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On the Geometry of Differential Equations

Associated with the Theta-zerovalue

By

Jun-ichi YOSHIDA*

§1. Introduction

In [4], Kashiwara-Kawai-Takei made a deep analysis of the structure of
the cohomology groups associated with the Riemann theta-zerovalue:

•9 (t) = ^ exp TT^l^, til)
vezn

with t being a symmetric complex nXn matrix and the imaginary part of t being
positive definite, when n = 2. Their approach is to analyse the structure of
linear differntial equations of infinite order which the theta-zerovalue satisfies.
This approach was first advocated by Sato ([7]) and later pursued by Sato,
Kashiwara, Kawai and Takei ([4], [6], [8], [9], etc.).

In this paper we present some geometric results which are needed to extend
the results of [4] for an arbitrary n. Although we have not yet obtained the
complete generalization in this paper, we plan to discuss the more analytic
aspect of the problem, using the algebraic and geometric results shown here.

The plan of this paper is as follows; in §2, we first introduce (n + 1) X (n +
1) matrices PI, . . . , Pn, Q i , . . . , Q« of linear differntial operators of finite order
such that the following relations hold:

(1) (expP,-/)

Mi)
0

0

= 0,
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(2) (exp Q,-

0

for / = 1 , . . . , n. Here / denotes the identity matrix of size (n + 1) and exp P/

(resp., exp Q/) denotes the operator Sf=o P///! (resp., Zf=o Qi//D, which turns
out to be a matrix of linear differential operators of infinite order. Then exp P/
and exp Q/ act on the sheaf of holomorphic functions as sheaf homomorphisms.
An interesting problem is to characterize the theta~zerovalue by the local condi-
tions such as (l) and (2). Unfortunately, however, the simultaneous equations
(l) and (2) do not make sense as they stand, because exp P/'s and exp Qm's do
not commute. Hence the first step is to find out the correct auxiliary linear dif-
ferential equations of finite order with which (1) and (2) make sense. Follow-
ing the idea of Kawai [6], we construct the auxiliary equations by making use of
the iterated commutators [Q/, Qm] and [Qic, [Q/, Qm]] which are denoted by
Ru,m] and S[k,i,m], respectively. Actually we can verify that the addition of the
differntial equations

(3) = 0,

(4) S[kJ,m]

0

suffices for our purpose (Theorem 2.2 and Definition 2.3). We can then discuss
the characteristic set of the simultaneous equations (l), (2), (3) and (4). The
description of the characteristic set is done by using a result of Aoki [1] (cf. [2]
also) and it is a natural generalization of the corresponding result in the case n
= 2 ([4]). The result indicates that the domain X+={t is a symmetric complex
nXn matrix and the imaginary part of t is positive definite} plays a special role
in the study of the system of equations (l), (2), (3) and (4). In fact, once we
get the well-defined system of equations (1), (2), (3) and (4), a result of [8]
tells us that any holomorphic solution of the system on X+ is equal to (•$ (t), 0,
. . . , 0)' up to a constant factor. Here and in what follows we denote the trans-
posed matrix of a matrix A by A'. Having this fact in mind, we study in §3 how
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the operators Pi, Qm, Ru,m] and Sik.i.m] are changed under the imaginary trans-

formation, i.e., £•-» —r1, and we show that (1), (2), (3) and (4) remain essen-
tially unchanged under the imaginary transformation. Thus we deduce the
coincidence of -9 (t) and its imaginary transform by their local properties, that
is, by the fact they satisfy a system of linear differential equations.

The author would like to express his heartiest thanks to Professor Kawai,
Professor Aoki and Professor Takei for their many valuable suggestions.

