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Abstract

In terms of classical Bessel function, we represent explicitly the radial part of Whittaker
functions on SU(2, 1) belonging to the large discrete series representations. Moreover we
compute archimedean local L-factors corresponding to a construction of L-function by
Gelbart and Piatetski-Shapiro.

8 0. Introduction

The real semisimple group SU(2, 1) has three types of discrete series: one is
holomorphic discrete series, another anti-holomorphic, and the other neither
holomorphic nor anti-holomorphic. The representations of the last type are large,
in the sense of Vogan [V], namely their Gel'fand-Kirillov dimensions coincide with
the dimension of the maximal unipotent subgroup. A theorem of Kostant [K] then
assures, for such a representation, the existence (and the uniqueness) of the
Whittaker model in the C”-context. In this paper, we give an explicit formula for
(the Mellin transforms of) K-finite vectors in such a Whittaker model, and
applying this formula we evaluate certain local zeta integrals.

Firstly, we express the minimal K-type Whittaker functions in terms of the
modified Bessel functions (Theorem 4.5). The computation is based on the method
of Yamashita [Y-I], [Y-II]. With this result in hand we calculate the Mellin
transforms of general K-finite Whittaker functions (Theorem 5.5). Here we use the
fact that the representation is K-multiplicity free.
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To a generic representation of the quasi-split unitary group in three variables
over a local field, Gelbart and Piatetski-Shapiro [G-Ps] attached certain zeta
integrals. Among other things, they computed explicitly such integrals for
unramified Whittaker functions in the case where the base field is p-adic. They
turn out to be Langlands’ local L-factors in this case.

We shall compute the same local zeta integrals in the case where the base field
is real and the representation belongs to the large discrete series of U(2,1). We
then express the “greatest common divisor” as a product of three gamma functions
(Theorem 6.8). A local zeta integral depends on the choices of a K-finite vector in
the Whittaker model of a given representation of U(2,1), a quasi-character of
C*, and a M-finite test function in the Schwartz-Bruhat functions on C% Here M is
the toral part of the Levi component of the standard minimal parabolic subgroup
of SU(2,1). The zeta integral vanishes if the M-types of these three choices are not
compatible. Therefore it is necessary to consider all the K-types to find a test
function of good M-type.
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§ 1. Root Space Decomposition and Iwasawa Decomposition

In this section, we fix basic notation recalling the fundamental results on the
structure of SU(2, 1) and the associated Lie algebra s11(2,1) .

1.1. Basic notation

Let GL(3,C) and SL(3,C) be the complex general linear group and special
linear group of degree 3, respectively. We denote by diag(z,, x,, ;) a diagonal
matrix of degree 3 with (; {)-entry z, for each ¢ = 1, 2, 3. Put I, , = diag(1,1, —1).
Then we denote by G the group SU(2, 1) defined by

SU(2,1) = {g= SL(3,0) | tg'lz,lg =1}

Here ‘g is the transpose of g, and ¢ the complex conjugate of g.
We fix a maximal compact subgroup K of G once for all:

gu Y gu Y
e U(2), g, € U(1), det "G =1
o1 9o 921 Yo

gu G
K=39u 9 0 EG

Fs3

The homogeneous space G/K is a Hermitian symmetric domain, isomorphic to a
complex hyperball of dimension 2.

1.2. Root system and root space decomposition
The Lie algebra g of G is given by

su(2, D) = {Xe M) |'X- L, ,+L X =0}
B {<X1 X2> X, eu@, X,eM, (C), X, eu(l),}
X, X, '

rX,+X,=0
The Lie algebra £ of K is
X, 0
f:
0 X,
0 X
X, 0

Then we have a Cartan decomposition

X, eul@), X, e ul), rX+X; = 0} .

Put

X, € MZ_I(C)} .



