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The Topological Structure
of Polish Groups and Groupoids
of Measure Space Transformations
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Alexandre I. DANILENKO™

Abstract

It is proved that the groupoid of nonsingular partial isomorphisms of a Lebesgue space (X, z)
is weakly contractible in a “strong” sense: we present a contraction path which preserves invariant
the subgroupoid of g-preserving partial isomorphisms as well as the group of nonsingular trans-
formations of X. Moreover, let ® be an ergodic measured discrete equivalence relation on X. The full
group [R] endowed with the uniform topology is shown to be contractible. For an approximately fi-
nite & of type II or IIl;, 0<XA<1, the normalizer N[R] of R furnished with the natural Polish topol-
ogy is established to be homotopically equivalent to the centralizer of the associated Poincaré flow.
These are the measure theoretical analogues of the resent results of S. Popa and M. Takesaki on the
topological structure of the unitary and the automorphism group of a factor.

Key words and phrases. Nonsingular transformation, normalizer of full group, contraction path.

The topological properties of automorphism groups of a Lebesgue space (X,
() have been studied since 1944, when P. Halmos [Ha] introduced two metriz-
able topologies on the group Auto (X, ¢) of y-preserving transformations: the
weak d, and the uniform d,. He proved that (Auto(X, y), dw) is a Polish group.
S. Harada [Har] showed that it is simply connected and arcwise connected. His
result was later considerably refined by M. Keane [K] who proved the contract-
ibility of Auto(X, ) both in dy, and dy (see also [D,N]).

A. Ionescu Tulsea [IT] and R.V.Chacon and N.A.Friedman [ChF] ex-
tended the weak and the uniform topology to the group Aut (X, #) of nonsingu-
lar transformations of (X, g) and generalized the results obtained in [Ha].
However, the homotopical properties of this group have not been studied so far.
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For a detailed exposition of the productive interplay between ergodic
theory and operator algebras we refer to [M, C, S2]. The present work also was
stimulated by a paper [PT] being pertained to operator algebras. In particular,
given a countable group I'C Aut (X, y), then one can consider the full group
[I'] and its normalizer N [I"] in Aut (X, g) which are the measure theoretical
analogues of the unitary group U (M) and the automorphism group Aut (M) of a
von Neumann algebra M. Both groups, [I"] and N[I'], are Polish: the first with
respect to du, the second with respect to some metric d defined by T. Hamachi
and M. Osikawa [HO]. Further topological properties of [I"] was discovered by
S. I. Bezuglyi and V. Ya. Golodets [BG1]. They proved that ([I'], dy) is simply
connected and arcwise connected (even regardless the countability of I). On the
other hand it is known that U (M) is contractible for any properly infinite
algebra M as well as for a family of type I, factors [PT]. Moreover, the homo-
topical structure of Aut (M) is completely described by S. Popa and M. Takesaki
[PT] for AFD factors of type II and II;, 0<A<1. It seems natural to obtain the
similar results for [I"] and N[I'].

In the first section of this paper we study the topological structure of the
groupoid Part (X, #) of partial isomorphisms of (X, #). We show that Part (X,
1) endowed with the “generalized” weak topology is a Polish groupoid. Further-
more, Part (X, y) is contractible in a “strong” sense: we provide a contraction
path which preserves invariant both Aut (X, ¢) and Auto (X, ). So, Aut (X, 1)
is also contractible.

In the rest of this paper we prove the statements announced in [Da].

The second section is devoted to the study of homotopical properties of the
Polish full group [I']. Note, that [/"] may be identified with the group of inner
automorphisms of the I™-orbital measured equivalence relation. We first prove
that [I'] is contractible if I" is of type I or II. Then using Krieger’s discrete de-
composition theorems we demonstrate the contractibility of [I"] actually for any
ergodic type III group I'" (only in III; case we restrict our consideration to a
special class of groups; approximately finite groups are in this class). As an
auxiliary result we describe the structure of any ergodic IIl, transformation
group (see also [B]). This generalizes the Krieger’s theorem for approximately
finite groups.

In the final section we investigate the topological structure of N[I'] for an
approximately finite ergodic group I The main results are as follows. If I" is of
type II, then N [I'] is contractible. If I is of type III;, 0 <A <1, then m (N[I'])
=%. For a type IIl, group I the normalizer N[I'] is homotopically equivalent to
the centralizer of the associated Poincaré flow endowed with the weak topology.
Note that the AFD factors of type IIl, were not considered in [PT].

We prove the above statements in pure measure theoretical setting without
use of the modular theory, which was the fundamental tool in [PT]. Moreover,
unlike [PT], we do not use the Michael’s selection principle, and all of required
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continuous cross-sections are constructed in an explicit way.

Note, that the problem of the contractibility of N[I'] for a type III, group I’
remains unsolved in spite of the announcement [Dal, since there was an error
in the earlier proof.

I am grateful to V. Ya. Golodets for drawing my attention to the paper
[PT]: he also suggested to obtain measure theoretical analogues of those results.
I thank the participants of the Kharkov Seminar on Ergodic Theory and Opera-
tor Algebras for helpful discussion of the work.

§1. The Topological Structure of Aut (X, ¢) and Part (X, p)

Let (X, B, 1) be a Lebesgue space; we suppose that g is nonatomic and
o-finite. We fix a map [0, u(X)]2s—X (s) €D with

(i) UX(s)=X, and X(s) CX () if s<t;

(i) x(X(s))=s for all s.

For a subset A €%, ¢ (A4) >0, consider the function ¢ : [0, #(4)]— R
given by

é(s) =min{t€ERLpANX(t)) =s}.

Put A (s) =ANX(4(s)). Then UsA(s) =A, A (s) CA(t)if s<t, and (A (s)) =s
for all s€ [0, #(A)]. The family {A (s)}s will be called the p-continuous decom-
position of A. The continuity means that g (A, (s,) AA (s))—0 if p(4,AA)—0
and s,—s as n—>0,

We let

Part (X, ) = {616 is an invertible, nonsingular map from a measurable
subset Dom () onto a measurable subset Im (6)},
Parto (X, ) ={6€Part (X, 1) |6 preserves p},
Aut (X, u) ={6€Part (X, 1) |Dom (6) =Im (6) =X},
Auto (X, ) =Parto (X, p) N Aut (X, p).

Note, that we identify any two objects (such as measurable sets, maps,
partitions, etc.) which are equal almost everywhere.

We shall suppose below that ¢ (X) =1. Denote by $; (#) the unit ball of
the algebra of all bounded linear operators of the Hilbert space #=L%(X, ). It
is known that %; (#) endowed with the *-strong operator topology is a Polish
x-semigroup. The set of all projectors
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P (#) ={PEB, (#)| P=P* P>=P}
as well as the set of all partial isometries
Iso (#) ={UE€ %, (H) |[UU*€P (#)}
are closed subsets of B; (#). Note that Iso (#) is a groupoid if we set
Iso® (#) ={(U, V) Elso (#) XIso () [U*U=VV*}
and define the multiplication by
Iso® (#) 2 (U, V) »UV Elso (#).

