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On Boundedness and • ^ Continuity of

Second Quantisation

By

*#*Huzihiro ARAKI*, Kalyan B. SlNHA** and Viakalathur S. SUNDER

Abstract

In this short note, we determine precisely which operators have the property that their (full,

symmetric or antisymmetric) second quantisation is an operator which is bounded or belongs to one

of the various Schatten ideals; we also note that in 'the interior' of the natural domain, the second

quantisation is a continuous map.

§1. Introduction

Operators A for which the second quantised operator F(A) belongs to the
Hilbert~Schmidt class are known to be of central importance in the construction
of white noise functionals - see [H]. The problem discussed in this short note
was brought to our attention by [O], where use is made of the fact (explicitly

proved in [H]) that if A e #t (#) and if ||A||i<l, then ||r(A)lli^ (1-JU||) • In

fact this estimate for the 'symmetric' second quantisation becomes an equality
for the 'full' second quantisation. Thus, in the notation discussed below, //(A)
is of trace class if and only if ||A||i<l.

The two reasons for this short note are: (l)it shows that, when restricted
to the symmetric (or Boson) Fock space, or to the antisymmetric (or Fermion)
Fock space, the second quantisation of many more operators turn out to be of
trace class; and (2) the proof of the continuity assertion established here does
not seem to be entirely straightforward.
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We give a brief outline of the paper. We consider all three kinds of second
quantisation A^>F£(A), £^ l/,s,a|, where the subscripts stand for 'full',
'symmetric' and 'antisymmetric' respectively. (See §2 for the notation.) We are
primarily concerned with the 'natural domains of definition' and continuity
properties of the map F£. Specifically, we identify precisely which operators A
have the property that F£ is bounded (see Theorem 3.3(a)) or belongs to the
Schatten class $/,, p^ [1,°°] (see Theorem 3.10(a)), and then determine the
points of continuity of Fe in this natural domain (see Theorem 3.3 (b) for the
bounded case, and Theorem 3.10(b) for the case of the Schatten classes).

§2, Notation

The symbol 3C will always denote a complex Hilbert space, and the symbols
and *&<*>($) will denote the algebras of all bounded and compact oper-

ators on 3C respectively, and the norm on ^ ($?) will be denoted by || IU. For 1
<p < oo t we use the symbol ftp (X) for the ideal of operators belonging to the
Schatten class, and the symbol || ||/> to denote the Schatten p-norm.

If A ^ y, ($0, recall that the expressions 'essential spectrum' and 'essential
norm' of A, denoted by (Jess (A) and lUIUs, respectively, denote the spectrum and
norm of the image of A in £ (X} /^^ (X}) (the so-called Calkin algebra).

We shall find it convenient to work with the following obvious generalisa-
tion of the usual notion of singular values of a compact operator. (For a de-
tailed exposition of these generalised s-numbers - as they are called in the con-
text of general semifinite von Neumann algebras - see [FK].) If A ^ £ (X], we

define the (clearly non-increasing) sequence \sn(A}\n=i (of generalised singu-
lar values) by

sn(A) =• sup min \\Ax\\.
dimM=n %^M, ||*|| = 1

Using the symbol \A\ for the unique positive square root of A*A, it is easy to
see that there are two possibilities:

(i) sn(A) belongs to the 'essential spectrum' C7ess(U|); in this case,
Sn+iOO =s»(A); and

(ii) sn(A) $ffess(\A\); in this case, sn(A) is an eigenvalue of \A\ of finite
multiplicity, say m, and there are two cases depending on the number 1= # \k
<n:sk = sn\, viz., (a) if Km, then sn+i(A) = sn(A); and (b) if I = m, then
sn+i(A) is nothing but the norm of the restriction of \A\ to the spectral subspace
corresponding to [0, sn(|.A|)).

