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Minimal Affinizations of Representations
of Quantum Groups:

the Rank 2 Case

By

Vyjayanthi CHARI*

Abstract

If Uq (g) is a finite-dimensional complex simple Lie algebra, an affinization of a finite-dimensional

irreducible representation V of Uq (g) is a finite-dimensional irreducible representation V of Uq (g)

which contains V with multiplicity one, and is such that all other Uq (g) -types in V have highest

weights strictly smaller than that of V. We define a natural partial ordering ^ on the set of af-

finizations of V. If g is of rank 2, we show that there is a unique minimal element with respect to

this order and give its Uq (g) -module structure when g is of type AT. or €2-

Introduction

If g is a finite-dimensional complex simple Lie algebra, the associated 'un-
twisted' affine Lie algebra § is a central extension, with one-dimensional centre,
of the space of Laurent polynomial maps Cx —* g (on which a Lie bracket is de-
fined using pointwise operations). Since the cocycle of the extension vanishes
on the constant maps, we can regard g as a subalgebra of g. If V is any repre-
sentation of g, it is easy to extend the action of g on V to an action of g on the
same space. If a^Cx , evaluation at a gives a homomorphism eva'. Q~^ Q (under
which the centre maps to zero) which is the identity on g, so pulling back V by
eva gives the desired extension. It follows from the results of [2] that, if V is
finite-dimensional and irreducible, these are, up to isomorphism, the only possi-
ble extensions.

Quantum deformations Uq (g) and Uq (g) of the universal enveloping algeb-
ras of g and g were introduced in 1985 by V. G. Drinfel'd and M. Jimbo. These
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algebras depend on a parameter #^C X ; we assume throughout this paper that q
is transcendental. It is well-known (see [5] or [10] , for example) that, up to
twisting by certain simple automorphisms, there is a natural one-to-one corres-
pondence between the finite-dimensional representations of Uq (g) and those of
g. Corresponding representations have the same character, and hence the same
dimension. However, the structure of the finite-dimensional representations of
Uq (g) is not well-understood. A parametrization of these representations in
the spirit of Cartan's highest weight classification of the finite-dimensional irre-
ducible representations of g is proved in the case Q = sl2 in [3], and in [6] in
general.

As in the classical situation, we may regard Uq (g) as a subalgebra of
Uq (§) . If g is of type sln, the action of Uq (g) on any representation V extends
to a representation of Uq (g) . However, if g is not of type sln, it is not usually
possible to extend the action of Uq (g) on an irreducible finite-dimensional rep-
resention V to an action of Uq (g) on V. Thus, it is natural to ask how V can
be 'enlarged' so as to obtain a representation of Uq (g) . To make this question
precise, we define in this paper a natural partial ordering on the set of iso-
morphism classes of representations of Uq (g). By an affinization of a finite-
dimensional irreducible representation V of Uq (g) , we mean an irreducible rep-

resentation V of Uq (g) which contains V as a Uq (g) -subrepresentation with
multiplicity one, and such that all other irreducible Uq (g) -subrepresentations of

V are strictly smaller than V. (There is a clear analogy with the classical
Harish Chandra theory of (g, K) -modules here.)

We prove that any given representation V has only finitely many affiniza-
tions (at least one) up to Uq (g) -isomorphism, and one may ask if any of them is
'canonical'. A reasonable interpretation of this question is to look for the
minimal affinization (s) of V, with respect to our partial order. If Q = sln, we
show in [4] that every finite-dimensional irreducible representation of £/«(g)
has, up to Uq(o) -isomorphism, a unique minimal affinization. In this paper, we
prove that, if g is of type C2 or G^ there is again a unique minimal affinization,
and we describe it precisely in terms of the highest weight classification of rep-
resentations of Uq (g) mentioned above. In contrast to the sln case, the minimal
affinization in these cases is not, in general, irreducible as a representation of
Uq (g) . In fact, in the C% case we describe the structure of all minimal affiniza-
tions as representations of C/«(g); a consequence of this result is that the mini-
mal affinization of V is irreducible under Uq (g) if and only if the value of its
highest weight on the short simple root of g is 0 or 1. Subsequent papers will
deal with the case when g has rank greater that 2.

The problem of constructing aff inizations of representations of Uq (g) is im-
portant in several areas of mathematics and physics, as has been emphasized by
I. B. Frenkel and N. Yu. Reshetikhin, among others (see Remark 4,2 in [9]).
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As one example, recall that, to any finite-dimensional irreducible representation
V of Uq(o) one can associate an R-matrix, i.e. an element R^End (V®V) which
satisfies the 'quantum Yang-Baxter equation' (QYBE). There are many situa-
tions, however, in which it is important to have a solution of the 'QYBE with
spectral parameters'. This is so, for example, in the theory of lattice models in
statistical mechanics, for only when the R-matrix constructed from the
Boltzmann weights of the model satisfies the QYBE with spectral parameters
can one prove the existence of commuting transfer matrices and deduce the in-
tegrability of the model. (See [5], for example, for an introduction to these
ideas.) Thus, it is natural to ask when R can be 'embedded' in a
parameter-dependent R-matrix R(u) ^End (V® V). A sufficient condition for
this is that the action of UQ(Q) on V extends to an action of UQ(Q) on V, for
then V itself can be embedded in a 1-parameter family of representations of
Uq(o) by twisting with a certain 1-parameter family of automorphisms of Uq(o)
(which correspond, in the classical case, to 'rescaling' the Cx parameter in g).

A second example concerns the affine Toda field theory associated to g.
This admits Uq (g*) as a 'quantum symmetry group', where g* is the dual affine
Lie algebra (whose generalized Cartan matrix is the transpose of that of g). It
is well known that the classical solitons of this theory correspond essentially to
the finite-dimensional irreducible representations of g. The solitons (or parti-
cle states) of the quantum theory should therefore correspond to the finite-
dimensional irreducible representations of Uq (g *). Since not all representa-
tions of Uq(o) are affinizable on the same space, the quantum solitons come in
'multiplets', and there are generally 'more' quantum solitons than classical ones.

§1. Quantum Affine Algebras

Let g be a finite-dimensional complex simple Lie algebra with Cartan subalge-
bra t) and Cartan matrix A = (an) ,-fj6j. Fix coprime positive integers (di) ,e/
such that (diatj) is symmetric. Let R be the set of roots and R+ a set of posi-
tive roots. The roots can be regarded as functions /— >Z; in particular, the
simple roots at^R+ are given by

Let 0= ©<e/Z.a,-ct)* be the root lattice, and set Q+=Z«e/N.a,-.
A weight is an arbitrary function /!: /— » Z; denote the set of weights by P,

and let

p+= UGEP; *(j) >0 for all i^I\
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be the set of dominant weights. Define a partial order > on P by

iff X-

Let 6 be the unique highest root with respect to ^.
Define a non-degenerate symmetric bilinear form ( , ) on t)* by

(at, aj) =diaij ,

and denote by ( , ) also the induced form on t). Set d0 — y (0, 6), a0o — 2,

and, for all i^I,

2(0, at) 2(0, a,-)
01 (0, 0) ' *° (a,-, a,-)

Let /=/ II )0[ and A = (a//) ue/. Then, A is the generalized Cartan matrix of
the untwisted affine Lie algebra g associated to g.

From Section 5 onwards, we shall be interested in the case when g is of
type C2. Then,

/=|1,2| , d0

2 -I

"-'.-* 2

the rows of A being numbered 0, 1, 2.
Let q^C* be transcendental, and, for r, n&N, n>r, define

,-,-

n

r jq

lii^I, letqi=qdt.

Definition 1.1. With the above notation, £/<?(§) is the unital associative

algebra over C with generators xf, kf1 (i e/ ), and the following defining relations:
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±
Xj ,

if f1 aii\ (r?)r*?(r?)1-B"-r=0 ,
L Y •* Qt

(1)

The algebra with generators xf, kf1 (i G /) and the above defining relations
(with the indices i, / restricted to I) is denoted by Uq (g) .