§2. Construction of a System of Linear Differential Equations
and its Characteristic Set

Let X be the space of symmetric nXn complex matrices (t,j) i^ij^n and let

dfj denote the vector field ~^,—^~^r~ on X so that

dijtki — dikdji + dndjk for l<i,/, k, /<n + l

holds where dtj is Kronecker's delta. Using these notations, we introduce the fol-
lowing (w + l)x(n + l)-matrices of differential operators P/ and 0/ for / = !,... ,n
after Kawai [6]:

(5) Pf -

tn "• tij

0 - 0

(6) Q/ =

f=Tdn 0 — 0

0 — 0

0 - 0 - 0

These operators are related to the Riemann theta~zerovalue defined by
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with t being in the set

X+={t^X | the imaginary part of t is positive definite)

in the following manner.

Lemma 2.1. The (n +1) -column vector (9(t), 0 , . . . , 0)' satisfies the fol-
lowing equations'.

(7) (expP,-/) = 0,

(8) (exp Q/-7) = 0

for !</<n on X+.

Proof. For v = (i>i ____ ,vn)' in Rn let ev (t) denote the following (n + 1)
column vector:

exp 7rv^~T(v, fv)

— Ivi exp TT^/— 1 (y, tv)

—lVn exp TT^— 1 <y, tv).

It is then clear that

(9) E ev(t) =

holds for t in X+.
Let us first prove (8). A straightforward computation shows
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(10) Qfiv(f)= 2X^=1

for each v in R" and !</<w. Hence we have

(11) exp Qtev (t) = exp27r/=Tv,^ (t)

= ev(t)

if v is in Z*. Equations (9) and (11) imply

0
exp i

0

0

o

for l<l<n. This proves (8).
To verify (7) we note the following relations:

-^eM = PleM forl<l<n.

(Cf. Berenstein-Kawai-Struppa-Takei [3]). Hence we find

(12) exp Pie* (t) = ev(D (t)

for each v in Rw and l<l<n, where v(l) denotes (i^i + 5 / i , . . . , ^» + 5/n)'. There-
fore (9) and (12) give

exp Pt

This proves (7). Q. E. D.

Thus we have obtained the simultaneous equations which the theta-
zerovalue satisfies. However the simultaneous equations (7) and (8) are not a
well-defined system as they stand; to construct a well-defined system we intro-
duce auxiliary operators R[i,m] and S[klt,m] (l<£, /, m<n) in the following man-
ner:
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RlM=[Ql,Qm\,

S[k,l,m]= [Qk, Rll.mU •

Here and in what follows [P, Q] denotes the commutator of operators P and Q;
IP, Q] =PQ~QP. By a simple computation the explicit forms of the operators

Ru,m], S[k,i,m] (l^fc, /, m<n) are given as follows:

0+1) -th (m + l)-th

0 - 0 0 0 - 0 0 0 - 0

0 — 0 -dmi 0 — 0 9/i 0 — 0

0 — 0 -9my 0 — 0 9/y 0 — 0

, 0 - 0 -dmn 0 - 0 dm 0 - 0

(14)

(13)

0

2icJ=l(dkidml-d*mdn)

l (dkidmn-dkmdln) 0 - 0

Here the symbol 0 + 1) -th indicates the (/ + l) -th column of the matrices. The
importance of the operators introduced above is manifest by the following
theorem.

Theorem 202a The operators P/, Qm, Ru,m] and S(k,i,m] satisfy the following
commutation relations:

(15) [P/, Pm] = Z tlktmjR[k>j},
j,k=l

(16) [P/, Qj - -2nS=ldlmI+ Eti*R[k,m],
k=l

(17) [Pk, R[i,m}\ — 2^ySyF/fw],

(18) [P
y=l \y=i
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(19) [Q«, S[0f/,mi]

Here EJJ denotes the (i, /) -matrix unit', Etj
= (5^(5;-/) i<k,i<n+i-

Proof. Let us begin our discussion by verifying (16) . As it follows from the
definitions of P/ and Qk that

