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Quadratic Representations of the

Canonical Commutation Relations

By

Martin PROKSCH*, George REENTS** and Stephen]. SUMMERS***

Abstract

This paper studies a class of representations (called quadratic) of the canonical commutation

relations over symplectic spaces of arbitrary dimension, which naturally generalizes coherent and

symplectic (i.e. quasifree) representations and which has previously been heuristically employed in

the special case of finite degrees of freedom in the physics literature. An explicit characterization of

canonical quadratic transformations in terms of a 'standard form' is given, and it is shown that they

can be exponentiated to give representations of the Weyl algebra. Necessary and sufficient condi-

tions are presented for the unitary equivalence of these representations with the Fock representa-

tion. Possible applications to quantum optics and quantum field theory are briefly indicated.

I. Introduction

Since the canonical commutation relations (henceforth, the CCR) were in-
troduced by Dirac in 1927 as generalizations of Heisenberg's commutation rela-
tions in order to discuss radiation theory [6], they have received a great deal of
attention. Rigorous mathematical analysis of the CCR for the purposes of quan-
tum field theory began in the 1950's, when it was also realized that in the case
of infinitely many degrees of freedom, which is of relevance in quantum statisti-
cal mechanics and quantum field theory, there are (uncountably) infinitely many
inequivalent irreducible representations of the CCR [8], and that the choice of
the proper representation is crucial in any physical application. Various classes
of representations of the CCR have been introduced and studied, and in this
paper we wish to examine mathematically another class of representations. We
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shall introduce this additional class in a setting that makes clear that it is a
natural generalization of two classes that have been intensively studied earlier -
the coherent representations and the symplectic representations (also called
quasifree representations) . It should be mentioned that special cases of this class
of representations have already been introduced and heuristically studied in the
physics literature for a single degree of freedom [3] [16] and for a finite num-
ber of degrees of freedom [5] . We give here the first mathematically rigorous
treatment of the entire class of quadratic representations, and we do so without
restriction on the number of degrees of freedom.

We first give a brief introduction to these classes of representations. Let H
be a real test function space with a symplectic form a defined on it, and let
{(£(/) \f^H} be a family of densely defined linear operators acting on the com-
plex Hilbert space X and satisfying

[<P(/),0(0)]c;a(/,0)l, f,g^H. (1.1)

In other words, 0 (/) is a representation of the CCR over (H, a) . The best
known such representation is that of Fock (cf. [4] for the first mathematically
rigorous discussion of the Fock representation) . Representations of the CCR are
the basic building blocks in the theory of bosonic systems. The number of
physical degrees of freedom of the system determines the dimension of H — in
particular, dealing with infinitely many degrees of freedom necessitates handling
infinite dimensional spaces H, whence the mathematical problems alluded to
above arise. Different, i.e. unitarily inequivalent, representations of the CCR
over (H, a) manifest different physical properties in general. Roughly speaking,
the choice of the symplectic space (H, a) corresponds to a choice of kinematics
in the model, whereas the choice of representation corresponds to a choice of
dynamics. (For an elaboration of this point, see the texts [7] [25] [9] ) . A stand-
ard technique for constructing such representations is to start with a Fock rep-
resentation and then perform a canonical transformation, i.e. transformation
<P(/) >-»$' (/), /e#, such that equation (1.1) holds with 0 replaced by 0'. If
the new representation $'(/) is not unitarily equivalent to <P( / ) , then one has
the chance of modelling different physics. In this paper, a new class of repre-
sentations of the CCR, which are not unitarily equivalent to the Fock repre-
sentation and which therefore open up the opportunity to model new physics, is
displayed.

The simplest class of canonical transformations is that of the coherent
transformations

where 2 is a real-valued functional on H, which are intimately related with the
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coherent states used in quantum optics and elsewhere [12] . Another
well-studied class of canonical transformations is that of the symplectic (or
quasifree, or Bogoliubov) transformations

where the operator T ' H^-H is symplectic, i.e. satisfies <r(T/, Tg) = a (/, fif).
Together, the coherent and symplectic transformations constitute the group of
inhomogeneous linear canonical transformations, have been intensively studied
(see, for example, [1]), and have found application in many branches of theo-
retical physics. It is known that the coherent representations are unitarily
equivalent to the Fock representation if and only if the linear functional /I is
bounded [1], and the symplectic transformations are unitarily equivalent to the

original Fock representation if and only if the operator 1 —|T| = 1— (T*T)1/2 is
a Hilbert-Schmidt operator [26].

To avoid technical definitions (which will be given later in the body of this
paper) in this introduction, we shall illustrate some of the basic points to be

made with a class of easily describable examples. Let {qk, pk}°k=i be a system of
densely defined operators acting on the complex Hilbert space %, and satisfying

[ft, Pk\ =idjk • 1,

and for the standard annihilation and creation operators a* = -/=•(#*+i/>*) and

&1 = ~T^F (qk ~ ipk) let there be a vector Q €E X such that a*Q — 0 for all

. In other words, we consider the Fock representation of a bosonic system
with infinitely many degrees of freedom. In this setting, the coherent, resp. sym-
plectic, canonical transformations can be written as

(A) qk^qk, pk

where /U, Afci are real and ^ki — ̂ ik for each fe, /. Both transformations have the
general structure qk^qk, Pk^Pk+Fk G?i, 42,-) , where the Fk (qi, q2l...) are real
functions of the operators q\, q2,.... Note that the transformations above are

^j77\

generated by the choice Fk—~fl — , with

(A)

(B) F(xitx2t...)=-^ki ' ' -
' *,/
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It is a natural next step to choose F = ^- 2 XMm • xkxixm I , which would give

rise to the transformation [22]

qk^qk, pk^pk + ̂ kim ' qiqm • . (1.2)
l,m

(in order for this transformation to be canonical, the coefficients Xkim e R must
be totally symmetric in the indices.) We find it natural to call these transforma-
tions (and the resulting representations) higher-order1 transformations (represen-
tations) of the CCR.

After defining general quadratic transformations below, those which are
canonical will be characterized. It will be shown that for any canonical quadratic
transformation, there exists a choice of basis in (H, o) in terms of which the

transformation can be brought into the form (1.2)2 with 2/ fw^i/m <°°. More-
over, it will be proven that any such transformation can be exponentiated to
yield a representation of the corresponding Weyl algebra over (H, o) , and that
the transformation produces a representation of the CCR unitarily equivalent

with the original Fock representation if and only if S*f/.f»^*/ro<°°. As we shall
see below, this condition can be equivalently expressed in terms of a certain
operator being Hilbert-Schmidt.

The paper is organized as follows. After establishing the notation and
general setting in Chapter II , quadratic transformations are defined and studied
in Chapter El , where the canonical quadratic transformations are explicitly
characterized. In Chapter IV it is shown that any canonical quadratic trans-
formation may be exponentiated, and the mentioned necessary and sufficient
conditions for their unitary implementability are proven. Finally, further de-
velopments, speculations and possible applications are discussed in Chapter V.

Some of the results presented in this paper have been announced in [22] .

Ha Notation and General Setting

For us the basic starting point is a real (nondegenerate) symplectic space
(H, a) with an associated (regular) Weyl system (#, W(/ ) ) consisting of a
complex Hilbert space X and a mapping W '• H^0!! (X) from H into the group
°tt (#) of unitary operators on 31 which satisfies the following axioms [13]:

1 In the case (1.2), the transformation is called quadratic; for a brief discussion of transformations

of degree greater than 2, see Chapter 5 and [22].
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W(f}w(g)=e-ia(f'9}/2W(f+g), V/,<7<E#, (2.1)

W(f)*=W(-f), V/e# (2.2)

and

R3t^W(t/) £E$(#) is weakly continuous for all/etf. (2.3)

(9& (X ) denotes the set of all bounded linear operators A '. ${*-*$(.) Condition
(2.3) entails that the map R^t*-+W(tf) &3B(X) is actually strongly continuous,
hence by Stone's Theorem one knows that for each / ^ H there exists a

self-adjoint operator 0 (/) on X such that W(tf) =eit0(f) for alU^R and by
(2.1) the map /•-»$(/) is (real) linear. In fact, there exists a dense domain of
vectors Dw^ft which is a core of and left invariant by every 0(f} [19] [10]; it
is on this domain that the linearity just mentioned can be verified. On this do-
main one also verifies that the generators satisfy the CCR:

0 ( f } 0 ( g } - 0 ( g } 0 ( f ) = i a ( f , g ) l , V f . g ^ H . (2.4)

We therefore also call the Weyl system (#, W (f)) and its associated gener-
ators as above a regular representation of the CCR over (H, a) .

We shall denote by d (H, a) the C*~algebra on 3i generated by the oper-
ators { W ( f ) \ f ^ H } . As the notation indicates, the algebra sd(H, a) does not de-
pend on the choice of representation of the Weyl operators (W (f) \ f ^ H } [28]
[2, Theorem 5.2.8] . sA (H, a) is a simple, nonseparable C*-algebra [28] [13] .
There are, in fact, many different C*~algebras one can associate with the CCR
(see [11] for a discussion of some of the alternatives) , and the one we have
chosen is minimal in the sense of set containment [15] ; but, for practical pur-
poses the choice is moot, since one is generally interested in a von Neumann
algebra which is 'generated' by the C*~algebra, and all the C*~algebras dis-
cussed in [11] (realized concretely on a given representation space) have the
same weak closure.

For any real linear map/ I H*->H satisfying o(jf,Jg] = a(f, g) , ~o(jf,f] >
0 (/^rO) , and J2= — 1, one can introduce a complex structure on H as follows3

[11]: (a + i$f=(tf + PJf, for a l l / ^ f f , and a, £ e R. Moreover, </, g>^ =
"~o(jf, d} +io(f, g) defines a scalar product on H such that (H, < • , * > # ) is a
complex preHilbert space [11] . If on the other hand one begins with a complex
Hilbert space X with scalar product < • , • >#, then with a(f, g) =3m</, 0>^,
(H, o) is a real symplectic space of the sort with which we began, and with

3 It should be mentioned that such a / does not necessarily exist for arbitrary choice of symplectic

space (H, a).
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</, g> =$le </, g>x, then (H, < • , • >) is a real Hilbert space.
With a choice of a (7- admissible complex structure / on (H, a) , there is an

important representation of si, (H,a) called the Fock representation. This is
given as the GNS~representation {#, it, Q} associated with the state [14] a)j
determined on sd (H,ff) by

(2.5)

Given such a representation, one can define the following 'annihilation' and
'creation' operators:

(2.6)

where n(W(tf}} =ett0(f). One has then a(/)Q = 0 for
For the purposes of this paper, we shall assume that a choice of

cr-admissible complex structure J has been made on (//", a) , so we have the com-
plex one-particle space $? and a corresponding Fock representation. Since as
sets H=3C, we shall distinguish notationally the vector/ viewed as an element

of the real Hilbert space H from the same vector, denoted as /, viewed as an ele-
ment of the complex Hilbert space 3C. If {^}feeN forms an orthonormal basis in
^, then with Jet, = ev, the set W) = W, ek'} = W, /0 J (in this paper,
large-lettered indices K, L, M,... are understood to run through the set {1, 1', 2,
2' ' , ...} , whereas small-lettered indices k, /, m, ... run through {1, 2, 3, ...} = N)
forms a symplectic orthonormal system in H, in particular

o(ek, ei) =a(ek', er) =0, a(ek, er) =dki,

(ek, ei> = (ek', e^ =dki, ( # k , «/'> —0,

where in our notation the last line can be written as <##, ei> =SKL-
With the choice of complex structure made as above, the corresponding

Fock state denoted by O)F • si (H, o] ^C now satisfies

coP(W(f))=e -II/II2/4

and the associated GNS-space may be represented by the symmetric Fock space

^+ (X). We recall that the Fock space & (X) = ®n=^n (X° = C, Xn the n-fold
tensor product of X with itself), and that 2F+ (X) is the totally symmetric sub-

space ®n=0P+<ffn o i 2 F ( X ) , where P+ is the projection
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n(ft^X, TI\ permutation on the set {1, 2, ..., n}) . The projection operator Pn

2F '(X) *-*Xn projects onto the n-particle subspace, and we shall write cp(n)=Pn(p
as the n-particle component of (p^^(X). The vector Q0= (1, 0, 0, ...) ^&+(X}
is the Fock vacuum. ̂ 0 is the finite-particle subspace, i.e. the linear span of the
ranges of {Pn}n€EN. The GNS-representation for the Fock state may be identified
with {&+(%), 7tF, Qo).