Note that there is a canonical homomorphism of algebras Uq (g) — * Uq (g)

which takes x f — ^ x f , kf—^kf for all i^L The following result is well-known
(see [5] , for example) .

Proposition 1.2. Uq (g) has the structure of a Hopf algebra, with comulti-
plication A, counit 6, and antipode S1, given by

/or a// i ^ /. Moreover, Uq (g) is a //op/ algebra with structure maps given by the
same formulas, but with the index i being restricted to the set L d

It is well-known that g may also be described as a central extension, with
one-dimensional centre, of the loop algebra of g, i.e. the space of Laurent
polynomial maps Cx — * g under pointwise operations. Drinfel'd [7] and Beck
[1] give an analogous realization of Uq (g) :

Theorem 1.3. Let sdq be the unital associative algebra with generators xf,r
(ie/f reZ), k^(i^l), ht,r(i^I, r<EZ\ |0} ) and c±1/2, and the following defining
relations:

c±l/2 are central ,

jfe fjfer1=^,=i, cl/2c-1/2=c-
1/2c1/2=i ,
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^ cr _ c~r
i,r, hj,s] = dr,-s—[raij]qt - — ,

r - 1

xf,r+s ,

r + - -I _^
LXi,r, Xj,s\ —Oij

f

\ *-)
L

/or a// sequences of integers n,--., Tm, where m — 1 ~aa, 2m is the symmetric group

on m letters, and the 0f> are determined by equating powers of u in the formal power
series

//" ^— 2/e/ mf-a/, 5^^ ̂ = II ze/ fef '. Suppose that the root vector x~& of g

sponding to 6 is expressed in terms of the simple root vectors x~t (i^l) of g as

for some /!^CX. Define maps wf: Uq(o)—* Uq(o) by

wf (a) =x*o a—kf1 akf1 X*Q •

Then, there is an isomorphism of algebras /: Uq (g)~* siq defined on generators by

/(TO ) =^» wti- N't* Crt

is determined by the condition

CD", x$ ] ~~ TI • n
qo—qo
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Let U± (resp. [7°) be the subalgebra of Uq (g) generated by the xf,r (resp.

by the 0,>) for all i^I, r<EZ. Similarly, let U± (resp. £7°) be the subalgebra of

UQ(Q) generated by the xf (resp. by the kf1) for all i^I. It is not difficult to
prove

Proposition 1.4. (a) Uq (g) = IT. U°. U+.

(b)[/,(B)=[T. #>. £+. D

It is clear that setting

r) =deg(ht,r) =r, deg(c±l/2) =deg(kf1) =0,

gives [/<? (§) the structure of a graded algebra. The following result is a more
precise formulation of this remark.

Proposition 1.5. For all t^Cx, there exists a Hopf algebra automorphism Tt

of Uq (g) such that

Tt (xf,r) = f (xf,r) , Tt (fe,.r) = trhi>r ,

Tt(tf
l)=k*\ Tt(c

±1/2}=C±1/2 .

Proof. It is clear, as we have already said, that there is an algebra auto-
morphism Tt given on generators by the above formulas. To see that rt re-
spects the coalgebra structure, note that, by the formula for the isomorphism /
in 1.3,

Using 1.2, it is easy to check that both sides of the equations

(r,®rf)o4=4o r , f Tt°S=S°Tt

agree on the generators in 1.1, and hence on the whole of £/<?(§). D

The Tt are the quantum analogues of the 'translation' automorphisms which
take a loop £: Cx— *g to the loop £t given by £t(u) =£(tu) .

We shall also need to make use of the quantum analogue of the Cartan in-
volution of §:
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Proposition 1.6. There is a unique algebra involution o> of Uq (g) given on
the generators of the presentation 1 . 3 by

(2)

Moreover, we have

(oi®c8)oA=Aop ooJ , (3)

ic , (4)

where Aop is the opposite comultiplication of Uq (g) and K is the Hopf algebra auto-
morphism of Uq (g) such that

Proof. That the formulas in (2) do define an algebra involution of Uq (g) is

easily checked, using 1.3. To prove (3) and (4), we compute o3(xo). Note
that, for any a^UQ (g) ,

= - (xl, oJ(a) -kf1 (S(a)kfl xJ0)

= —wf((S(a)) .

It follows from the formula for the isomorphism /in 1.3 that

and, because (3 is an involution,

Equations (3) and (4) are now easily checked on the generators in 1 . 1. EH

It is clear that (S is compatible, via the canonical map Uq (g) "~> Uq (g) , with
the Cartan involution a) of Uq (g) , given by

a>te) = -xT. a)(Kf1)=kf1
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§2. Finite-dimensional Representations

Let W be a representation of Uq (g), i.e. a (left) Uq (g) -module. One says that
/l^P is a weight of W if the weight space

is non-zero; the set of weights of W is denoted by P(W). We say that W is of
type 1 if

W= (b W, .

The character of W is the function chw- P~~*N given by chw(X) =dim (
If W is representation of Uq (g), one says that w^W* is a highest weight

vector if xt. w = Q for all i^I. If W= UQ(Q) . w, one says that W is a highest
weight representation with highest weight A. Lowest weight vectors and repre-

sentations are defined similarly, by replacing xt by xl.
For a proof of the following proposition, see [5] or [10].

Proposition 2.1. (a) Every finite-dimensional representation of UQ(Q) is
completely reducible.

(b) Every finite-dimensional irreducible representation of Uq(o) can be obtained
from a type 1 representation by twisting with an automorphism of Uq (g).

(c) Every finite-dimensional irreducible representation of Uq (g) of type 1 is both
highest and lowest weight. Assigning to such a representation its highest weight
defines a bisection between the set of isomorphism classes of finite-dimensional irre-
ducible representations of Uq (g) and P+.

(d) The finite-dimensional irreducible representation V (X) of Uq(o) of highest
weight X G P+ has the same character as the irreducible representation of g of the
same highest weight, d

By (a) and (c), if W is any finite-dimensional representation of Uq (g) of
type 1, we can write

W= 0 V(X)9m'W
/}eP+

for some uniquely determined multiplicities m* (W) ^N. It will be useful to de-
fine m* (W} =0 for
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Proposition 2.1 (continued) . (e) The multiplicities of the irreducible com-
ponents in the tensor product V U) ®F(//), where X, [jt^P+, is the same as in the
tensor product of the irreducible representation of Q of the same highest weight. EH

We now turn to representations of Uq (g) . Note that such a representation
V may be regarded as a representation of UQ(Q) via the canonical homomorph-

ism Uq(o)—»Uq(o) . We say that V is of type 1 if c1/2 acts as the identity on V,

and if &,- acts semisimply on V for all i^-I. Observe that V is then of type 1 as
a representation of Uq(o) ; in particular, the multiplicities m^ (V) ( X ^ P ) are
well-defined.

A vector v ̂  V is a highest weight vector if

Cl/2.V=V

for some complex numbers CPf>. If, in addition, V=Uq(o). v, then V is called a

highest weight representation, and the pair of (/ X Z) -tuples (0f,r)te/,rez its

highest weight. Note that <P£r = 0(resp. <Pi>=0) if r<0 (resp. if r>0), and

that 0f,o <P,~o = l. (in [5], highest weight representations of [/<?(§) are called
'pseudo-highest weight'.) Lowest weight vectors and representations of UQ(Q)
are defined similarly.

The following result is proved in [5] .

Proposition 2e20 (a) Every finite -dimensional irreducible representation of
Uq (g) can be obtained from a type 1 representation by twisting with an automorphism
ofUq(Q).

(b) Every finite -dimensional irreducible representation of UQ(Q) of type 1 is
both highest and lowest weight. D

Note, however, that in contrast to the case of Uq (g) , finite-dimensional rep-
resentations of Uq (g) are not completely reducible, in general.

The next result gives a parametrization of the finite-dimensional irreduc-
ible representations of Uq (§) of type 1 analogous to that given for Uq (g) by 2 . 1
(c) . If P= (Pj) ,-e/ is any /-tuple of polynomials P,-^C [u] , its degree deg (P) ^
P+ is defined by

deg(P}(i)=deg(Pi) .

