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On the Geometry of Differential Equations
Associated with the Theta-zerovalue

By

Jun-ichi YosHIDA *

§1. Introduction

In [4], Kashiwara-Kawai-Takei made a deep analysis of the structure of
the cohomology groups associated with the Riemann theta-zerovalue:

@)= Zexp m/—1y, tv)

veEZr

with t being a symmetric complex # X»n matrix and the imaginary part of ¢ being
positive definite, when # = 2. Their approach is to analyse the structure of
linear differntial equations of infinite order which the theta-zerovalue satisfies.
This approach was first advocated by Sato ([7]) and later pursued by Sato,
Kashiwara, Kawai and Takei ([4],[6],[8],[9], etc.).

In this paper we present some geometric results which are needed to extend
the results of [4] for an arbitrary ». Although we have not yet obtained the
complete generalization in this paper, we plan to discuss the more analytic
aspect of the problem, using the algebraic and geometric results shown here.

The plan of this paper is as follows; in §2, we first introduce (n+1) X (n+
1) matrices Py, ..., Py Q1 ...,Qn of linear differntial operators of finite order
such that the following relations hold:

93()

1) o -0 | ° |=0,
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848 ON THE GEOMETRY OF DIFFERENTIAL EQUATIONS
9(t)
0
(2) (exp Q,—1) .= 0
0

for 1=1,..., n. Here I denotes the identity matrix of size (# +1) and exp P,
(resp., exp Q;) denotes the operator Xz Pi/j! (resp., 2o QI/j!), which turns
out to be a matrix of linear differential operators of infinite order. Then exp P;
and exp @; act on the sheaf of holomorphic functions as sheaf homomorphisms.
An interesting problem is to characterize the theta-zerovalue by the local condi-
tions such as (1) and (2). Unfortunately, however, the simultaneous equations
(1) and (2) do not make sense as they stand, because exp P;'s and exp Qn's do
not commute. Hence the first step is to find out the correct auxiliary linear dif-
ferential equations of finite order with which (1) and (2) make sense. Follow-
ing the idea of Kawai[6], we construct the auxiliary equations by making use of
the iterated commutators [Q;, Qn] and [Q [Q, @m]] which are denoted by
Rum and Si,i,m, respectively. Actually we can verify that the addition of the
differntial equations

9(1))

(3) Rum . =0,

(4) Stwam| . |=0

suffices for our purpose (Theorem 2.2 and Definition 2.3). We can then discuss
the characteristic set of the simultaneous equations (1), (2), (3) and (4). The
description of the characteristic set is done by using a result of Aoki [1] (cf. [2]
also) and it is a natural generalization of the corresponding result in the case %
=2 ([4]). The result indicates that the domain X, ={t is a symmetric complex
n Xn matrix and the imaginary part of ¢t is positive definite} plays a special role
in the study of the system of equations (1), (2), (3) and (4). In fact, once we
get the well-defined system of equations (1), (2), (3) and (4), a result of [8]
tells us that any holomorphic solution of the system on X, is equal to (3(t), 0,
...,0)" up to a constant factor. Here and in what follows we denote the trans-
posed matrix of a matrix A by A’. Having this fact in mind, we study in §3 how



Jun-1cH1 YOSHIDA 849

the operators Pi, Qm, Rum and Si,,m are changed under the imaginary trans-
formation, i.e., t——1t"!, and we show that (1), (2), (3) and (4) remain essen-
tially unchanged under the imaginary transformation. Thus we deduce the
coincidence of 9 (¢) and its imaginary transform by their local properties, that
is, by the fact they satisfy a system of linear differential equations.

The author would like to express his heartiest thanks to Professor Kawai,
Professor Aoki and Professor Takei for their many valuable suggestions.

§2. Construction of a System of Linear Differential Equations
and its Characteristic Set

Let X be the space of symmetric #n Xn complex matrices (t,;)1<,j<x and let

0i; denote the vector field §+0% on X so that
1] Jt

aijtk, = 5ik5j]+5il ik for 1Si, 7, k, 1<n+1

holds where d,; is Kronecker's delta. Using these notations, we introduce the fol-
lowing (n+1)X(~+1)-matrices of differential operators P; and Q; for I=1,...,n
after Kawai[6]:

0 t11 eee tlj tln
21/ —1 (6n+ 2tatuea) O 0 -~ 0
<5) P, = - ) . . ,
2y —1 (Oy+ 25-1tuds;) 0 =+ 0 = 0
A271'\/ —1 (5m+ Zthu,ak,,) 0 0 0 )
0 On *+ Oy ** Om
2ny/—10; O -+ 0 - O
(6> Q=

2ny/—10; 0 =+ 0 - 0

27V=T0iw 0 =+ 0 = 0

J

These operators are related to the Riemann theta-zerovalue defined by

Q)= 2 exp /=1y, tv)

vezZ”r
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with ¢t being in the set

X,={t€X| the imaginary part of t is positive definite}
in the following manner.