With a (fj the usual annihilation operator in 3F+ (X) for f^X and the ad-

joint operator a(/)* the corresponding creation operator, then the linear self-

adjoint operator @s (/) =—j=(a (/) +a (/) *) (the bar denotes the closure of the

operator) is called the Segal field operator in 2F+(X). If we also view f^X as

an element of H, then we have @s (/} = @ (/) , after identifying d (H, a) with
7Z>G^(#, a}} (since they are isomorphic). <^0 is a core for $(/), and for (p^2?Q,
fl>(/) satisfies the bound \\0 (/) <p ||<A/2 Vn^+l \\f\\ \\q>\\, where n<p equals the

smallest n^N such that PN(p = Q for all N>n. If (fn)n=i converges in H to/,

then for every cp^^o the sequence (<P(/n)0)n=i converges in 3F+(X) to 0(f)<p.
To make a notational connection to the discussion in Section I and in keeping
with common harmonic oscillator conventions, if W) is a symplectic orthonor-
mal basis in H, then the 'position operator' and the 'momentum operator' corres-
ponding to the fc-th degree of freedom are given by

III. Quadratic Transformations

In this chapter we rigorously define what we mean by quadratic trans-
formations and then explicitly characterize those which are canonical, i.e. those
which lead to a representation of the CCR. We shall show that any such trans-
formation can be written in the standard form of equation (1.2). In the follow-
ing, D (0) (resp. R (0)) will denotes the domain (resp. range) of the operator 0.

§3.1. Two-Particle Operators and Generators

We first define and study the two-particle operators and their associated
n

transformations. LetF^H®H have the form F= Sa< (/<:®0,-), with a,eR,/f, gt
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^H and n^N. We define an operator W(F) acting on the domain 9$
by

where the Wick ordering is taken with respect to the Fock vacuum Q0i i.e.

: 0(f}0(g] : = 0s(f}0s&-<

It is easy to verify that this definition is independent of the special choice of
linear representation for F (see [18], pp. 14-15).

Lemma 3.1.1. For each 0 e ^0 the mapping F*-+W(F) <f> from H®H to
2F+ ($) is bounded with

1II0II, (3.1.1)

for any 0^^0- Hence it may be extended uniquely to a continuous linear map from H
® H (= H2) to 3F+ (X). Consequently, for each F ^ H2 there exists a linear operator

with domain 2F0, which shall again be denoted by W (F) and which satisfies the
same bound (3.1.1).

n
Proof. 1. With F=Sor/(/i ®0i), there is a finite orthonormal and symplec-

tic system {e\, Jei, ..., em, Jem] = {eg\K=l, 1', ..., m, m'} = W)jrej«, with M= {1, 1',
..., m, m'}, 2m<n, such that F= 2 ^(ex^ei). This can be seen by consider-

ing the subspace of ffl spanned by /i, ..., /«, <Ti, ..., fn and choosing an orthonor-
mal basis [hi, ..., hm} for it. {ej will denote the corresponding vectors in H, i.e.

_ m m
e'i — hi. Then one has f\ = 2 7,-?J if and only if /i= 23^7*1^1 + 3 mjijei (similarly

for the other test functions) . With F now expressed as F= 2 ^KL(^K®^L) , de-
K,L^M

fine F= 2 ^(ei^ei) ^X2. Then one has ||F||<y2||F||f which can be verified
KL<^M

by direct computation.

2. One then computes:

W(F)(/}= Z $KL.®(
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A. \—i **
Attfo* (eK) a* (eL) +a (**) a (eL] +a* (**) a (0L) +a* (*L) a (eK) } (/);

K,L^M

2 Aua*(&)a*(S) 0|| + || Z Ana (&) a (S
^ KJ.^M Kl^M

+ II 2 fa* (&) a fe) 0|| + 1| Z jSjaa* fe) a (&) 0||} . (3.1.2)

3. Now, in particular, one has

II 2 Aafl*(r^a*&)0||'=z;il z jSjaa^aja^si)^!!2
IC^e^ n=0 K£<EM

= Z II Z &a.AT2 vCTTp+^ ® «i ® 0(B) f

<2W+2)(M,+1)||F||2M|2.

Thus, the map 0(w> ̂ a* (?>) a* (?l) 0(w> is a bounded linear map from P+X" to

P+<f£(n+2) with norm bounded by J2 J(n+2) (n + 1) ||F ||. The map <f>(n+2) *~+

a (gjf) a (e^) 0(M+2) is (a restriction of) its adjoint and therefore satisfies the

bound: | Z ft^a fa) a (el) 0(M+2)||<^V(n+2) (n+1) ||F||||0(W+2)||, which entails

4. Similarly, one finds

PKLO* (&) a fe) 0(B) = Z S (ftu+i^ a* (?») a fe
k=l

In light of the standard bound ||a(/)0(w)||<v^||/|| II0(M)1, it now follows that

^n || Z (fo+t&^fclfll^ll2

k=l

Thus one has the inequality || Z
KL^M

The same bound is applicable to the remaining term in (3.1.2).
Putting together Steps (2) - (4) , one may conclude
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n

Of course, a consequence of this lemma is that if (Fj d#2 converges to F
2, then the operators ¥(Fn) converge strongly to ¥(jp) on 2FQ. This would

not be true if in the definition of the two particle operators ¥(F) normal order-
ing had not been used (see [18], p. 20). Another technically important fact is
also implied by the previous lemma.

Corollary 3.1.2. For any F^H2, ¥(F) is a symmetric operator for which the
equality ¥(F) = ¥(P+F} + ¥(P-F) = ¥(P+F) obtains.

Proof. That ¥(F] *(p = ¥(F) 0 for F^H®H and 0e^o is obvious. The
continuity property established in Lemma 3.1.1 then entails that the operator
¥(F) is symmetric on ^0 for all F^H2.

Moreover, since ¥ ( f ® g } = ¥(g ®/), the equality ¥(F} = ¥(P+F) follows
for F^H®H and once again by continuity for F^H2. d

Therefore, with f^H and F^#2, we have (0 (/) + f(F)) *=> 0 (/) + ¥(F) *
=3 0 (/) + ¥(F), so that the operator 0 (/) + ¥(F} is symmetric and closable. If
A ! H^P+H2 is a linear, densely defined operator, then we define a quadratic
transformation of the field to be

0 ( f ) ^ 0 A ( f ) = 0 ( f ) + ¥ ( A f ) , /€=/)(/!), (3.1.3)

where Q(f)+W(Af) denotes the closure of $(/) +¥(Af) on ^0- It is easy to

verify that 0A (/) = 0 (/) |^o+ ¥(Af) and 0A (/) =0(f)+ ¥(Af) (see [18] , Satz
3.1). We next shall see that 0A (/) is self-adjoint.

Proposition 3.1.3. For every f^H and F^H2 the operator 0 (/) + ¥(F) is
essentially self -adjoint (on 3?$) . In particular, for every f^D (A) the operator 0A (/)

= 0 ( f ) + ¥ ( A f ) is self -adjoint.

Proof. Let 0 be a finite particle vector, i.e. let 0 = (0(w))«=o, (/}(

and (f)(n) = Q for all n>n^. As a shorthand we write: 0=0(f)+¥(F) for arbit-

rary fixed f^H and F^H2, as well as ff— |[/|| + 2||F||. Since 0 maps every finite
particle vector onto a vector in ^0, one has
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Furthermore, one has

\\ = \\0 (/) <P+ W(F) 0||<||<Z> (/) <P\\+\\W(F) 0||

For the first term of the last line see e.g. the proof of Theorem X.41 in [21] ; for
the second term see the proof of Lemma 3.1.1 above. Therefore one has

In light of the fact that the application of @ to a finite particle vector increases
the highest 'particle-number' at most by 2 (since it contains two creation
operators) , one concludes that

In order to obtain a sufficient condition for the convergence of the series

=o~7ll$w0lkw (f>0), one can apply the ratio test to its majorant

n,+2n) 1 1|0|| to find that

1
Thus one has Z ? = o - ^ w 0 f w < 0 0 for *< ' S° ^ is an analytic vector for

Since therefore all 0^^o are analytic vectors for 0, since ^"o is dense in Fock

space and left invariant by 0, and since 0 is symmetric, the essential self-

adjointness of 0 follows from Nelson's Theorem (see e.g. [21] , Theorem X.6) .
n

Remarks. 1. Also the operator ¥(F) is essentially self -adjoint, as one sees

by setting /=0. The proof cannot be applied to an Af-particle operator W(N) (F),
N with N>2, since then y(w0+2n)! becomes </(nt+Nn)\, and the ratio
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test no longer yields convergence.
2. Because of the essential self-adjointness of W(F) and the proven con-

tinuity property, one may conclude from standard theorems that if (F«) c: H2

converges to F ^ H2, then the operators ¥(Fn) converge to V(F) in the strong

resolvent sense, and W(F) is the strong graph limit of (W(Fn)} (see, e.g., [20],
Theorems II. 25 and 1.26).

§3.2. Canonical Quadratic Transformations

In this section we determine necessary and sufficient conditions on the
linear, densely defined map A '. H*->H2 = H®H such that the quadratic field
transformation

(3.2.1)

is canonical. In light of Proposition 3.1.3, for every /eD (A) the transformed
field operator 0A (/") is self-adjoint. We assume A to be linear, so that 0A (/) <p
is linear in /, analogously to 0 (/) (p (for (p €= SFo). Moreover, D (A) should be
dense, so that there exists no nonzero f-LD (A), i.e. no degree of freedom, for
which the transformation (3.2.1) would not be defined. On the other hand,
D (A) =H is not required, as we wish to admit unbounded A. Due to Corollary
3.1.2, the range R (A) of A may be taken to lie in P+H2 without loss of general-
ity. For convenience, we introduce the following definition.

Definition 3.2.1. Let £ be the set of all linear, densely defined operators
from H to P+H2, and let %CCR^£ be the subset of £ consisting of elements A such

that the transformation 0 (/) *->0A (/) = 0 (/) + ¥(Af) ,f^D(A),is canonical, i.e.
one has

)l, (3.2.2)

whenever /, Q^D (A) .

Note that since ^o is an invariant core for 0A (/) , it suffices to verify equation
(3.2.2) on the elements of «^0. We introduce now a symplectic bilinear form on

H2.

Definition 3.2.2. For F, G ̂ H2 let a(F, G) = < (/® 1)F, G> .

The map a '• H2'XH2}-+11 is bilinear and alternating, since /®1 is unitary
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and we have

In addition, this form is nondegenerate, since if a (F, G) = 0 for all F ^ H2, it
follows that

, G) = <G, G>=||Gff

which entails G — 0. We remark that for simple tensors f\ ®/2, 9i®d2^H2, one
has

(7 (/I ®/2f 01 ®02) = < (//l) ®/2, 01 ®02> = <//!, 01> </2, 02> =(7 (/i, 0l) </2, 02>,

(3.2.3)

where the final a naturally is the symplectic form on H.

