + Z Z&S? («) W«B = Gka (u) , in [0, Tj x R*. (3 . 4)
«=0 j8 «=0 £

t^fea = <P* Or) d£ MO (x) in R*. (3 . 5)

We see (3.4) - (3.5) as a system of {(wka, Wka)}k,a. Then similarly to the proof
of Theorem 2.2, we can show that (3. 4) -(3. 5) is #s-wellposed (s<l), namely
we get

Ika (t)\\i<CR(\\(pk(x)dSuQ\\i+T^, te [0,Ti], wka=tpk(x)dSu in C([0f Ti) J/f1).

Hence we obtain lim sup, T Ti\\<Pk (x) 9"^ W Hi < + °°. D

Now we consider the chain-rule of/.

Lemma 3.3o Asswmg (1.3) and (1.7). Let a, £<E (Z+)jV. Then we have

x n (ds°jBou}m(ao'0o}

x n n (d

_ \ m(ao,@o)x n (-

J

\m(aj,8))_ ,xn n (-lyu^'fftldj'jt'dxfi ) , (3.6)
= N 7

/or w e C00 (R^O , u;terg /0, /o, m (an, ft) , m (an, ft) e Z+f /, I an, ft, aw, ft e (Z+) ̂ ,
w = 0, 1, •-, N and 2 means taking 2i</0+7o+/+7<ia+/8i restricted to

(3.7)
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m \,(Xo, BOJ _ M- A, Z, w

E m (3.8)

Proo/. We have only to prove (3.6) with a^O because the usual Leibniz'
formula extends (3.6) to the case of general a(^0).

Noting the gauge invariance (1.7) and differentiation to composition, we
get

for (M,
Now we put 0=|x|2/4(l + t) for convenience. We have

J"F (u, Vu) = (e "2i (l+t) dx e -'•)
 BF (u, V u)

=e " (2i (1 +t) ) Ifil9l (e ~ieF (u, V u) )

=ei9(2i(l+t))mdlF(e-'eu,e-'eVu} (by (1.7)).

Leibniz' formula gives

x n (9|» (e -'
8

M) ) "i(flo> x n n (dS1 (e -"9»u) )
— _ - \m(jSo) N / — = - \m(Bi)
d$°(e-ieu) xn H (d$'(e-tedX)u)

i-u^ 7 ;=i &<0X x

By using (3.9), then

xn (gi-fe-'^))**^ n (di'(e-'edx,u))m(M

ft</9
— r
9|'(«-wu
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Noting (3 . 7) and (3.8), we obtain

xn (/v)m wxn n

x n (-1) llolw^o) (fou) m^o} x n n (-

Before the end of this section, we give some embedding lemma which gains
time decay.

Lemma 3.4. Let m be an integer satisfying [m/2] >JV+2. Then there exists
a constant C>0 such that

\\j*'ul (3.10)
\\d?fui (3.11)

/or any u^^ (RN) and for any a, j8 e (Z+) ̂  wtrt |a| < [m/2] + 1, |j8| < [N/2] .

Proo/. We have only to prove (3.10) because replacing u by 9"/% in
(3.10) and using (1.8), we can get (3.11). (3.10) is essentially a consequence
of Gagliardo-Nirenberg inequality

Z ldZfu\\N/2%\\l-N/2n, for u^^ (R") , w
!«'!=«

Put 0=|x|V4(l+0. We have

<c S fe'^-'V
=C £

la'l=n

Taking n = [N/2] + 1 ( > N/2) , we obtain (3 . 10) . D
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§4. Proof of Theorem 1.1

Finally we will complete the proof of Theorem 1.1. We have only to get a
priori estimates in n^1Hm~J'J from a viewpoint of Proposition 3.1 and Lemma
3.2.

Let a, £e (Z+)N satisfying |a| + |j8|<w, |£|<AT+1. Using (1.8) and (3.6),
we have

, (dS A) ~iA (dSfu) -i Z j D * @*"A) -t ( - 1) IW ?*, (3?A ) = G (u) .