Let 9 be the set of /-tuples of polynomials with constant term 1, and, for any X
+, let
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Theorem 2.3. Let V be a finite-dimensional irreducible representation of

Uq(o) of type 1 and highest weight ((Z>*r) t€=/.reEZ. Then, there exists P= (P/) ,-e/e
9 such that

(5)

&£ left-and right-hand terms are the Laurent expansions of the
middle term about 0 and °°, respectively. Assigning to V the I~tuple P defines a
bijection between the set of isomorphism classes of finite -dimensional irreducible rep-
resentation of Uq (g) of type 1 and 9. CD

This result is proved in [3] when 9 = 5/2(0), in [5] when g = s/w(C), and
in [6] in the general case. We denote by F(P) the finite-dimensional irreduci-
ble representation of Uq (g) associated to P ^ 9. Abusing notation, we shall
say that a representation V as in 2.3 has highest weight P.

The next result describes the behaviour of the representations V (P) under
tensor products. If P= (Pf) ,e/f Q= (Q,) ,-e/e#>, let P ®Q€E^ be the /-tuple

Obviously, deg (P ® Q) =de^ (p) +d^ (Q) .

Proposition 2.4. Let P, Q ^ ^ 5g as above, and let vp and VQ, be highest
weight vectors of V(P} and V(Q) , respectively. Then, in V(P) ® F(Q) ,

xtr (VP ® VQ) = 0, 0,*r. (vp ̂ VQ) = ?Plfr (vp ® VQ) ,

i0/i0re t/i^ complex numbers W^r are related to the polynomials PiQt as the 0*r are re-
lated to Pt in (5) . D

The proof is essentially the same as that given in [3] when g=s/2(C).

Corollary 2.5. // P, Qe^, v(P ®Q) is isomorphic to a quotient of the sub-
representation of V (P) ® V (Q) generated by the tensor product of the highest weight
vectors. [U

-I) be the fundamental weights of g:

For any a^Cx , let V(Ai, a) =V(P), where

\~a~lu iij—i ,
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The V(Xi, a) are called the fundamental representations of Uq(o). This termi-
nology is justified by the following consequence of 2.5:

Corollary 206. Every finite-dimensional irreducible representation of Uq (g)
of type 1 is isomorphic to a subquotient of a tensor product of fundamental representa-
tions. EH

§3, Minimal Affinizations

We propose the following definition.

Definition 3eL If X ̂ P+, a finite-dimensional irreducible representation V
of Uq (g) of type 1 is said to be an affinization of A if the highest weight P of V
satisfies deg (P) = X. Two affinizations V and V' of X are said to be equivalent if
V and V are isomorphic as representation of Uq (g) .

Remark 3.2. It follows from 1.3 that, if V is an affinization of X, then

V=V(X)® 0

as a representation of Uq (g) . Thus, V gives a way of 'extending' the action of
Uq (g) on V U) to an action of Uq(o), at the expense of 'enlarging' V (X) by
adding representations of Uq (g) of smaller highest weight.

If V is an affinization of X, we denote its equivalence class by [V] , and we
write 2,* for the set of equivalence classes of affinizations of X. Note that there
is an obvious surjective map &**— >£$,*, given by P'-*[Vr(P)].

One can easily describe & in case X is fundamental:

Proposition 3o30 For any i e/f

Proof. We need the following lemma, which will also be used elsewhere:

Lemma 3040 Let p: Uq(S)^>End (V) be a finite -dimensional irreducible rep-
resentation of type 1 with highest weight P= (P/) ,e/. For any t ^ Cx, denote by

T* (V) the representation p°Tt. Then, rf (V) has highest weight Pt= (Pf) z-6/, where
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P'i (u) =Pi (ftt) .

Proof. This is immediate from (5) , since

. D

If V is an affinization of /I/, with highest weight P = (P/) ze/, say, then
deg(Pi) = /(j(i) =dij, so F= F(Aj, 0 as representations of £/«(§) . for some £^CX .

But then r* (V) = FUy, 1). In particular, F= FU/, 1) as representations of
UQ(Q). This proves 3.3. D

For arbitrary /1^P+, we have

Proposition 3.5. For any /l^P+, S'1 is a finite set.

Proof. Let V be an affinization of /i, let P^^ be the highest weight of V,
and suppose that

where a,ir^C*. By 2.5, V is isomorphic to a subquotient of

(the terms in the tensor products may be taken in any order) . By 2 . 1 (a) and
3.4, V is isomorphic as a representation of Uq(o) to a subrepresentation of

167

Up to isomorphism, this representation obviously has only finitely many subrep-
resentations, hence 3 . 5 is proved. D

The rest of this section is devoted to the definition of a natural partial
order on Q,*. It is convenient to first define a partial order on a set which con-
tains all of the Q*. Namely, if/: P+— *N is any function, let
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and define

9= |/<ENP+ 1 supp (/) is finite} .

Definition 3.6- Let f, g^&. We say that f^g iff, for all ft^P+, either

( i ) f ( u ) < g ( f t ) , o r
(ii) there exists i>>ft with f (it) <g(v) .

Proposition 307e ^is a partial order on OF.

Proof. That/^/, for all/^^, is obvious. If f^Lg and g^f, suppose for a
contradiction that there exists ft ^ P+ with f (ft) =£ g (ft) . Note that, since
supp (/) U supp (g) is finite, there are at most finitely many such ft, so we may
assume that ft is maximal (with respect to the partial order on P+) among those
weights for which f(ft) =£g(ft). Without loss, assume that/0/) <g (ft) . Since
g^f, there exist v>ft with/(y) >g(i>}\ but this contradicts the maximality of ft.

Suppose finally that/, g, h^2F are such thatf^g and g^h, and assume for
a contradiction that/^/i. This means that there exists ft^P+ such that

f(ft) >h(ft) and, for all v>ft,f(v) >h(v) . (6)

If 3.6 (i) holds for / and g, then by (6) , g (ft) >h (ft) . Since g^>h, there exists
v>ft with g(if) <h(v). By (6),/(i/) >h(v}. Thus,

(i)' there exists i/>n with g(v') <h(v) </(i/).
On the other hand, if (3.6) (ii) holds for/ and g, then by (6),

(ii)' there exists v>ft with h(v) ̂ f(i>) <g(v).
Note that any v satisfying (ii) ' lies in supp (g) . Thus, if there exists v

satisfying (ii) ', we may assume that v is maximal with this property. Since g
^h, there exists v>v with g (i>f) <h (vf) . Since v f > f t , (6) implies that v'
satisfies (i)'. But since f^g, there exists v">v' with / (y") <g(i>"}. Then,
(6) implies that i/ satisfies (ii)'. Since v">v, this contradicts the maximality
of v.

Similarly, assuming that (i) ' holds for some if also leads to a contradiction. CH

If V is an affinization of A, define fv^2? by

fv(ft)=mu(V}9 (ft^P+) .

It is clear that fv depends only on the equivalence class of V, and that the map
&—*<3' given by [F]— */v is injective. Thus, ^induces a partial order on Q,*,
which we also denote by ^.
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Definition 3.8. If A^P+ and [V], [W] eg*, we write [V] ^ [W] iff, for
all IJL^P+, either,

(i) mu (V) <mu (W) , or
(ii) there exists V>{JL with m» (V) <my (W) .

An affinization V of 2 is minimal if[V] is a minimal element of & for the par-
tial order^, i.e. if [W] e& and [W] ^ [V] implies that[F] = [W].

It follows immediately from 3.5 that

Corollary 3.9. For any A^P+, minimal affinizations of X exist, d

§4. The Rank 1 Case

In this section, 9=5/2 (C) and /= 111 .

Definition 4.1. Let r^N, a^C x . The q- segment Sr,a of length r and cen-

tre a is the set of non-zero complex numbers \aq~r+1, aq~r+3,...,aqr~l\ . Two q~seg-
ments Si and S2f of lengths r\ and r2, are said to be in special position if Si U S2 is,
when suitably ordered, a q- segment of length strictly greater than max \r\, r2\ ; other-
wise, Si and S2 are said to be in general position.