Definition 3.2.3. For any f^H and F^H2, let b (/, F) denote the element of
H such that

<b(f,F),g>=a(f®g,F) (3.2.4)

holds for all

b is a well-defined map from H*H2 into H, as can be seen as follows. Con-
sider the map

0»->(7(/®0,F) f 0e#, (3.2.5)

which is a bounded linear functional on H, since

Therefore, according to the Riesz representation theorem there exists exactly
one vector in H, which we shall denote by b (/, F) , so that equation (3.2.4)
holds for all g^H. In addition, Riesz' theorem entails that the norm of b(f, F) is
equal to that of the map in (3.2.5), hence we have \\b(f, F)||<||/|| ||F||. Thus b is
linear and continuous in each entry, and for F=/i®/2 one sees that
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Since this obtains for all g ̂ H, one has

i®/2)=<K/,/i)/2. (3.2.6)

Thus, we could have defined b via linear and then continuous extension of
(3.2.6). We define next a related map B.

Definition 3.204. For any F, G^H2, let B (F, G) denote that element of H2

for which b (h, B(F,G})=b (b (h, F) , G) holds for all

Lemma 3.2.5. B is a well-defined bounded linear map from ifXH2 into H2.

Proof. 1. Let {es} be an orthonormal basis in H and fix F, G ^H2. Then
{jes} is also an orthonormal basis, and one has

® (Jes] = Z (jer] ®/r.

with ars^H andfr=EsarJes. Define furthermore the vectors Bs^H2, Bs = (jes)
®b(b(es, F), G), which are mutually orthogonal and whose norms satisfy

\\Bs\\ = \\b(b(es,F),G)\\<\\b(es,F}\\ \\G\\

= \\b(es,

(The continuity of b was used.) Therefore,

and EsBs is a well-defined vector in H2. But for this vector, one has

b (fc, EBS) = Eb (fc, Bs) = Za(fc, Jes} b (b (es, F) , G)
s s s

= b(b(E <Jh, Jes>es, F) , G) = b (b (ft. F) , G) .
S

2. Let Bi and B2 be two vectors in H2 such that b (h, BI) =
b(h,B2)=b(b(h,F), G) Vh<EH for given F, GeH2. Then b(h,Bl-B2)=Q and
<6 (/i, Bi—B2),g> =o(h ®flf f Bi-Bz) =0 for all 0, fce#. Since, however, tr( • , - )
is linear and continuous in the first entry, one has therefore o(K, Bi—B2) =0
for all K^H2. But by the nondegeneracy of (J, it follows that Bi=B2.
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3. From step (1) one obtains the bound ||fl (F, G) ||<||F|| ||G|| and thus the
continuity of B. D

Note that from the above arguments, if {es} is an orthonormal basis in H
and/i,/2, 0i, 02e#, then

B (/i 3/2, 9i ®g2} = S (Jes} ®b (b (est fi ®/a) , 9i
s

= Ea(esJi)ff(f2, 0i) (Jes} ®92
s

s,/i> (Jes) 9gt =

in analogy to (3.2.6).
We have introduced the maps b and B, because they appear in the computa-

tion of the commutators of transformed fields, as we see in the next theorem.

Proposition 3.2.6. For every f^H, F, G^P+H2, and (p^&0 one has

(3.2.7)

(3.2.8)

It therefore follows that for any A^£, one has

[0A (/) , QA (g)]<p=ia(f, 9} (p+2i0(b (/, Ag) ~b (g, Af) ) <p
(3.2.9)

Proof. To begin, let G be of the form G=P+ (g\ ®02) . Then one computes

=iff(f, 9i) 0(92

=i0(b(f,gl®g2)+b(f,g2®gi)}(p
. (3.2.10)

This equation holds as well for the dense linear span of such simple tensor prod-
ucts and hence for all G ^ P+H2, as soon as it is seen that both sides of the
equation are continuous in G. First, the map G*-*2i0(b (/, G)) <p is continuous,
since both maps G*->b(f, G) and h^0(h)(p are continuous. The map
¥(G)]<p is also bounded:
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\\[0(f),W(G)]<p\\<\\0(f)¥(G)(pl+\\¥(G)0(f)(p\\

\\ \\G\ \\(p\

(see (3.1.1)).
With ies} an orthonormal basis in H, F = S^ov^r ® es, G = ^p,qTpqep ®eq

rs = 0(er, es) , one has

[f (F) ,

a(^f b(e«F))+ I

<6 (^, F) , g^> + d ( 6 (^, F) ,eq)}<p

ep®eq, F) +^(a(ep, b (eq, F))

-a(eq,b(ep,F)))}(p.

The last term vanishes, because it is antisymmetric and YPq is symmetric in p
and q, so with

P+B (F, G) = S7
P,q r,s

and

one obtains the right side of equation (3.2.8). D

Remark. Note that the first two equations in the Proposition are valid only
for symmetric F, G^H2.

A first result characterizing canonical quadratic transformations can now



MARTIN PROKSCH, GEORGE REENTS AND STEPHEN J. SUMMERS 771

be given.

Proposition 3.2.7. Let A^£. The transformation 0 ( f ) ^0A(f)
is canonical if and only if, for all f, g^D(A) , one has

b ( f , A g ) = b ( g , A f ) (3.2.11)

and

P+B(Af,Ag)=Q. (3.2.12)

Proof. 1. (<=) If equations (3.2.11) and (3.2.12) are satisfied, then by
(3.2.9) the transformation is canonical, whenever a (Af, Ag) = 0 holds. This,
then, will be proven. Choose an orthonormal basis ies} in H and write

Af =
r,s

, fr = 2sars£s) and correspondingly Ag = 2^s ®es. Then one sees
that

Q=P+B(Af, Ag} =P+2,B(er®fr, gs®es) =2,a(fr, gs)P+ (er®es),

in particular, a(/r, gr) —0 for every r, and thus

a(Af, Ag)=Za(fr®er, gs®es)=Za(fr, g*) <er, esy=Ha(fr, gr) =0.
r,s r,s r

2. (=>) On the other hand, if @(f} H^^A(/) is canonical, then by equation
(3.2.9) one has

= Q V <p€E^0, (3.2.13)

where the quantity P+B (Af, Ag) has been designated by K and b (f, Ag) —b (g,
Af) by k. One must therefore show that K=0 and fe = 0. With this goal in mind,
by (3.2.13) one has

Q=[0(h1),[0(h2),2W(K)+0(k)+a(Af,Ag)i]]<p

= 2[0(h1),[0(h2),V(K)]]<p=4i[0(h1),0(b(h2,K))]<p

for all hi, h2^H, cp^^o, where in the last step equation (3.2.7) was used. This
leads to
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0= -4(j(/nf b (h2, K) ) q>= -±a(h2 ® (/fci) , K) <p= -

so that K=Q. Equation (3.2.13) then entails that 0(k) <p+a(Af, Ag)(p = Q, from
which it follows that k = 0. C3

Remark 3.2.8. We next note that if F=^irfr®er=^rer®fr^P+H2 and G =
, then

2P+B(F, G) =

= Z (a(/r, g,)er*es-a(gsjr)e,*er) =B(F, G) -B(G, F);
r,s

thus one has P+£ (yl/, Ag) =0 if and only if B U/, ylflf) =5 Ol#, A/) •

A variant of Proposition 3.2.7 will now be presented, which demonstrates
that if the quadratic transformation is canonical, then not only the symmetric
part of B(Af, Ag) must be zero, but, in fact, also the antisymmetric part
vanishes.

Proposition 3.2.9. Let A<^£. The transformation 0 (/) *-*0A(f),f^D (A) ,
is canonical if and only if, for all f,g^D(A),one has

b ( f , A g ) = b ( g , A f ) (3.2.14)

and

B(Af,Ag)=Q. (3.2.15)

Proof. Given the preceding proposition, one may assume that (3.2.14) and
(3.2.12) hold. Using the equality

<B(F, G), (Jh) ®(jk)>=a(b(h,F), b(k, G))

(for general F, G^P+H2, h,k^H) and Remark 3.2.8, one finds for/, g,h,k^
D(A):

<B(Af,Ag),

= -<B(Ag,Af),

= -a(b(k,Af), b(h,Ag)) = -a(b(f,Ak), b(g,Ah))

= -<B(Ak,Ah), (jf)®(jg)> = -<B(Ah.Ak), (ff)

= -a(b (f, Ah) , b (g, Ak} ) = -a(b (h, Af] , b (k, Ag) )
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= -<B(Af,Ag}, (Jh)®(jk}>.

Since D (A) is dense in H, the set of vectors of the form (jh) ® (jk) is total in
H2; hence it follows that B (Af, Ag} =0. D

We next reformulate condition (3.2.15) in a more symplectic geometrical
context.

Lemma 3.2.10. Let A^£. The condition (3.2.15) holds exactly when there
exists a closed isotropic subspace M^H (i.e. o(m, n) = 0, Vm, n^M) such that
R(A)dM®M.

Proof. Since it has been shown that the range of A consists of symmetric
vectors, the relation R (A) <^M®M may be replaced by R (A) dP+ (M®M) .

1. (<=) Let/, Q ^D (A) and (nj be an orthonormal basis in M, which by
hypothesis must satisfy o(ni, nj) = 0. Since by assumption the vectors Af and Ag
are elements of M®M, one may write Af— Zi/« ®ni and Ag = S/w/ ®#;, with//,

. Employing the continuity of B, one obtains

B (Af, Ag)=
i J i J

2. (=>) In this direction the isotropic subspace will be explicitly con-
structed. If {es} is an orthonormal basis in H and one writes F ^ R (A) in the
form F = 2/s ®es, then one obtains the vectors /i, /2, /s, ... ^//. This leads to a
map from an element F ^ R (A) to a set {/s} of vectors. The range of this map,
as F runs through R (A) , will be called M0. The closure of the linear span of M0

will be called M. This will be shown to be the desired subspace.
Let / and g be chosen from D (A) ; then one has Af= ^rfr ®er= ^^r ®fr

(since Af is symmetric), Ag = ̂ sgs®es, and/r, gs^MQ. If

Q=B(Af, Ag)=EEa(fr, gs)er®es,

then a(fr, Qs] =0 and a(f, g) =0 hold for all/, g ̂ M0. Since the set M0 is total
in M, it therefore follows that cr(m, n) =0 for all m, n^M.

On the other hand, if F^R(A), then also F^M®H, and therefore one may

write F=^tni®fi, with an orthonormal basis (nj in M and//^#. For an arbi-
trary element nj of this basis and an h^H, one then has
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But F is symmetric, so one also has

<F, HJ®h> = <F, h ®nj> = 2<»,-, h> <fi, nj>.
i

Choosing h from the orthogonal space ML to M, one concludes <//, /i> = 0, V /& ^

M\ in other words one has /,- ̂ MJ"L=M = M. But since then all /,- in the sum

F=!£ini®fi belong to M, one clearly has F^M®M, which completes the proof.

We summarize the main results of this section up to this point in the fol-
lowing theorem.

Theorem 3.2,11. The transformation 0>(/) *->0A (/) , f^D (A) with A<^£ is
canonical (i.e., A^£CCR) if and only if b (/, Ag) =b (g, Af) for all /, g ̂ D (A) and
R (A) CZM®M/or some closed, isotropic subspace M of H.