The unit space of this groupoid is % (#) ; the right and the left unit of an ele-
ment U € Iso(#) is U*U and UU* respectively; the inversion map is the
x-conjugation. Moreover, Iso®? (#) and % (#) are closed subsets of Iso(#) X
Iso(#) and Iso(#) respectively; and all of the groupoid operations are con-
tinuous. So, Iso(#) is a Polish groupoid (see[R]). We let

P, (#)=1{Ps| AEDB},
where P4 is the projector on the subspace of functions which are vanish outside
A. The Boolean algebra P, (#) is a closed subset of ? (#). It is well known
that
{PEP (#)|PPa=P4P for all AERB} =P, ().

We set

Isos (#) ={UEIso (#)|UP. (#) U*C P, (#), ULEHX,},

where #,.=L% (X, ) is the closed cone of almost everywhere nonnegative func-
tions. It is obvious that Isos (#) is a closed subgroupoid of Iso (#).
For a partial isomorphism §€Part (X, ¢) the function

Dom (6) 524470 (z) €k

o
is well defined. We extend it to the whole X by setting gdﬂu(x) =0 for all z &
Dom (). So, the linear bounded operator Us of # given by
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(Uef) () =f(6z) /%‘Z—"(x), 2EX,

is well defined. It is obvious that Us belongs to Iso (#) and UiUs=Ppomw, UsUs
=Pmm@. We shall show that the one-to-one groupoid antiisomorphism

Part (X, 1) 20 — UpEIsos (#)

is onto. Actually let UEIso4 (#) with U*U=P,4 and UU*=Pj for some measur-
able subsets A, BE®. Notice that either ¢£(4) >0 and ¢ (B) >0 or u(4) =u(B)
=0. Then U induces an isomorphism of the Boolean algebra generated by (4, B
l'A, u | A) onto that generated by (B, 8 | B, 1 | B). By the property of Lebes-
gue space we have that U=M,Us for some € Part (X, ¢) with Dom () =A and
ImO=B, where M; is the multiplication operator, f€EL* (X, #), and |f (x)|=1 for
almost all z €A. Since ULE#., f(x) =1 almost everywhere on A. Hence U= Us.
So we may identify Part (X, g) with Iso+ (#). Since Isos+ (#) is a closed sub-
groupoid of Iso (#), it follows that Part (X, i) is a Polish groupoid. This topolo-
gy on Part (X, u) will be called weak and denoted by d, since its restriction to
Aut (X, ¢) is the well known weak topology introduced in [Ha, IT]. Note that
Aut (X, ¢) corresponds to the stability group of the identity operator (as an ele-
ment of Isos (#)). Hence we identify it with

U () ={UEU ) |UP, (K) U*=P. (#), ULE K.}

(both in algebraic and topological aspects), where U (#) is the unitary group in
#’.

Proposition 1.1. (i) dy, is unaffected if we veplace p by an equivalent mea-
sure;

(ii) duw is induced by the family of pseudometrics:

-1 —1
p- (0, 0 =| 20— () 20|

pa (61, 62) =1 (6, (A NDom (6:)) AB(A NDom (6))), A€,

and

for 61, 6,EPart (X, p).

Proof. The corresponding statements for Aut (X, #) were proved in [Ha,
IT, HOJ. In our case one should apply a similar argument. O

It is known that Aute (X, &) is contractible [K]. We shall prove the follow-
ing



918 GROUPS OF MEASURE SPACE TRANSFORMATIONS

Theorem 1.2. The groupoid Parto (X, 1) fumished with the weak topology is
contractible in such a way that theve exists a continuous map

o: [0, 1] X Parto (X, 1) 2 (t, 6) —0,(0) EParto (X, 1)

with the properties
(i) 00(6) =8, 01(0) =idlx,

(i) or (Auto (X, ) CAuto (X, p) for each t€ [0, 1].
Proof. For a partial isomorphism A€ Part, (X, ) we set

Y=Dom(0), A=YNIm(0), B={xEY| OxrEA},
D=Y—B,C=Y—A,E=X—Y.

We also denote u = (C) =u (D), v=p (Y). Let { be the (unique) partial iso-
morphism which is determined by the conditions: Dom ({) =D, Im ({) =C, and
D)= C{t) for every t € [0, u]. Remind that {C(t)},, (D)}, are the
y-continuous decompositions of C and D respectively. Then we define a partial

isomorphism @ with Dom (6) =Im (6) =Y by

_ |0z, for x€B

fx=
{x, for xE€D.

It is straightforward that the map

Parto (X, ) © —6E Parto (X, 1)
is continuous. Since f is a measure preserving automorphism of the finite mea-
sure space (Y, u | Y), it generates for each t € [0, v] the induced automorphism

6, of the space (Y(v—¢), u | Y(v—t)). Now we set

Y, for t€ [0, v]

Dom (o: (6)) =[yUE(t—v), for t€ (v, 1]

and define

Oz, forxr€Yw—t)

0:(0)1‘:[1:’ foerY—Y(v—t) if te [O, 1}];

o (@) z=x for all x €EDom (0,(6)) if t€ (v, 1].
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It is routine to check that o is the desired map. 0O

Without loss in generality, we may assume that X is the unit interval [0, 1]
and u the Lebesgue measure. We shall use the notation

M=reL* (x, Wllfli<1, fx) 20 for aa. x},
N={reL* X, w!llfli=1, f(x) >0 for a.a. x}.

For a function f€ ./ we set Supp () ={xE€X|f(x) >0} and s(Hx=S7 F(t)dp ().
It is easy to see that s(f) is a partial isomorphism with Dom (s (f)) = Supp(f)
and Im (s (f)) = [0, |£]l.] with

dﬂ‘;s () =f dﬂo;p(ef) ! (@) =1/f(s (f) "z)

for all x€Im (s(f)) =Dom (s (f) 71).
We define now a metric m on M by

’

1

m (o 1) ==l _{_” d/,cOs (fl) -1 d‘uOZE{Z) -1

for f1, f2€ M. Then A endowed with m is a Polish space and N is its closed sub-
set. We put

M*Party (X, 1) ={(f, {) EMX Parto (X, p) | Im (0 = [0, | £]]}.
Then M *Parto (X, 1) is a closed subset of J X Parto (X, p).

Theorem 1.3. (i) There is a homeomorphism from Part (X, u) onto J *
Parto (X, pt) which takes Aut (X, p) (respectively Parto (X, 1)) onto N X Auto (X, 1)
(respectively {1} X Parto (X, w);

(ii) Part(X, p) is contractible in such a way that there exists a continuous map

d: [0, 1] X Part (X, ) 2 (t, 6) =6, (6) €EPart (X, p)

with the properties: 6o(0) =6, &, (0) =id|x, and

: (Aut (X, ) CAut (X, 1)

€ [0, 1].
6, (Parto (X, 1)) CParto (X, 1) for each t<€ [0, 1]

Proof. (i) Consider two maps 7, s given by
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e}
m: Parto (X, p) 2 6—n(6) =Q‘Z‘u—0€./%,
st MDfs(f) EParto (X, p).