Lemma 2.1. The (n+1) -column vector (3(t),0,...,0)" satisfies the fol-
lowing equations:

9(t)
) o rD| | |=0,
0
9(t)

8) (exp Q1) 9 =0

Proof. For v= (vy,...,v,)" in R” let ¢, (t) denote the following (n +1)-
column vector:

exp T/ —1 v, tv)
21y —1v; exp T/ —1 v, tv)

21y —1v, exp m/—1 <y, tv)

It is then clear that

9) 2 oe) =

vezr

holds for ¢ in X4.
Let us first prove (8). A straightforward computation shows
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(10) Quey (1) = znmvleu (t)

for each v in R” and 1< <#x. Hence we have

a exp Qe () = exp(22/ = Tu1)e, 1)

=e ()

if v is in Z”. Equations (9) and (11) imply

9() 9()
0 0
expQi| . |=| .
0 0

for 1<1<n. This proves (8).
To verify (7) we note the following relations:

aivle,, (t) = P, (t) for1 <1< .

(Cf. Berenstein-Kawai-Struppa-Takei [3]). Hence we find
(12) exp Pie, (t) = evy (t)

for each v in R” and 1<1<#n, where v(l) denotes (v1+0n, ..., vn+0m)". There-
fore (9) and (12) give

9(t) 9(t)
0 0
exp P, A I
0 0
This proves (7). Q. E. D.

Thus we have obtained the simultaneous equations which the theta-
zerovalue satisfies. However the simultaneous equations (7) and (8) are not a
well-defined system as they stand; to construct a well-defined system we intro-
duce auxiliary operators Ry, and Sy m (1=<k, I, m<n) in the following man-
ner:
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Rum=[Q1, Qul,
Sterm= [Qr, Rum].
Here and in what follows [P, Q] denotes the commutator of operators P and Q;

[P, Q] =PQ—QP. By a simple computation the explicit forms of the operators
Rum, Sterm (1=Ek, I, m<n) are given as follows:

(14+1)-th (m+1)-th )
0 - 0 0 0 0 0 O 0
0 =+ 0 —0m O ==~ 0 0n O 0
(13) R[l,m] =9 /_1
0 =« 0 =8 O == 0 33 0 =+ 0
(0 = 0 —8mn O =+ 0 0 O - 0
(14)  Stksm = 2my/—1 X
0 5m16k1_ 5llakm 5mnakl_5lnakm
2my/—1 (aklaml_akmall) 0 0
2703/ =1 (0r10m;— O1m0y5) 0 0
270y/ =1 (0x10mn— OkmO1n) 0 0 )

Here the symbol (1+1)-th indicates the (141)-th column of the matrices. The
importance of the operators introduced above is manifest by the following
theorem.

Theorem 2.2. The operators P;, Qm, Rum and Sui,m satisfy the following
commutation rvelations:

(15) [P, Pul = 2 titmiRix 1,
jE=1
(16) [Pl. Qm] = =27t/ — 101l + thkR[k,m],
k=1
(17) [P, Rum] = 2 t4;Sy1m
=1

(18) [Pa, S[B,I,m]] =2ny/—1 651<_Z_ita,-RU,m]> —2ny/—1 agm(_Z:ltajR[j,,1>
j= =
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—27y/—18asRum _an/_—laalé:lEiH,ﬁ+lRli,ml
+2nf—T§amJ§Ej+1.ﬁ+1R .00

(19) [Qar Sgami] = 2y =1 0giR1a,m —27v/ =1 OpmRa.n.

Here Ej; denotes the (i, §) -matrix wnit; E;;= (0:x0j1) 1<k1<ns1.

Proof. Let us begin our discussion by verifying (16). As it follows from the
definitions of P; and @y that

(20) P, =2y _1Et+1,1+thu¢Qk
=1
holds, we find

n n
[P1, Qu] = 27y =1 [Eis11, Qml “‘g:lttk (Q, Qm) —kZ_l (Qm, tid] Q.
On the other hand, a direct calculation shows

[Ers1,1 Qul = —0mEu+Emer,
[Qm, tlkI] = 27/ —10m (1 + 5km) Ewrin+2ny/—10km (1 - 51m)E1+1,1-

Hence we have

[P1, Qu]l = —27/—10imEn+27y —1E1+1,m+1+kz:tlkR[k,ml
-1

“"ZTE«/ -1 51mkz_:1 (1 + 5km) Err11Qr— ZTEV —1 (1 - 5lm)El+l,1Qm

n

=2/ —1 [_51mE11+El+l,m+l—61me_:1 (1+5km)Ek+1,k+1

n
— (1= 8im) El+1,m+l] + kzltlkR[k,m]

