On the Group of S^1 -equivariant Homeomorphisms of the 3-Sphere

By

Tsuneyo YAMANOSHITA*

Abstract

Let G be a locally compact abelian group and let ξ be a principal G-bundle:

 $G \longrightarrow E \xrightarrow{p} B$,

where E is path connected and B is a locally finite CW complex. We recall that G acts freely on the right of E. Then we denote by Top(B) the topological group of homeomorphisms of B and by $\text{Top}_{G}(E)$ the group of G-equivariant homeomorphisms of E. Furthermore, let α be a map of B into the classifying space BG whose homotopy class $[\alpha]$ classifies the principal bundle ξ . Then we have

Corollary 4. Let G be a locally compact abelian group, then we have the following Serre fibration :

 $\operatorname{map}(B, G) \longrightarrow \operatorname{Top}_{G}(E) \xrightarrow{\phi} \operatorname{Top}^{[\alpha]}(B) ,$

where $\operatorname{Top}^{[\alpha]}(B)$ is the subspace of $\operatorname{Top}(B)$ consisting of homeomorphisms $f: B \to B$ such that $f^*([\alpha]) = [\alpha]$.

As a special case, let $S^1 \rightarrow S^3 \rightarrow S^2$ be the Hopf principal bundle. By using Corollary 4 we have

Theorem 5. There exists a weak homotopy equivalence

$$\operatorname{Top}_{S^1}(S^3) \simeq _w \operatorname{Spin}^c(3)$$
.

Communicated by K. Saito, March 30, 1995.

¹⁹⁹¹ Mathematics Subject Classification (s): 57S05, 55R91.

^{*}Department of Mathematics, Musashi Institute of Technology, Tamazutsumi, Setagaya, Tokyo, 158 Japan.

§1. The G-equivariant Homeomorphisms

In this paper, all function spaces are supposed to have compact open topology.

Let G be a locally compact topological group and let ξ be a principal G-bundle denoted by

$$\xi: G \longrightarrow E \xrightarrow{p} B$$
,

where E is path connected, B is a locally finite CW complex and G acts freely on the right of E. If we denote by $\mathscr{G}(\xi)$ the space of self bundle maps of ξ and denote by map(B, B) the space of self maps of B, by the bundle map theory (see [2] and [3]) we have the following Serre fibration :

$$\xi_G \longrightarrow \mathscr{G}(\xi) \xrightarrow{\Phi} \operatorname{map}(B, B)$$
.

Here ξ_G is weakly homotopy equivalent to the loop space $\Omega(\max(B, BG; \alpha))$ of $\max(B, BG; \alpha)$ ([1], [2]), which is the path connected component of $\max(B, BG)$ containing the classifying map $\alpha : B \longrightarrow BG$ for the principal bundle ξ . We know that ξ_G can be identified with the space $\max(B, G)$ if G is abelian ([3]).

Let Top (B) denote the group of homeomorphisms of B and Top_G (E) denote the group of G-equivariant homeomorphisms of E. Then Φ may not be surjective but we have the following

Lemma 1. $\Phi^{-1}(\text{Top}(B)) = \text{Top}_{G}(E)$.

Proof. First we shall show that each map \tilde{f} of $\Phi^{-1}(\text{Top}(B))$ is injective. Put $\Phi(\tilde{f}) = f$. For any distinct points x_1, x_2 of E with $p(x_1) \neq p(x_2)$, we obviously see $\tilde{f}(x_1) \neq \tilde{f}(x_2)$. For distinct points x_1, x_2 with $p(x_1) = p(x_2)$ there exists an element a of G such that

$$x_2 = x_1 \cdot a \quad (a \neq e)$$

where *e* is the identity element of *G*. This implies $\tilde{f}(x_2) = \tilde{f}(x_1) \cdot a$. Since the action of *G* is free we have $\tilde{f}(x_1) \neq \tilde{f}(x_2)$.

Surjectivity of \tilde{f} also can be proved easily, and continuity of \tilde{f}^{-1} follows from the fact that a bijective bundle map \tilde{f} is a homeomorphism if its induced map f is a homeomorphism.

Let α be a map of B into the classifying space BG whose homotopy class $[\alpha]$ classifies the principal bundle ξ . And let $\operatorname{Top}^{[\alpha]}(B)$ denote the subspace of $\operatorname{Top}(B)$ consisting of homeomorphisms $f: B \to B$ which satisfy

$$f^*([\alpha]) = [\alpha] .$$

Immediately we have the following

Lemma 2. The
$$\Phi$$
 image of Top₆ (E) is just Top^(α) (B).

Consequently we have

Theorem 3. With notation above, there exists the following Serre fibration :

$$\xi_G \longrightarrow \operatorname{Top}_G(E) \xrightarrow{\phi} \operatorname{Top}^{[\alpha]}(B)$$

Corollary 4. Let G be a locally compact abelian group, then we have the following Serre fibration :

$$\operatorname{map}(B, G) \longrightarrow \operatorname{Top}_{G}(E) \xrightarrow{\varphi} \operatorname{Top}^{[\alpha]}(B)$$

Now, let $\mathbb{R}P^n$ be the *n*-dimensional real projective space then we have the principal bundle :

$$Z_2 \longrightarrow S^n \longrightarrow \mathbb{R}P^n$$

Thus we have

Example 1. There is a Serre fibration : •

$$Z_2 \longrightarrow \operatorname{Top}_{Z_2}(S^n) \xrightarrow{\phi} \operatorname{Top}(\mathbb{R}P^n)$$
.