A routine verification shows that both of them are continuous. Moreover, the
following properties are satisfied:

ros=id, =(L6) ==(0)
s(m(0)) 6 €Parto (X, 1), Im(s(x(6))6~) =10, |z (6).]

for all 0€Part (X, ), {EParto (X, ) with Im (6) =Dom (). So, the map
Parto(X, pt) 260~ (z(6), s (x(6))07) €M
is a homeomorphism as desired.
(ii) The indicator of a set BE® will be denoted by Is. Note, that the space
M endowed with m is contractible. Moreover, it is not difficult to construct a
continuous map
. [0, 1] XM> (¢, ) =6, (f) EM

with the following properties: 6o (f) =f, 6. (f) =Ix,

la: (Ol =IfI.  for all t€ [0]l£].],

G (f) =Ion for all t [||f [, 1],
GWN) SN for all te 0, 1]

Then for each (f, {) €M *Party (X, pr) =Part (X, ¢) and t€ [0, 1] we set

6:(f, 0 =6 (f), a: (L)),

where {0}, is the contraction path determined in Theorem 1.2. It is easy to see
that the map G is as desired. O

§2. Contractibility of Full Groups and Groupoids

2.1. The uniform topology on Part (X, i) is generated by the metric dy:
dy (61, 6;) =p({xEDom (6:) NDom (6) | Grx+# Oax})
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+u({r<€im(6) NIm(6,) | O7%+# 65 %))
+u (Dom (6;) ADom (6,)) + ¢ (Im (6,) AIm (6,)),

for 01, 026 Part (X, ‘Ll) .

It induces the well known uniform topology on the closed subset Aut (X, x)
CPart(X, p). Like it was done in the case of the group Aut (X, ¢) [IT, HOJ, one
can prove that Part (X, ¢) is a complete, nonseparable, topological groupoid and
that the uniform topology is stronger than the weak one.

For a countable subgroup I'CAut (X, ) we set

[I«={6<€Part (X, p)|0xETxr for ae. xEDom ()},
(M=[Irl«NAut(X, p).

Then [I7] (respectively [I']«) is said to be the full group (respectively the full
groupoid) generated by I
The normalizer of [I'] in Aut (X, ¢) will be denoted by N[I'], i.e.

N[I={6€Aut(X, w|6[167*=[I1}.

It is known that [I"] is a Polish group with respect to the uniform topology
[HO]. In a similar way, [I']« endowed with dy is a Polish groupiod.

Note, that the uniform and the weak topologies are coincide on [I7] if I' is
finite or, more generally, is type I.

It is easy to see that [I']+ is contractible with respect to the uniform topol-
ogy. Our purpose now is to study the homotopical properties of the full group
[I'] endowed with da.

Proposition 2.1. Let I’ be a group of a finite type, i.e. there exist a
TI-invariant, finite measure equivalent to p. Then [I'] is contractible.

Proof. Consider the contraction path for (Aute (X, g), dw) constructed in
[K] (see also Theorem 1.3). It uses the induced transformations. Then its res-
triction to [I'] is the contraction path for [I"] endowed with the uniform topol-
ogy. O

Note that if I" is of infinite type, then the method of induced transforma-
tions is not applicable, since an arbitrary automorphism 7y € I needs not to be
conservative.

2.2. In this subsection we consider the case where I"is of semifinite type.
The main result is as follows.
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Theorem 2.2. Let there exist a o-finite, I'-invariant, y-equivalent measure
v. Then [I'] is contractible.

Proof. We divide the proof of this proposition into some steps.

(s-1) Suppose first that I" is ergodic and type Il.. We fix a v-continuous
decomposition of X = U s.0X (s) with v (X (s)) =s. Denote by #; the family of
countable ordered partitions 7= {9}, of X with v(n,) =1 for alln € N. It is
easy to see that &, is a Polish space with respect to the metric 7 given by

r(9, 7)) =2u(9,47,), InEP.

Moreover, the topology on %; is uneffected if we replace ¢ by an equivalent
measure. We now fix a partition n €%; and set

rl,={rel | m.=n, for all n ENJ.

It is obvious that [I'], is homeomorphic to the Cartesian product -1 [I7] 1,
where [I'] , is the induced (to the subset 1,) full group, » € N [HO]. It is
known that there exists an ergodic type II; transformation group I, on the
space (a, ¢ [ ny) with [['n] = [I'],,, n €N. Then in view of Proposition 2.1, [I'],
is contractible closed subgroup of [I']. Consider the map

n: (M 2rea(y) ={n. (1)1 €P

where 7,(7) = 79, for all n €N. It is continuous and constant on the left [I'],
-cosets. We need two auxiliary lemmas.

Lemma 2.3. %, is contractible.

Proof. We set
P, (k) ={9€P|9=1x for n=1,..k}.

Then we have a decreasing sequence of closed subsets
#.(1)2%(2)>..., with NP(k)={n}.
k=1

For a partition 9EP; we set B=9—11, A= (01— 1) N9, 51=0, s,=v(4,) +
**+v(4,), B,=B (sx) —B (ss—1), where n=2, 3,.... Now for each real t € [0,
v(B)] there is an integer m with s, <t <sm-1. We set
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(19107]1) U?izA,’UAm.H(t_Sm) U (B_B(t)), forn=1

[eY) _ (sn_An) UBa, forn=2,..m
5t (19)11*
(’gn—An(t—Sm)) UBy, (t_Sm), for n=m+1
In for n>m+1.

Then the partition 05 (8) ={0{ (9) } ,EP; for tE [0,u(B)). Since the map
P.29-v(9,—n.) ER is continuous, the map

def
#:x[0,1) 2 (8, s) »0s” (§) =0gr-m» (9) €EP,

is also continuous. Moreover, as” (9) =9, o1 (§) €. (1).
In a similar way, for each €N we have a continuous map

P1x[0,1)2 (8, 5) ~os*V (9) €21 (k)

with o**? (@) =39 and o3V (9) €%, (k+1). Now for a positive s we choose n €
N and t€ [0, 1) with n—1<s<n and s=n—1+¢ and set s (§) =0 00g{";V0

co- 00t (9), 9EP,. It is a routine to check that the map

0 P1XR:2D (9 5) ~0s(9) €Py
is continuous and 6o (9) =9, 04+« () =7 for every IEP,. O

Lemma 2.4. Under the above assumptions (I' is ergodic), for amy two
measurable subsets A, BE B with v (A) =v (B) >0 one can choose a partial iso-
morphism 7(A, B) € [I'] « in such a way that

(i) Dom(y(4, B)) =A, Im(7(4, B)) =B,

(1) if {A)o, and {Bn)Z, are the two sequences of measurable subsets with
v(A,AA)—0 and v(B,AB)—0, then 7 (An B.)—7(A, B) in the uniform topology

as n—>°0,

Proof. We use a slight modification of the Kantor-Bernstein map. Let I'=
{ratw=1, n=1id. We put A;=A U 7{'B, Bi= 1141, Ci=A — A, Di=B—B;. Then
v(Cy) =v(Dy). We continue A;=C; U 75Dy, By=17344, C;=C1—A,, D;=D;—B,
and so on. Since I'is ergodic, Ny-14A,=A and Nj-1B,=B. Now we set

74, B)x=72x for all t €A, nEN.

It is a routine to check that the map 7(4, B) is as desired. O
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Continue the proof of Theorem 2.2. For every partition €%, using Lemma 2.4
we set

T (D=7, Nn)x for €39, nEN.
It is easy to see that the map
T P29 (9) S [F]

is continuous and 70 t =id. So, 7 is a cross-section of the projection map 7. It
follows that [I"] is homeomorphic to the product [I], X %, (as well as %; to
the quotient space [I']/[I'],). In as much as both multiples are contractible, so
is [I'].