= —2w/—1 61m1+ thkR[k,m!~
k=1

This proves (16).
Let us prove next (15). Using (20) again, we obtain

21) [Py, Pwl = 20v/=T [Essun, Pnl + Zt [Qu. Pl — 2 [P, 1T Q.
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On the other hand we find
(P, tud] = 270/ —1timE 411t 2708/ — 1 timE 1411

Hence we deduce from (21)

[Pr, Ppl = =27ty —1timEn1+27/ =1 2 timErs1,k401— kZ tiktmiR i
k=1 jd=1
F270/ =T timd — 270/ =1 2 (timE k101 timErr1i41)
k=1

n
=2 LidmiR i k-
k=1

This proves (15).
The verification of (17) is again based upon (20); the relation (20) implies

n n
(22) [Py, Ruml = 2v/—1[Ex+11, Ruml + _thkj [Q;, Rum] — Z; [Rum. tiil] Q.
j= j=

On the other hand, a direct computation shows

[Ex+11, Rum] = 27/ —1 21 (0x10im— Okm01) Ej+1,1.
i

Hence (22) entails

2n n
[P, Rum] = (27rv - 1) 21 (0x10jm— Okm031) Ej11+ th/cjsu,l,m —2my/—1
j= j=

X {Z (OuiEj+1,m41— OkmEjr1,141) Qj+Ek+1,m+1Q1_Ek+1,l+1Qm}
j=1
n

2(n
= (27tv _1> {21 (5klajm_5kmajl)Ej+l,1_ > (5ktaim“5kmajl)Ej+1,1
j=

j=1

n
—0mEr+11F OmErs1,) + Zitjkslj,l,m]
i=

n
= 22 tuStim-
j=1

This proves (17).
To prove (18), we use (14); it immediately follows from (14) and the def-
inition of @,, that

(23) Stgam = 270/ =1 (05:1Qm — 0sm@Q1)
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holds for 1< 3, I, m < n. On the other hand, we can easily verify the following
commutation relations:

(24) [P;, 041] = —0uQ;—0;Q:
for 1< 4, §, | <n. Equations (16), (23) and (24) entail

(25> [Pav S[B,l.m]] = 27[1’ -1 [Pm aBlQm] _‘275«/ —1 [Pa. aBle]
=2ny/—1 (aBl [Pm Qm] + [Pa, aﬁll] Qm— 0sm [Pa, QI]
— [Pa, 0smI]1 Q1)
2 7n
= (22V=T) Gusom—Gamdl) +22/ =T (01 Sissm)
— Opm ( étw‘R [j,l]) — 0asQi1Qm — 001QpQm + 005QmQ:
+5amQBQl}-

Further, a straightforward computation shows

_QBQm+277.'1/ —1 6,9,,,1 = 271'«/ —1X

(m+1)-th

0 0gm 0 —0p1 0o - 0

0 65m - agym_l O

0 0 0 0

0 v 0 —Ogm+1 Opm 0

O 0 b 0 - agn 0 a,gm
Hence we find
(26) —QsQm+ 27y —10smI = — 2ZEjs1,6+1Ri,m.

j=1

Using (26), we deduce from (25)

[Pa, Sig.1m] = 21/ —1 [aﬂl<_zltajR[i.m]> — aﬂm(ZItaiR Li,t]) — 5aHR[I,mJ}
= =

n n
—2my/—1 (5a1 2 Ej+1,8+1R.m — Oam ZE;'+1,B+1RU,11>.
i=1 =1
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This proves (18).
Finally the relation (19) immediately follows from (23) as Qq and 0s com-
mute;

[Qa: S[B,I,m]] = 27[1/ -1 [Qa, aBlQm] —2my/—1 [Qm aBle]
= 271'1/ —1 6,91 [Qa, Qm] —277,'4/ —1 aﬁm [Qu, Ql]
= ZTL'«/ -1 651R[a,m1 _271"\/ —1 aBmR[a,l]-

This completes the proof of Theorem 2.2, Q E. D.

If we let V' denote the coherent left Yx-module

25/ £ D Rumt T DFSuim),

1<l m<n 1<k, Im<n

Theorem 2.2 guarantees that P; and @, act on N from the right and that they
satisfy the following commutation relations in gndgx (N):

(27) [Py, Pl =0,
(28) [Pl, Qm] = _277-'4/_—151m1,
(29) [Q1, @ul=0.

It is also clear from the definitions of Rum and Si.m together with (10) that
Ru.n and Si.m annihilate e, () and hence (9 (), 0,...,0)’". Furthermore we
can readily verify ord P; and ord Q are strictly smaller than 1. (Cf. [8]. See
also the choice of p in the proof of Proposition 2.5 below.) Hence ®@;=exp P;,—I
and ¥, =exp Qun—I are well-defined differential operators of infinite order. It
also follows from the relations (27), (28) and (29) and Lemma 1.2 in [8] that
@,'s and ¥u's do commute in the endomorphism ring of D% ® o N, 8ndg, (D% ®
@x./\/). Thus we can introduce the following Koszul complex K using @; and &,.