(20) Pt = 2nJ=lEl+1.l+ Z tlkQk
k=l

holds, we find

,i, Qj + Etlk[Qt, Qm\ ~ 2 [Qm,
k=l k=l

On the other hand, a direct calculation shows

Hence we have

n

— 2ll<J — I dim Z (1 + 5km) Ek+l,iQk ~ 27TV/~~1 (1 ~ Sim) £/+i,iQ»
k=l

f n
= 2^l^|—•\ \~<5/m£n+£/+i,m+i~~<5fmZ (l + <54m) £4+1,4+11 4=1

} «

"I" ^^/fc
4=1

w

4 = 1

This proves (16).
Let us prove next (15). Using (20) again, we obtain

(21) [P/, PJ - 27r/I=T [E/+lplf PJ + Z t/* [0*. Pm] - Z [Pm, f/*/] 04.
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On the other hand we find

[Pm, tlkf\ = 27t^^tlmEk+

Hence we deduce from (21)

[Pi, Pm] = -27T/==T^E1i + 27r/I=TZ^£/+if/fc+i- Z tlktmjR\j,k}
k=i j,k=i

n
-}~2rC^/—ltimI~27C^/—l Z (timEk+i,k+i + tkmEi+i,k+i)

k=l
n

== z-i tiktmjR[j,k].
j,k=l

This proves (15).
The verification of (17) is again based upon (20); the relation (20) implies

(22) [pk, R[l>m]] = 27T/^T[£*+i,1, Rinm{\+Etki[Qj9 Ru,m]] ~Z [Ru.mi, tkjl]Qj.
j=i j=i

On the other hand, a direct computation shows

Hence (22) entails

xfixawf
\ 2 f n n

27T/-TJ [Z (Skidjm — 5kmdji)Ej+iti— Z (dkidjm—5kmdji}Ej+lil

n
— dimEk+1,1 + dimEk+i,i} + Z tjkS[j,i,m\

i=l

This proves (17).
To prove (18), we use (14); it immediately follows from (14) and the def-

inition of Qm that

(23) S[ff,i,m] — 27T/~~!
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holds for 1 < /5, /, m < n. On the other hand, we can easily verify the following
commutation relations:

(24) [P/f dtjl] = -duQj-dnQi

for 1 < i, /, / <n. Equations (16) , (23) and (24) entail

(25) [Pa, S[BJ,m]] =

=l '(9/>/[P«, Qm\ + [Pa, dBj] Qm- dBm [Pa, O/]

Further, a straightforward computation shows

Hence we find

(26)

Using (26) , we deduce from (25)

+ 5a0QmQi

(m + l)-th

00 — 0 0 0 — 0

0 90m 0 -9^1 0 — 0

0 dBm ~dB,m-i 0 - 0
0 - 0 0 0 - 0

0 -"0 -dp,m+1 dBm 0

0 0 - 0 -den 0 d B

[Pa, S\0,i,m{\ = 27CJ—1 \ 90/1 £tajR[j,m] ) ~~ d &m(l£t ajR [j ,t] } ~ Sa0R[i,m]
1 V=l ' V=l ' }

( n

5flt/zJj
j=l
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This proves (18) .
Finally the relation (19) immediately follows from (23) as Qa and dpi com-

mute;

a, Qj -2icS=TdBm[Qa, Qi\

This completes the proof of Theorem 2.2. Q. E. D.

If we let N denote the coherent left ®y-module

V ^W+1P -I- V tfjw2- ^ /t[/ fmM ^ ^

Theorem 2.2 guarantees that P/ and Qw act on N from the right and that they
satisfy the following commutation relations in 8nd% (JV) :

(27) [P/f Pj - 0,

(28) [P/,Qj = -27r/=T3/w/>

(29) [Q/, Qm] = 0.

It is also clear from the definitions of Ru,m] and Sik,i,m] together with (10) that
R[k,ii and S[k,i,m] annihilate e»(i) and hence ( & ( t ) , 0, . . . , 0 ) ' . Furthermore we
can readily verify ord P/ and ord Qm are strictly smaller than 1. (Cf. [8] . See
also the choice of p in the proof of Proposition 2.5 below.) Hence 0/ = exp P/— /
and F^^exp Qm~I are well-defined differential operators of infinite order. It
also follows from the relations (27), (28) and (29) and Lemma 1.2 in [8] that

@is and ¥m's do commute in the endomorphism ring of ®£®g/y^, $nd%~(3)x®
%xN) . Thus we can introduce the following Koszul complex K using 0i and Wm.