(s-2) Now suppose that the dynamical system (X, ¢, I) is of the following
form. There are two Lebesgue spaces (X, By, A) and (Z, Bz, k) with £(Z) =1,
X=ZXY, B=By X B, and u is equivalent to £ X A. For each y €I there is a
measurable field Z3z—7, € Auto (Y, 1) of A-preserving automorphisms [Kr2,
HO] such that 7(z, y) = (2, 7.y) for ae. (2, y) €X. The transformation group I
= Uyer 7 is ergodic and type Il for k-a.e. zEZ.

By #, we denote the family of countable partitions @ = {w,};-; of Y with
A(@,) =1, nEN, and by 7 the corresponding Polish metric on it (see (s-1)).

For each countable partition w of X and z € Z we consider the partition
wlz] ={w,[z]}, of Y, where y €Ew,[2] & (2, y) Ew,. Then Z3z—w(z] is a
measurable field of Y-partitions. Otherwise, each measurable field of
Y-partitions generates some X-partition and the correspondence w&= (Z2z—
wlz]) is one-to-one. We let

P, ={w|w is a countable partition of X with w[z] EP, for ae. zEZ}.

Then %, is a Polish space with respect to the metric 7, given by
Pw n)= [ r@ll. 1), @ ned,

We fix a partition 716351 and follow (s-1) in setting up
L=<l m,=n. for all n EN}.

Then in view of Proposition 2.1, the closed subgroup [I'],< [I'] is contractible
(see (s-1)).

Let 0= (0y) +>0 be a contraction path for %; (see Lemma 2.3). We define a
map
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6' N @1X [O, +°°> > (GJ, S) Ha's(w) E@I

by (6s(@)) [2] =0s(wlz]), zEZ. It is a routine to check that ¢ is well defined.
Since G is continuous and Gy (@) =w, G (@) =17, we have that P, is contracti-
ble. So, just as in (s-1), to prove the contractibility of [I'], it suffices to pre-

sent a homeomorphism of [I'] onto [I], X %P;. This results from the following
analogue of Lemma 2.4.

Lemma 2.5. Under the above assumptions (s-2), let us be given any two
measurable subsets A, B C with

(2-1) Ay lz, y) €A =AW|(z y) EB)  for ae. zEZ.

Then one can choose a partial isomorphism 7 (A, B) € [I'] « in such a way that prop-
erties (i) and (ii) of Lemma 2.4 ave satisfied.

This statement is proved in a similar way as Lemma 2.4. but with reference to
the following Krieger’s lemma (see [HO] for the proof).

Lemma 2.6. Under the above assumptions for any two measurable subsets A,
BCX satisfying (2-1) there is a partial isomorphism O€ [I'] « with Dom (6) =A and
Im (6) =B.

(s-3) Now consider the general case. Then X can be decomposed into a
union of three pairwise disjoint I-invariant subsets X=A UBUC in such a way
that [I'] 4 is of finite type, [I'] 5 is of type I., and [I']¢ is the full group de-
scribed in (s-2). Since [I] = [I'Ja X [I'lsX [I']¢ and each multiple is contracti-
ble, [I'] is also contractible. So, the theorem is completely proved. O

2.3. In this subsection we consider the case of type III;, 0 <A <1, full
group [I']. Remind that a measure v on X is called strictly I-admissible [Krl,
HO] if

(i) there is a countable subgroup Rs ©R% with M(x) €R, for all yET
ay

at a.e. x; and

(ii) there is an ergodic countable subgroup 4 < [I'] with [4] = [I'] N
Auto (X, [l)

Theorem 2.7. Let I be an ergodic transformation group of type IIT;, 0<A<I.
Then [I'] furnished with the wniform topology is contractible.

Proof. Let v be a p-equivalent strictly I-admissible measure on X
(existence of such a measure for a type II[; group was established in [Krl,
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HOJ). Since Rs= 1" there are a subset ACX, #(4) >0, and an automorphism 7o

)
€I with d—’:w-m(x) = for all x €A. Without loss in generality we assume that

v is infinite. Then there exist two sequences {7x}5-1 and {Ga}7=1 of automorph-
isms from [4] such that {7,A}5-1 and {8.70A};5-1 are partitions of X. We set

O, x=0u1o1n'c  for all xE7,4A,nEN.

dyo 01(

Then 6, is an automorphism of (X, u), €T, x) =2 for ae. x,

6,[A]6:'=[A4], and [I'] is generated by 4 and 6’;.

We may assume that X=[0, ©), v is a Lebesgue measure on X, and du (x)
=exp (—x)dv (x) for all rEX.

By #: we denote the family of ordered partitions @ = {@,} »ez of X with
2onezA™ (wy) = 4+ 0. We admit that some elements of the partitions can be
y-neglectible.

For every automorphism 7€ [I'] we define 2 partition 7 (7) ={m. (7)},E€%,
by

xEm,(y) =1xr=0,0%x for some 0,€ [4], nEZ.
Then 7 (y) €%, and the map
m: [ 3y—-n(y) €%,
is constant on the right [A4] -cosets. Since 4 is ergodic, P, is algebraically iso-

morphic to the quotient space [A]\[I"]. Now we find an explicit expression for
the quotient metric  on %, given by

r(x(r), m(r2)) = inf dy,(0i1y, Oa12), 71, 7€ 1],

d1,02€ (4]

To this end for every pair 71, 72€ [I"] we set

M, 72 =& €X |rx=7}, N 72) = U m (71) N7s (12).

nez

Then M (71, 12) ©N (11, 72) and du (11, 72) =2—p M (11, 72)) — (1M (11, 712)).
Since v (71N (11, 72)) =v (72N (11, 72)) and v is A-invariant, there are two trans-
formations 01, 0:€ [4] with

v(X—=8:71N (11, 72)) =v(X—08272N (11, 72)) =©



ALEXANDRE 1. DANILENKO 927

Then there exists a transformation 0s€ [A]such that M (830171, O272) =N (11, 72).
Since M (671, 67z) =M (11, 72) for each 0€ [A], we have

(7 (1, 72)) =2_631;p ” (e (M (D411, O572) ) T (0ariM (Ba11, O572)))

=2—u (N (7’1, Tz)) _65118111 (547‘1 N(TL Tz))

=2— 2 u(m(n) N7n(12)) —1+exp<— 2 A" (7a (11) N 7Ta (Tz)))

nez neZz
=2 S (1) A (1)) +exp(— S (mar) N7 (1) ).
nez neyzg

Thus %; is a Polish space with respect to the metric 7 given by

r(w, 1) = Z (@) +exp(— 2 A" (N nn)>, wnEP,,

nez nez

and 7 is the topological quotient mapping.

It is easy to handle that #; is contractible. Now we construct a continuous
cross-section for 7. Keeping in mind the standard decomposition of X= U s,[0,
s) we have the v-continuous decomposition A = U seropun A (s) for any measur-
able subset A CX. For a partition @ = {wn} nez € P2 and n €Z we have the dis-

joint decomposition 0¥w,= Uj%-; Ak where

(0Fwn) (k) — (0Fww) (k—1),  if k<v(0Fw,)
Apr=10wn— (07ws) (k—1), if B—1<v (02w, <k

Q, otherwise.