We shall have more than one occasion to use the obvious fact that

misn(A)=\imsn(A)=\\A\\ess. (2.1)
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For a positive integer n, let ®w$? denote the (Hilbert space) tensor product
of n copies of X. Let Sn

 B o *~» Uff denote the natural unitary representation of

the symmetric group Sn on ®H3C. We shall write X(f)n= ®n%! to stress that this
is the full tensor space; this is because we shall also be working with the fol-

lowing subspaces of #?(/)M, the so-called symmetric and anti- symmetric tensor
powers:

where, of course, a •-» ( — l) f f denotes the alternating character on Sn.
In the sequel, we shall consistently use the symbol e to stand for one of the

letters /, 5 or a. Thus, for instance, if e e |/,s,a[ and if A e £ (X) , we shall use

the symbol A(£}n to denote the restriction of ®nA to the invariant subspace X(£)n

of ®n<f(. Similarly, we use the symbol rs(X) = ®n=0X
(£)n, with the convention

that tf(e)0 = C V £€E \f,s,a\. Finally, for any £<E \f,s,a\ and A e£(tf), we shall

define F£(A) to be the (in general unbounded) operator FB(A) = ®n=vA(£}n,

with the natural domain given by \®n=oxn ̂  -T£(j#0: S»=olk (e)>l^nll2 <°°K (We

adopt the usual convention that A(£}0=idc.)
It is, of course, common knowledge that if C^£(#C) is a 'contraction' (i.e.,

||C||oo<l), then so also is />(C) (and hence also T£(C), £<E |5fa[ ). We shall also
have occasion to use the obvious fact that for arbitrary A^£(X) and contrac-
tion C as above, we have: T£(CA) =re(C)Te(A).

§3. The Text

We begin with a simple lemma whose obvious proof we omit.

Lemma 3.1. Let A <E£ (X) , n>l. Then

(£H, _ if e=fore=s
1 "°°~\ / \ / \ / \

(si(A) S2(A)"-Sn(A) if s=a.

Corollary 3.2.

> rfl (A)

Proof. Pick an integer n such that sn+i(A) <~*. It follows that s\(A) sz(A)
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— 5W+/(A) <*si(A)s2(A)—sn(A) \^). Thus, ||A(fl)m|U— »0. Since the compactness

of A implies that of each A{a)m, the corollary follows. D

The following theorem identifies the 'natural domain of definition', from the
point of view of bounded operators, of the map jTe, as well as the points in that
domain where the map is continuous.

Theorem 3.3. Let A
(a) Then F£ (A) is a bounded operator if and only if A ^ ® £, where

if e^\f,s\
if e=a.

(b) // A e ©£, then the map F£ : ®£ -> £ (F£ (X) ) is continuous at A (with
both domain and range metrised by || ||oo) if and only if

||A||o.<l if ee{/,5|

|A|l«s<l if £=a>-

Proof, (a) For £^ \f,s\, this is an immediate consequence of Lemma 3.1. So
suppose £ = a.

To start with, if A = U\A\ is the polar decomposition of A, we also have
LA|=C/*A; since U is a partial isometry (so that \\U\\= \\U*\\<1) , it follows that
A satisfies either of the conditions asserted to be equivalent if and only if
\A\ does. Thus, we may assume without loss of generality that A > 0; also, we
shall simply write sn for sn(A) .

Notice, by Lemma 3.1, that Fa(A} is a bounded operator if and only if supn

si S2°-sn<
00. We consider three cases.

Case 1. infn sw>l.

In this case, the sequence \s\ s2"
asn\n=i clearly diverges to infinity and so

Fa 04) is unbounded. Also, the identity 2.1 shows that, in this case, no compact
(let alone a trace-class) perturbation of A can be a contraction.

Case 2. 3n such that s«^l.
In this case, it is clear that supm \si s2'"sm\ ^ \si s2"°sm : l<m<n\, and so

ra(A) is bounded. On the other hand, if P = l(Sn,00)(A) denotes the indicated
spectral projection of A, then A =A (l—P) +AP is a decomposition of A as the
sum of a contraction and a finite-rank operator.
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Case 3. infn sw
 = 1 and s« > 1 V n.

The hypothesis implies that \sn\ is a decreasing sequence which strictly
decreases to 1. This implies that there exists an orthonormal sequence \xn\ such
that Axn

=SnXn Vn.
Write sn

 = ^~^rn. Then the boundedness of the sequence {si S2'"sn\ (which
is a strictly increasing sequence under the hypothesis of this case) is equivalent

to the convergence of the infinite product Yln=i (l+rj, which is equivalent to

the convergence of the infinite series 2«=irw.

Suppose now that Fa(A) is bounded; thus, Sw=irM<°°. Define the operator

KI by KIX = ^n=irn(x,x>n>Xn- It is easily seen that A = (A — Ki} +K\ is a decom-
position of A as the sum of a contraction and a trace-class operator.