We recall the main result of [3] :

Theorem 4.2. Let r^N, a^Cx and write

50 that the roots of Pr,a are the elements of Sr,a. Then:
(a) V (Pr,a) is irreducible as a representation of U q ( s l 2 ) , and has dimension

r+1;
(b) a tensor product

V (Pn.fll) ® V (Pr2,a2] ® ''' ® V (Prm,am) , (?)

where n, r2,..., rm^N, ai, a2,...am^Cx, is irreducible as a representation of Uq(sl2)
iff each pair of q-segments Sn,ak, Sn,ai, for !<!?</ <m, is in general position.
Moreover, two irreducible tensor products of the form (7) are isomorphic as representa-
tion of Uq (sl2) iff one is obtained from the other by permuting the factors in the tensor
product;



888 VYJAYANTHI CHARI

(c) every finite-dimensional irreducible representation of V ̂ (s^) of type 1 is iso-
morphic to a tensor product of the form (7) . d

Corollary 4.3. For any r^N, QrXl has a unique minimal element. This el-
ement is represented by V (P) , where P is any polynomial of degree r whose roots form

a q-segment. If [W] ̂ 3r/h is not minimal, then m(r-2)Xi (W) >0.

Proof. The first part is immediate from 3.4 and 4.2. If [W] eg1*1 is not
minimal, then by 4 . 2 (c) ,

where r\ + ••• + rm =r and m> 1. By 2.1 (e) and the well-known Clebsch-
Gordan decomposition for representations of 5/2 (C), the second part of 4.3 fol-
lows. n

We record the following result here, as it will be needed later. It is an im-
mediate consequence of Proposition 4 . 9 in [3] .

Proposition 4.4. Let r, s ^N, a, b ̂ Cx , and let v, w be Uq(sl2) highest
weight vectors in V (Pr,a) , V (Ps,b) , respectively. Then, W=[/?(s72). (v ®w) is a

proper Uq(sl2) -subrepresentation of V=V(Pr,a) ®V(PStb) iff b/a=qr+s~2p+2 for some
0 <p <min \r, s\ . In that case, W and V/W are irreducible as representation of
Uq(sl2) and, as representations of Uq(sl2) ,

r--s\Ai) . D

§5. Classification in the Rank 2 Case

In this section, g is of rank 2 and /= |1 ,2( .

Theorem 5.1. Let 2 = r1Ai + r2/(2^P+. Then, 2,* has a unique minimal el-
ement. This element is represented by V (P) , where P ^ 9X, iff the following two
conditions are satisfied:

(a) for each i = l,2, either PI = 1 or the roots of Pi form a qr segment of length
Yi and centre af- (say) ;

(b) if Pi^l and P2*l, then
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The proof of 5 . 1 will occupy the remainder of this section. If g is of type
A 2, it is proved in [4] . From now on, we assume that g is of type C2 or G2.

Proof of 5 . 1 (a) . To prove that 5 . 1 (a) is necessary, we need the following
three lemmas.

To state the first lemma, we note that, for each i — 1 , 2, there is an algebra

homomorphism Uqi(sl^~*Uq(Q) such that xi^x^r, ki^kt hitr^ht>r (this is clear

from 1.3). Let U(t) be the image of this map; it is known [1] that [/(,•> = Uqt (s72) .
The subalgebra [/(,-) = Uqt (sl2) of Uq(o) is defined similarly. For any fJL^P, let

fJLa) be the restriction of ft to \i\ . Define Q(,-) = Z.a,- and Q(i) = Z+.a,-. Note that

U(t) is a Hopf subalgebra of Uq (g), but that UM is not a Hopf subalgebra of

^0(9)- We denote by A a) the comultiplication of UM and UM induced by their
isomorphisms with Uqt (sl^) and Uqt (5/2) , respectively.

Now let X ̂ P+, let P^^, and let M be a highest weight representation of

Uq (g) with highest weight P and highest weight vector m. Let M(,> — U u).m.
Then, it follows from 1.4 that

M«,= 0M.-, . (8)

Similarly, let //^P+, Q^^, let JV be a highest weight representation of UQ(Q)

with highest weight Q and highest weight vector n, and let NM = U(i).n. Then,
we have

(9)

Indeed, it is obvious that the left-hand side of (9) is contained in the
right-hand side. On the other hand,

(MQN) *+„-„ = (
rf M"

where the sum is over those 7?', J]" €=Q+ such that 7?' + r?" = r]. But, since 17 €=

OS), this clearly forces J]', 17" ^QS), so by (8), (M®N) *+u-1J^Ma)®Na). This
proves (9).

Now, Ma) ®Na) admits an obvious action of Ua) by using A ay, we denote
this representation by Ma) ®a)Na). On the other hand, for weight reasons, the

action of the A (x/>), A (0f>), for all r^Z, obviously preserves® ^e
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t+u-r). This gives another representation of U a) on Ma) ®Nu), using A, which
we denote by Ma)

Lemma 5,2. (a) For t = 1 , 2,

where, the sum is over those rf , r?"^Q\Qm such that r]'+r]"=±ai, and

q^u for all /e/f .

(b) The identity map Ma) ® a)Nu)—+Mu) ®Na) is an isomorphism of representa-

tions of lid).

Lemma 5,3. Let P ^ 9 and let vp be a highest weight vector of F(P).
Then, for each i = l,2, Ua).v9 is an irreducible representation of Uqt (5^2) with high-
est weight PJ. Moreover, if fjL — A — s(Xi ^ P for some s ^ Z+,

Lemma 5.4. L
(a) If Pi ̂  I and the roots of Pt do not form a qrsegment, then mx-at (F(P))

.
(b) If Pi — 1, or t/ P,-T^ 1 and t/i^ roots o/ Pz- /orm a qrsegment, then, for all r>

Assuming these lemmas, suppose that F(P) is minimal but that, for some i
^/, P/^l and the roots of P,- do not form a ^/-segment. Let Q= (Qy);e/e^ be
such that, for; = 1,2, if Q/=^l the roots of Q/ form a ^—segment. We claim that

Let /*ep+ be such that mu (V (Q)} >0, /^^^. By 5.3(b), ^ = ̂ -5iai-
s2(X2, where 5i, 52 >0. Hence, ii<X — di, and, by 5. 4 (a),

so fjt satisfies 3.8 (ii). This proves our claim, and hence also that 5.1 (a) is
necessary.

Proof of 5.2. (a) This follows in a straightforward manner from [1] .
(b) The map obviously commutes with the action of [/<«. From 1.3, it fol-
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lows that Ud) is generated as an algebra by the elements of UM, the xf,r for r =

± 1, and the c±1/2. Since c1/2 acts as the identity on M and N, it suffices to
prove that, for all m'^Ma), n'^Nu), r= ±1,

/I Or£r) . (»' ®n') - (/>„, ®pH>) (d«> (ftr) ) . (m' ®n') =0 . (10)

The left-hand side of (10) obviously belongs to M</> ®JV<i), since both terms in-
volved do. On the other hand, by part (a) , the left-hand side also belongs to

0 17, (§),'.m'®E/

where the sum is over those r/, r]"^Q\Qd) such that 17' + 17" = ± a,. We may

assume that m'^M^_ r , n'^A^..^, where f, f'^QS). Then, the weight of the
first factor in a typical non-zero term in the above sum is X — £ ' + 77'. On the

other hand, by (8) , its weight must be of the form 2 — r] for some r? ̂  Qu).
Thus,

But this is impossible, since £' — r^Qco but q'^Qt). Hence, the left-hand side
of (10) is zero. D

Proof of 5.3. Suppose that UM. vp is reducible. Then, by 2.2 (b), there

exists v ^ U(t). fp, not a multiple of v p, such that v is annihilated by x*,r for all r
^Z and is an eigenvector of kt. It is easy to see from the relations in 1.3 that

the set of such vectors v is preserved by the action of the 0/;s, for all/^7, s^Z.
Hence, we may assume that

$f,S.V=®tsV ( / € E / , S € = Z )

for some @*s ̂  C. In particular, v is a common eigenvector of &i and k2, and

since v ̂  [/(,>. fp, its weight is clearly of the form 2—tat for some £^Z. Then,

x;>.f — 0 for j^i as well. This shows that v is a [70 (g) -highest weight vector,
which contradicts the irreducibility of F(P).