962 HARUTAKA KOSEKI AND TAKAYUKI ODA
g=fop.
Since G/K is hermitian, we have a decomposition
gc=fc®P,®P_,

such that P_ is identified with the holomorphic tangent space at the origin

1-K e G/K.
We have
0] X,
b= {< >X2€M2.1(C)}
00
and
0 |0
b = {<7L> v,e M2_1<c>}.
tY2 0

We fix a compact Cartan subalgebra t in £ by

3
t= {diag(Y—=1h,,v=1hy,y=1hy) |h,ER, ) h,=0}.

1=1

The root system > = 2(g¢,to) is given as follows. We define linear forms 8;; on
tc by

B;,(diag(h,, hy, hy)) = h;—h, (i #7, 1 <4, 7<3).

Then X = {B;,|i+#71<47<3}. We fix a positive root system X, =
{B:; 11 <}

Let g, be the root space associated to 8 € X. Then g,Cf.if 8 € {8);, By}, and
§,CPc if BE {Byy, By}. The set of compact roots is given by X¢ = {8, By}, and
the set of non-compact roots by

PINED I I {/313: Bas» Bar s /332}-

Put>,.=2NX.and 2, =2, NX,.
Let E,; be a matrix of degree 3 with (%, [) entries &,,6,, (5,, are Kronecker
delta). Then E, is a generator of the root space g, . We define X, by

B,y

{Ei' (G, n = @0
—E, (G, =(@21).
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1.3. Iwasawa decomposition
A maximal abelian subalgebra q of P is given by q= R - H, with

0 01
H=|000
1 00
We define a linear form ¢, on q by ¢,(H,) = 1. The root space 85, is RE, with
1 -1
E =1 0
1 -1

From now on we use the convention that unwritten components of a matrix are
zero. Put

-1 —1
E,.=|1 -1}, E,_=|—1 i

-1 —1

Then the root space g, is RE, ,®RE, _. Set
My, 15 6, Dg,, = RE,ORE, .ORE, _.
Then 1 is a maximal nilpotent subalgebra of g. We define elements H,,, H};, and Z
of t; by
1 1
H, = -1 , Hfy = 0 ,
0 -1

and Z = 2H,,—H,, = 1
—2

Here is the Iwasawa decomposition gc=f.®a.® 1, of the root vectors X,
associated to non-compact roots.



964 HARUTAKA KOSEKI AND TAKAYUKI ODA
Lemma (1.1).

1 .., 1 i
Xis =7H13+ 7H1+ ?El;

1, 1 )
Xy = ——2—H13+ —Z—Hl——Z—EI;
X.. = —X. __LE _i.E .
23 21 2 2, T+ 2 2,—
Xy= —Xy~ LB, ,+LE
32 12 2 2, + 2 2,—*

§ 2. Irreducible K-modules and their Tensor Products with P

In this section, we firstly parametrize integral linear forms on t and irreduci-
ble K-modules. We then describe, for an arbitrary irreducible K-module V, the
projectors from the K-module V®JP, onto irreducible components in terms of
“standard basis”. We later apply this explicit description to the study of differen-
tial equations satisfied by Whittaker functions.

2.1. Parametrization of irreducible K-modules
We fix a Cartan subgroup 7 of K, which is also a compact Cartan subgroup of
G, by

i

e

T:=exp(t) = { e® |, B E R}.
e-i(a*ﬁ)

We denote by 7 and L, respectively, the group of unitary characters of T and the
lattice of T-integral forms. Then L; is a lattice in ¥—1t*, t* = Homg(t, R), and
there exists a canonical isomorphism

T=L,, x — the differential of y.

In this paper we identify L, with Z®* by the following

Convention (2.1). The differential of a unitary character

T> P s ez(ma-HlB) = C(l)

e—i(a-HS)

is identified with (m, n) € Z®% (C¥ stands for the group of complex numbers
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with absolute value one.) |

The roots B;, € £ = 2(g¢., tc) are T-integral, and are parametrized as follows:
compact roots: 8, = (1, —=1), 85 = —Bp = (—1,1)
non-compact roots: 83 = (2, 1), B3, = =B = (=2, —1),
Bos = (1, 2), By = — By = (—1, —2).