Suppose, conversely, that A =C+K is a decomposition of A as the sum of a
contraction and a trace-class operator. In case 3 and with the preceding nota-

tion, if we set Pnx=J^7=i^xJxt>xt, note that

\\Kl>\Tr(KPn)\

>\Tr(APn)\-\Tr(CPn)\

= f;s,-|Tr(CP»)|

,— H

n
= 2r f.

(in the penultimate step, we used the fact that Pn is a projection of rank n
and C is a contraction, so that |Tr(CP»)|<||c|U||P»||i<n.) This shows that the

series (2n=i*n) and consequently the product (Un=isn) converges, thereby
establishing the boundedness of ra(A) , and completing the proof of the part (a)
of the proposition.

(b) First consider the case e^ {/>( . Begin by noting that if A, B ^£(#£) ,
and if f^max I^IU, \\B\\oo\, then we have the following inequality,

\®»A-®nB\\,0<>nrn-1\\A-BloVn . (3.2)

Fix lklU<l, and choose 0< <5 < 1 - |U |U If \\B-A\\00<d, then we have r<l (in

the notation of inequality 3.2) and hence fc = supnnyn~l <oo, and we see that
||r/(A) -r/(5)||oo</c|k ~B00<icd. This clearly implies that also \\rs(A) ~
rs(B)\\00<fcd. This shows that F£ is continuous at A, for £^ j/,5} .

Suppose conversely that |A|oo=l. Then notice that, for any £^ |/,s| and t^
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[0, 1) , we have

\\Te(tA) -F£(A)\\00=supn(l-tn) =1 ,

and hence FB(tA] does not tend to Fe(A) in || ||oo as t increases to 1.
Now consider the case e = a. Begin by noting that the 'max-min' definition

of sn clearly implies that

\Sn(A)-sn(B)\<\\A-B\\00VA,B^£(^) . (3.3)

Suppose now that A €= ®a and that ||A||ess<l; and suppose r] is any prescribed
positive number, which we assume without loss of generality to be less than 1 .
The hypothesis and the identity 2 „ 1 imply - as in the proof of Corollary 3.2-
that liMn-^oo (SI(A) s2(A) °"sn(A)) =0; so we can pick an integer N such that

si(A) s2(A) °°°sN(A} <~o~. This implies (since Y] <1 and since the sequence

is non-increasing) that sn(A) <1 Vn>JV, and consequently that

(3.4)

Next, since the mapping T •-» T(a)n is norm-continuous - see the inequality 3.2,
for instance - we can find <5M>0 such that

(3.5)

Set d=minldi, • • • , 5jv, -oj, and suppose 5^®a and \\B— ^4||oo<5. Then, we have

||£to)n-Ate)n||oo<-|- for l<n<A^ f and in particular, by the inequality 3.4, we see

that si(B)s2(B) —SN(B) =||B(a)^||oo<^2-<l; this implies, as before that sn(B] <l

Vn>N, and hence that H^H*, <^j- Vn>N. So, if n>JV, we see that |LB(a)w-

A(fl)M||0o<||B(fl)1oo + |U(fl)10o<r?. Hence, for the arbitrarily prescribed 17 >0, we
have exhibited a 5>0 such that \\Fa(B) -Fa(A}\\00<Y] whenever B <E®a and \\B
-Al<d.

Conversely, suppose A ^ ®fl and ||A||gss>l. Then, we see from the identity
2.1 that sn(A) >1 Vn; hence, for any t^ [0,1), we have
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and again Fa(tA) does not tend to Fa(A) in II lU as t increases to 1. CH

Remark 3.4. It should be clear that ®e is closed under products and adjoints
and that T£ (AB) = T£(A) F£ (B) and F£ (A*) =T£(A) *, whenever A, Be ®£.

We now define what will be shown later (in Theorem 3.10(a)) to be the
'natural domain of definition', from the point of view of the Schatten ideals, of
the map /Y

Definition 3.5. For I<p<°°, define

D (e) —
P —

Lemma 3.6. // A eDi£), then F£ (A) e^ (re (X)),

TT^MI f/ £=f

if e=f

if £=s

if 6 = 0.