So, v (Ani) <1 for all u, k. Let B be a bijection N—Z X N. We put a;=v (Asw)).
Since wE€%,, it follows that 2a;=. We put s0=0, sp,=a1+*** +an, Bn= [sn-1,
sn) for n€EN. Then X= U, B, and v (B,) =v (4sm). By Lemma 2.4 there is a
partial isomorphism & (Asm, Bx) € [A]l+ with Dom (0 (Agm, Bn)) = Agwm,
Im (6 (Aswm, Bn)) =B» and such that the continuity property (ii) of Lemma 2.4 is
satisfied. Now we set

T (w)x=0(Apw), Bx) OFx for x€ 07" Ans, i, k) EZXN.
It is a routine to check that the automorphism 7 (w) € [I'], the map

T P 2wrr(w) €[]
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is continuous, and 70 T =id, as desired. It follows that [I"] is homeomorphic to
the product [4] X #;. Since both multiples are contractible, the theorem is done.
O

Proof of the following theorem can be organized in a similar way.

Theorem 2.8. Let [I'] be an ergodic transformation group of type III. If
there exists a strictly I'-admissible, p-equivalent measure, then [I'] endowed with
the uniform topology is contractible.

So, if I' is approximately finite, or I'=1} X I;, where I is an ergodic type
1T, 0<2;<1, and logA; and logA, are rationally independent, then [I'] is con-
tractible.

Note that Theorems 2.7 and 2.8 can be easily generalized to the nonergodic
case, i.e. where I" can be represented in the form of a measurable field of ergo-
dic transformation groups of type III;, 0<AX1.

2.4. Throughout this subsection I is assumed to be ergodic and of type
III,. All other cases were considered above. We need to remind some definitions.

Two countable groups I3 C Aut (X1, g1) and I C Aut (Xz, yz) are called
weakly equivalent if there is a one-to-one measurable map ¢ . X;—X; such that
measures g and g¢;© @~ are equivalent and ¢ [I7] ¢™* = [I3]. Note, that then
[I] and [I3] endowed with the uniform topology are isomorphic as topological
groups.

Consider the Haar measure Xz on the group Z : xz (i) =1, i €Z. Denote by
7 the shift on Z: 7(;) =i+1. For a countable group A< Aut (X, p), the product &
=0 X {t" nE€Z} will be called the countable expansion of A. It is well known that
4 is weakly equivalent to 4 if 4 is ergodic and infinite type (i.e. not type II;).

Let G be a Polish group. For a countable group X Aut (X, 1) we denote by
R (X) CX XX the X-orbital equivalence relation. A measurable map a : R (X)—G
is an orbital cocycle if a(x, y)a(y, z2) =a(x, y) for ae. (x, y), (y, 2) ER(). An
orbital cocycle & is said to be transient if there are a neighbourhood V of the
identity in G and a subset A CX with ¢#£(4) >0 and a(x, y) €V for all (x, y) €
R(E)N(AXA), x#y [Shl].

First of all we prove the discrete decomposition theorem for I” which gener-
alizes the Krieger’s theorem for approximately finite groups [Kr2, HOJ. Since I
is of type IIl,, there exist a g-equivalent measure v and a neighbourhood V of

o
the identity in R¥ with v (X) =0 and %t(x) EV—{1} at ae. xEX for all 7

€ [HO, S1]. By [FM] there is a (nonergodic) countable subgroup 4 Aut (X,
1) with
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[41={rer] 2L @)=1  forae zex],

Let p: X—Z be the A-ergodic decomposition and &= #©p~'. According to [SI,
Theorems 7.22, 8.7 and Corollary 6.9] the following properties are satisfied:

(i) there is a measurable field Z 3 z — v, of o-finite, nonatomic,
A-invariant measures on (X, 8) with v, (X—p7*(z)) =0 and u=fzuzd/c(z);

(ii) there is an ergodic transformation Q€ Aut (Z, k) with
p(Ie) ={Q" (x) | nEZ} for a.e. rEX;

(iii) there is a transient orbital cocycle a: & (Q)—R* with
d;-ti (x)=al (x%ﬁ(?’r)) at a.e. rEX for all yET.

We fix a Lebesgue space (Y, 1) with a nonatomic o-finite measure A and its
partition {Yx}i=1 such that A (¥) =, n €N. It follows from (i) that there is a

measurable field Z2 z—P, of isomorphisms P,; Y—p! (2) with v,0P,=A. Then
the map

P ZXY3 (z,y)~P.(y) €p~' () CX

transforms Z X Y onto X and the measure YOP to £ X A. For simplicity we will
identify (X, v) with (ZX Y, kX 2) and I'" with P~'I" P. It follows that p (2, y) =z
for a.e. (z, y) €EX. So, for every automorphism 0 € 4 there is a measurable field
Z3z—0,€Auto (Y, 1) of A-preserving transformations such that

(2-2) 0z, y)=(x, 0.y) for ae. (z, y) €EX

and the groups A,={0,/0 € A4} are ergodic and of type Il for a.a. zEZ.
Choose two sequences {Bn}y-; and {7.)}s=1 of measurable subsets of X and

elements of I respectively in such a way that {p (By)}s=1 is a partition of Z,
Ayl (z, y) €Ba}) >0 for all zEp (B,), and p (7nx) =Qp (x) for ae. x EB,. By re-
placing, if necessarily, I" by its countable expansion, we may assume that

A{yeY |G y) €BY)=c=1({y€Y| ¢, y) E7sBa})

for all zE 7 (B,) and 2E€ 7 (14Bx), n EN. It follows from Lemma 2.6 that there
are partial isomorphisms 0y 3,,6 [4] « with Dom (8,) =Im (5,,) =7ZXY, Im (3,,)
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=B,, and Dom (5,) = 71,B,, n EN. We define an automorphism Qo€ [I'] by set-
ting

Qo (z, y) =6n7abn (2, y) for all (z, y) EZX Y, nEN.

Since T(Qox) =Qx (x) for ae. x €X, there exists a measurable field Z2z—U,
€Aut(Y, A) of automorphisms of (¥, 1) with

(2-3) Qo(z, y) = Qz, Uy) for ae. (2, y) €X.

-1
Using (iii) we obtain that %(ﬁ =1 at a.e. x for all € A. There-
fore Qy'0Qo€ [4], i.e. QoEN[A]. This together with (2-3) leads to U,[4,] U;!

o
= [Aq.] for k-ae. zE€ Z. Since 4, is ergodic, the function Y3y HQZM—UZ(y)
is almost everywhere a constant which will be denoted by mod U, (cf. [CK]).
By using (ii) and (iii), one can prove that the full group [I'] is generated
by 4 and Q,. Thus, we have proved the following structure theorem (cf. [B]).

Theorem 2.9. Let I' be as above. Then the full group [I'] is gemerated by
the actions (2-2) and (2-3) of 4 and Qo respectively on (ZXY, kX 2), QEN[A].
Every automorphism 0 €4 preserves KX A and

2-4 A)°Q,
@4 d(dlc(::x)x)Q (zy) =0

*

for some function @: Z—RI—V, where V is a neighbourhood of the identity in RE.

dKoQ
dK

Note that ¢ (2) = (2) *mod U,, and the orbital cocycle

D:R(Q) 3 wr0(zw) ERE
determined by the correlation @ (z, Qz) =¢(2), zEZ, is transient.