For the second statement, observe from 1.4 that
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Hence x^o. Ua). vp= 0 iij^i. The result now follows, d

Proof of 5.4. (a) By 5.3, U M. vp is irreducible as a representation of

Uqt (5/2) . By 4.3, there exists 0 =£ v e f?<f-).t;p fl F (P) j_ai such that xjo-v = 0.

Clearly then xftQ.v = 0 for /^i so m^_a,(^(P)) >0.
(b) If Pi = l, the statement is clear, since then X—rai^P+. Let P,-=£l be

such that the roots of P,- form a ^/-segment. If w,{_mi(^(P)) ^0, then, by 1.4,

we see that there exists 0=£v^ V (P) t-rat ft UW.VP such that x&.v — 0. But, by

5.3 and 4. 2 (a), UW.VP is irreducible as a representation of Uq,(sl2), so this is
impossible. EH

Before showing that 5 . 1 (b) holds, we show that if one of PI, P2 is equal to
1, say PI without loss, and the roots of P2 form a #2~segment, then |V(P)] is
minimal. For, suppose Q ^ #" is such that [F(Q)] is minimal and |V(Q)]
^ [V(P)]. Then Qi = l, and since 5.1 (a) is necessary, the roots of Q2 form a

^-segment. But then, for some £^CX , rf (F(Q)) = F(P) by 3.4, so [7(Q)] =
[F(P)] and (V(P)] is minimal. This establishes 5.1 when r,- = 0 for some i =
1,2.

From now on, we assume that P,-=£l, i = l,2, and that the roots of P,- form a
^rsegment with centre a /^C x , i = 1, 2. To complete the proof of 5.1, we need
the following two results.

Proposition 5.5. Let g be of type C2 or G2, and let [J. = r1

Assume that, if Qi=£l, the roots of Qiform a qr segment of length r,- and centre bt.
(a) // Qi = I for some i = l,2, then, for all st > 0,

(b) Assume that Qi^ 1, i — 1,2. Let M be a highest weight representation of
Uq(o) with highest weight Q^£P such that

Wlu-ai-a2 (M) =0, m»-at (M)=0 , (11)

/ori = l,2. Then,

or q
u%

(c) Assume that Qi^l and define Q(i}^9r^1 as follows:
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Let vt be a Uq (g) -highest weight vector in V (Q(0), and let M=Uq (§). (vt ®v/) c

) , i^y. Then

w, (A/f\ =0 iffW- = n-m^-ai-a2 \M) — U t/J , — #

If p: Uq(o)—*End (V) is a representation, denote the representation po<3 by

Proposition 5.6. Let g &g o/ type C2 or G2. Let [L—r\ /ii + r2 /i2
e-P+, let Q

f and tet

Define, polynomials Qi (u) by

Assuming these propositions, we complete the proof of 5.1 as follows. Sup-
pose that [F(P)] is minimal but that a\/a2 has neither of the values stated in
5.l(b). By 5 .4 (b) f w^_ a i (F(P) )=0 , so by 5.5(b),

m,_a i_«2(F(P))>0 .

Choose Q— (Qi) /e/^^ such that the roots of Qt form a grsegment with centre
bi, where bi/b2 has one of the values in 5 . 1 (b) . By 5 . 5 (c) ,

Hence, [7(Q)] ^ [7(P)]. If w^ (F((Q)) >0, ^^^, then by 5.4(b), fJt = /(-
si a.i—s2 ot2 where si, 52>0, and since it^ X — a± — a*, we have fj.<2~ a± — a2.
Hence fjt satisfies 3.8(ii), and |V(Q)] "<[V r(P)] f contradicting minimality of

Conversely, suppose P is such that conditions 5 . 1 (a) and 5 . 1 (b) are both
satisfied. Choose Q= (Q,) f-e/e^ such that [y(Q)] is minimal and [F(Q)]

. Since conditions 5.1 (a) and (b) are necessary, the roots of Qf-
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must form a grsegment with centre bi, say, where bi/b2 also has one of the

values in 5.1 (b). If a1/a2=b1/b2, then, by 3.4, F(Q) =T?(V(P)) for some t^

Cx, and then [7(Q)] = O(P)]. On the other hand, if ai/a2 = qdin+d2rz+2d2~1

(resp. 0-win+*r*-Mi-i)) and fri/fr2 = ^-win+rf»n+2rfi-i) (resp. ^in+d2r2+2d2-1), then

by 5.6, F(Q) = o J * ( F ( P ) ) , and again [V (Q)] = [F(P)]. In both cases,
[F(P)] is minimal.

We continue to assume 5.5 and prove 5.6.

Proof of 5.6. We first reduce to the case when F(Q)fundamental. By 2.6,
F(Q) is isomorphic to the unique irreducible subquotient of

r=l

which contains a Uq (Q) -subrepresentation isomorphic to V (//), and hence
is isomorphic to the unique irreducible subquotient of

(13)_ _
ze/ r=l ' ze/ r=l

which contains a Uq (g) -subrepresentation isomorphic to F(the order of the fac-
tors in the tensor product on the right-hand side of (13) is the reverse of that
on the left-hand side). It is clear that the unique such quotient of

is isomorphic to (rf
To prove the result in the fundamental case, note that, by 3.3,

for some o~}^Cx (not necessarily the complex conjugate of a,-). Assume that

ai/a2 = q~(3dl+d2~1}. By 5.5, if vt is a Uq (§) -highest weight vector in V (h, a,-)f

and M= Uq (§) . (vi ®v2) , then w^1+/{2-ai-a2 (M) =0. Clearly, M'=Uq (g) . (v2 ®vi)
£ o>* (M) , hence w^i+^2_ai-a2 (M') =0. By 5 . 5 again,
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Hence,

ql di Oi=q2 a2 02 ,

so the result follows from 3.4. D

Proof of 5 . 5 (a) . We assume that d2
= 1.

The fact that mu-Stat(V(Q)) =0 follows from 5.4(b). If Qi = l it is enough
to notice that fj. — a\ — a2$P+.

If 62 =1, we must consider separately the cases when g is of type C2 or G2.
Let v Q be a Uq (g) -highest weight vector of V (Q) .

If g is of type C2, then XQ. vq has weight n ^i — ai — 2a2 which is Weyl
group conjugate to n Ai ~ a\ e P+ if r\> 1 and to /U if n = 1. Hence, if

WV(F(Q)) >0 and XQ". vq has a non-zero component in a £/9 (g) -subrepresentation of
V(Q) of highest weight y, then v=X\ if n = l and if r>l, then y=ri /li or r\ X\

-ai. But, m^-aX^CQ)) =0 by 5.4 (b), so x0
+. vQet / , (g) . V QS7(n ̂ i).

Similarly, if v$ is a C/9 (g) -lowest weight vector of F(Q) , then XQ. v$^Uq (g) . v$

= Uq (g) . v Q. It follows that XQ preserve Uq (g) . VQ, and hence that C7« (g) . ^Q is
a C/« (g) -subrepresentation of 7(Q). This not only proves 5. 5 (a), but the fol-
lowing stronger result:

Proposition 5.7. // g is of type C2, where d2=l, and if r ̂ N, tfien r/li /ia5
an affinization which is irreducible as a representation of Uq (g) (this necessarily

represents the unique minimal element of Qr*1} . D

If g is of type G2 then x2 XQ. VQ = 0 since [x2, XQ] =0. Assume for a con-

tradiction that XQ. VQ has a non-zero component w in a [/<? (g) -subrepresentation

of F (Q) isomorphic to V (n AI — cti — a2) . Since x2. w^V(ri Xi — 0.1 — a2) , the

preceding comment shows that in fact x2. w = 0. Now w is an element of weight
(r\ — 1) /(i in the Uq (g) -irreducible module V (r\ X\ — a\ — a2) and hence cannot

be Uq (g) -highest weight, thus forcing xf. w=£Q. This means that (r\ — l)/ii +
ai, and hence also its Weyl group conjugate (r\ — l)^i + ai + 3a2, is a weight of
V(r\X\ — OL\ — (X2) . This is impossible because (fi~ l)

The proof of 5. 5 (a) is now complete.
We assume from now on that Qt =£ 1, i = 1,2. To prove (b) and (c) we

shall need the following result.