II (1+5»(A)) i/ e=a.
L«=i

Proo/. If we write Xn = sn(A), the definitions imply that an enumeration of
the eigenvalues (except possibly for 0) of 1/^(4)1, counted according to multi-
plicity, is given by

Uii^iV^m : *^0, l^ii, *2,"-, in<°°l if £=/,
^i2<---<in<0 0 l if e=5,

Ci2<- t -<iw< 0 0 ( if e=a.

It follows that
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|r.U)lli=Tr/;(UI)
2 2 2 ••• Z^n^iv^iw if

«=0 f i=l ?2=1 *»=!

22 2 •" 2 ^II^K"'^i» if
n=Q n=I i2=ii in=in-i

oo oo oo oo

22 2 ••• 2 /lzi/Ua••/(/„ if
. n=0 zi=l f2=f i+ l in=tn-i+l

if e=/

if £ = 5

if £=a. r

Remark 3.7. (l) The same arguments show that, for any A ^D(£}, we have

1 v _f

(1-TrA) lf B f

n=l

n
n=l

U W (A) : n = 1, 2, • • • ( ts an enumeration of the non-zero eigenvalues of A
counted according to algebraic multiplicity. Notice that in the case of symmetric Fock
space (i.e., £ = s), the right side is nothing but the Fredholm determinant of (1—

A)'1; since FS(A) may be viewed as a 'quantised' Neumann series, it might be in-
teresting to find a more Junctorial' proof of the validity of this identity.

(2) If A e #„,(#), then clearly A(a)n e Coo(*(fl)n) Vn and since the compact-

ness of A implies that the sequence \sn(A)\n=i, and consequently also the sequence

|siU)s204) °~sn(A)\n=i, converges to zero, it follows that Fa(A) e C« (71 (#)). It

is even more clear that if A ^DL£), £^ {/>(, then F£ (A) is compact.
(3) Notice that the last step in the proof of Lemma 3.6 needs the assumption

that A ^ Bi£). Suppose now that £ = s. Then, even if P is a rank one projection, it is
clear that FS(P) is an infinite-rank projection and hence not compact; but, for any t
€= (0,1), the lemma ensures that Fs(tP) is of trace class; since FS(P) is not compact,
it cannot be the case that Hmt-+i-o\\rs(tP) — FS(P) ||oo = 0; thus, the map Fs(resp., Ff)
is not continuous as a map from the set of (not necessarily strict) contractions on #C
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into the set of contractions on Fs (X] (resp., rs(X)) -with respect to the
|| \\oo~metric on domain and range. On the other hand, it is true - see Theorem
3 . 10 (b) , for instance - that \Ta (tP) ~ Fa (P) IU -> 0.

Corollary 3.8. //A<EDjf', where l<p<°°, then /;(A) <Ef#(re(3f)), and

1 i/ £=/

if e=a.

Proof. This is an immediate consequence of Lemma 3.6, since ||T|||=|||T|*|i
. D

Lemma 3.9. For any p^ [1,°°) and e^ \f,s,a\, the map

is a continuous map from Dp£} (equipped with the || \\p~metric) into R (with the
usual topology) .

Proof. The desired assertion, at least when e =/, is an immediate conse-
quence of Corollary 3.8.

Suppose now that e=s. Consider the following sets and maps:

(The sets X\, X2, X3 and ^4 are viewed as metric subspaces of the normed
spaces ^(^if), ^p(^f), -dp and A respectively.)

In terms of these maps, it is clear from Corollary 3.8 that the map (f> of this
Lemma admits the factorisation
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On the other hand that, it is known - see [D] and [K] - that, for 1 </?<°°, the
map A »-» \A \ is a continuous map from ^p (X) into itself; it is also known that -
see[B]-

\\s (A) -s (B) k<\\A -B\\p V self-adjoint A,Be<gp,

and that - see [GK] - the Fredholm determinant, and consequently our map d, is
continuous. The map 0 is also easily seen to be continuous; one proof uses the
following two simple facts (and the dominated convergence theorem) : (a) a
sequence in a metric space converges to a limit, say x, if and only if every sub-
sequence of that sequence has a further subsequence which converges to x\ and
(b) if a sequence \fn\ converges, to /, say, in Lp (of some measure space) , then
there is a subsequence, say \gn\ , of \fn\ , and an element, say g, in Lp, such that
|̂ »| <g a.e.