§3.3. The Standard Form of Canonical Quadratic Transformations

In this section we shall prove that if A e £CCR, then there exists a suitable
basis in H in terms of which the map A has a particularly convenient form. In
fact, we shall be able to explicitly characterize the elements of &CCR in this man-
ner. This technical point is crucial in the arguments of the following sections.

Proposition 3.3.1. For any A ^ &CCR there exists a symplectic orthonormal
basis (ek, ek'} = (eK • K=l, 1', 2, 2', ...} in H and real numbers AM, i, /, k = l, 2, 3,
..., which are completely symmetric in the three indices, and satisfy

for every k, such that the operator A may be expressed as:

i,j k

forallf^D(A).

Proof. 1. From Theorem 3.2.11 it is known that there exists a closed iso-
tropic subspace M of H with R(A) ^M®M. Let {mj be an orthonormal basis in
M and consider the corresponding vectors mi in X. Since one has <mz-, m/>^ =
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(MI, w/> +\o(m,i, m;-) = <w,-, m;-> = 5,7, these vectors form an orthonormal system,
which can be completed in the case that it is not already complete in X. From
the discussion in Section 2, the resulting orthonormal basis (nj in X can be
transformed into a symplectic orthonormal basis (nk, Jnk] = (nk, nk'} = W) in H.
In the subset (nj of this system are contained the original vectors w,-. Calling
N^H the closed subspace spanned by (n^ , one has by construction: M^N,
R(A) dN®N and a(m, n) = 0, for any w, n^N. One may therefore replace M by
N, which has the hypothesized properties of M and which, moreover, has the
advantage of being a maximal isotropic subspace of H. Note that one has JN=N±

and JV0 (JN) =H.
Next let f^D(A),g^H and n ̂ N r\D(A). Since Af ^N ®N, it may be writ-

ten as Af=*Eifi®gi, with/,-, g^N. Thus one has a(n®g, Af) =Z<<r(n f / i ) <g,
gi> = 0. Using (3.2.14) one finds then that

a(f®g. An) = <b (/, An) ,g> = <b (n, Af) ,g>=a(n 00, Af) = 0,

which entails An = Q. One may therefore extend A to an operator A by defining:

Af=A(l+n)=Al, (3.3.2)

where / = / + n ^ D (A) , / ̂  D (A) , and n^N. Since the decomposition f—l+n
need not be unique, it must be checked that the definition (3.3.2) makes sense.

Therefore, consider two decompositions / = /i+ni,/ = 1% +n2 oif^D(A) (li, li^-
D(A) , ni, n2^N) . Since n\— n2 = l2~li, one has n\— n2^NnD(A) ; hence A(ni~
n2) —0, as has just been shown above. Thus one has Al2 = A(ni—n2 + li) =Ak

and A(l2+n2) =Al2=Ali = A(li+ni) . It is straightforward to verify that D (A)

is a linear subspace of H, and that A is linear. Moreover, one also has R (A) =

R(A) andle^.

If A ^ ^?cc/?, then also for its extension one has A ^ &CCR, as can be seen:

Since the condition R (A) =R (yl) dN®N has already been verified, one needs

only check (3.2.14). But for arbitrary /i = /i+wi, f2 = l2+n2^D (A) , one com-
putes

& (/!, yfo) -5 (h+ni, yl/2) =b (h, Al2) =b(l2, Ah) = b ( f 2 , Af,) .

2. Since Af=Af, for any/^Z)(yl), it will suffice to show that the theorem
holds for the extended operator. This will be technically easier. Let P be the
orthogonal projection onto the subspace N, so that P± = I — P is the orthogonal

projection onto N^ =JN. The set P±D (A) is dense in N^ and is a separable pre-
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Hilbert space; therefore it contains an orthonormal basis W), which is also an

orthonormal basis for P±D(A) =N'L. Hence {—/£*'} is an orthonormal basis in
—JN±=—JJN=N, and if one sets —Jek^=ek, thenjek=ek' and iek, ek

f} = {ei^ is a
symplectic orthonormal basis in H contained in D (A) : the containment

£=D(A) is clear. Now, if/ is an arbitrary element in D 04) , then

and P±f=f-Pf^D (A) . In other words, PLD (A)^D(A). However, as W) is

by construction a subset of PLD Cd) , one also has W) ^D (A) .
3. It shall be seen that the constructed basis W) and the numbers de-

fined by Xijk= (ei ®ej, Ajek> satisfy the conclusions of the proposition. First,

since Ajek^P+H2, it follows that ^.ijk = ^jik. Moreover, one has

hjk=-a( (Jet) ®ejf Ajek) = ~<b (jeit Ajek] , */> = -<b (jek,

This implies that X^ is invariant under exchange of the first with the second,
as well as the first with the third index, so it is completely symmetric in the
three indices.

Next it is noted that

\\Ajekf= ||Z <ei ®eh Ajejei ® e/||2
u

IJ iJ

for every k, since Jek^D(A). Further, for f^D(A) one has

Af = Z <ei ®ej, Af>ei ®e/= 2 <er ®ejt AT* <JeK,
U U K

Employing once again (3.2.14), one sees that for any ei, ej the linear map

/•-><*/ ®*/f Af> = ~<b (Jei, Af) ,ej> = ~ <b (f, Ajer) , ej>

is bounded, since \\b (/", F) \\^\\f\\ \\F\\. Thus, one may pull the infinite sum through
the scalar product above to obtain

U K

Since on the one hand, AjeK^N®N, and on the other hand, A]NL=AN= {0}, it

follows that the only scalar products satisfying <g/®£/, Ajeg> ^0 are those for
which #/, ej, CK^N, in other words, the vectors must come from {0J . Thus, one
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has finally
ft = EE<JekJ><ei®eJ,Ajek>ei®eJ=ZE0(ekj)Aulti®ef.

i,j k i,j k

D

The next step in our program to explicitly characterize the elements of
&CCR is the following proposition, which is in some sense the converse of the
preceding result.

Proposition 3.3.2. Let (e^ be an orthonormal system in H with 0(ek, e\) = 0
for all k, I, and let Xak be real numbers which are completely symmetric in the three

indices satisfying Zu^?/*^00 for every k. Then the operator A 1 H*-+H2 defined by

ij k

(A) is contained in !£CCR, i-0- the quadratic transformation 0 (/) •-» @A (/) ,
f^D (A) , is canonical.

Proof. 1. It shall be assumed that {e^ is an infinite orthonormal system,
and that the indices i, /, k run from 1 to infinity, since the finite case is relative-
ly trivial. The first step is to show that for every i, / and / ^ H the series
^k^nkO(ek, /) is absolutely convergent. Since {fek} is also an orthonormal sys-
tem in H, Bessel's inequality yields \\f\\2> Zk <Jek, f>

2=Ekff(ek, /) 2, for f^H.
Thus the sequence (p={\ff(ei,f)\, \ 0 ( e 2 , f ) \ , \o(e^, /) |,...} belongs to /2 (R) and

Mli^ll/ll2. In addition, the sequence ^/={U,-yi| f U^L Uyal, ...}^^2(R), since
Zf.^*y<°° entails Z^Jiy<°°. In the Hilbert space ^(R) the Cauchy-Schwarz
inequality implies:

Go-, <P>* = Z\*ijk\ \v(ekj}\<Uij\k\ dk<°°, (3.3.3)
k

so that ^k^nkO(ek,f} is absolutely convergent.
2. The next step is to show that A&£. The linearity of A is clear, once it

is seen that/, g^ D(A) implies thztf+g^D(A) . But, in fact,
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where the trivial fact (a+$)2< (a+fl) 2+ (a-0) 2 = 2 (a2 + £2) for real num-
bers was employed.

From Step (l) of the proof of Proposition 3.3.1, it is already known that
there exists a symplectic orthonormal basis {HI, ny} = W) of H with {n/} 3 {#/J .
For any element HL of this basis the quantity (J (ek, HL) is nonzero for at most
one choice of k, and since Z^/l2/* <°°, it must be the case that nL^D (A) .
Hence, the linear operator A is defined on the linear hull of {n#} and conse-
quently is densely defined. The relation R (A) ^ P+H 2 is trivially fulfilled,
because of the symmetry of ^y*. It has therefore been proven that A^£.

3. Since the sufficient condition of Lemma 3.2.10 is clearly satisfied, it
suffices to demonstrate that equation (3.2.14) holds in order to conclude that

CR- Forf,g^D(A) one verifies that

b(f, Ag) = b(f, EE*iJk(r(ek, 0)*,®*,) =ZZ^,*(j(**, g)b(f, et®e,)
k

ei, g)a(f,
j i k

and

b(g,Af) =
j i k

These two expressions are equal, if the sums Zi and Z^ can be exchanged, and
that will be the case if the double sum

is absolutely convergent. To demonstrate that this is the case here, consider the
sequences cp and Xa from the first part of this proof and also the sequences

<!>= (\°(ei, g) I, \a(e2, g) \, \a(es, g) |,..) , X,= (IUJL |U«L lUaylL-J :

(/) is an element of £2 for the same reason that (p is, and also Aj belongs to £2,

since ZilUiy|||2=ZfZ*^fy*<00. Therefore, one has

where equation (3.3.3) was used in the last step. This demonstrates the de-
sired absolute convergence, and b(f, Ag} =b (g, Af) follows. D



MARTIN PROKSCH, GEORGE REENTS AND STEPHEN J. SUMMERS 779

We next shall show that each A ^ !£CCR has a maximal extension ylmax
 e

£CCR- To this end we make the following definition.

Definition 3.3.3 For a given A ^ £CCR determine the quantities W) and
Xtjk as in Proposition 3.3.1, and then define with these an operator via Proposition
3.3.2. The resulting operator will be denoted by Anax.

The fact emerged in the proof of Proposition 3.3.1 that the basis W) and
the numbers Xtjk are not necessarily determined uniquely by A. It shall be made
clear that the operator ylmax is independent of this choice of W} and /!//*. An
immediate consequence of Proposition 3.3.2 is that Amax is an element of £CCR',
moreover, for any/^D(yl) we have

so that/^D (ylmax) , and /lmax is indeed an extension of A. We next see that /l
is a maximal extension of A in the class &CCR-

Proposition 3.3.4. // A^£CCR is an extension of A, then A'Cylmax. Furth-
ermore, Amax is a closed operator.

Proof. 1. First consider the case yl'^ylmax. lif^D(Af}, then set yT/=Z/s/
®//, where {ej} is the symplectic orthonormal basis from which A and ylmax are
constructed, and the vectors fi^H are obtained from

b (/e/, A'f) = Z(j(/£/, £/)//=
/ /

Since /^/ ̂  D (ylmax), by assumption one also has Jei^D (A'), so that

//= ~b (fei, A'f) = -b (/, A'JeJ = ~b (/, Amaxjef)

= —b(f, Z Yt^mnkO (ek, Jei) em ®en} = — Z Z^mnjb5*/a (/, em) en.
\ mn k ' mn km,n k m,n k

Therefore, /r — 0 andft = ^n^m^mniO'(em,f)en, which entails

IH'/||2= S|/,||2 = ZZ (^mnio (em, /) )2.
i n m

Since this quantity must be finite, it follows that/^D(/lmax).
2. In general, one cannot assume that D(A) or D(A'} contain a symplectic

orthonormal basis, but, as has been argued before, there exists an orthonormal
basis {ks} for the scalar product in H such that Jks^D (A) d£) (A]. Using this
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basis we write as above
Amaxf= Eks 0/max,S (/) = Z Ws (/) ®

s s

/max,, (f)=~b (Jks, /Irnax/) , /€=£> (ylmax)

and

Since f^D(A) entails AmaJ=Af=A'f, lmax>s ( • ) and l's ( - ) coincide on D (A) .