Lemma 5.8. Let M be a highest weight Uq (g) -module with highest weight
fJL = ri Xi+r2 /J2, and highest weight vector m. Assume that w#_ai (M) =0.
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Then,
(a)

ht,r. m=Htir m, Xi,r- m
=Xi,rx^o. m ,

for some Hiir, Xi,r^C. If, in addition, the roots of Qiform a qt- segment with centre
bi, then

(b) Let W^M be the linear span of \xT xj. m, x% xT. m\ . Then, the follow-
ing are equivalent:

( i i ) xT,rxT,s.m^Wforalli^j^ U , 2 [ , r ,
(iii) mu-ai-a2(M) =0.

We assume 5 . 8 and complete the proof of 5.5.

Proof of 5.5(b). Suppose that (11) is satisfied. By 5.8(b), we can write

m ,

where C, D ^ C. Applying XI,Q, x^ and X2,i, respectively, to both sides of this
equation, and using 5. 8 (a) and the relations in 1.3, we find the following sys-
tem of equations for C, D:

qiai2 (bi1 q?-1 [rj €1- [ai2] qi q? b*1 q^1} =C [n-oi2] ei+D [rj ft ,

h] « bi1 q?-l = C [rj ,2+D [r2-a2i] ,2 ,

Dq2azi ( b z l qr22~l [rj «- [a2J « ^ &F1 ^P'1) .

A straightforward calculation shows that these equations are consistent only if
(12) holds.

Proof of 5 . 5 (c) . We prove this when g is of type €2, the Gi case is similar.

By 5.4 (b), we know that, for all i,j, mu-aj (F(Q (Z))) =0. Hence, mli-ai(M) =0
for 1 = 1,2 and, by 5.8, proving that mu-ai-a2 (M) = 0 is equivalent to proving

that [x^o, ^u] q- (vi ®Vj) — (qx~j~,0 x^,\ — q~l xT.i xj$) . (vt ®Vj) is a linear combination
of the following two elements:
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x^0 x,~o (vi ®vy) =x7,o. Vi ®Xj~0. Vj+qTrt v,- ®x^0 x,~0. vy, (14)

Xj~0 xT.Q (vi ®Vj) =XJ',Q. xT.o. Vj Qvj+qT1 xT,o. vt ®x;~0. Vj. (15)

Note that, by the isomorphism /in 1.3, we have xj — [xz,o [3:2,0, a:F,i] J

k$) ~1, from which one deduces that

[x2
+, xo+] - (~ 1) 5''2 G?2

Using 1.3 and 5. 8 (a), one finds that

[xt xj] (vl ®Vj} = [xt xj] . v, ®62 J5?o. vy+Vf ® [xj, x

= (-1) dt'2(q2-q~2} (b^1 cTdl~diri xJ,Q x^ vt ®Vj~bJl q~l v{ ®

It is easy to see that this element is a linear combination of the elements in (14)
and (15) if and only if

—- -(d\.n+dzrz+2di-l) I—I

Finally, we give the

Proof of 5.8. (a) That m is a common eigenvector of the htiT is a consequence
of the fact that m is the highest weight vector of M and of the relation between

the 0,> and the hl>r given in 1.3. If the roots of Qt form a ^-segment, then, by
using (5), it follows immediately that the eigenvalue of ht,i is as given. To see

that x^>. m is a multiple of x^o. m, it suffices to note that, in view of the rela-

tions in 1.3, xt,o kills a suitable linear combination of x^r. m and x^0- w.

(b) By 5 . 8 (a) , to prove that (i) implies (ii) , it suffices to prove that x/> x^o. m
^ W for all r^Z, i=£j. By the following relation in £/<?(§), and an obvious in-
duction on r, we may assume that i = l,/ = 2:

Since we are given that xF.i x^o- m^W, we are reduced to proving the following
statement:

if xi,r xiT.o. m^ W for some r^Z, then xf.r+i x^o. m^W. (16)

To prove (16) , note first that the relation
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Clrl/2 xy,r

in Uq (g) , and the fact that c1/2 acts as the identity on M, imply that there exist
elements Hr^Uq(o), r^Z, which are linear combinations of hi,r, i = l,2, such
that, for all m'^M, r,

Now, (16) will follow if we prove that H±\. W£= W. For ft, this follows from

5 . 8 (a) and the assumption that x\,\ x-T.o. m^W. For /f_i, it suffices similarly

to prove that x\,-\ X2,o. m^W. By assumption, we can write

xl.i X2,o. m = Ax I,Q X2,o- m +Bx2,o xT,o- w>, (17)

for some A, B^C. If A =^= 0, applying H-\ to both sides of (17) gives the de-

sired conclusion. If A — 0, we use the same argument with H-z to get x\-\ x^o. w

To prove that (ii) implies (iii), note that, by 1.4, M#-ai-a2 is spanned by

\xT,r ;̂~s. w( ij=ij,r,seZ' Hence, Mu-ai-aa ~ W. Since W ̂  t/« (g) . m = V(/jt),
/ynu-ai-a2(M)=0.

For (iii) implies (i) , suppose for a contradiction that xT,i X2,o. m <£ W.
Then dim (M^_ai_a2) > 3. But, dim (V (fi) u-ai-az}

 = 2. Since mu-at (M) = 0 for i
= 1,2, we must have w^_ai_a2 (M) >0. D

§60 t/f (g) -structure: a First Reduction

The purpose of this section and the next is to prove

Theorem 6.L Let A e P+ and let V (P) be a minimal affinization of X.
Then, as a representation of Uq (g) ,

V(P)=
r=0

Here, for any real number 6, int (b) is the greatest integer less than or
equal to b.

The proof of Theorem 6.1 is by induction on X (2). The case A (2) =0 was
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proved in 5.7. Note also that the minimal affinization of /U is irreducible as a
representation of Uq(o) since there is no /jt^P+ such that /*<^2.

For the inductive step, we shall need the following lemma. Recall that, if
V is any representation of UQ(Q), its left dual *V is the representation of Uq(o)
on the vector space dual of V given by

<a.f,v> = </,S (a) .v> , (a^Uq (g) ,v ̂  V, f^V)

where S1 is the antipode of Uq (9) and < , > is the natural pairing between V

and its dual. The right dual V* is defined in the same way, replacing 5 by S~l.
Left and right duals of representations of Uq (9) are defined similarly. Clearly
the (left or right) dual of an irreducible representation is again irreducible. In
fact, it is well known that, for any

where WQ is the longest element of the Weyl group of g.
We introduce the following notation: for any Uq (g) -module W= ® W* of

type 1, set

W}= \w^Wi\xtw = Qior alli^ll .

Lemma 6.2. (i) For any a^Cx,

V(X2,aY=V(^ aq6}, '7U2f a) =

(ii) For any a, b^C*,

dim((V(A2, a

Moreover, if Q^VQ^ (V(Xz, a) ®F(^2, b))o and a/b=£q±6, then XQ. VQ is a non-zero
multiple of v^2®v^t2.

Proof, (i) Since, for any representation V of Uq (g) , the canonical isomorph-

ism of vector spaces tVt— *V is an isomorphism of representations, it suffices to
prove the first formula. Since FC^) is a self-dual representation of U q ( o ) , we
have a priori that V(X2, a)t=V(X2, b) for some &^C X .