The inner product on L, induced from the Killing form is given, up to
constant multiple, by

< (m, n),(m’,n") >=2mm’'+2nn'—mn'—nm’ .

Thus, the set L} of dominant T-integral forms (dominant with respect to the
system X, = {8,,} of compact positive roots) is given by Lz = { (m, n)
€Z%|m > n}.

The irreducible K-modules are parametrized by the above set via highest
weight theory. For u = (4, ¢,) € L7, we denote by (z,, V) the irreducible
representation of K =~ U(2) with highest weight x. The associated irreducible
representations of K, = GL(2, C) and f,=g;(2, C) will be denoted by the same
symbol. The degree of (z,, V,) is given by dim¢ V, =d,+1,d,: = u,—p,. The
restriction of ¢, to T splits into the following T-weights: ¢ (=the highest weight),
¢ =By, -, n—d, B, (= the lowest weight). We denote by (¢}, V) the contra-
gredient of (z,, V). Then v € L7 appears in (7], V) as a T-weight if and only if
—v appears in (z7,, V). Hence

(z2, VD = (5,5, V%), ©*:= the highest weight of (z;,V}) = —u+d,B,,.

Each irreducible f,-module (z,, V,) has a basis {v; | 0 < k < d,} on which the
elements Z, Hy;, Hj3, X;,, X, of £ act as follows:

7,(D v = (U, +u)d vk,
t,(Hp) vk = {u—(d,~k)By} (HY) v = (2k—d,)v},
t,(HiDvp = {u—(d,—Kk)By} (Hp)vg = (k+u)vf,
7,(Xp ) vk = (k+Duvgyy,
7, (Xp, ) v = (k—d,—Duj_,.
Hence Uffu and v; are a highest weight vector and a lowest weight vector, respec-
tively. This basis {v} |0 < k < d,} is unique up to multiplication by a common

non-zero scalar. We fix {v; |0 < k < d,} for each 4, and call it the standard basis
of V,.
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Throughout this paper we shall keep the following

Convention (2.2) . Suppose given a K-module M, isomorphic to V, or V.. Let
{f,10<k<d,} and {g,|0 < k < d,} be two families of elements of M. We then
use the notation ~ in the following way:

Ji ~ g © there exists a constanty € C*, independent of k,
such that f,=7rg,fork=0, -, d,.

2.2. Tensor products with Y

We regard the 4-dimensional vector space ¥ as a K- or f.-module via the
adjoint representation Ad or ad,respectively. Then P, and P_ are invariant
subspaces, and

_ ~ 813 Bis
P,=CX; OCX,, = Vg 3 X, — v, X, — 0%,

13 ’
P =CX, ®CX, = Vo5 Xg,— — 0%, Xy > v5%.
Given an irreducible K-module V, we have V,®P.= (V,®P )B(V,®P_), and
Clebsch-Gordan’s theorem implies the following decomposition of V,®P.,:
V®p #+513® I{H'ﬂza = %*1913@ V B3’
V®p = ll‘*‘ﬁsz@ V+ﬂ3 - .ll"’1332® Vlvl_ﬁla .

Here we use the convention that V, = (0) if v € L; is not dominant. We hence
have

V.®Pe= V, @, ;
with
V"= Vi ® Virgy Vo= Vg ® Vi,
under the above convention.
The above decompositions of V,®¥ induce the following projectors:
PV, ®Pc> Vg, B )V, @P> Vg,
P ():V,®P~> Vg, B (W:V,@0—>V, 4.,

and
P(u):=P (W) ®P (n):V,®P—> V",
P(w):= P (W)®PF, (1): V@0V,
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In terms of the standard basis, they are expressed as follows:

Proposition (2.8). Under convention (2.2), one has
(D) P (up®X, ) ~ (k+ Dol and P (n) (0y®X,) ~ (d,~k+1Dv™ for
0<k<d, and P, (1) lyey_is the zero-map,
(1) P (@) (0h®X, ) ~ —(k+ Dol and P (u) (f® X, ) ~ (d,—k+1)vi""= for
0<k<d, and P, (1) |lyey, is the zero-map,
(@) B (W) (f®X, ) ~ —vi P2and By (1) (0 ®X, ) ~ vi— for 0 < k < d,, (where

we put vy P2 =0 fork = —1,d,),and P, (u) lmpi is the zero-map,
@) P () (vy®X,,) ~ v and P (u) (vi®X,,) ~ vi=f* for 0 < k < d, (where
we put vl P8 =0 for k= —1, a,),and P, (u) Im,J+ is the zero-map.

Here one should note that d,.p, = d,vp, = d, T L.

Proof. We prove only (1) and (2). The decomposition of V,®¥_ shows that
B (1) gy is the zero-map for j = 1, 2. In the decomposition

V8P, = 1,8 (CX, ©CX,,) =V,

ﬂ"'ﬁlsea Vl:—ﬁsz ’
U ® X, is a lowest weight vector of the V,,, -component. Hence we may put
Pr(uw) (ug®X,,) = v(d,+Dvg ™, P (u) (1§®X,,) =0,

with y € C*. The action of the powers of X, on both sides yields

@ P () (0, ® X, +0i®X,,) = 7(d, 10",
(b) B (1) (0, ® X, + 02 ®X,,) = 0,
for 0 <k < d,+1, under the convention v*; = vz ., = 0. On the other hand, a
lowest weight vector of the V,_, -component is a linear combination of U§®Xﬂ13 and
v}®X,,,, and it is annihilated by X, . From these facts we find that —d,vf
®X,,+~17®X,, is a lowest weight vector, and we get

PP (—du®X, +vi®X, ) =0, B, () (—dv;®X, +1vi®X, ) = dv; ™,

with 6 € C*. The action of the powers of X, on both sides yields

(c) PlT(,U)((k*1—du)U£—I®Xﬁxa+kvﬁ®Xﬁza) =0,
@ P () ((k—1—d) vt \®X, +hui®X, ) = vt fe,
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for 0 < k < d,+1. The assertion (1) (resp. (2)) is then deduced from (a) and (c)
(resp. (b) and (d)). [

§ 3. Whittaker Model of Discrete Series and Schmid Operator

3.1. Parametrization of the discrete series representations and their K-types

Let us recall the Harish-Chandra parametrization of the discrete series
representations of SU(2,1) .

The Weyl group of G is the symmetric group &, of order 3. Let X, be the
initial positive root system defined in Sect. 1.2. Then other positive root systems
are given by s(Z,) (s €& ;). Among them, those compatible with the given
compact root system X, are s,(Z.), s;(£,), and s;(2_). Here s,=1d, s; =

(183) s - (433)

Let J be a variable taking values in {f, II, IIl}. We define a subset £ ; of the set
Ly={A=(l,,1,) €Z%° |1, > I,} of dominant weights by

E,={A= (1, 1) | {A, B> > 0 for any root in 5,(X,)}.

Then
E={A=0,, 1)1, >0,1,>0},

Ep={A=(,1)11,>0,1,<0},
and
Em=1{A=(,,1)11,<0,1,<0}.

Then the set =,UE,UE,; parametrizes the discrete series representations of

SU(2,1). We may call those representation parametrized by E;, holomorphic

discrete series, and those parametrized by Z,,, antiholomorphic discrete series.
Let p, be a half of the sum of compact positive roots; it is given by

o, = %,812 in our case. Given a Harish-Chandra parameter A € E}, let p, be the half

of the sum of non-compact roots in sj(2+). The Blattner parameter, namely the
highest weight of the minimal K-type, of the discrete series representation z, is
then given by 2 = A—p.+p,.