Because lmax,s (/) = ~b (/, Amajks) and /$ (d) = ~b(g, A'Jks) , the linear maps /•-»
Jmax,s (/) and 0 |->/s(0) are continuous. Thus, since the continuous extension of a
linear, continuous, densely defined operator is unique, /max,s ( ° ) and l's ( - ) are
restrictions of the same continuous map ls ( • ) defined on all of H.

If f^D Umax) and g ^D (A) , then the sum Zs£s ® ls (f + g) converges
strongly, since by construction Zsfes®/s(/) and ^sks®ls(g) converge. One may
therefore define an operator A by

(A) =D Umax) +D (A') = {f+g\f<ED (Amax) , g ̂ D (A) } .

One clearly has A^>Amax and

It will next be shown that A^£CCR. First it is noted that since A(h) =A(f

+g) =Am3xf+A'g^P+H2, one has A^£. Withf,g^D(A} one has

B(Af, y&)=Z(T (lr(
r,s

and

Choosing two sequences (/OT) and (gn) from D (A) , which converge to /, resp. g

e D (A) , it follows from B (Afm, Agn) = 0 that o (lr (fm) , ls (dn) ) = 0 and from
b (fm, Agn} = b (gn, Afm) that a (fm, ls (gn) ) = o (gn, ls (fm) ) , for every r, 5, m and n.
Thus,

=lima(/r(/J.
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entails B(Af, Ag) =0, and

ff(f, ls(g))=lim lima(fm, ls(gn))=lim lima(gn, ls(fm))=ff(g, /*

entails b (/, Ag) =b (g, Af) . Hence one has A^£CCR. From the first step of this

proof, it then follows from A^>Amax the equality A=Amax, so that A/(^A=Amax.
3. Finally, one turns to the closedness of Amax. To this end, one considers

Anax in the form

D(Amax) = {f^H\Elhl(f)\\
2<oo}i Amaxf=Zet®ht(f)

i i

with the continuous functions ht (/) = — b (jet, Amaxf) = 2/ ^k^ijk o (ek, f)ej. Let
(fn) be a sequence in D (Anax) which converges tof^H so that (Amaxfn) con-
verges toF^P+H2. SetF=Z/0/®0/, so that 0, = limn ht(fn) and 0, •' = (), since

I I

But because of the continuity of ht ( • ), hi (fn) converges to ht (f). Therefore, gt

= hi (f), so F= 20, ®ht (f), which implies 2,-|k (f) \\2 = \\F\\2 and thus also/e
D (Anax) and Amaxf=F, concluding the proof. D

From the proof of this last proposition we see that for every A^^CCR there
is a unique maximal extension Anax e %CCR. Moreover, each such A is closable,

since it possesses a closed extension (namely Anax), and, of course, Ac:Amax =

Anax. It may be the case that A=Amax, but this has not been determined.
Since Anax uniquely exists, it is henceforth admissible to consider A as

being defined on the symplectic orthonormal basis W) , where it takes the
values Aek

 = 0 and yW=2ij^i/*0i®0/. We can now finally state what we mean
by the standard form of a canonical quadratic transformation <Z>(/) *-+<&A (f) in
terms of the field operators 0 (eK), where {eK} is a symplectic orthonormal basis
in which A takes the form (3.3.1).

qk= ̂  (ek) ^®A (ek) = 0(ek) + ¥(Aek) =

and

k=0(ekr) ^0A (Bk,) = 0(ek,

1,3
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In short, the standard form of a canonical quadratic transformation is

L). (3.3.4)

The above results demonstrate that every canonical quadratic transforma-
tion can be written in this standard form, so that the apparently special case in-
troduced in [22] was already perfectly general.

IV. Unitary Equivalence Characterized

In the previous section, we have characterized the canonical quadratic
transformations, but in general there is certainly no guarantee that a repre-
sentation of the CCR can be exponentiated to obtain a representation of the cor-
responding Weyl algebra. The first section of this chapter is dedicated to the
proof that, in fact, representations of the CCR which are obtained from the Fock
representation via canonical quadratic transformations can be exponentiated.
Then we present the proof of the main theorem of this paper, which character-
izes those quadratic representations which are unitarily equivalent to the Fock
representation. In particular, we shall prove the following theorem.

Theorem 4.1. Let A^£CCR and let @A (/) be the corresponding representa-
tion of the CCR. @A (/) is unitarily equivalent to the Fock representation 0 (/) if
and only if the map A I H*-^H ®H is Hilbert-Schmidt. Moreover, the corresponding
Weyl representation WA (/) is unitarily equivalent to the Fock representation W (/)
if and only if the map A I H*-^H®H is Hilbert-Schmidt.

§4.1. Quadratic Transformations Weyl Algebras

First we shall prove that any canonical quadratic representation can be ex-
ponentiated to obtain a representation of the Weyl algebra.

Theorem 40LL Let A^£CCR and define the unitary operators WA (/) ,

D(A),on &+ (X) by WA (/) =e f(M/). Then for any f, g ̂ D (A) ,

(a) WA(-f)=WA(f)*and (b) W A ( f } W A ( g } = e ~ t f f ( f ' g } / 2 W A ( f + g } .
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Proof. 1. The unitarity of WA (/) is an immediate consequence of Proposi-
tion 3.1.3, and assertion (a) is clear: WA(~f) = e

i*A(~f} = e~^(f} = WA (/) *.
Thus, only assertion (b) is nontrivial. The proof of (b) uses analytic vectors

and the exponential series for et0A(f\ An analogous proof for the Segal field 0
instead of @A is in [21] (see Theorem X.41) .

I f /=0 or $—0, then the Weyl relations (b) obtain trivially. Hence, it shall
be assumed that/=£0 and g=£Q are chosen from D(A). Define the functional a^
D(A)' by a(h) =\\h\\+2\\Ah\[ and let k be a natural number so that fe>4v

/2max

t e ( / ) , a f e )> a n d 0 < ^ < 1 . Finally, l e t 9 = ( P » 9 ™ ,

..., (p(n"\ 0, ...) be a finite-particle vector.
±m

From Proposition 3.1.3 one knows that the series ZS=oj-| |^ (Pf+fto) m<P\\

converges for all t such that 0 <£< 1/2 /2~a (£/+£#) and that <p is an analytic
vector for 0A(Pf+^g). Thus one has

since @ has been chosen to satisfy |i|<V7^—/n/-1 n N • Therefore, one may write
-

m=0
-m+n I i

- -

(4.1.1)

On the other hand, q> is also an analytic vector of 0A ($$} , and

From the proof of Proposition 3.1.3 it is already established that

\\0A (/)»0||<2«/2a(/)« [(n,+l

where «(/) =11/11+211^/1. Thus one obtains
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The last inequality follows from the straightforward estimate (n + m) !

<v /(2n)!(2m)!. Hence one may bound S ^ - o f e (£/) "(^ (#) > II from

above by

oo OW/2*« \ / oo OW/2

E^~ra (£/)" (n,+4n) !1/4 2 ^«
»=n «! / \m=n W!

Applying again the ratio test to, e.g., the second of the series in this product,
one obtains

m

After a similar argument for the first of the series in the product, one may

thereby conclude that the double series (4.1.1) converges whenever 4y^2 fia(f}t

<1 and 4/2$2(0) <1. The latter condition is satisfied by the specified choice

of j8. Thus one may conclude that (4.1.1) converges if t < ,=•„ , ^ , where

also the case t = l is included. Hence for arbitrary n,

from which one may conclude that 2m=o —\$A (Rf} n®A (fid] m<P converges. Since

®A (j8/) n is self-adjoint and therefore closed, it follows from this conver-
•m

gence that of ZS=o —\®A (fte) m(p, which entails that WA ($/) (p is in the domain

of definition of 0A ($}n and also that

03/)"WA
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The above estimates imply that WA (ft) <p is in fact an analytic vector for
i (fif), and one may use the exponential series again, i.e.

n.m=0
(4.1.2)

Since the double series (4.1.1) and (4.1.2) are both absolutely convergent, one
can arbitrarily re-order the series without changing the sum with the aim to
compare terms of the same degree in # Then, in the same manner as one estab-
lishes the validity of the Baker-Hausdorff formula (eAeB = e[A'B]/2eA+B for [A, B]
€=C) , one verifies the equality of (4.1.1) and (4.1.2). For any (p^3FQ one has

proven the validity of the equation WA (£/) WA (ft) (p = e~2ff(*fM WA (Pf+ft) (p.
Since the Weyl operators are unitary, this relation is also fulfilled for all other
vectors in Fock space.

2. In order to eliminate the quantity j8, one writes

WA (/) - WA (k&) =eik0M} = WA (#) k and WA (f) WA (g) = WA (ff) kWA (ft) k.

But

WA (#) WA (ft) =e-<*W'*WA ( f t + f t )

Thus the product WA (/) WA(g) can be rewritten:

WA (f) WA(g)= WA (ff) k~le -W>WA (ft) WA (&) WA (ft) k~\

By repeating this commutation one can manipulate WA (/) WA (g) until only the
products WA(f}f)WA(ft) arise. Every such commutation yields a factor

e-tow.to^ and the require(i number of commutations is (fe — 1) + (k — 2) H ----- h (k

— (k~l)) =-yk(k — l). In this manner one obtains the desired result:

WA (/) WA (g) =e -"W/^)-*«-» (WA ($f) W

D

Consider the C*-subalgebra sA (D (A) ) of the CCR-algebra d (H, a) gener-
ated by the set {W(f} <^d (H, a) \f^D (A)}. If A is bounded, then D (A) =H and
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sA (D(A)) =s&(H, o) . But if A is unbounded, we may consider it maximally de-
fined by replacing it with Amax. The resulting algebra si (D (A) ) is then ( [2] ,
Theorem 5.2.9) a proper subalgebra of sA (H, a) . By the uniqueness of the
CCR-algebra over a preHilbert space, the algebra si(D(A)) is just the
CCR-algebra over (D(A) , a) . On the other hand, the C*-algebra sAA (D(A))

generated by the operators WA (/) — e'*A(f\ f ^ D (A) on Fock space is, by
Theorem 4.1.1 and [2], Theorem 5.2.8, isomorphic to si (D(A)) , i.e. there ex-
ists a unique C*-isomorphism nA from si (D (A) ) onto siA (D (A) ) , such that
* A ( W ( f ) ) = W A ( f ) for al l /€=£>(/!).

Corollary 4.1.2. For any A^£CCR, KA is a faithful, regular, irreducible rep-
resentation of the CCR-algebra d (D (A) ) .

Proof. Since the other assertions are obvious, only the proof of the claim of
irreducibility will be sketched. If A G 58 (2F+ ($?) ) commutes with all elements of
siA (D (A) ) , then it commutes with every 0A (/) . Since Qk and p* can be express-
ed in terms of the 0A (e/) (which is clear from the standard form (3.3.4)), A
commutes also with all qk and pk. Since the Fock representation is irreducible, A
must be trivial. EH

We comment that the representation nA is not quasifree in general. In fact,
since <Q0, @A(f)Qo>= 0, the truncated three-point-function equals

and the truncated four-point-function is

<Q0, VA (A) QA (A) QA (A) ®A (A) ^o>
- <Q0, ®A (A) ̂  (A) ̂ o> <0o, QA (A) ®A (A) ^o>
- <Q0, 0A (A) ^ A (A) ̂ 0> <Q0, $A (A) ®A (A) ^0>

- <QO, ^ (A) ̂  (A) ^o> <QO, ^ (A) ̂  (A) o0> .