Definition 2.3. Let N® denote D% ® 5 N and let K denote the following
Koszul complex:

¢, .0,%, .U,

0—wN"

(JV”)WN—.” «— (N”)2”<—JV°°<—O_

As is shown in [4], K is a good complex in the sense of [9], and hence we
can discuss its characteristic set Ch (K). The rest of this section is devoted to
the concrete description of Ch (K). In what follows we use the fiber coordinate
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7i; of T*X given by ;=01 (d,;), where 01 (0;) is the principal symbol of order
1 of 0. We denote the matrix (z;) 1<ni<n by T. Our discussion is based on the
following lemma, which is a variant of Aoki [1] (cf.[2] also) concering the inver-
tibility of microdifferential operators.

Lemma 2.4. ([4]) Let A= (Ai)1c1i<n be an n Xn matrix of microdifferen-
tial operators of finite order. Let {ri}1.,<n be a set of rational numbers and let 0 be a
real number strictly smaller than 1. Let us consider the following conditions (a) and

(b) :

(a) orddy; <ri—ri+p  for1<ij<n
(b) every eigenvalue of the matvix (Op—ro (A1 (0*))) 1<iicn

is contained in C\y—1R,

where 03 (Aij) denotes the principal symbol of A,j and 03 (Pi;)(x*) denotes its value
at a point x* of the cotangent bundle T*X. Then under the condition (a), exp A is a
well-defined section of the sheaf of n Xn matrices of holomorphic microlocal operators
M (mXn; 8%). If the condition (b) is further satisfied, exp A —I is invertible in M
(n Xn; (%‘},z*) .

If one of the operators @, and ¥, is invertible, then the complex K is exact.
Hence this lemma gives a sharp result on the description of the characteristic
set of K (Proposition 2.5 below). We hope to make use of the result in future to
study the structure of the cohomology groups #’ (RHom, (K, Ox)); in view of
the result of [4] and Proposition 2.5 below, we conjecture that, if the signature
of Jtis (n—gq, q), then

0 (j#q)

# (RHomg; (K, Ox)): = {C (i=q)

Here and in what follows the real part (resp., imaginary part) of a complex
matrix A denotes RA (resp., JA).

Proposition 2.5. Let (t;7) in T*X be a point in Ch (K), the characteristic
set of the Koszul complex K given in Definition 2.3. Then it satisfies the following
conditions (2.5.1), (2.5.2), (2.5.3) and (2.5.4):

(2.5.1)  the determinant of each 2 X 2 minor matrix of T vanishes:

T T
det<” Ik)-_—O for 1< I1<m<nand1<j<Ek<mn,

Tm; Tmk
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(2.5.2)  the real part of T is equal to O:
Rt =0,
(2.5.3)  the imaginary part of each diagonal element of T is nonnegative:
Sty =0 for 1<1Zn,
(2.5.4) the real part of the matrix tT is zevo:
Rit = 0.

Remark. The condition (2.5.1) shows that the rank of 7 is less than or
equal to 1. The conditions (2.5.1), (2.5.2) and (2.5.3) show that the imagin-
ary part of each j Xj (1<j<un+1) principal minor matrix of 7 is positive semi-
definite.

Proof of Proposition 2.5. Let us consider the following differential equations:

(30) Ruymmu = 01
31) Stermu = 0

for 1 <k, I, m <n. Here u denotes an (n+1)-column vector (uo, ***, un) . Using
the explicit form of Ry;,m;, we deduce from (30)

(32) amﬂ/tl_a]j'um = 0
for 1 <7, 1, m < n. Operating Ok to both sides of (32), we have
(33) amjakaﬂril_al,"akcﬂfim =0

for 1 < a,j, k I, m <n. Since Okaw:= Orta and Okattm = Okmua hold by (32),
(33) entails the following equations:

Or10mwa— OkmOiua=0
for 1 < a,4, k I, m <u. On the other hand (31) gives
0k10mno— OkmOijtho= 0

for 1 <7j, k, I, m < n. Therefore this proves that each point in Ch (K) should
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satisfy the condition (2.5.1).