Definition 2.3, Let N°° denote ®f ® ̂  and tef K denote the following
Koszul complex:

0

As is shown in [4] , K is a good complex in the sense of [9] , and hence we
can discuss its characteristic set Ch (K) . The rest of this section is devoted to
the concrete description of Ch (K) . In what follows we use the fiber coordinate
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TH of T*X given by r,-;- = 0i (9i/) , where Oi(9,;) is the principal symbol of order
1 of 9y. We denote the matrix (rz;-) i<i,;<« by r. Our discussion is based on the
following lemma, which is a variant of Aoki [1] (cf. [2] also) concering the inver-
tibility of microdifferential operators.

Lemma 2.4. ( [4] ) Let A = (An) i<^j<« be an n Xn matrix of microdifferen-
tial operators of finite order. Let (r/}i<^<M be a set of rational numbers and let p be a
real number strictly smaller than 1. Let us consider the following conditions (a) and

(6):

(a) ordAij < rj—rj+p for 1 < i, j < n
(b) every eigenvalue of the matrix (art-r}+p (A tj (x*) ) ) i^ij^n

is contained in CV/— 1R,

where Ox (Aij) denotes the principal symbol of Atj and a* (Ptj)(x*) denotes its value
at a point x* of the cotangent bundle T*X. Then under the condition (a) , exp A is a
well-defined section of the sheaf of n Xn matrices of holomorphic microlocal operators

M (n*n; <ff) . If the condition (b) is further satisfied, exp A — I is invertible in M

If one of the operators <Z>/ and Wm is invertible, then the complex K is exact.
Hence this lemma gives a sharp result on the description of the characteristic
set of K (Proposition 2.5 below) . We hope to make use of the result in future to
study the structure of the cohomology groups ffi (RHomm (K, 6x) ) ; in view of
the result of [4] and Proposition 2.5 below, we conjecture that, if the signature
of 3t is (n~q, q) , then

(K, ftr) ) , =
( j — q ) .

Here and in what follows the real part (resp., imaginary part) of a complex
matrix A denotes 9L4 (resp.,

Proposition 2.5. Let (t; r) in T*X be a point in Ch (K), the characteristic
set of the Koszul complex K given in Definition 2.3. Then it satisfies the following
conditions (2.5.1), (2.5.2), (2.5.3) and (2.5.4):

(2.5.1) the determinant of each 2X2 minor matrix of T vanishes:

/ \
det /; J = 0 for I < I <m <n and 1 < j < k < n,
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(2.5.2) the real part of r is equal to 0:

<Rr = 0,

(2.5.3) the imaginary part of each diagonal element of r is nonnegative:

3fr;/ > 0 for 1 < / < n,

(2.5.4) the real part of the matrix tT is zero:

= 0.

Remark. The condition (2.5.1) shows that the rank of r is less than or
equal to 1. The conditions (2.5.1), (2.5.2) and (2.5.3) show that the imagin-
ary part of each; xy (l</<n + l) principal minor matrix of r is positive semi-
definite.

Proof of Proposition 2.5. Let us consider the following differential equations:

(30) R[l>m]u = 0,

(31) S{kl,m]u = 0

for 1 < k, /, m < n. Here u denotes an (w + l) -column vector (UQ, • • • , w»)'. Using
the explicit form of Ru,m], we deduce from (30)