If one chooses Af=Aa(e,f)e ®e with /l^R\{0} and e^H a unit vector, and sets
/i — /2 — ̂ , /s — /4 — /^, then one finds that neither of these truncated functions
vanishes. Of course, that does not exclude the possibility that 7tA is unitarily
equivalent to a quasifree representation. But note that since quadratic repre-
sentations are irreducible and since pure quasifree states are Fock states [14] ,
TTA is unitarily equivalent to a quasifree representation if and only if it is uni-
tarily equivalent to a Fock representation (though, of course, not necessarily
the original Fock representation) . It appears that, in fact, a quadratic repre-
sentation is unitarily equivalent to a quasifree representation if and only if both
are unitarily equivalent to the original Fock representation [23] . Moreover, nA
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is unitarily equivalent to a coherent representation if and only if once again both
are unitarily equivalent to the original Fock representation [23]. These results
will be proven elsewhere.

§4.2. Unitary Equivalence Implies A Hilbert-Schmidt

Though, as has just been shown, the algebras erf (D (A) ) and sl& (D (A) ) are
isomorphic, what is of primary physical concern is whether they are unitarily
equivalent. (Unfortunately, it is a common mistake in the physics literature to
overlook the difference between these two notions.) To specify exactly what we
shall mean below, we shall say that the transformation 0(f)^>0A (/) is unitari-
ly implementable (or the two representations 0 (/) and 0A (/) are unitarily
equivalent) , when there exists a unitary operator U • 2F+ ($£} *-*2F+ (X) such
that U0(f)U*(j)=0A(f}<p for all/e^U) and all ( p ^ D ( 0 A ( f } } . (Recall that
we have defined the operators 0 (/) and 0A (/) to be closed and have shown
that they are, in fact, self- adjoint.) This entails, in particular, that U*D (0A (/))
CD ($(/)), for all/^DC/1), and these domains of definition can indeed depend
upon the choice of/. Note that by Theorem 4.1.1, 0(f)—*0A(f) is unitarily im-
plementable if and only if U W ( f ) U * = W A ( f ) for all/^DU). First we consid-
er the proof of the following lemma.

Lemma 4.2.1. Let A^^CCR. If the canonical transformation 0(f)~ *0A (/)
is unitarily implementable, then A is bounded.

Proof. 1. Let U be the unitary such that U0 (/) U* = 0A (/) for all /e
D (A) . Thus the set U3?Q is dense in 2F+ (X) and is contained in the domain of
definition of 0A (/) . Using the closedness of 0A (/) , let 0e [/^0CD (0A (/)) and
(0J CSFO converge to 0 in such a manner that 0A (/) (pk~^0A (/) 0. Then, since
W(Af) is quadratic in the creation and annihilation operators, it is clear that

Pn0A (/) 0= Hm Pn0A (/) 0*=lim Pn0A (/) (Pn-2+ ' " + Pn+2) 0*.
fe-»oo fe-»oo

But since Pn0A (/) is closed, it follows that Pn0A (f)(j)=Pn0A (/) (Pn-2^ ----- 1-
Pn+2) 0. Arguing similarly on the components 0 (/) and 0 (Af) and using the
comments following equation (3.1.3), one obtains

= Pn0(f) (Pn-l+Pn-,l)</>+PnW(Af) (Pw-2+Pw+Pw+2) 0,

in particular, for n = 2:
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P2U®(f)U*<l>-P20(f) (Pl+P3)(p=P2¥(Af)

But since L/*0e^0 and (Pi+P3) </>^&o, the maps /"-><?(/) [7*0 and/>-»<Z>(/) (Pi
+ P3) 0 are continuous, and thus so are the maps ft->P2U0 (/) [7*0 and />-»•
P20(/) (Pi+P3)</>. Hence it follows that the map f^P2W(Af) (P0+P2+P4)0 from
£> (A) to ^+ (#) is continuous.

2. Consider now the expression P2¥(Af) (P0+P2+Pt)({>. One has

\\P2¥(Af) (P,+P2+P,)<p\\=\\P2W(Af) (P0+P2+Pi)<p\\+\\-P2¥(Af) (P2+P4)0||

>\\P2W(Af) (P0+P2+P4)<{>-P2V(Af) (P2+P4)0||
-||P2?F(yl/)(P2+P4)0||

= \\P2W(Af) Po0ll - |P2?TU/) (^+P4) 011. (4.2.1)

Now, of course, P0(f>= (0(0), 0, 0, ...) =0(0)Q0, where 0(0)eC. Since
Theorem 3.3.1 yields A='^,ij'S,k/l.ijkff(ek, • )ei®&j, and one finds

, f ) e ,

/—\ sj: /—\ jj:̂
i (d) a \Cj) Uo

.,/) (0, 0, ^®g/+g/®gj, 0, ...)

fe,/)?5®25, 0, 0, ...).

Since {g'J is an orthonormal basis in $?, one finds for the norm squared:

o0||2 = 7l0(^
^ i x * / ^

Up to this point 0 was an arbitrary vector from U^Q, which is dense in
Fock space. Thus choose (p such that ||0 — Q0||<£; then one has

£2>||0-Q0||HI(0(0)-1, 0(1), 0(2), ...)||2=|0(0)-l|2+l:||0(w)||2, (4.2.2)
n=l

which implies £>|l-0(0) >1-|0(0)|, yielding |0(0)|>l-£. Thus one finds that

for this choice of 0, one has |

Now to the second term in (4.2.1). In this case one has
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\\pz¥(Af) (P2+P4) 011 ̂ 11^(4/0 (P2+P4)
<\\¥(Af}(P2) 0|| + ||?FU/)P40II

(see (3.1.1)). From (4.2.2) one extracts the bounds |0(2>||<£ and ||0<4)]|<£ for
the specified choice of 0, so that ]pzW(Af) (P2+P^ (p\<2.j2 (
< 2/2 (^/4~TT + ̂ 6^6) e\\Af\\ = 20/2 £\\Af\\.

With these two results, one can now continue (4.2.1):

\\P2

with £}=—7= — 20/2^. Choosing £<Ti~, one finds /J>0. Therefore, for arbitrary

one has found that

\\Af\\<^\\P2W(Af)' 0 H

Since it has already been demonstrated that the map/|-*P2?
r(4/f) (

is bounded, this implies that the operator A is bounded, completing the proof. D

This lemma is then used in the proof of the next proposition.

Proposition 4.2.2. Let A ^£CCR. If the canonical transformation 0 (/)—>
®A (/) is unitarily implementable, then A is Hilbert-Schmidt.

Proof. 1. By Lemma 4.2.1 it may be assumed that A is bounded and

everywhere defined. Certainly Amax is bounded, so A^Amax is everywhere de-
fined. But it is straightforward to show that U0 (/) U* = 0A (/) , for all /e

D (A), entails U0 (/) [/*= 0A (/), for all f^D (A) =H, since it has already been
remarked thatfn~^f in H implies that the self-adjoint 0A (/) is the strong graph
limit of the self-adjoint 0A (/») (see [18], pp. 62-63 for further details).

It may therefore be assumed that U0 (/) [/* = 0A (/) for all f^H, A is
bounded and U is unitary. Choose a symplectic orthonormal basis (ek, &k'} in H,
in which A takes on its standard form, and consider
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T \ \ 1 /

l,m

where (3.3.4) has been used. With Q = C/Q0, one has f/a*C/*Q = 0, so that (for
n>2)

Q=PnUakU*®=PnUakU*(Pn-2+'~+Pn+2)®

a l PW_2Q + 2afam P«Q +atam PW+2Q) . (4.2.3)
i,m

Expanding with respect to the basis {<^-}, one writes PmQ= (0, ..., 0, 0(m), 0, ...)

and Q(m) = Zh ..... <* o>iS..^i®— ®*5*. with m^N and (ofiL,im^C, totally sym-
metric in the m indices. Setting this into (4.2.3) and isolating a particular com-
ponent g^®" 8 ®(Tin, one finds for every

SJS. =0, (4.2.4)

where the symbol over an index signifies that it should be left out of the sum.

2. For any m^N, one has ||Q(m)||2=Z*i ..... < J tuiSf* 2^1 and, in particular,

Zii ..... i»|cyjfeff.1.il|
2<00, for an arbitrary fixed index k. Moreover, since Zi^2**,,-,,

<°°(see Prop. 3.3.1), one also has

v^l (n—2) i o v I i (n—2) 1 9,Zh<1..A..fc...J2= Z I^M,<H,1..A..fi...frl2

To study the term Zm=i^A»«-^wi-i...ft...«n in (4.2.4) choose a vector

Zm,/i ..... ft ..... in We<t>(mii...k...ti0m ® °~ ®tin from H®n (the n-fold direct product of H
with itself) and apply to it the operator (Af) ®/®w, which is continuous and de-

fined everywhere. This results in a vector from H9n+1:

(AJ ® 7®W) Z ^eOJmh...t..in 2m ® '

= 2
i«fii,...fii in
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The square norm of this vector equals SM,*I ..... & ..... *w(2m/U*w 5Re&>m)i..A../n) 2 and
must be finite. The same considerations employing the imaginary part of

o)mh...t..in yield SiM.h ..... k,...,in(^mAkim%mw(mh...t..in)2<00, and together they lead
to

*,Ui ft * « X m ' k.i,ii fc *

JM.ii ft,...,**'

For the last term in (4.2.4) the operator (Aj)* is useful. With Ajek —

^i.mdkimei ®em, one has (Aj)*ei ®em = iLk^kimek, and since Aj I H^H ®H is

bounded, its adjoint (4/) * I H®H^H and Gl/)*®/*11-1 :
are bounded (and everywhere defined). Thus one has

l,m,ii ..... in-i k

with the square norm satisfying Zwi ..... i» (2/w^*/» 9l«cy /£/?../ J 2 < °° • With this
and the corresponding bound for the imaginary part, one finds as above that

Mi ..... in l,m

3. Pick v, fj.^ {1, ..., n} with v^p, and write i = iv> ; =i^ and relabel (ti, ...,
lv...iu...in} by (i3, ..., in). One has seen that all the terms in (4.2.4) except possi-

bly Akij(t>i2~in are square summable over k, i and /, so that all other quantities
entering into (4.2.4) and indexed by fe, i and j can be viewed as vectors in

#2 ®£2 ®-4 Therefore solving (4.2.4) for ^ya>{J"gf it follows that

U*tf a>ij~?») k,ij=i,2,... must be an element of -^ ®4 ®^2, i.e.,

(w-2)|2——

so that Sjb.i^Si;^00 (one can always find a nonzero cwfcS for some n, since Q
. With this the proof is completed, since
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II41=ZW2 = Z <*/®*/f AeK>2=
K K,IJ k.i.j

sothatW2<°°. D

§4.3. A Hilbert-Schmidt Implies Unitary Equivalence

We next wish to prove the converse to Proposition 4.2.2, i.e. that
Hilbert-Schmidt entails that the canonical transformation 0(f} ^0A (/) is uni-
tarily implementable. The previously demonstrated standard form of the ele-
ments of %CCR will be crucial here, since it will enable us to use Q-space tech-
niques to facilitate the explicit construction of the desired unitary U. Once the
quadratic transformation has been written in standard form (3.3.1), the uni-
tary implementing the transformation should be (at least formally) :

I/=exp(— |-Z^* I 0(ei)0(ej)0(ek} \ ), (4.3.1)
N ^ i,j,k '

as can be verified with the help of the Baker-Campbell-Hausdorff formula

eABe~A=B+[A,B]+^[A, U,£]]+^U, [A, U, #]]]+-

However, proving that if A is Hilbert-Schmidt, then (4.3.1) actually defines a
unitary operator intertwining the two representations is not trivial.