The Gelfand-Kirillov dimension GK-dim(x,) of z, is given by

2 ifAEEUZ,,
GK-dim(x,) =
3 ifAEE,,
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(cf. Yamashita [Y-III]). The representations 7, with A € E;, are hence character-
ized as large discrete series representations of G = SU(2, 1) (cf. Vogan [V]). Since
G is quasi-split, the results of [V] and Kostant [K] imply that every such represen-
tation has a Whittaker model in the C™ context.

Throughout the following we shall investigate the large discrete series
representations of G = SU(2, 1). For such a representation, the Harish-Chandra
parameter A coincides with the Blattner parameter . Note that if 7z, is the large
discrete series representation with Blattner parameter 4, then the contragredient of
7; is also a large discrete series representation, with Blattner parameter 2* (cf. Sect.
2.1):

= Ty

Here is an observation that K-types of the (large) discrete series representa-
tions of SU(2, 1) are multiplicity free, which plays an important role for our later
computation of Whittaker functions in 8 5. More precisely we have the following.

Proposition (38.1). Let (x;, H,) be the large discrete series representation with
Blattner parameter A. Then

HA l K= eam, n> 0‘/Z+mﬂl3+nﬁsz ) H;l K= ®m nz OI/Z:-mﬁ13+n,932
as K-modules.

Proof. This is an immediate consequence from the Blattner formula (cf. [H-S],
Theorem (1.3)).

3.2. Whittaker functionals

We recall some fundamental results on Whittaker model in this section. Put
N =exp(1). Let: N— C* be a non-trivial unitary character of N. We denote by
C,(N\G) the space of C”-functions ¢(g) on G satisfying.

p(ng) = n(n)e(g)

for any n € N, g € G. By the usual semi-norm system, we equip a structure of
Fréchet space on C, (N\G). The group G acts continuously on C,"(N\G) by the
right regular action.

Let (m H) be an irreducible unitary representation of G, and Hy be the K-finite
vector in H. Then we denote by Hom , x,(7, C, (N\G)) the intertwining space
from Hy to C,”(N\G) as compatible (g K)-modules. This is the space of algebraic
Whittaker vectors.

In our case G = SU(2, 1). Then G, given by
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Gmax = {g S GC | Ad(g)gzg},

is equal to G itself. Hence, for A € E,UE,;UE;, the transform of z, with respect to
an element g, of G,,, is isomorphic to z,. Therefore we have

dim¢ Hom ¢, 1y (7, , C;(N\G)) =2, or =0,

since the order of the (little) Weyl group W(g, a) is 2 (cf. Kostant [K]).

Let 2,(N\G) be the subspace of C, (N\G), consisting of right K-finite slowly
increasing functions. Then Wallach’s variant [W, 88] of multiplicity one theorem
(cf. Shalika [Sh]) implies that
1, if AEE,;

dim¢ Hom ¢, (7, , 34,(N\G)) = {
0, if AEE,UE,.

If A =2 € £, we denote by Wh,(z;) the image of a non-zero element of the above
intertwining space.

3.3. Differential operator &, ,

Let (7, , H;) be a large discrete series representation with Blattner parameter
A . Following Yamashita [Y-I], [Y-II], we identify the intertwining space
Hom , x,(7;, C,;"(N\G)) with a solution space of a partial differential operator.

Let (z,, V) be the irreducible K-module with highest weight x. Assume that
(z3, V) occurs in 7}, namely u € A+Z, B3 +Z5 By (cf. (31)). Fix a K-
equivariant linear injection V,*C H; .

Consider the restriction map

W € Hom ¢y (7}, C, (N\G)) — Fy € Hom,(V;, C;"(N\G)).
Then Hom(V;, C;(N\G)) = {C;(N\G)® V;}* is identified with

Cp o, (N\G/K)
= {¢: G— V;, C™-function | ¢(ngk) = n(n)z,(k) '¢(g),
v(n, g k) E NXGXK}.