Theorem 2.10. Let I be as above. Then the full group [I"] endowed with the
uniform topology is contractible.

Proof. We use the notations of the previous theorem. Moreover, we assume
that Y=10, ), 1 is a Lebesgue measure on Y, and Ay is the A-equivalent prob-
ability measure with ddo(y) =exp(—y)dA(y) for all yEY. Let
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U:RWQ) >3 (z,w)~U(z, w) EAut(Y, 1)

be the orbital cocycle such that U (z, Qz) = U, for all z € Z. Denote by P the
family of countable partitions @ = {@s}nez of X with

(2-5) 2 @, [Q7"z]) *mod U(Q "z, z) =0 for k-ae. z€Z.

nez

Here the measurable field Z 3z w [z] = {w, [2]} 4ez of Y-partitions is deter-
mined by w in a usual way by virtue of z-sections (see the proof of Theorem
2.2). Note that (2-5) is equivalent to the fact that Zaezd ({y| (z, y) €Qlwn}) =
 at a.e. 2.

For a transformation € [I'] we define a partition 7 () = {m, (6) } nez by
setting

€1, (0) & 0xr=0,Q% for some automorphism 6, <€ [4].

Since {67, (60)} ez is a partition of X and A preserves £ X A, we have 7 (0) €
%o. Moreover, the map

(2 6~-7(6) €P

is continuous and 7 (06) =7 (0) for every transformation 0 € [A4]. Note, that
[4] is a closed subgroup of #,. We endow %o with metric 7 given by

r(w, ) =2 (kX A) (@aA1n)

nez

+fzexp(— 2 A(@a [zl Nnylz]) - mod UQ 7z, 2))dk (2)

nezg

for all w, n €%,. Like it was done in Theorem 2.7 for a type III; transformation
group, one can prove that (%, 7) is homeomorphic to the quotient space [4]\
(ri.

Now prove the contractibility of %o. Let % (Y) be the family of countable
partitions of (Y, Ao) and 7the natural Polish metric on it:

V(W, 77) = ZneZ/zO (wnAnn) , w, 1 EP (Y) .
There exists a continuous map
0:P(Y) X [0, +0) 3 (@, 1) »o; (@) ={0: (@) }nez EP (V)

with



932 GROUPS OF MEASURE SPACE TRANSFORMATIONS

(i) 00 (@) =w, 0= (@),=@ for all n#0, and 0w (@) ;=X;

(ii) for each ! €Z, there exists m (1) EZ—{0} such that if a nonzero inte-
ger n is not equal to m (1) then o;(@),=0,(w), for all tE[I, 1+1).

(ii1) A (wmny A0t (@) may) <o for all tE [1, I+1) and nEZ.

Now for a partition w= (Z3z—wlz]) € Py we let 6: (w) = (ZD 2z
o, (@w[z])). It follows from (ii) and (iii) that 6; (w) € P, for all t>0 and the
map

G: PoX [0, +0) -5 (w) EP,

is continuous. So we deduce from (i) that & is a contraction path on .

To construct a continuous map 7 : Py— [I'] with 70 7 =id one should re-
peat almost literally the final part of the proof of Theorem 2.7 replacing ¢, by
Qo and using Lemma 2.5 instead of Lemma 2.4.

Thus, [I'] is homeomorphic to the Cartesian product $o X [A4]. Since [4] is
contractible by Theorem 2.2, the contractibility of [I"] follows. O

§3. Homotopical Properties of the Normalizers of Full Groups

3.1. Throughout this section I'={y;}§-; is an ergodic approximately finite
group of automorphisms of (X, B, ), ¢ (X) =1. Let I be a measure on the
Iorbital equivalence relation (R,(B8XB) [ R(I)) defined by dii(x, y) =du(x).
We consider two maps:

T RWN)3@x, y)reX
o RN (x,y)~(y, x) ERW).

Let /I be a fi-equivalent probability measure with 7 (Z) =u. Note that ¢ belongs
to Aut (R, ). We set #=L2(R(I) ) and define P, (#)={P,| A€ (BXYB)
TRIDY, UH), Uy (#) just in the same manner as in Section 1. So we have an
anti-isomorphism of topological groups:
Aut (X, p) 20U, €U, (K).
It is easy to verify that the Boolean subalgebra of projectors

P =A{Pru | AEDB}

is a closed subset of P, (#). Therefore
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Uy ={UEU, (#) |UP+ U =P+, and UU,= U,U}

is a closed subgroup of U4 (#).
For a transformation 0EN[I"] we let

i(0) (x, y) = (b, Oy), (x, y) ERWU).

Then i (6) € Aut (R (I'), i), the map N [I'] 2 61 () is a one-to-one homo-
morphism, and Uig € U++. We shall prove that Uiwirn = U++. Actually, sup-
pose that a unitary U belongs to U++. Since UE U (#), there is a measurable
transformation 6€ Aut (R(I), fi) with Us=U (see Section 1). We write 8 as

O y)=A y). Bl y)), (@ y) €RWD),

where A and B are two measurable functions from R (I') onto X. Since UpP+.Uj
=%, ,, there exists an automorphism 9 € Aut (X, ¢) with A (z, y) =9« for f-
ae. (x, y) €R (). Finally, the condition UsU,=UsUs implies B (x, y) =9y for
fi-a.e. (x, y). Thus we may assume that

Ox, y) =9z, Yy), for f-ae. (x,y) ERW).

Since 6 takes fI to an equivalent measure, we have 9EN[I], as desired.

So the map N[I'] 2 8~ U €U,y is an algebraic anti-isomorphism. We
furnish N [I"] with the topology in which this map is a homeomorphism. This
topology will be called normal. Since U, is a closed subgroup of U (#), it fol-
lows that N[I'] is a Polish group.

We shall show that the normal topology is compatible with the metric d in-
troduced by T. Hamachi and M. Osikawa [HO]:

= 1 du(07'70.07' 10
a (6, 0) =d. (6, C)+k§1 2 Tdy (G-, 0.0 - 1i0) 6, CENLT].

For every automorphism 7€ [I'] consider its graph
g(n)={(x, rx)|z€X}CR ).

Then g (7) is measurable and £ (g (7)) >0. Suppose that a sequence 8, EN[I'],
n € N, normally converges to an automorphism 8 € N [I']. Then {i (6,)}5. €

Aut (R (I) fi) weakly converges to the transformation i(6) € Aut (R (I ,4).
Hence we have
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£G(6,) T (A4) Ai(6,) 1 (A4))—0 as n— for every AE D,
G (6,) g (1) Ai(6,) g (7)) —0 as n—o0 for every 7ET

The first is equvalent to g (6,4 ABA)—0 for every AED, i.e. dy (6, 6)—0 asn
—00_ The second implies that dy (6,765, 870~")—0 as n—o0. Thus d (6,, 6)—
0. It follows that the normal topology is stronger than the Hamachi- Osikawa
one. Since (W [I'], d) is also a Polish group [HO], the open mapping theorem
yields that these topologies are equivalent.

The main goal of this section is to study the homotopical structure of N [I']
endowed with the normal topology.

3.2. The following statement is the measure theoretical analogue of [PT,
Theorem 4].

Theorem 3.1. If I'is of type II, then N[I'] is contractible.