Finally consider the case £ — a. Now consider the following spaces and
maps:

743(on) 11(1+ an) .
n=l

In terms of these maps, we find, from Corollary 3.8 that

and deduce as before that the map 0 is continuous. D

The next theorem is the 'Schatten-class' counterpart of Theorem 3.3; notice
that in this case, the map is continuous wherever defined.

Theorem 3.10. Let 1<£<°°, e^ \f,s,a\ and A<^g(X). Then,
/ \

(b) F£ defines a continuous map from Dp£} into ^p (F£ (X)) (with respect to the
1 \\p-metric on domain and range}.

Proof, (a) If p^ [1,°°), this is an immediate consequence of Corollary 3.8
and the fact that A is a direct summand of F£(A).
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=°o, suppose A e%»(X) and IUIU<1. Then A ( f ) n is compact for each

n and |U(/)w||oo—» 0, and so //(A), and hence also Fs(A), is compact. Conversely,
if FS(A) is compact (which is the case if / /(A) is compact), then A is clearly
compact (since it is a direct summand of rs(A)), and also ||A||«, <1 since
liTsGOlU <°°; but if ||A U were not strictly less than 1, then 1 would be an
eigenvalue of \A\, hence 1 would be an eigenvalue of infinite multiplicity of
/^(|A|), which would contradict the assumed compactness of FS(A}. This takes
care of e^ \f,s\.

The assertion, whenp=°° and e=a, follows from Remark 3.7(2) (and the
fact that A is a direct summand of F£(A)).

(b) The case p = °o is an immediate consequence of Theorem 3.3-since
\\K\ess = WK^%M. So assume \<p<™.

Suppose An~*A in Dj,£). To start with, this is easily seen to imply that the
sequence lTeOOI converges to F£ (A} in the weak operator topology.

On the other hand, if X is any Hilbert space, and if a sequence \Tn\ is in
#*(#) and Te#f (# ) where 1 <£<°o, then |T»( converges to T in the
weak*~topology (in the Banach space sense) if and only if it converges to T in
the weak operator topology, because #/,(#) coincides with the dual Banach

space of ftqty) (p~1+q~1 = l, l<q<°°) and the finite-rank operators are dense
in #fl(#). It is known that if \Tn\ <=#,(#) converges to an operator Te#j(#)
in the weak*-topology and ||Tn||j —> ||T||̂  where !<£<°o, then \\Tn—T\\p^>Q. For
/> = !, this is proved in [LM]; for !<£<°o, it is a fact - see [M] - that ^ W
is a uniformly convex Banach space, and it is known - see [S] - that if X is a
uniformly convex Banach space, and if a sequence \xn\ converges weakly to x in
X, then a necessary and sufficient condition for \xn\ to converge in the norm to
x is that \\xn\\ —* \\x\\. Now an appeal to Lemma 3.9 completes the proof. [U

Acknowledgement

The second and third authors would like to thank the Research Institute of
Mathematical Sciences for the hospitality extended to them during their visit to
Kyoto, where this work was done.

Bibliography

[B] Bhatia, R., Perturbation bounds for matrix eigenvalues, Longman-Scientific, 1987.

[D] Davies, E. B., Lipschitz continuity of functions of operators in the Schatten class, /. London

Math. Soc., 37 (1988), 148-157.

[FK] Pack, T., and Kosaki, H., Generalised s-numbers of r-measurable operators, Pacific J. Math.,

123 (1986), 269-300.

[GK] Gohberg, I. C., and Krein, M. G., Introduction to the theory of linear non-self adjoint operators, 18,



952 H. ARAKI, K. B. SINHA AND V. S. SUNDER

Transl. of Math. Monographs, AMS, Rhode Island 1969.

[H] Hida, T., Brownian Motion, Springer-Verlag, 1980.

[K] Kosaki, H.f On the continuity of the map 0—»|0| from the predual of a W*-algebra, /. Funct.

Anal, 59 (1984), 123-131.

[LM] Lau, A. T. M., and Mah, P. F., Quasinormal structures for certain spaces of operators on a

Hilbert space, Pacific]. Math., 121 (1986), 109-118.

[M] McCarthy, C. A., Cp, Israel]. Math., 5 (1967), 249-271.

[O] Obata, N., White Noise Calculus and Fock space, Lect. Notes in Math., 1577, Springer-Verlag,

1994.

[S] Simon, B., Trace ideals and their applications, Cambridge Univ. Press, 1979.