(32) dmjUi—dijUm = 0

for 1 < ;', /, m < n. Operating dka to both sides of (32) , we have

(33) dmjdkaUi — dijdkaUm = 0

for 1 < a, /, k, I, m < n. Since dkaUi = dkiua and dkaUm = dkmua hold by (32) ,
(33) entails the following equations:

dkldmjUa — dkmdijUa=Q

for 1 < a, j, k, l,m < n. On the other hand (31) gives

dkldmjUQ — dkmdijUo= 0

for 1 ^ y, k, I, m ^ n. Therefore this proves that each point in Ch (K) should
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satisfy the condition (2.5.1).
Using (2.5.1), we next show that each point in Ch (K) satisfies the condi-

tions (2.5.2) and (2.5.3). If r=0, a point (t\r) in ChCfiT) trivially satisfies
(2.5.2) and (2.5.3). Hence we may assume without loss of generality that TH

^0 for some i and;. We may further assume that rn-^0, because Tij = TliTjj fol-
lows from (2.5.1) if i^j. We then renumber the indices so that T\\ =£ 0 may

hold. Since y 2?zV~ ldu~l is then well-defined on the points in question, let us

introduce the following (n+1) X (w + l) matrix Qi of microdifferential operators:

~
Qi= Qi

9n 0

Note that Qi — Qi holds on 8nd (H>^x ® p-i®x p W) where p denotes the projection

from T*X to X. Hence it suffices to study the microdifferential operator Qi in-
stead of Qi for the description of Ch(K). We use Lemma 2.4 to prove that each
point in Ch (fiT) satisfies the conditions (2.5.2) and (2.5.3). To employ Lemma
2.4 we set

-y for i = 1
5

1 for 2 < i <

For simplicity we denote (ar-rj+p (Qi)) i<*,;<«+i by a(Qi) (t\r). Then the expli-

cit form of o(Qi(t\r)} is as follows:
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0 0

Tl2 ~7i

V27rVTZTrn V27rVT=rTrn

ri3 M ^_ °

Hence its characteristic polynomial is

Thus we find that the eigenvalues of ff(Qi) ( t \ r ) are + V^TT/—Irn . Hence
Lemma 2.4 asserts that Ch(^) is contained in

(34) { ( t ; r) e T* |̂ rn e /:=TR>0}

where R>o denotes the set of all strictly positive real numbers. Letting K^0 de-
note the set R>oU {0}, we further find

(35) Ch (K) d{(t-T)^ T*X\TUe /^TR>0 for l<l<n},

which proves that each point in Ch (K) satisfies (2.5.3). In fact, if (t; r) is in
Ch (K) and TU = 0, (35) is trivial. If r// =£ 0, by the same reasoning as above we
find r//^ y—1R>0 by replacing Qi with Q/. Thus we obtain (35). The condition

(2.5.1) and (35) shows that r2/m = r//rw m^R<o. Hence we have r / w ^-v/~lR
for 1 < I, m < n. This proves that each point of Ch CfiT) satisfies the condition
(2.5.2).

Finally let us prove that each point of Ch(K) satisfies the condition
(2.5.4). If r=0, there is nothing to prove. Hence without loss of generality we
may assume that Ttj=£Q for some i and j. Furthermore for a point ( t \ r ) in
Ch(K) we may assume that Ta=£Q by (2.5.1). Renumbering the indices, we
suppose that Zn^O. In parallel with Qi we introduce the following (n + l) X (n

+ 1) matrices PI (/ = !, • • • , n) of microdifferential operators with parameters;
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i==- E X(a,0)Rlaja

where X(a, fi) denotes an (n + l) X (n + l) matrix of parameters of the follow-
ing form:

0 0 ••• 0 — 0

0

o X(a,0)gl - X(a,P)8k

0

for l<a</J<n with J^(a, j8)^ (1^^, Ji^n) being complex numbers. As is the

same with Qi, the operator P/ is well-defined and gives rise to the same element

as PI in Snd (Sx^p-^xP~1^} • To discuss the invertibility of exp P\~I we again
employ Lemma 2,4 with choosing n and p as follows:

{ -^ for i = l
z

1 for 2<t<n + l

In what follows we dnote or-r^P (P/) i ^ « y < « by cr(P/) (t;r) for the simplicity of
notations. By a straightforward calculation we can easily verify that each entry

of the matrix d(P/) (t ; r) is as follows:

0(Pl)(t',T)g+ilh+i = Q if ^ = 0,^ = 0,

= tM if g=Q,l<h<n,

= 27r/==T 2 ^*r^ if 1 <^ <n, /i = 0,

9-7. / _ 1 « n
= S A-CLm),^* if l<

fc=l m=2

/ — ]_ n w-1
X(m,n)gkTmk if I<g<n,h=n,

=l w=l
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h-l \

— H X(m, h)gkTmk) if l<g<n 2<h<n— 1
m=l '

We now prepare some lemmas concerning the structure of the eigenvalues of

o(Pi) (t',r) which do not depend on{X(a, ($)}i<a,0<n,a<0', as we shall show later,
the eigenvalues relevant to Ch (K) are those independent of X (a, j8) and it is
why we prepare the following lemmas.

Lemma 2.6. // a point (t ; T) in T*X satisfies the condition (2.5 = 1), then

the eigenvalues of 0 (P/) (t; r) which do not depend on {X (a, 0)} i <a,/3 <n,a<$ are

either 0 or ± / , ==Xl=i tikTkl. If (t\r) in T*X further satisfies Zf=i tikrki
V27FV — lrn

^0, then the eigenvalues of o(Pi) (t ; T) which are independent of{X(a,

are at most + ,
V27TV

Proof. If an eigenvalue X of (7 (Pi) (t; T) does not depend on X (a, 0)

<j3<n), then 2. is also an eigenvalue of cr(P/) (t\r) at X (a, j8) = 0 for
<n. This means that X is an eigenvalue of a(Pi) (t;r). Suppose that X=^Q and
denote its non-zero eigenvector by (/)= (0o, '", 0n)'. Writing down the relations
in a componentwise, we have

(36)

(37)

for !</<M. Relations (36) and (37) entail

X2 = 27T/=T I

On the other hand the condition (2.5.1) gives Tkj=Tu'TkiTji for !</,
Hence we have

X ~ ~ 2-i
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This proves that the eigenvalues of cr(P/) (t\T) which do not depend on{X(a,
2jr I _ 1 n

0)}i<a,B<n,a<(i are either 0 or
y7z — TU k=\

Suppose that 0 is an eigenvalue of a (P /) (t ; r) which is independent of
{X(a, P)}i<a,0<n,a<B. Then we have

det a (Pi) (t;r) = 0

for arbitrary X (a, ft) . We can regard the determinant of o (P /) (t ; r) as a
polynomial of X (a, 0) gh (I<a<f3<n, I <g, h<n). Let a set Z in T*X be the

totality of the common zeros of all coefficients of the determinant of o (P/) (t ; r)
as a polynomial of X(a, fi) gh (l<a</3<n, l<g, h<n). Using the explicit form

of a (Pi) (t\ T) we find that the coefficient of n?=2AT(l, ft) & is given as follows:

Therefore we have

n
i=0).

Hence if 2?=it/trA/ =^= 0, (f ; r) does not belong to to the set Z. Then there exist

X (a, j8) (I<a< j8<n) such that det o (P/) ( f ; r ) =£ 0. This is a contradiction.

Therefore this proves that 0 is not an eigenvalue of cr(P/) (t; r) under the condi-

tion 2Z=i£/trti=£0. This completes the proof of Lemma 2.6. Q. E. D.

We can further verify the following.

Lemma 2.7. If a point ( t \ r ) in T*X satisfies the condition (2.5.1), then
9>rr/ _ 1 n

_

are eigenvalues of (j(P/) ( t ' , r ) .

Proo/. Put
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The column vectors 0± (t\ T) are eigenvectors of o(Pi) (t; r). In fact, we have

a (Pi) (t; T) 0± (t; T) = Zit^F-l

= (±
\

Let us compute a(Cv/27F./—19n) 1R[a,0]} (t; r) 0± (t; r). Since (t; r) satisfies the
condition (2.5.1), we have

(a+l)-th
0 - 0 - 0 - 0

.0 - -Ten - Tan "' 0

= 0.