Let A^^CCR be given and then written in standard form, with Ufe/?Jw,meN

the resulting sequence of real numbers totally symmetric with respect to per-

mutations of the indices fe, /, m, and Z ^I/m<°°, and let (ek, ek} — {eK\K=l, 1',
k,l,m=l

2, 2', ...} <^H be the resulting symplectic orthonormal basis. Moreover, let x =

(xi, X2, ...) be a point in Q= X£=1 E, and 2 be the J-algebra generated by the

cylinder sets of Q with Lebesgue measurable base. Then fj, = ®£=i fa, where

each fa is the Gaussian measure d^k = n~"2e~x^dxk, is a probability measure on
(Q, Z).

It is well-known that there exists a unitary map 5 of 2P+ (X) onto L2 (Q,
dp) such that [24] [27] [21]

SQ0=1 and SP+fox®*;,®--®^) = ( r l C / 2 ) r I xklxk2-~xkr

S0(ek)S~1=qk= (multiplication by) Xk, and
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,_, _1 d , .^ =Pk—~r^: i~tx*f

where the operator equations are understood to hold on the dense set S2F<>. We
shall occasionally drop the symbol S, when the identification is clear.

Let k= {ki, k2, ..., kr} be a multiple index in N(r) = XJ=1N, UJfeeN<r, a se-

quence of real numbers, totally symmetric in k, 2*^1 <°°, and /W=0z|max0?i, k2,
...,kr}<n}. Then

with lf(
n

r>\\2= 24. Since with m <n, we have I//' -/m
r) ||2 = 2»E/.x/^i and

k^In

Sfee/n/lf converges with n— >°°, it follows that

ekr in

We want to study the sequence of operators

A (//') = S 4 : 0 W 0 W
keln

the Q-space realization of which is given by An=A (ffi] =^kein^k "
Note that since it is a polynomial, An=An(x) is in L2(Q, dfJi) with

r(r)||2

fee/w

nfj l/i _/i ||2 —o-r | ||f(r)_Xr)||2 // q o\ana |/iw /imll ^ »• ll/w /m II \ft.o.£/

(cf. the proof of Lemma 1.18 of [27]). Therefore, An(x) converges in L2(Q, dfjt),
and we shall call the a.e.-defined limit A (x) — Sfe/U ' Xfe1Xfe2">XA.r • , which up to

a factor of */rl (<^2}~r corresponds to/r).
The advantage of the Q-space formulation is that all functions of {@(ek), k

= 1, 2, ...} become multiplication operators on L2 (Q, djji). An (x) and A (x) are
measurable, real-valued functions on Q which are finite a.e. [JJL] . So with D (A)
= {(p\A(p<EL2(Q, dfji)} (similarly for D(An)), (An(p) (x) =An(x)(p(x) and (A<p) (x)
=A (x}(p(x) are self-adjoint operators (cf. [20], W. 3 Proposition 1). Thus, for

every fr} ^P+H(r\ A (f(r}) represents a well-defined self-adjoint multiplication
operator.

We collect a number of useful technical results concerning these operators.
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Lemma 4.3.1. 1. L°° (Q, dp) <^L2 (Q, dp) is a common core for all An, A.
2. As operators on L2(Q, dp) , An~~ *A in the strong resolvent sense.

3. On L°° (Q, dp) the operator family A (/r)) is strongly continuous in f(r} e

P+H(r\
4. Let f be a bounded continuous function on R. Then f '(An) <p—*f(A) (p for all

cp^L2(Q, dp) , and especially, e
itAn-*e

itA strongly for each t^R. Moreover, A is the
strong graph limit of An.

Proof. 1. Of course, L°° (Q, dp) is dense in L2 (Q, dp) . For any vector (p e

L°°(Q, d p ) , one has lUapll^lMUkiilK00
 and |Up||^M|oo|kll<TO, showing that

L°° (Q, dp) CD (An) and L°° (Q, dp) CD (A) , respectively. An, A are multiplication

by real- valued functions. Hence, for all teR, one has eitAn I L°° (Q, dp)-^L°°(Q,

dp) and eitA I L°° (Q, dp)-^L°° (Q, dp) . Assertion (1) now follows from [20] ,
Theorem 1.11.

2. For (p^L°°(Q, dp) one has \\AH(p - A (p\\<\\(p \\~\\An ~A ||-»0. Hence,
«-»oo

An(p—*A(p for each (p^L°°(Q, d p ) , which according to [20], Theorem 1.25, im-
plies An~~*A in the strong resolvent sense.

3. For (p^L°°(Q, dp) one has from Step (2) and equation (4.3.2)

IA (/") <p-A (g(r}) ^||2<2-V!||*||/^)-^^||2.

4. Assertion (4) follows from the previous steps and standard theorems
(see, e.g. [20], Theorems 1.20, 1.21 and 1.26). D

Remark. Assertion 4 means in particular that if /» — 2f =iOtkBk ~^ f e H
n->°°

then 0 ( f ) is the strong graph limit of 0(fn)> Since the role of pk and qk as mul-
tiplication operators could have been interchanged, it is also true that if gn =

then ®(g) is the strong graph limit of ®(gn).

In the next lemma we want to show that 9^D(A ( f r } ) for all /(r) ^H(r\

that in contrast to L°° (Q, dp) , ^0 is invariant under A (f(r)) and that the ana-
logue of Lemma 4.3.1, Assertion 3, also holds on «^o. Note that on «^o, we have

® (ek) = —^ (a* (e'k) +a (?i) ) . Inserting -j= (a* (?i) +a fa) ) for each 0 (ek) in A

(fnr))=Ekein2k .' 0(eki)0(ek2)-~0(ekr)'; we observe that A (f(
n
r)) is a finite sum

of finite products of a* fa,) , a fat) under which ^0 is invariant. Hence, ZPQ^D
(An) for all n.

In order to express A (ffi} in terms of a* (?i,) , a fa,) we define for 0</ <r
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BJ (f(
n
r}) = Z X&* fe+L) a* (gJ,+2) ' • -a* (?Jr) a fe) a (?J,_i) • • -a foj .

Since with k^In we sum over a symmetric index set and since /U is totally sym-

metric in &, 5y (fn}) does not depend on the specific ordering of the indices {fei,
&2 ..... fer). Taking into account this symmetry we see that on ^0 the equality

(4.3.3)

holds. Let us denote by H£Q the subset of P+H(r} which consists of finite sym-

metrized linear combinations of the basis g^®^® °" ®ekr- Hence, ffi is a typi-

cal example of a vector in H(
S'Q.

Lemma 4,3.2. Let f(r} ^P+H(r\ Then

1. ^cDUC/'')),

2. ^0 ts invariant under A (/(r)) ,

3. A (/r)) ts strongly continuous in f(r} on 2Fo.

Proof. By the preceding discussion, assertions (1) and (2) are obvious for

/r)e#$. Let (p={cp(0\ (p(1\ <p(2\ ...}e^0 and <p(s) = 0 for 5>n^. By a natural

embedding <p(s)={0, ..., 0, (p(s\ 0, ...}. Consider the expansion (p(s} = Sî |s) ^i®^2

®"- ®i7s with ^}|s)eC, totally symmetric in i={ii, ..., is). Then,

=P+ 2] Z ^k(pki...kJiJ+i...tsn (s, j, r) ekM

where n (5, /, r) = ^5(5-!) - (s-j + 1) J(s-j + l) (s -j + 2) - - (5 -j +r~j] .
Taking into account that P+ is a projection operator, using the Schwarz inequal-

ity and \n (s, j, r) \2<sJ (s+r) r~J< (s+r)r, one gets

||By(//0^1l2^(5+r)1|/?1|1^}^ (4.3.4)

Note that Bj(fn
)} (p(s} = Q for />s, so the inequality (4.3.4) holds also in

this case. Since s<n9, (p=Hn
sl0(p

(s) and ||<p(s)||2<IMI2, \\Bj (/^) ^||< (n9 + l) (n9 +

O^II /n^H II^11 by the triangle inequality. Inserting A (fn}} in the form given by
equation (4.3.3) we arrive at
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\\A (//>) <p\\ < (^2) ' (n,+r) i^l/Tll |H|. (4.3.5)

Consequently, Ik fo") <p-A (fc"}) dNU fo^-fc^) (p||< (/2) ^(
/l(r) | Ml for all g(r\ h(r} efl$, proving assertion (3) for fr) e#$. Choosing//',

f(m for # ( r ), /i(r) in (4.3.5) , one sees that A (f(
n

r}) <p converges, and, since A (/r))

is the strong graph limit of A (ffi) , ( p ^ D (A (/(r))) and A (/ir)) <pr+A (f(r)] (p.
This proves assertion (1) and together with (4.3.5) also assertion (3). Note

that for all n, A (f(
n

r)) creates at most r particles. Thus (A (f(
n

r}) <p) (s) = 0 for s>
n<p+r, which is then true also for the limit A (/°°) <p, i.e. A (f(r}) (p<EH?0. Q

We now come back to the standard form of A and decompose /^# as/re +

PiJek, so that Af=^l,m?ikXklm$kel®em. Note that \\Af\\2

,m^lim\\f\\2<00 showing Af^P+H(2} for all/eff.
In Proposition 3.1.3 above it has been shown that @A (/) =<P(/) +(P(4/")

is essentially self-adjoint on ^0. On ^0 we have 0^ (fe + fm) = ®A (fe) +

0A (/-) = 0 (/-) + 0 (/*») + f(4T ) with F (4f"w) = Xi»Ek*kimPk: ^ (ei) ® (em] :.
It shall be shown that on ^0 which is a core for <P/i (/) , one has

QA (fe) = $ (fe) = U0 (fe) U* and
QA (fm) = Q (/' m) + W(A.fm) = U0 (fm) U*,

with the unitary operator U = e~^A(fW\ where /(3) = "^k.i.m^kimek ®ei ®em and

A (n=^,,,m^lm : 0(e») 0 W 0(*J : .
In L2 (Q, d//) , ^4 (/(3)) is multiplication by A (r) = Z*,/,»^*im ^ x*Zixm '. and

C7* is multiplication by e"34te). Similarly, @(fe) , is multiplication by 0/re(x) =

^a&t with Z) ((P (/e) ) = [<p\ 0 (fe) (p^L2 (Q, dA«) } . Therefore, D (0 (fe) ) is left

invariant by U*, and, obviously, U0(fe)U*(p=0(fe) cp for all ( p ^ D ( 0 ( f e ) ) =>
^o.

Next consider ^ (fe,) = 0 (jet) + y(4/e,) = 0 (/«,) + E,,m^lm '. 0 (*,) 0 (em) '. ,
which on S^ocL2(Q, d[j) takes the form

1 n!
^yl (/«<) =/>/+Z^</m " XiXm • with p/ = — ^~+^f-

/,m t ^^i

Lemma 403e3e A (x) = ^k.i.m^kim • XkXiXm I is differentiable by every X{ and

- —
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Proof. Writing A (x) in the form

A (x) —Xitl I X? 1 + 3Z^«/ I X?X/ : +3 2 ^j /m I XiXiXm \ + 2 ^*/w I XkXiX
l*i l,m*i k,l,m*i

= ha " x? : + 3 : x? : 2/U ' x/ 1 + 3 : xl '• 2 ^/» " ;wm : + 2

one sees that

The convergence of the respective infinite sums is the same as discussed follow-
ing (4.3.2). D

Since Ei,mAiimei®em^P+H(2\ we see by Lemma 4.3.2 that [7*^0 <= D (ft) ,

because for q> e^0, PiU*(p = (- -- + ix e^A(x} q) (x) =^A(X} ~ + i

. Hence

\Xlxm I q>, (4.3.6)

i.e. [70 (/«,) U*q> = 0A (Jet) <p for all <p e ^0. Equation (4.3.6) also implies
[70 (fm] U* = 0A (fm) on «^o for those /m which are finite linear combinations of
{fo}"-i. Now let/r=2?=i^fe^/me//. Then, with

™)+EE;U,«&: 0 (*/)«>(«,,)
l,m k

= U*(0(finm)<p+A(Afn
m}<p). (4.3.7)

Since A is bounded, 4#*->Afm e P+H(2} and by Lemma 4.3.2, A (AfiT) <p->
A (AfiF) 9- Taking limits on both sides of equation (4.3.7) yields, according to

the remark after Lemma 4.3.1, U0(fm) U*(p = 0A (fm) <p for all <pe3F0.
We summarize the results of this section as

Proposition 4.3.4. Let 0(f} *~*0A (/) be a quadratic transformation of the
CCR. If A^£CCR is Hilbert-Schmidt, then 0A (/) is unitarily equivalent to the Fock
representation 0 ( f ) .