Proof. Since all approximately finite ergodic transformation groups are
pairwise weakly equivalent, we may assume that

(i) x=1{0, 1™ and the measure ©= ®;_1v, where v is the following mea-
sure on {0, 1}: v(0) =v (1) =1/2;

(ii) the group I'is generated by automorphisms d;, i €N:

z;+1(mod2), if j=i
(0ix) ;= .
x;, otherwise.
For every multi-index a= (a;,...a,) of the length n we set X () ={xr= (x;);: €
X|zi=a;, i=1,..n} and 7 (a) = 0671052027 Then 7 (@) X (e (n)) =X (@), where
en)=10,.,0).

Take an automorphism @EN[I"]. Since 6 preserves y, for every n €N there
exists a partial isomorphism s, () € [I"] « with Dom (s, (8)) =X (e (»)) and
Im (s, (6)) =60X (e m)). Moreover, by Lemma 2.4 one can make the map N[I'] 26
s, (0) € [I'] + continuous. Remind that the groupoid [I']+ is endowed with the
uniform topology. Now we define a transformation 5, (6) € [I"] by setting

3-1) 5 (0)x= Oy (@) 6715, (0) 7(a) 'z for all x€X (@), a<€ {0, 1}™.

Then the map N [I'] 2 65, () € [I'] is continuous, 5, (6) X (@) = 6X (@), and
the commutator

[07%5:(0), 7(@)]=07'5,(0) 1 (@) 5,07 07 () ' =id.
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Therefore d (5, (6), 8) =0 as n—>°.
Let {8 |t < [0, 1]} be a contraction path for the induced full group

[I'] xemy with B¢ (1) =7 and B (y) =id | X (e (n)), n € Z,. Notice, that we
put X (e(0)) =X.

For each nE€Z, and t€ [0, 1] we define an automorphism 0 (6) € [I'] by
setting

0" (0)x =171 () B™ ($ns1(0) 7'54(0)) 7 (@) 7'z, for all z€X (), @ €0, 1},
where so(6) =id. Then the map

0™ NIl x[0,1]2 (6, 1) =a/" (0) € [I']

is continuous, 0™ (6) =541 (6) ~'s. (6), 0™ (6) =id. Moreover, 3/ (6) X (o) =
X(a), [07(0), v (@)]=1id for every a €{0, 1}* and t €[0, 1]. Therefore
d (0 (), id)—0 as n—o0,

Now for each nE€Z, and tE€ [0, 1) we set

On+1(0) = (5441 (0) 3 (6)) ~16.
It is straightforward to check that the map
o : NI %[0, +) > (0, u) ~0,(0) EN[I]

is continuous, 0o (f) =6, and 0w () =id. This means that N[I"] is contractible.
|

By Cls ([I"]) we denote the closure of [I'] in the normal topology, i.e. the
group of approximately inner automorphisms.

Theorem 3.2. If I'is of type I, then N[I'] and Cly([I'])are contractible.

Proof. We have a split exact sequence of Polish groups

1— Cl, ([I']) — NI~ Rt — 1,

Thus N [I'] is precisely the semidirect product of Cls ([I]) and R%, so that its
topological structure is completely determined by that of Cls([I']).

Let v be a p-equivalent, I-invariant measure, v (X) = 0. Then an auto-
morphism @ € N [I'] is approximately inner if and only if o #=y. So, only a
slight modification of the proof of Theorem 3.1 is needed to prove the contracti-
bility of Cla ([17]). O
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Note that the requirement for I" to be approximately finite in Theorem 3.1
can not be dropped. The paper [GeG] contains a family of examples of ergodic
type II transformation groups I with the noncontractible (or even
nonconnected) normalizers N[I']. However, for all of them Cly([I"]) = [I].
Therefore by the open mapping theorem for Polish groups the normal topology d
on N[I'] induces the uniform topology on Clz ([I']). It follows that Cl; ([I"]) is
contractible just as in the approximately finite case. We do not know if this is
still true for any ergodic type II; transformation group.

3.3. Let I' be of type III;, 0<A<1. Then we have a split exact sequence

1 — Cla([I1) — NI~ Ri/2%— 1.

Like in the type II. case the topological structure of Cls ([I']) here determines
that of N[I"]. We shall prove the following

Theorem 3.3. Cl,([I']) is contractible.

Proof. Let X, I' X («), 7 () be as above (see the proof of Theorem 3.1);

we only change the measure y: u= ®;41V;, where v, is the following measure on
{0, 1}: v, (0) =1/1+2), v; (1) =4/ 1+ ). Donote by %, the family of count-
able partitions 7= {7} nez of X with >,A"u(7,) =1 and by 4 a countable trans-
formation group with

(4] ={re rllpor=u}.
Then 4 is approximately finite, ergodic, and type II; and
Cly ([4]) ={0EN[I|pcbo=1}.

Since Cly ([I"]) =Ker (mod) [HO], for each 6= Cl; ([I"]) we have QI(«;Z_a(x) ex
for p-a.e. x. So, the partition 7 (6) = {m, (6) } nez defined by

xEnn<e><=>1dZL”<x>=x"

belongs to #;. Just in the same way as in Theorem 2.7, one can prove that %;
endowed with the quotient topology is contractible and homeomorphic to the
homogeneous space Cl, ([4])\Cl;([I']), and the quotient map 7: Cl;([I']) 2 6~
7 (6) €E%; admits a continuous cross-section. Thus it suffices to prove that the
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group Cls([4]) is contractible.
Since ¢ (0X (em))) =p (X (e(®))) for an automorphism @€ Cl, ([4]), there
is a continuous map

Cli([4]) 26~ 5.(0) € [4] «

with Dom (5,(0)) =X (e()), Im (s, (0)) =60X (e(n)), n EN. For each multi-index
)

o
a€{0, 1}" the function X2z — i‘u—dﬁi(x) is constant on every cylinder set

X (B), B€ {0, 1} . Therefore, the transformation 5, () € [I'] determined by
(3-1) belongs to [A]. We see that the arguments for the contractibility of
N[I'] in the proof of Theorem 3.1 leads to the contractibility of Cl,([4]). O

Corollary 3.4. (i) N[I'] is homeomorphic to the Cartesian product Cly ([A])
X P, x (RE/2%),

(ii) m (N[I']) =Z.

3.4. Now let I' be of type III,. Denote by W (R) = {W (¢)} ;g the associ-
ated (Poincaré) flow [Kr2,HO] acting on a space (£, 2) and by C (W ([R)) its
centralizer, i.e.

C(WR))={C€Aut(R, 2)|CW({E)=W(E){  for all tER}.

It is known that C (W (R)) endowed with the weak topology is a Polish group
and the following sequence

1— CL (1) — NI~ c(WR) — 1
is exact and split [H].
Theorem 3.5. Cl,([I']) is contractible.
Proof. We use the notations of Theorems 2.9 and 2.10 and identify g with

k£ X A. Since 4 is approximately finite, we may assume that 4 is generated by a
u-preserving transformation So:

Solz, y) = (2 Sy). (2 y) €X,
where S € Auto (¥, A)is an ergodic transformation. It follows that U,€N[S] for

k-a.e. z(see(2-3)).
Take an automorphism 6 € Cl,([I']). By [BG2, Proposition 1.5] there is a
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partition 7 (0) =7, (0) neg of X with

0z, y)= (@, ) and ( y) —‘L‘t—(x y) for ae. (z,y) Em,(6).