Similarly, let $\mathbb{C}P^n$ be the *n*-dimensional complex projective space then we have the principal bundle :

$$S^1 \longrightarrow S^{2n+1} \longrightarrow \mathbb{C}P^n$$

Since map $(\mathbb{C}P^n, S^1)$ is homotopy equivalent to S^1 , we have

Example 2. There is a Serre fibration :

$$S^1 \longrightarrow \operatorname{Top}_{S^1}(S^{2n+1}) \xrightarrow{\varphi} \operatorname{Top}^+(\mathbb{C}P^n)$$
,

where $\operatorname{Top}^+(\mathbb{C}P^n)$ denotes the component of identity mapping in $\operatorname{Top}(\mathbb{C}P^n)$.

As a special case of Example 2, we have a Serre fibration :

$$S^1 \longrightarrow \operatorname{Top}_{S^1}(S^3) \xrightarrow{\phi} \operatorname{Top}^+(S^2)$$

§2. Top_{S^1} (S³) and $Top_{so(2)}$ (SO(3))

Let us define a $(S^3 \times S^1)$ -action on S^3 as follows :

$$o: (S^3 \times S^1) \times S^3 \longrightarrow S^3$$

is given by

$$\rho((q, z), q') = qq'z \quad (q, q' \in \mathbb{H}, z \in \mathbb{C}, |q| = |q'| = |z| = 1)$$

Then we can easily verify that this action is not effective and the kernel of the action ρ is the central subgroup of the group $S^3 \times S^1$ which consists of two elements (1, 1) and (-1, -1). Therefore $\text{Spin}^c(3) \cong (S^3 \times S^1) / \{(1, 1) \cup (-1, -1)\}^{\dagger}$ acts effectively on S^3 . Also we can easily prove that each element of $\text{Spin}^c(3)$ induces an S^1 -equivariant homeomorphism of S^3 . Thus we have the inclusion map $i: \text{Spin}^c(3) \to \text{Top}_{S^1}(S^3)$. With this notation, we have

Theorem 5. The inclusion map $i : \operatorname{Spin}^{c}(3) \to \operatorname{Top}_{S^{1}}(S^{3})$ gives a following weak homotopy equivalence

$$\operatorname{Spin}^{c}(3) \simeq \operatorname{Top}_{S^{1}}(S^{3})$$
.

Proof. We have the following principal bundle :

$$S^1 \longrightarrow \operatorname{Spin}^c(3) \xrightarrow{\pi} S^3 / \{1, -1\}$$

and the map i defines the following commutative diagram

[†]The fact that $(S^3 \times S^1) / \{(1, 1) \cup (-1, -1)\}$ is actually Spin^c(3) was pointed out by many participants in the Kinosaki Symposium held in autumn of 1994. The author expresses his thanks here.

Equivariant Homeomorphisms

$$S^{1} \longrightarrow \operatorname{Spin}^{c}(3) \xrightarrow{\pi} S^{3}/\{1, -1\}$$

$$\downarrow \qquad \qquad \downarrow i \qquad \qquad \downarrow j$$

$$S^{1} \longrightarrow \operatorname{Top}_{S^{1}}(S^{3}) \xrightarrow{\phi} \operatorname{Top}^{+}(S^{2})$$

where $\{1, -1\}$ is the center of S^3 and π is the map induced by the projection of $S^3 \times S^1$ onto S^3 . By Kneser's theorem ([4]), we know that j is a homotopy equivalence. Considering the exactness of homotopy sequences of our fibrations, we see that i is a weak homotopy equivalence.

Next, let SO(2) act on the right of SO(3) as usual. We proceed to study the group of SO(2)-equivariant homeomorphisms of SO(3).

Let us define a $(SO(3) \times SO(2))$ -action on SO(3) similar to the case of S^3 as follows :

$$\rho': (SO(3) \times SO(2)) \times SO(3) \longrightarrow SO(3)$$

is given by

$$\rho'(\sigma, g, \tau) = \sigma \tau g \quad (\sigma, \tau \in SO(3), g \in SO(2))$$

Then we can easily prove that this action is effective and each element of $SO(3) \times SO(2)$ is an SO(2)-equivariant homeomorphism of SO(3). So, we have the inclusion map $i' : SO(3) \times SO(2) \longrightarrow \operatorname{Top}_{SO(2)}(SO(3))$.

On the other hand, we have the SO(2)-principal bundle :

$$SO(2) \longrightarrow SO(3) \longrightarrow S^2$$

For this prinicpal bundle Corollary 4 provides the following Serre fibration :

$$SO(2) \longrightarrow \operatorname{Top}_{SO(2)}(SO(3)) \xrightarrow{\phi} \operatorname{Top}^+(S^2)$$

By the same manner in the proof of Theorem 5, we get the following

Theorem 6. The inclusion map

$$i': SO(3) \times SO(2) \longrightarrow \operatorname{Top}_{SO(2)}(SO(3))$$

gives a weak homotopy equivalence

$$SO(3) \times SO(2) \simeq \operatorname{Top}_{SO(2)}(SO(3))$$
.

TSUNEYO YAMANOSHITA

References

- [1] Gottlieb, D. H., On fibre spaces and the evaluation map, Ann. of Math., 87 (1968), 42-55; ibid.
 91 (1970), 640-642.
- [2] —, Applications of bundle map theory, Trans. Amer. Math. Soc., 171 (1972), 23-50.
- [3] James, I. M., The space of bundle maps, *Topology*, 2 (1963), 45-59.
- [4] Kneser, H., Die Deformationssätze der einfach zusammenhängenden Flächen, Math. Zeit., 25 (1926), 362-372.