It is clear then that Theorem 4.1 is a consequence of Theorem 4.1.1, Corollary
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4.1.2, and Propositions 4.2.2 and 4.3.4.

V. Additional Comments and Developments

In this chapter we collect a number of relevant comments on further de-
velopments and possible applications of quadratic transformations.

Heuristic Comments on General Quadratic Canonical Transformations

Combining the purely quadratic transformations we have rigorously studied
above with the well-known inhomogeneous linear transformations of [1] , we
obtain the general (formal) quadratic transformation of 01 0 (/)•"•* <Pgen (/) ,
where

0gen (/) = 2 (ah (/) at + St (/) fl»)
*=1

+ S (ow(/)

withf^H, (Xk, &k, otki, &ki, Pki, £ (complex-valued) linear functional on H and

dk = a (e'k) , a* = a (e'k) * annihilator and creator for the fe-th degree of freedom

({e'k} is an orthonormal basis in X) . A term of the form a*a* can be absorbed

into the afarand /"terms using the commutation relations. (Pgen (/) should be

symmetric, whence it follows that ak (/) =ak (/) , aki (/) =«*/ (/) , and &/ (/) =

@ik (/) , £ (/) e R. Since a* commutes with a*, one may assume without loss of
generality that aki (/) =a/* (/) .

The 'linear' part of 0gen (/) can be written as

with T I #'-»# defined by

Tf= n 2 Ofea* (/) ** +3ma* (/) «*-> , (5.2)
k=i

or equivalently T/= ^/2^,kak (/)?i. Defining, in addition, the operator F I
P+(H®H) by

JT.L
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with ju (f) = me (akl (/) + ft, (/) ) , 9V/' (/) = 9k (~ a« (/) +ft/ (/) ) , r»r (/) =
Sm (akl (/) -ft, (/) ) , and TV/ (/) =3^ (a*/ (/) +ft, (/) ) and setting it into the
two-particle operator W( • ) , we obtain

(/) (a (&) *a fe) *+a (&) a fo) +2a fo) *a fe) }
#,L

/ -TV/-*./
+ (7*/ (/) - TV/'
+2 (TV, (/) +r*'«

which is exactly the quadratic part of $gen(/) , since 7*;(/) —7*')' (/) +t7*c (/)
+»r*'/ (/) =2a*/ (/) , and r« (/) +r*'/' (/) -»r«' (/) +*7V/ (/) =2ft; (/) . Hence
we have

fl>.en(/)=d>(T/)+5r(/7)+^(/)f (5.3)

so that, at least formally, the two-particle operators W( • ) we have been work-
ing with are sufficiently general to reproduce the transformations (5.1).

As in the proofs in Section 3.2, we see that if the transformation 0 (/) "->
^gen (/) is to be canonical, then the operator T must be symplectic. In particu-
lar, one has

, Fg).

Thus, as before, requiring [0 (hi) , [0 (/i2) , [0gen (/) , 0gen (0)]]] = [0 (hi) ,
[0(h2}, ia(f, g)l]] =0 for arbitrary hi, h2^H, we find P+B (Ff, Fg] =0, which
implies a(Ff, Fg} =0. Therefore, we conclude that a(Tf, Tg) =a(f, g) , i.e. T is
symplectic.

Now, since T is symplectic and o ( • , • ) is nondegenerate, T is injective,
and, assuming that T"1 is defined on all of H (in infinitely many dimensions,

this is not always assured) , we can write 0gen (T~lf) = 0 (f) + ¥(FT~lf} +

£ (T-1/) , and [<Dgen (T'1/) , 0gen (T^)] = [0 (/) + V (IT'1/) , 0 (g) +

W(rT~lg)]. Since T'1 is also symplectic, it follows that

so that the transformation 0 (/) »->$(/) +¥(FT~1f) must be canonical. Thus,

the resulting conditions on FT~l = A (i.e. F = AT} are A^£CCR (i.e., see
Theorem 3.2.11 and Proposition 3.3.1). To summarize, we have seen (at least
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formally) that necessary and sufficient conditions for the general quadratic
transformation (5.1) to be canonical are that the operator T defined in (5.2) is

symplectic and together with the operator F defined in (5 . 3) must satisfy FT ~1

We compare this result with the special case dim$£=I handled previously
in the literature [3] , where a general quadratic canonical transformation was
understood as

(5.4)

with ai, a4, b*, a, b, c, d, x, y^R satisfying the conditions

_., __ bx~d

In fact, this is subsumed in our class of transformations; explicitly, with H spann-
ed by the symplectic orthonormal basis e andje = e', then our 0gen (e) becomes
their Q and CPgenG') becomes P, if we set £(e) — a*, £(e'} — £4, Te=ae + be', Te' =

ce+de', and F=AT, withA = a(l, ° ) l ® l , l = /te+/t'e', /t=a\/3(ax-c)1/3, and X =

ai/3 ~f - ^T- ̂  is symplectic, since o(Te, Te] =ad — bc = l, and also A^^CCR,
(ax—c)

since after pulling out the factor ||^||3, it is in standard form.

Quadratic Transformations and Automorphisms of the Weyl Algebra

It is known [13] that the coherent transformation 0 ( f ) "-*$(/) +/1 (/)l,/e
D (2) , induces an automorphism on the C*~algebra d (D U)) via W (/) |->

e a ( f ) W ( f ) . The same is true on the algebra sA (D (T)) for the symplectic trans-
formation 0(/)^0(T/),/€E£>(T), via W(f)^W(Tf), whenever R (T) =D (T) .
But the canonical quadratic transformations do not induce such automorphisms,
in other words, in general there exists no automorphism a on sA (D (A) ) , such

that TIF ( a ( W ( f } } } =e
i0*(f) (recall that TTF denotes the Fock representation, so

that n F ( W ( f } ) =ei0(f)), for allf^D(A). This is due to the fact that in general

the operator e*0A(f} simply does not lie in the norm closure of the set (el®(f)\f^
H] , This assertion is demonstrated in [18] for the simplest nontrivial example
— H two-dimensional with symplectic orthonormal basis {e, Je} and Af=Xa(e,
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Transformations of Order Higher Than Quadratic

It is, of course, natural to consider higher-order transformations which go

beyond the quadratic [22]. Define an r-particle operator W ( r } by

¥M(F)(P=J:ai:^(fii)^(f2i)-^(fri) :<P, (peF0 (5.5)
1 = 1

for F=Za,-(/i,®/2<® — ®/r<) (r, n^N, a<eR,/we#). As with the two-particle
1=1

operator W, one finds that the map F^W(r) (F) (p is bounded when (f>^3^^ so

that again W ( r } (F) <p can be continuously extended to all of /T. Because of the

normal ordering in (5.5) , ¥(r) (F) = ¥(r} (P+F) once again, and W ( r ) (F) is a
symmetric operator. Thus a canonical transformation of order r could be defined

mathematically as <$>(/) »-» d> (/) + F (r) (A/) , f^D(A) , where A is a densely de-
fined linear operator from H to P+Hr such that the transformation is canonical.

However, the techniques of this paper break down at two important points

for r>2. It turns out that the norm of the map F*-*W(r) (F) (p with (p^^Q in-

volves a factor (n(p + r)r/2, which for r>2 prevents the finite-particle vectors

from being analytic vectors of W(r)(F) . It is therefore not evident that

0 ( f ) +W(r) (F) is self-adjoint, nor that the exponentiation of such a trans-
formation would result in a representation of the corresponding Weyl algebra.

In fact, showing that an operator like W ( r } (F) is essentially self-adjoint for r>
2 is an old and difficult problem in quantum field theory. One possibility to deal
with these difficult operator-theoretic questions is to go to the Q-space formal-
ism, as in Section 4.3. But in order to do that usefully, it would be necessary to

use the additional information A ^ <g(£R to bring the operator A into a suitable
standard form, which leads to the second sticking point.

Here the problem is that if A is to be brought into standard form (we write
only the case r=3)

Af= T<lLXtjkia(nij}ni®nj®nk,
ij.k I

with a symplectic orthonormal basis {nK} in H, then because of R(A)
N, (j(m, n) =QVm,n^N it would be necessary for the entire vector

p,q,s,u,v,w

to vanish, and not just its symmetric component. We did not succeed in deriving
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this condition from the requirement that the transformation be canonical (see
[18] for further details).

It should also be pointed out that the commutator of an r- and an s-particle
operator yields a sum consisting of an (r+s — 2)-, an (r+s—4)-, an (r+s~6)-
particle operator, and so forth. Thus the operators 1, 0 (/) (/ ^ H) , and

W(2} (F) (F^P+H2) form a Lie algebra, whereas a Lie algebra which contains a
cubic (or higher) operator also contains all higher-order operators. Thus, both
algebraically and analytically, the quadratic case has a special status.

Some Applications of Canonical Quadratic Transformations

As previously indicated in the introduction, an important application of
quadratic transformations will be to generate non~Fock representations in
which one can more suitably model and compute quantities of physical interest.
This is exemplified heuristically in [17] and especially in [16] . Such trans-
formations should also be of use in constructing exactly soluble models and
have applications in the field of special functions (see [5] and the references
given there).

Next consider the following formal Hamilton operator:

= Z {a)ka*ak+i{jik (a*3+a*2ak—a* af — af) +vk (a*2+2a*ak+a2k)2}
k=i

where a)k, [i>k, J^^R and (Ok, i^>0. The canonical quadratic transformation

qk^qk—qk, pk^pk'=pk+Ak \ ql \ (5.6)

yields

^ f +2afak+al)2},

which with respect to H merely has a different coupling constant. But then with

the choice / U = — 2v^ , the transformed Hamiltonian becomes purely quartic:,

H'= --jf ) (af + 2afak+al)2}.
Q)k/ J
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This operator H', for suitable choice of the energies and coupling constants a)k,
fjik, Vk is well-defined in Fock space and bounded from below, whereas the orig-
inal Hamiltonian may not be. And if, in fact, the transformation (5.6) is not un-

itarily implementable, i.e. when Zlj^i/11 diverges, but If is well-defined on Fock
space, then H is not a well-defined operator on Fock space. If, on the other
hand, the quadratic transformation is unitarily implementable, then the original
operator H is well-defined on Fock space and bounded from below (and the
physics of the system described by H may just as well be described by H'} .
Thus, such quadratic transformations may be used to transfer information from
one representation to another.

Finally, we mention that the Q-space formulation of quantum field theory
implies that every result on the unitary equivalence (resp. nonequivalence) of a
given representation of the CCR with the Fock representation yields a corre-
sponding result of the equivalence (resp. nonequivalence) of measures on
infinite-dimensional spaces. However, we shall not take more space to spell out
these results here. For further applications, see Chapter 9 of [18].
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