Using (2.5.1), we next show that each point in Ch (K) satisfies the condi-
tions (2.5.2) and (2.5.3). If =0, a point (7) in Ch(K) trivially satisfies
(2.5.2) and (2.5.3). Hence we may assume without loss of generality that zi;

#0 for some i and j. We may further assume that 7,;#0, because 5= 17,7 fol-
lows from (2.5.1) if i #j. We then renumber the indices so that 7;; # 0 may

hold. Since +/2my/—10;; ! is then well-defined on the points in question, let us
introduce the following (r+1) X (n+1) matrix Q; of microdifferential operators:

~ 1 n
= Q3 Eu1R
Ql Ql 27[.\/——1811 — k+1,214[1,k]

=2n/—1X

On 0 0
012 —0u
V2 =10u 2r/—10u

_&_ 0 ——011
A/ 27TV -1 6,1 277."\/ -1 6‘1

01z

013

81,, —all

a P —
1 4/ 277.'V —1 611 27fv —1 au

aln —0y
0w —F—— S
\ ' V2my/ =10y Vemy/—10u )

Note that @, =Q; holds on &nd (&% ® y-19, p~'N) where p denotes the projection

from T*X to X. Hence it suffices to study the microdifferential operator Q, in-
stead of Q; for the description of Ch (K). We use Lemma 2.4 to prove that each
point in Ch (K) satisfies the conditions (2.5.2) and (2.5.3). To employ Lemma
2.4 we set

¥i

’

1 .
_13 fori =1

1 for 2<i<n+1
1
0=

For simplicity we denote (0 s +o (@1)) 1<ri<ns1 by 0(Q1) (t; 7). Then the expli-
cit form of 0(Q: (£:7)) is as follows:
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0@ (t;7) =2m/—1 X%

( 1
L VST 0
™ 0 0
iz T12 —Tu 0
V2m/—1tu V2my/—1tu
Tis T13 0 —Tu
2my/—17Tu V2m/—17tu
T Tk —Tu
27/ =111 2ma/—17t1
: 0
Tin Tin —Tu
L ZTZ'V —17n 27[V —17u )

Hence its characteristic polynomial is

(A2=2my/—11y) A+2m/—170)" L.

Thus we find that the eigenvalues of ¢ (Q1) (t;7) are & 2m/—17y. Hence
Lemma 2.4 asserts that Ch (K) is contained in

(34) {(t;0) €T*X|tu€ vV—1Rs}

where R, denotes the set of all strictly positive real numbers. Letting Ry, de-
note the set RsoU {0}, we further find

(35) Ch(K)c{(t:7) € T*X|tyE V—1Rso for 1=<i<n},

which proves that each point in Ch (K) satisfies (2.5.3). In fact, if (¢;7) is in
Ch(X) and 7;,=0, (35) is trivial. If 7;;#0, by the same reasoning as above we
find 7,,€+/—1Rs by replacing @; with Q,. Thus we obtain (35). The condition
(2.5.1) and (35) shows that T%m = T/ Tmm € R <o. Hence we have T, €E+v—1R
for 1 <1, m <n. This proves that each point of Ch(K) satisfies the condition
(2.5.2).

Finally let us prove that each point of Ch(K) satisfies the condition
(2.5.4). If T=0, there is nothing to prove. Hence without loss of generality we
may assume that 7,; # 0 for some i and j. Furthermore for a point (¢;7) in
Ch(K) we may assume that 7;; #0 by (2.5.1). Renumbering the indices, we
suppose that 71; #0. In parallel with Q; we introduce the following (n+1) X (n

+1) matrices ﬁ; (I1=1, -*-, n) of microdifferential operators with parameters;
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~ 1
Pj=Pj—————= 2 X(a, )R a,
: ! 277«/—;_1611 l<a<B<n ‘B (Al

where X (@, B) denotes an (n+1) X (n+1) matrix of parameters of the follow-
ing form: . \

0 0 0 0
0 X(a',/g)u X(Of,lg)lh X(a',.B)ln

X(CYHB)= 0 X(a',,B)gl cee X(O.',,B)gh X(a’,ﬁ)gn

LO X(a,B)nl e X(a,.B)nh X<a,.8)nn)

for 1<a<B<n with X (a, B)s» (1=<9g, h<n) being complex numbers. As is the
same with (51, the operator P, is well-defined and gives rise to the same element

as P; in énd (£§®p-1@xp_1./\/). To discuss the invertibility of exp P;—I we again
employ Lemma 2.4 with choosing 7; and p as follows:

1
7:“_‘[2 for =1 ,
1 for 2<i<n-+1
1
0=y

In what follows we dnote 0y, 1, (P) 1<ij<n bY o (P) (t:7) for the simplicity of
notations. By a straightforward calculation we can easily verify that each entry

of the matrix o(P;) (t;7) is as follows:

o(P) (t;7) o1 = 0 if 9=0, k=0,
=tn if g=0, 1£h£1’l.,
n
=21/ ~1 ZtuThg if 1<g9<n, h=0,
k=1

o/ —1 & il
=—‘/ZT7{[T~/——1?‘]‘ZI ZIX(mv")akka if 1<9<u, h=n
11 k=1 m=
n
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h—1
— 2 X(m, h)ngmk) if 1<g<n, 2<n<n—1.
m=1
We now prepare some lemmas concerning the structure of the eigenvalues of
o(P,) (t;7) which do not depend on{X (@, 8)}1<as<na<s as we shall show later,
the eigenvalues relevant to Ch (K) are those independent of X (&, 8) and it is
why we prepare the following lemmas.