Hence we have

- o(Pl) ( t ; r )0 ± ( f ; r ) - 2 ^(a, ^8) a^2^- l 9 n [ ^ ] 0 ± (t; r)

Therefore ± > — ^l=itikTki are eigenvalues of a(Pi)(t\r) and their
V27TV — Irn

eigenvectors are 0±. This completes the proof of Lemma 2.7. Q. E. D.

Let us resume the proof of Proposition 2.5. Now suppose that a point (t\ r)

in Ch(/T) satisfies the condition StS/^i^/fcTMT^ 0. Then by Lemma 2.6 and Lem-

ma 2.7 the eigenvalues of a(P/) (f ; r) which do not depend on X(a, j8) (l<a<j8
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<n) are + / . _ !Ll=itikTki, neither of which is purely imaginary. Fur-
V27zy-lrn

thermore, since the other eigenvalues of o\Pi) (t\r) depend holomorphically on
generic X(a, ft) (l<a</J<n), we may assume that they are also in C\<v/— 1R

by choosing appropriate X(a, 0) (l<a<fi<n) . Hence by Lemma 2.4 exp PI— I
is invertible at (t ; r) . This proves

= 0 for l<l<n}.
k=l

Expressing this relation in terms of the original numbering, we have

Ch(K)^{(f,T)eT*X\3lEtikTkt = 0 for
k = l

For an arbitrary index/ in the same way we obtain

kj = Q for !</<n},

if Tjj^Q. If Tjj = 0, then (2.5.1) entails that Tkj= 0 for l<k<n. Thus ( t ; r )
satisfies

= 0 for
k=\

Therefore this shows

Ch (K) c { (t ; r) €E T*X\?fltT = 0} .

This completes the proof of Proposition 2.5. Q. E. D.

§3. Imaginary Transformation

Throughout this section X+ denotes the domain

X+ = (t^X\^t is positive definite).

As Proposition 2.5 (2.5.4) implies that a point (t; r) in Ch(^) satisfies det %t
= 0 if r^O, we find
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where TxX denotes the zero-section of T*X. It then follows from Theorem 4.1.1
of [5] that any germ of holomorphic solution of the system K at £ in X+ is u-
niquely extended over X+. Furthermore Theorem 2.2 combined with Remark
2.16 of [8] shows that any holomorphic solution of K on X+ is a constant multi-
ple of (&(t), 0, • • • , 0)'. On the other hand the domain X+ admits an automorph-

ism 0 given by t*-^ — t~l. In fact, one can readily verify that det t=£0 and ~ t~l is
in X+ if t is in X+. We shall now study how this system K will be changed by
the transformation <j) and study how the one-dimensionality result for the holo-
morphic solution of K on X+ can be used to deduce the automorphic property of

-9 (t) under the map (f>: To do this, we set s — — t -1 and for a differential oper-

ator L on X+ we define a differential operator L by the following:

_ def

Lf(s) = (0*L)/W

= (Lf) (s)

with /(s) being an arbitrary function. Noting that X+ is simply-connected, we

have a single-valued function (det t) 2 by determining its value at

to =

to be exp T . Now let us introduce the following (n + l) X (n+1) matrix T:

1 0 - 0

0 tu — tm
(deitY

Using this matrix T, we find the following relations among Pis, Qm's and P/s,
Qm's, generalizing the result of [4] in the higher dimensional case. The following
theorem further shows that R(i,m}U = 0 and S[k,i,m]U = Q are kept essentially intact.

Theorem 3d The matrix T is invertible on the domain X+ and we find the
following relations on X+:
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(38) T-ip,T=-Q/,

(39) T-lQiT=Pi,

~ n

(40) T'1 R [l,m]T= ZJ tiitmjR[t,j],

~ n

(41) T'1 S [a,l,m]T= 2 taktlitmjS[jc,t,j],

for l<a, I, m<n.