Fix V-X2 — £2 xi X2. vx2- Then, v-h is a non-zero element of V U2, a) -^
and, for weight reasons,
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for some A^C. Let Q*v\2^V(X2, a)|2. Then<vJ2f w>=0 ifw$V(A2, az) -*

Normalize v\2 so that

and let vL^2=X2 x\ %2- v\2. Again, for weight reasons, one has

XQ. Vt^Bv'-

for some B^C. Moreover, from the formula for XQ in 1.3, it is clear that

A=a~l c, B = b~1c ,

where c^Cx depends only on q, and not on a or b. Thus, A/B = b/a. But A/B
may be computed as follows:

<XQ. VJ(2, VXz> = <via, S"1 (XQ ) - VA2> = <V\2, —fa1

Hence,

B<xJ xl X2. v\2, VK> = —q~2A .

Since

S (x2 xi Xz) . v^2=—q4: X2 xi X2. v2= —q4 v-*2 ,

we find that A/B=q6, and part (i) is proved.
(ii) Since V(A2) is a self-dual representation of U q ( § ) , it follows that

dim((FQ2 , a) ®F(/12, 5 ) ) f ) = l .

If XQ. VQ = O, then C. v0 is a f/9 (§) -subrepresentation of the tensor product, and

hence by (i) we have a/b=q±6. EH

For the remainder of this paper, we assume that A ̂ P+, X (2) >: 1 and that 6 . 1
is known for X — 22. We shall also assume that X (1) > 1. The proof when
^ (1) =0 is similar and easier.

We also fix for the rest of the paper an element P= (Pj)/e/^^ such that the
roots of Pi form a string with centre a,- and length X (i) , i = l ,2, and such that
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— «

Define an element Qe#*-*2 by

By 5.1, V(P) and F(Q) are minimal affinizations of 2 and X — X2, respectively.
In particular, 6.1 is known for V (Q).

The main result proved in this section is:

Proposition 6.3. Let /l,/^P+ and let F(P) be a minimal affinization of X
as above. Then:

(i) mn (V(P)) < 1 if IJL is of the form A—rO — (X2 or X—rO — a^ — az for some r

(ii) m t f(V(P)) <2if fjiis of the form A— rd for some r<EN.
(iii) mu(V(P}} = 0 if (i is not of the form X~r6, X—rd — a2 or X—rQ — a^ —

a2for some

(iv) m

We deduce this from the next two results.

Lemma 6.4. For any

V(X)

Proof. By 2 . 1 (c) , it suffices to prove the analogous classical result. We
leave this to the reader, d

Proposition 6.5. Let X ep+, Pe#*, Qe^-^ be as defined above.

(i) FQ2, a2 ^
(2)~1) ^F(Q)t5 generated as a representation of UQ(Q) by the tensor

product of the highest weight vectors. In particular, V (P) is isomorphic to a quo-

tient of V(A2, a2 ^
(2)~1) ^V(Q).

(ii) Let P(D = (Pi,l) . Then, there exists a surjective homomorphism of representa-
tions of Uq (g)

, a 2 q ~ - 7 2 l a 2

=VP.
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We assume 6.5 for the moment and give the

Proof of 6. 3. Parts (i), (ii) and (iii) are easy consequences of 6.4 and 6.5
(i) since 6.1 is known for F(Q).

To prove (iv) , we can assume that A (2) > 2, since otherwise there is no-
thing to prove. Notice that, by 6.2, we can (and do) choose elements

(V(*2, a2 <^2)-45+3) ® V(A2, a2 ^
(2)-45+1))0

+ such that

For l<r<int(^-/i(2) j, consider the element

W = ' ' ' ) ~2r

2f a2

Clearly, z£o. 10 = 0 for i — 1,2, and an easy computation shows that

Hence, 7r((xo) r . w) ^0 and so 7r(w;)is a non-zero element of V(P)t-ro. This
proves 6.3(iv). [U

o/ 6.5. Assuming 6 . 5 (i) we give the proof of 6 . 5 (ii) . The proof is
by induction on X (2) . The case X ( 2 } = 1 is just 6 . 5 (i) . So if A (2) > 1, by the
induction hypothesis applied to /! — /12, we have a surjective homomorphism of
representations of Uq (g)

2, a2

Consider

a 2 - - F 2 , a 2 V V a 2 ~

By 6 . 5 (i) , the right-hand side has V (P) as a quotient and so we get the re-
quired surjective homomorphism

, a2 ̂
(2)+1) ®7(Pa))->Vr(P) .

We now prove 6.5 (i) . Let M= Uq (g) . (v^2 ®VQ) . We first show that it suf-
fices to prove
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mu(M) =m,(v(X2, a2^
(2)-1) ® V(Q)) for n>*~0 . (18)

To see this, assume that M is a proper subrepresentation of the tensor product
and let N be the corresponding quotient. It follows from 6.4 and (18) that

mu (AT) =0 unless

On the other hand, dualizing the projection map

we get a non-zero (hence injective) homomorphism of representations of Uq

It follows that

and hence by 6.4 that m*-e(N} >0.
Note that the preceding argument proves that, if M' is any Uq(o) -subrepre-

sentation of V(A2, 0,2 qx(2)~l) ® F(Q) containing M, and if Nf is the corresponding
quotient of the tensor product, then m^-0(N

f) >0. In particular, any irreducible
quotient JV of N must have m^-e (W) >0. Taking N' to be an affinization F(R) ,
say, of X — 6, we have a surjective map of £7g (g) -representations

and hence, dualizing, an injective map

by 6.2. The highest weight vector in V (Q) must map to (a non-zero multiple
of) the tensor product of the highest weight vectors on the right-hand side.

But this is impossible, since a2 q*(2}+5 is not a root of Q2. Hence, N=0 and part
(i) is proved.

We now prove (18). The statement is obviously true for fi=X. For fi=A
— #1, the statement follows from 6.4 and the fact that 6.1 is known for V (Q) .
For [JL = X — a.2 or X — 2a2, notice that, by 5 . 2 (b) it suffices to prove the result
for Uq (sl2) • But this follows from 4 . 9 (a) of [3] since
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V(A* a2 ̂
(2)-1)(2)^F(Q)(2) = F(l, a2 ̂

(2)~1) ®7U(2) -1, a2 q~1}

as representations of U2.
Finally, we must prove (18) for A — a.\ — a2. For this, it obviously suffices

to prove that

The left-hand side is spanned by

|xF X2. Vx2 ®VQ, V*2 ®Xi X2. f Q, Vfr ®X2 Xi. V Q, X2 . Vfo ®Xi. VQ( .

Now, since m* (M) and m^-az (M) are both strictly positive, M contains x2. v^2 ®

fQ and vx2 ®X2. fq (since M contains two linear combinations of these vectors
which are nor scalar multiples of each other) . Also, M contains

It follows that M contains the three vectors

Xi. (X2. Vxz ®V Q) , Xi. (v*2 ®X2. V Q) , X2.

i.e. that M contains the three vectors

V*2 ®^r X2. VQ ,

xi x2. v*2 ®v$+q~2 x2. v*2 ®xi. VQ , (19)

x2. vX2®Xi.

Since these vectors are obviously linearly independent, it suffices to prove that

(20)

is linearly independent of the vectors in (19) .
To compute the vector in (20) , we need the following formulas:

.t;Q, (21)

x2 VQ . (22)

By the formula for the isomorphism /in 1.3,
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[xj, xf] =c [x2~, xu] ff (fei fe2) ~* ,

where c^Cx, and for any x,y^Uq(o) , we define

[x, y]q=qxy—q~1 yx .