It is staightforward that 7 (6) €%, (see the proof of Theprem 2.10) and map

w:Cl([4]) 20~ () €P,

[e) %
is continuous, since the set {idL‘uQL (z,y) 'nEZ] is closed in R} for p-ae. (2,

y) in view of (2-4). It can be proved that %, is homeomorphic to the
homogeneous space Cl; ([4]) \Cl; ([I]) and the quotient map 7 admits a con-
tinuous cross-section. To this end one should apply the argument of the proof of
Theorem 2.10. Since %, is contractible, it suffices to prove that the group
Cls([4]) is contractible.

Let 7,=1{0, 1}»XZ and ¢ ) =(0,°--0) €Y,, nEN. For every a= (ay,-*
ns1) €1, we set af= (ay,***,y, kB, Aps1) € Vyir, k=1, 2. Since I' is approx-
imately finite, there is a sequence of arrays {X (@), 7 (a) @€ T}, n €N, such
that (see Theorem 2.9 and [HO]):

(i) {X(a)}aers is a partition of X, u (X (a)) >0 for every «€Y,, nEN

(ii) 7(a) € [I']+ with Dom (y(@)) =X (e®)), Im (y(a)) =X (@),

(iii) X (@) =X (a®) UX (a?), r(a®) (X (a®)) =X (a') for all @€ T,

(iv) the collection of the sets {X (&) |@ € Y,,, n EN} generates the g-algebra

B,
(v) Up-i[I] is uniformly dense in [I'], where I} is the automorphism
group generated by the partial isomorphisms 7 (), a€ 15,

(vi) the function X (e () 3 (z. 4) Hi‘%z(i)@, y) is independent of y

for all nEN.
It is straightforward that for each automorphism 6 € Cl,([4]) there is a
measurable field Z 22z—0(z) EN[A] of A-preserving transformations of Y with

0(z. y)=(z. 0(2)y), (z, y) EX.
By applying Lemma 2.5 we conclude that for every n €N there exists a partial
isomorphism s, (6) € [4] « with Dom (s, (8)) =X (e ®)), Im (s, (0)) =0X (e (n)),
and the map

Cl[4] 20~ 5,(0) € [4]

is continuous. Now we define a transformation 3,(6) € [I'] by setting
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5.(0)=0yr(a) 07, (0)7(a) &, forallz €EX(a), a€7, nEN.

It follows from (vi) that ©©S; () =g, i.e. 5, (6) € [A]. Moreover, by the defini-
tion of §,(6) and (i)—(iii) we have §,(0) X (@) =60X (@) and [67'5,(6), y] =id
for all @ € Yy, v € I',. Hence in view of (iv) and (v) §,(6)— @ in the normal
topology as #n— . Let {8"} tcwo1; be a contraction path for the induced full

group [A] xem» with B (6) =0 and B™ (0) =id [ X (¢ ) for all § €
(4] xem, n EN (see Theorem 2.2). The completion of the proof repeats almost
literally that of Theorem 3.1. O

Corollary 3.6. Let I be as above. The group N [I'] is homeomorphic to the
Cartesian product Cly ([A]) X P X C(W(R)).

References

[B] Bezuglyi, S. L. Groups of type IIl, and some approximability conditions for groups of
measure space transformations, preprint, 1981. (Russian).

[BG1] Bezuglyi, S. I. and Golodets, V. Ya., Topological properties of full groups of measure
space transformations, Sibirsk. Mat. Zh., 21 (1981), 3—14 (Russian); English transl. in
Siberian Math. J.

'BG2] — ., Groups of measure space transformations and invariants of outer conjugation
for automorphisms from normalizers of type III full groups. J. Funct. Anal., 60 (1985),
341—369.

[ChF] Chacon, R. V. and Friedman, N. A., Approximation and invariant measures, Z. Wahr-
scheinlichkeitstheorie Verw. Geb., 3 (1965), 286—295.

[c] Connes, A., Classification des factures, Proc. Symp. Pure Math., 38 (1982), 43—109, Amer.
Math. Soc., Providence, RI.
[cK] Connes, A. and Krieger, W., Measure space automorphisms, the normalizers of their full
groups, and approximate finiteness, J. Funct. Anal., 24 (1977), 336—352.
[Da] Danilenko, A. I, On topological structure of certain automorphism groups of an ergodic
equivalence relation, Abstracts Amer. Math. Soc., 15 (1994), 403.
[D] Dobrovolski, T., Examples of topological groups homeomorphic of 15, Proc. Amer. Math.
Soc.. 98 (1986), 303—311.

[FM] Feldman, J. and Moore, C. C., Ergodic equivalence relations. cohomology., and von
Neumann algebras, 1, Trans. Amer. Math. Soc., 234 (1977), 289—324.

[GeG]  Gefter. S. L. and Golodets, V. Ya., Fundamental groups for ergodic actions and actions
with unit fundamental groups, Publ. RIMS, Kyoto Univ., 24 (1988), 821—847.

[Ha] Halmos, P. R., Approximation theories for measure preserving transformations, Trans.
Amer. Math. Soc., 55 (1944), 1—18.
H] Hamachi, T., The normalizers group of an ergodic automorphism of type III and the com-

mutant of an ergodic flow, J. Funct. Anal., 40 (1981), 387—403.
[HO] Hamachi, T. and Osikawa, M., Ergodic groups of automorphisims and Krieger's theorems,
Sem. Math. Sci., Keio Univ., 8 (1981).



940
[Har)
[1T]
(K]
(Kri]
[Kr2]
m]
[N]
(PT]
[R]
[s1]

[s2]

GROUPS OF MEASURE SPACE TRANSFORMATIONS

Harada, S., Remarks on the topological group of measure preserving transformations,
Proc. Japan Acad. 27 (1951), 523—526.
Ionesku Tulcea, A., On the category of certain classes of transformations in ergodic
theory, Trans. Amer. Math. Soc., 114 (1965), 261—279.
Keane, M., Contractibility of the automorphism group of a nonatomic measure space, Proc.
Amer. Math. Soc., 26 (1970), 420—422.
Krieger, W., On nonsingular transformations of a measure space. I, Z. Wahrscheinlich-
keitstheorie Verw. Geb., 11 (1969), 83—97.
———, On ergodic flows and isomorphisms of factors, Math. Ann., 223 (1976), 19—
70.
Moore, C. C., Ergodic theory and von Neumann algebras, Proc. Symp. Pure Math., 38
(1982), 179—226. Amer. Math. Soc., Providence, RL
Nhu, N. T., The group of measure preserving transformations of the unit interval is an
absolute retract, Proc. Amer. Math. Soc., 110 (1990), 515—522.
Popa, S. and Takesaki, M., The topological structure of the unitary and automorphism
groups of a factor, preprint.
Ramsay, A., The Mackey-Glimm dichotomy for foliations and other Polish groupoids, J.
Fumct. Anal., 94 (1990), 358—374.
Schmidt, K., Lectures on cocycles of ergodic tramsformation groups, Math. Inst. Univ. of
Warwick, Coventry, 1976.

, Algebraic ideas in ergodic theory, CBMS Regional Conf. Ser. in Math, Amer.
Math. Soc., Providence, RI, 1990.