Proof. Denote — t~l by s= (si^i^j^n- We then find

0

1

(dett)^

By using the relations

^ = r1 (l + <5«) -1 (£„• +£,-,) r1,

we also find

(42) 9*/Sw = S*y

for l<i, /, /, fe<n. Then we find

(43) (det 0 * = (det 0 * (det t) "

On the other hand we have the following relation:

(44) (det5)-
1^-dets - (det 5)
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for l<i,/<n, where Ay denotes the matrix obtained from 5 by deleting its i~ih
row and /-th column, i.e.,

Su "" Sij-i Sij+i "' Sin

Si-l,l '" Si-ij-i St-ij+i '" Si-i,n

Sni '" Snfj-l SnJ+1 '" Snn

Making use of (44) , we deduce from (43)

(45)

We first note that each entry of the matrix P/T is as follows:

(46) (PiT)MJ+1 = (det
k=l

(47) = 27T/=T(det 0*(3/,+ Z s/*9fcl) +27r/^TZ slk 9*, (det

if l<i<n, j=0,
(43) = o otherwise.

Using (45) , we deduce from (47)

k=l

for i>l. On the other hand it immediately follows that

^1. Therefore we have
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0 —dn •- —dij •" —dm

27r/=TZ?=i sikdki 0 — 0 — 0

P/T =

^=TZ?=i sikdkn 0 — 0 — 0

Hence we find

0 —5/1 ••• —dn •" ~di

— 27r/-rrZl,m=i simsikdkm 0 ••• 0 ••• 0

— 2u:J — lZj,m=i stmsikdkm 0 ••• 0 ••• 0

b — 27Tv /~~lSlm=l SnmSlkdkm 0 '" 0 •" 0

Using (42), we deduce from the (i+1, 1)-component of the matrix T^P/T

9
L Z (5zw5/fc+SfA5/m)-

&>m '

for i>l. Hence we have T^P/T =-Q; for !</<n. This proves (38).

To verify (39) we notice that each entry of the matrix P/T"1 is given as
follows:

if i = 0, !<

= 0 if l^i<
otherwise.

In the same way with T XP/T, we have
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0 dn '•' dm

2n^lEn
k,m=itlmtlkdkm 0 - 0

TPiT-i =
^TZ5U=i timtlkdkm 0 - 0

0 - 0

0 dn "- dm

27r/=rT9/i 0 — 0

27r/z=T9/z- 0 — 0

Then it entails T~lQiT=Pl.
To prove (40) we use Theorem 2.2 together with the computation given

above. Then we have

= [Pi, Pm\

U=l

This proves (40). The verification of (41) can be done in a similar manner; we
have

(49) T~lS{a,l,m}T = T~l [Qa, R[i,m]] T

-\P y tt p ]— I / a , Z-i t l i t m j K [ i , j ] \
L i,j=l *

= S [Pa, tntmf\RIlfy]+ S tntmi[Pa,RlU\\.
i,y=i «,y=i

On the other hand we have
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in fact all components in \Pa, tutmjl\ vanish except for the first column and such
a matrix annihilates RUJ]. By Theorem 2.2 we deduce from (49)

n n

T S[a,l,m]T — Z, tut mi 2 takS[k,i,j].
i,j=l k=l

This completes the proof. Q. E. D.

As T-1 exp Pl - T =exp (T^P/T) etc. hold, Theorem 3.1 implies that both

T'K-SC-r1), 0, • • • , 0)' and (&(i), 0, —, 0)' satisfy the following equations:

(50) T-l(expPt-i)Tu = 0,

(51) T-1(expQlll-/)Tu = 0I

(52) T-lR{l,m]Tu = 0,

(53) T-^/^Tu - 0,

for 1 <fc, /, m<n. Since the space of holomorphic solutions of (50), (51), (52)
and (53) on X+ is 1-dimensional, there exists a constant C such that

(54)

Comparing the both sides of (54) at to, we have

nTT-s/ — 1
- exp - -: - .

Hence we have ^(0 - exp n 7 r ~ T . (det t)

0

0 ,

= CT~l 0

. 0 ,
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