Lemma 2.6. If a point (t;7) in T*X satisfies the condition (2.5.1), then

the eigenvalues of 0 (P)) (t;7) which do not depend on {X (&, B)} 1 <ap <na<s are
. 2my/—1

either O or iﬁ

F0, then the eigenvalues of 0 (P) (t; 7) which are independent of (X (@, B)}1<ap<na<s
2my/—1

27‘[«/'——11'11

2 tuti If (6:7) in T*X further satisfies 2= tixTh

ave at most 201 LT,

Proof. If an eigenvalue A of o (P;) (¢;7) does not depend on X (@, B) (1<«
<B<n), then A is also an eigenvalue of a(P;) (¢;7) at X (a, B) =0 for 1<a<p
<n. This means that A is an eigenvalue of o (P;) (¢;7). Suppose that A# 0 and
denote its non-zero eigenvector by ¢= (¢, ***, ¢»)’. Writing down the relations
in a componentwise, we have

(36) ,,Zl b = Ado,
(37) ZE«/__l.g::tszkino = A¢;

for 1<j<u. Relations (36) and (37) entail

2= 21/ —1 > tritinThj-

7 k=1

On the other hand the condition (2.5.1) gives ;=TT for 14, k<n.
Hence we have
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This proves that the eigenvalues of (ﬁ) (t; ) which do not depend on{X (a,

[ — n
B)}1cap<na<s are either 0 or + W 2t Th.

Suppose that 0 is an eigenvalue of ¢ (P;) (¢;7) which is independent of
{X (e, B)}1<ap<na<s. Then we have

det 0(P) (t;7) =0

for arbitrary X (@, B). We can regard the determinant of ¢ (P;) (t:7) as a
polynomial of X (&, B) jn 1 <a<B<n, 1<g, h<u). Let a set Z in T*X be the

totality of the common zeros of all coefficients of the determinant of o (P,) (¢: 7)
as a polynomial of X (&, B) s 1 <a<B<n, 1<g, h<n). Using the explicit form

of 0(P,) (t:7) we find that the coefficient of II%_,X (1, B) &1 is given as follows:

( 1) («/271' ) Tu z (Ztlkfkl)z.

k=1

Therefore we have
n
Z < {t;7) € T*X| Ztuta= 0}.
k=1

Hence if 2%—1tu7u #0, (t;7) does not belong to to the set Z. Then there exist
X (@, B) 1 <a<B<n) such that det ¢ (P,) (¢;7) #0. This is a contradiction.
Therefore this proves that 0 is not an eigenvalue of ¢(P;) (t:7) under the condi-
tion 2 %-1tiuTr#0. This completes the proof of Lemma 2.6. Q E. D.

We can further verify the following.

Lemma 2.7. If a point (t;7) in T*X satisfies the condition (2.5.1), then
2Ty — z

T Zt T I o) (t;7).
27&/—1'11 1T are eigenvalues of o(Py) (t:7)

Proof. Put 1
4/ Zﬂv —1 T
+ 271'\/ —1 T11

(/)i <t; T) N iZEJ‘__lflh '

+ 27[1/ —1 T1n)
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The column vectors ¢ (t; 7) are eigenvectors of d(P;) (¢; 7). In fact, we have
+ 2 it T

(P (630) e (b1 1) = 2y =T |V 2 170 Dttt

Vemy —1tu 2t 1tuTin

(4 2m/—1 2 .
= (imlgtlﬂm)ﬁbi(tﬂ')-

Let us compute ¢ ((v2my/—1011) Riam) (t;7) P+ (t; 7). Since (t;7) satisfies the

condition (2.5.1), we have

o (VZm=Tom) Riew) (699050

0 (a+(1))-th (B+(1))—th 0 m
0 + —Tou = T - 0 +2ny/—17n
__om/=1 |: : : : :
271'1/_12'11 0 - —Ten Tan 0 i27Z4/“‘1T1h
0 cee _Tﬁn eee Tan ese O) ‘iznﬂ_lfln‘
= 0.

Hence we have
o(P) (t:7) Ps (t;7)
o) D)D)~ % X(a Bo((VZR/~T00) Ris) s (6 7)

l<a<B<n

2ny—1 Z
=dt————> +(t;7).
/—271' ,—_12_11 kz=:1 16T ( T)

Therefore i% '__1112L1t1krk1 are eigenvalues of g (P;) (t:7) and their
11

eigenvectors are ¢.. This completes the proof of Lemma 2.7. Q. E. D.