Using this, we find that

+v,2 ® (a!1 ̂ (1)-1 X2 xT. VQ-aJ1 q*™~* xl x 2. VQ) ) -

An easy computation shows that this is linearly dependent on the vectors in
(20) iff

<±L= 2/

a2
 q

contradicting our assumption that ai/a2=q~(2*(l}+*(2)+2}.
The proof of (21) is easy since we know from 5.1 (a) and 5.4 (b) that

xr.i- v Q must be a scalar multiple of xj". VQ. As for (22) , observe that by 5 . 1
(a) and 5.4(b) again we know a priori that

xr,i X2~. VQ=AXI xj. i

for some A, B^C. Applying xf and xj to both sides of gives the pair of equa-
tions

A U(2) -l\q+B[X(2)}q= U(2) -1]
A

Using al/a2 = q-(2X(l)+m)^\ we find that the unique solution is A=aT1 q2Ml}~2, B

§7. Completion of the Proof of Theorem 6.1

In view of 6.5, to complete the proof of 6.1, it suffices to establish

Proposition 7,1- Let X^P+ and let V (P) be a minimal affinizatian of A.
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Then:

=1 t/

( ii ) m# ( F (P) ) =0 if ft is of the form 2 —rQ— 0.2, for some r ̂  N.
(iii) mu (V (P) ) = 0 if ft is of the form X —rQ— ai — a2, for some r e N.

We need three lemmas.

Lemma 7.2. Suppose that there exists 0^v^V(P)^ such that

x\,\. v=x\,-i. v = 0

(resp. xti. v =xt-i. v = 0). Assume that mti+at (V (P) ) = 0 for i = 1 , 2. Then,

Proof. We prove, by induction on &^N, that

xt.±k.v = Qfor alii = 1,2 . (23)

It is easy to see using the relations in 1.3 that the kj and hj,s preserve the
finite-dimensional space

F(P)++= \w<EV(P)»:xtk. w = 0for allie/, fceZ[ .

It follows that there exists a Uq (§) -highest weight vector in V (P) #, which is
possible only if 2=fjL.

It is obvious that (23) holds when k = 0. We assume that it holds for k
and prove it for fe+1. Using the relations in 1.3, we find that

x?,o xt±(k+i) e Uq (Q)xf,o+Uq (o)xt±i + Uq (Q)xt±k ,

and hence by the induction hypotheses we see that xt,±(k+i)- v^ V(P)J+ai. Since

=0 by assumption, this forces xT,±(k+u- v = Q, establishing (23) for

Lemma 7e38 Let 0 &v e F (P) J 6g 5%c^ t/wf xi>. v = 0 i/ 0 <s' <s or i/ s
<s'<0. Then

(i) (rjo)3xj,.t; = 0 f

( i i ) xjo xjo xi~fS. v = 0,
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(iii) x J0 (x2
+,o) 2 xis. v^V(P) ++201+2«2.

Proof. Using the quantized Serre relations in 1.3, we find that

(§). xlo • (24)

Part (i) is now immediate.
For (ii) , it suffices to notice that the relations in 1 . 3 give

Z Ug(o)xt±s- (25)
0<,s'<s

if 5>0.
For (iii), we use the following consequences of 1.3:

(rf i0)2xjoe[/,(g)xi+
fo , (26)

x2
+,oxto(x2

+,o)2^ [/,(§) (x2
+,0)3+^(9)xto+^(g)xtox2to . (27)

The result now follows from parts (i) and (ii) . EH

Lemma 7.4. Let /J.^P+ be such that

mu+r](V(P))=Qifr]^sd,s^Z+ . (28)

Then, Or Jo) 2 xt±i maps V (P) J to V (P) J+0. Further, if v e F (P) J t

Proo/. It is clear for weight reasons that Orjo) 2xi",±i maps F (P)J to
V(P) v+e. Thus, it suffices to prove that

For i = 2, this is just 7.3(i). For i = l, the result is obvious from 7. 3 (iii) and
(28).

Now suppose that Or Jo) 2 ^ti- ^ ~ 0. By 7 . 3 (ii) , XI,Q xjo xi,i- v = 0 as well
and (28) now forces
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Now the quantized Serre relations in 1 . 3 give XI,Q x\,\. v = 0 and so by a final
application (28) , we get

One proves similarly that (xto) 2 xf-i- v = 0 implies that xt-i- v = 0, and the
proof of 7.4 is now complete. D

We are now in a position to give the

Proof o/7.1. All three parts are proved by induction on r. If r=0, the re-
sult follows from 5.1 (a) . We assume that (i) , (ii) and (iii) hold for r and
prove them for r+1.
(i) Suppose that m^-(r+i)e (V (P)) > 1. Then, by 7.4, there exists 0 ^ VQ ^

V(P)t(r+i)e such that xji. v = 0.

Suppose now that xt-i> v =£0. For 5 = 0,1, ...,r+l, define vs^F(P) by

We claim that the v& have the following properties:

( i ) s 0^seF(P)|-(r+i-S)0 for all 0<s<r+l;

(ii)s xt,k. vs=Q for t = l,2, k>0.
Note that (i) o holds by assumption and (ii) o by the choice of VQ. Assuming

that these properties hold for 5 we now prove that they hold for 5 + 1. Lemma

7.2 implies that x\-\. vs=£Q if 0 <5 <r and 7.4 now shows that Vs+i^Q. To
prove that (ii) s+i holds, observe that, by the proof of 7.2, it suffices to prove

that xji. v = 0. Using the relations in 1.3 we find that

xti CrJo) 2 xt-i e U< (gjxji xto xt-i + UQ (g)xji x2+0 xj-i+ [7ff (§)xi% xjo *i+,-i -

The third term kills vs by 7.3 (ii) ; on the other hand, using 1 . 3 again, we find
that the first two terms are contained in

1=1

and hence kill vs as well. This proves the claim.
Note that vr+i=Avp, for some A ^Cx. Since dim (Vr(P)/?-az) =1, it follows
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that

for some B^CX . Applying xz,i to both sides of this equation, and using 1.3 we
find

= 2 xf-i. Vr

Now, using (ii) r, we get

0=B(j)2,i VP .

But this is impossible, because from 2.3 we find that

which is non-zero since /( (2) >0. This completes the proof of 7 . 1 (i) .
(ii) Suppose that m^-(r+i)e-a2(V(P)) >0. The induction hypothesis on r im-

plies that

V(P) }-*-„ = 0 if r] = a2, 2a2, 3a2, or a2-(Xi . (29)

Let 0=^=1; ^ V(P)J-(r+i)^-a2. We shall prove that v is actually C/9 (9) -highest
weight, which is obviously impossible. We first prove, by induction on k, that

tk. v = 0. By (29) , it suffices to prove that xtk+i. v ^ V (P) t-rd-3a2 • Since

Uq(o)xi,s, we see that

To prove that xj.o Xitk+i- f — 0, define f/:z:: (x^o)2 xtk+i- v and v"=xi,o- v' . Then,
by (29),

7 . 3 (iii) =V e V (P) l-re-a,+ai=*v" = 0 ,

To prove that xj*. v — 0, we again proceed by induction on fe. We assume
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that £>0; the proof for fc<0 is similar.

Using 1.3 and the fact that xtk- v = 0 for all k, we see that

xtrxtk+i. v = Q, for r=— 1,0, and 1 ,

But now 7.2 implies that xtk+i- v = Q (since 2 — (r +1) O^X). This completes
the proof of 7.l(ii).

(iii) Let v e F(P) J-<r+i)0-ai-a2. Since

nu-<r+i>*-«, (y(p))=0, for t = l, 2 ,

and since ^=£^ — (r+1) Q — a\ — a.i, it suffices by 7.2 to prove that xt±i. v = 0.

To do this, note that by 6.3, it is enough to prove that xt±i. v

Clearly, by 1 . 3, xto xt±i> v = 0.

To prove that xto xt±i. v = 0, it suffices by 7.2 to prove that

(r+i). (30)

£±1. v = 0 for 5=±1. (31)

The fact that (xto)2^J+i- v — 0 is clear from the quantized Serre relations in 1.3.

By using this and the other relations in 1.3 it is easy to see that xjo xto xt,±i. v
^ V (P) t-r0-ai-a2, and hence must be zero by 6.3. This proves (30).

To prove (31), one checks first, using 1.3, that

(§) . xto ^to xt±i+Uq (g) . xto xt±i •

It follows that (xto) 2 %i,s XI,Q xt±i- ^ — 0 for s = 0,l. Lemma 7.4 now implies
that in fact

xts xijo xt±i. v = Q for 5=±1 .

This completes the proof of 7 . 1 (iii) . [H

The proof of Theorem 6 . 1 is now complete.
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