(4.1)
N gp N

By putting vaB = t (dSJBu, d£J0u ) and faB (u) = t (GaB (u) , GaB (u) ) , (4.1) becomes

(dt+i(A+BB(t)))va0=fa*(u), (4.2)

where

We will apply the method used in §2 to (4.2).
Concerning the diagonalization, we define

u =

Next we consider the transformation which eliminates the loss of deriva-
tives. We define

M!(T)=SUP Z llafAMl
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Take 0<<5<1. If Mi(T) <R<°°, then there exists a constant C«>0 such that

(4.3)

And we have

<ar> |u |+<x>|Vu|<C( |u | + |Vu|)+C(|xu| + |xVu|)
<C(M + |Vu|)+C(|^| + | /Vu | )+C( l+f ) ( |Vu | + |V^|)
<C(1+0(IWU-+II>IU-) (by (1.8)). (4.4)

Here

Substituting (4.4) into (4.3) and using (3.10), we have

\ for te[0,T].

Hence we put

0 (0 = cfi (i+o -Ar+1+aMf (T) , r (5)

and we define k(t,x,^) as in §2.
Moreover we continue the preparation for a priori estimates. Let

Ial+lj8l=m \a\+\0\=m-l

We define M(T) =sup^e 10,71^ (w (0). Let / be the same integer as in §2. We take
m satisfying m>N/2+l +4 in order that Hm~l^BM. If MI (T) <£ and if u is a
solution to (1 . 1) - (1 . 2) , then

CB (t) <CR (Ik (t) \\2^ + \\dtu (t) ||+1) <CR k W \\^<CR (1+0 ~NMl (T) ,

a, Cr<C, C2(t) <Cj?(l+Mf (T)).
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Using (3.11), we have

Z
d\+\£t\sl[™/2}+l

l,S'l«pV/2]

Finally we will carry out a priori estimates. Similarly to (2 . 18) - (2 . 19) , we
obtain

(l+t)-N+MM*(T}N(u(t))

<C*M2(T) (1+M35(T))

Note N—l — 5>l because AT>3. Gronwall's inequality yields

N (u (t) ) < C2 (0) £ exp (CRM2 (T) (1 +M35 (T) ) ) .

Since the size of initial data is sufficiently small, then there exists a constant CB
which is independent of £, such that we can replace C2 (0) by C3. Taking
supfe[o,:n, we get

M (T) < C3 £ exp (QM2 (T) (1 +M35 (T) ) ) .

Since M (T) is continuous with respect to T, supr>0 M (T) < °° holds provided
that £ is sufficiently small. CH

Remark 4.1. Let us consider the case of N=2, pw = 3. Under the condition
(1.5) or (1.6), the global existence results hold as we mentioned in §1. On the
other hand, since our method gives the loss of time-decay rate 1 + 5, generally
we need to assume pw^§ or another additional conditions, in order to get the
global existence results. We will explain this additional condition. We decom-
pose

F(u,q)=F3(u,q)+F5(u,q),

where F3(u,q) is a cubic homogeneous polynomial and F5(u,q} is a higher order
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term. Assume that lm(dFs/dqj) ,j = l, 2 satisfies null gauge condition of degree 2
(see Y. Tsutsumi [17]) . Namely there exist constants a^ €E R, /, k = l, 2 such
that

_

= 2 ajkdxk(\u\2) = 9. /-. , \ I] ajk(jkuu—ujku) . (4.5)
k=\,2

In this case, the loss of decay rate in F3 is d and decay rate in F5 is — 3 + <
Then we can also prove the global existence because the decay rate is — 2 + <
(<— l). For example

F(u,q) — iqiq&i (i.e. F(U, V u) —i (dXiu} (dX2u)u)

satisfies (1.3), (1.4) with pw = 3, (1.7) and (4.5). But it does not satisfy
(1 . 6) and then it cannot be treated by gauge transformation.
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