Let us resume the proof of Proposition 2.5. Now suppose that a point (¢;7)
in Ch(K) satisfies the condition R 2 7—1t;,Te1 # 0. Then by Lemma 2.6 and Lem-
ma 2.7 the eigenvalues of ¢(P;) (t;7) which do not depend on X (a, 8) (1<a<pB
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<n) are i“—zn—:l—*Zth,ml, neither of which is purely imaginary. Fur-
< 27Tv —1 Tu

thermore, since the other eigenvalues of ¢ (P;) (t;7) depend holomorphically on
generic X (a, B) (1<a<B<n), we may assume that they are also in C\y/—IR

by choosing appropriate X (o, B) (1<a<B<n). Hence by Lemma 2.4 exp P;—I
is invertible at (¢; 7). This proves

n
Ch (K) c {(t; T) GT*XlERZtIkal =0 for 1SlSn}
k=1
Expressing this relation in terms of the original numbering, we have
n
Ch(K)C{(t; ) ET*XIRZtyri, =0 for 1=1<n},
k=1
For an arbitrary index j in the same way we obtain
n
ChK)c{(t;n) €T XIR 2ty =0 for 1<1<n},
k=1

if 7;;#0. If 7;;=0, then (2.5.1) entails that 7,;= 0 for 1 <k <u. Thus (¢;7)
satisfies

n
?RZtmz'k, =0 for 1SZS1’L.
k=1

Therefore this shows
Ch(K) {(t; 1) ET*X|Rtt = 0).

This completes the proof of Proposition 2.5. Q. E. D.

§3. Imaginary Transformation
Throughout this section X, denotes the domain
X, = {t€X|Qt is positive definite}.

As Proposition 2.5 (2.5.4) implies that a point (t;7) in Ch(K) satisfies det 3¢t
=0 if 7#0, we find
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Ch(K) NT*X|x. CT3X

where TxX denotes the zero-section of T*X. It then follows from Theorem 4.1.1
of [5] that any germ of holomorphic solution of the system K at t in X4 is u-
niquely extended over X. Furthermore Theorem 2.2 combined with Remark
2.16 of [8] shows that any holomorphic solution of K on X4 is a constant multi-
ple of (3(t), 0, -+, 0)". On the other hand the domain X; admits an automorph-

ism ¢ given by t——¢"1. In fact, one can readily verify that det t#0 and —¢7! is
in X, if ¢t is in X;. We shall now study how this system K will be changed by
the transformation ¢ and study how the one-dimensionality result for the holo-
morphic solution of K on X, can be used to deduce the automorphic property of

9 (t) under the map ¢: To do this, we set s= —¢"* and for a differential oper-
ator L on X4+ we define a differential operator L by the following:

FG6) = (@ L)f ()
= 1) ()

with f (s) being an arbitrary function. Noting that X, is simply-connected, we

L
have a single-valued function (det t)2 by determining its value at

vJ—1 0
lo = ..
0 v—1
to be exp’ Y+ ‘4_1 Now let us introduce the following (#+1) X (n+1) matrix T:
1 0 -« 0
10 ty ot
(etn?|, )
0 tu ' tmm

Using this matrix T, we find the following relations among ﬁ,’s, @'m’s and P;’s,
Qn's, generalizing the result of [4]in the higher dimensional case. The following
theorem further shows that Ry ,u =0 and S, =0 are kept essentially intact.

Theorem 3.1 The matrix T is invertible on the domain X, and we find the
following relations on X
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(38) TP, T=—Qu

(39) T1Q,7=Pu

(40) TR uymT= _21 titmiR 1,11,
1,]=

(41) TS wimT= 2 tartitmiStes,
ij k=1

for 1<a, I, m<n.

Proof. Denote —t7* by s= (s:}) 1<1,j<n. We then find

1 0 0
1= 1 0 —su = —sm
= 1
(det )2
0 “Sn1 " T Smm

By using the relations

0s

a_ = t_l (1+ 51]) -1 (Elj+Ej1> t_l‘
tij

we also find
(42) aijsk; = SkjStl+3ktSjl
for 1<4, 7, I, k<n. Then we find

43 -(detn)

1
2

= l(olet t)%(det )7t 0 det ¢
2 55,,-
(

_1)n

_ —(=D"
2

On the other hand we have the following relation:

(44) (det s) 'lb—?:det s
= - (1 +5u'> - (tu'+tjx)

5 (det t)% (det ¢) _‘aij (det s)™*

(det )2 (det £) " (det 5) -

(det s)*(1+6,) (A ;+A)

867
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for 1<i, j<n, where A; denotes the matrix obtained from s by deleting its i-th
row and j-th column, i.e.,

Su Tt S1—1 Siyi+1 7T S
- Si—1,1 " Si-1,j-1 Si—Lj+1 °°° Si-1az
(—1)*det
Si+1,1 °77 Sitl,j-1 Si+l,j+1 """ Si+1a
Sn1 tt Smj-1 Snj+1 " Smm

\

Making use of (44), we deduce from (43)
~ 1 1
(45) 6,-,- (det t) 2 = (det t) 2t,;.
We first note that each entry of the matrix ]31T is as follows:
~ 1n
(46) (P[T) i+1,j+1 — (det t) 2 ZS[ktkj if 1=0, léjén,
k=1
1 n . n ~ 1
(47) = 27TV —1 (det t) 2 (51,+ Z s;kﬁk,) +27Z'4/ -1 Stk Ok (det l’) 2
k=1 k=1

if 1<i<n, j=0,
(48) =0 otherwise.

Using (45), we deduce from (47)

- 1 n - n
(PiT) ix11= 2my/—1 (det t) 2(511"‘ 2 sulit 2 Slktkt>
k=1 k=1

Slkaki

o=
M=

= 27/ —1 (det ¢)

k

Il
—

for i=1. On the other hand it immediately follows that

~ 1
(PIT) 1,i+1 — — (det t) 251]‘

for §=1. Therefore we have
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0 —511 —5” cee _5ln
27[4/ —1 27‘;1 Szkgkl 0 0 0
~ 1 : : : :
P/T = (det t)2 N
27l'v —1 27‘1=1 S[kak; 0 0 o 0
270/ =120 50w O ==+ O == 0 |
Hence we find
’ 0 —0n - —O0y - —517;
_271'«/ —1 Zﬁ,m=1 SlmSlkgkm 0 o 0 0
T'P,T = ' - '
_27Tv —1 Zz,m=1 Stmslkakm 0 0 v 0
\“ZTL'«/ —1 Zﬁ,m=1 Snmslkgkm 0 0 0

Using (42), we deduce from the (i+1, 1) -component of the matrix TP, T

0

(T_IET)HLI = —2ny—1 2 (31m31k+31k31m>

>m Osim

= —2n/~T(1+0,) X Lm0

k>m at” asm
*271'\/ —16,;

for i>1. Hence we have T7'P,T =—@Q, for 1<1<n. This proves (38).

To verify (39) we notice that each entry of the matrix P,T7! is given as
follows:

1=z
(PIT™Y) i1 = — (det £) 22 tysij if =0, 1<j<n,
k=1

1 n n
2w/ —1 (det t) _?<51,+ Z tlkak,> +27‘E«/ —1 Z t1.0ks (det t) _%
k=1 k=1

=0 if 1<i<#n, =0,
otherwise.

In the same way with T7'P,T, we have
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0 O Om
27:«/——122,,”:1 timtiOkm O =+ 0

S : : :
l 27y =1 2% met timb1kOkm O =+ O

27/ =1 2% m=1 tamt1kOkm O == O

r 3

0 On ** Om
2/—10n 0 -+ 0

27['«/_15” 0 - 0

27y/—10,, O -+ 0]}

= Q.

Then it entails T7'Q,T=P,.
To prove (40) we use Theorem 2.2 together with the computation given
above. Then we have
T_lﬁ[t,mlT =T7Q; Qul T
= [P L P m]

n
= 22 titmiRuij-

i,j=1
This proves (40). The verification of (41) can be done in a similar manner; we
have
(49) T StamT =T [Qa, Rum] T

n
=[Pa, > tlitijli,ﬂ]

ij=1
n n

= > [Pa, titmifll Ryt 22 tiitmi[Pa, Ruijl.
1,j=1 1,j=1

On the other hand we have

[Pa, biitmil ] Run = 0;
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in fact all components in [Pa, tiitmiI] vanish except for the first column and such
a matrix annihilates Ry ;. By Theorem 2.2 we deduce from (49)

o~ n n
T StapmT = 2 titmi 22 tarSteii.

1,j=1 k=1

This completes the proof. Q. E. D.

As TV exp P;+ T =exp (T7'P,T) etc. hold, Theorem 3.1 implies that both
THQ(—=t1),0, -, 0) and (9(t), 0, -++, 0)’ satisfy the following equations:

(50) T (exp P,—1) Tu = 0,
(51) T (exp Qu—I) Tu = 0,
(52) T 'RumTu = 0,
(53) TSt Tu = 0,

for 1<F, I, m <u. Since the space of holomorphic solutions of (50), (51), (52)
and (53) on X, is 1-dimensional, there exists a constant C such that

9() 9(—17)
(54) P l=cr| O
0 0

Comparing the both sides of (54) at to, we have

1
C = (det to)?
nwy —1

= exp 1

Hence we have 9(t) = exp ﬂn—zl_—l (det t) _%19(—t"‘).
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