Let C; (G/K) denote the space of V,-valued C*-functions ¢ on G satisfying
o(gk) = 7,(k) 'o(g) forg € G, kE K.

We define a (V,®¥)-valued C”-function V,¢ on G by
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4
V,0(g) = ), Rxp(9)®X,.

1=

Here, Ry ¢(g) = —;—tgo(g- exp(tY)) |,—y, and {X;|1 <17 <4} is an orthonormal

basis of P with respect to the Killing form of g. Obviously the map V,:

C. (G/K) — C:: eaa(G/K) commutes with G-and gg-action from the left. Therefore

we have a naturally induced differential operator V,,:C,. (N\G/K)—

Crreaa(N\G/K) . The tensor product 7,® Ad = 7,® Ad,, decomposes as
(z,®Ad,, , V,®V) = (¢, Dol , V),

L 2 Tu

where
= © 0B,
“ BEs,(Z)NE, ®
and
T, = ) o(—B)7,_
b ges(ons, (=8)7,

with 6(8) =1 or =0 and 6(—8) =1 or =0, according as ¢+8 and y—p8 are
dominant or not, respectively (cf. Sect. 2.2).

Let P,(u): V,®P— V" be the projector to the facter ¥,". Then we set

2, ,(0(9) = B (¥, ,0(9) (¢ C; (N\G/K),gE G).

Theorem (8.2) ([Y-II, Theorem 2.4]).

Let (z,, Hy) be the large discrete series representation of G with Blattner
parameter A. If A is far from the walls, then the assignment

W € Hom, x(z;, C;"(N\G)) — Fy, € Ker(Z, ;)

is a linear isomorphism.

Remark. As we see later, the assumption “far from the walls” is not necessary
for G = SU(2, 1), since dim¢Ker(Z, ;) = 2, and W — Fy, is injective.

In subsequent sections, we explicitly compute &, ; and P, (ﬂ)(V,,v,;p (®) to
describe the image of elements in Hom  x,(z;, C; (N\G)).

§4. Explicit Formula for the Minimal K-type Whittaker Functions

4.1. Radial part of V,f .« and their projections
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Let A = exp(q). In view of the Iwasawa decomposition G = NAK, the space
C,.-,(N\G/K) is identified with the space C*(4, V,) of C”-functions on A4 with
values in V.

We denote by 7, o and 7, o the identifications

7.5:Cro(N\G/K) = C*(4, V)
and
for :Cno (NNG/K) = C(4, V, 7).
Then we define the radial part R(Z, ,) of Z, , by
R(Z,)=1,.-09,,0%,,:C"(4, V) > C"(4, ;).

We want to have an explicit description of R(Z, ,).

There is a positive constant ¢ depending on the normalization of the Killing
form such that the set

{e(Xp,+ X, =1 (X, — Xp,)s ¢(Xp,+ X5, o —1 (X, —X,)}
forms an orthonormal basis of ¥ with respect to the Killing form. Then
V.. F =2V, ,+V, )F
with
vV, F= Ry, F®Xy tRy, FOXy, ;
and
ViuF =Ry, FOX, +Ry F®X,, .

For Fin C, TM(N\G/K ), we denote by ¢ its restriction to A. We denote by 8,6 the
restriction of the operator H,

(HF)| A =0¢.
We identify q= RH, with R mapping H, to 1. Then A = exp(q) is identified with

R.,=exp(R) = {rER|r>0}. Theimage of a € 4 in R, via this identifica-
tion is denoted by r(a).
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Proposition (4.1).
Let ¢ be an element of C*(A, V,). Then the radial part R(Vﬂfu) of V,, is given
by

6] RV, )¢ = %{al—ﬁ r(@)n(E)—4} (¢®X,,)

%(r,,@Adm)(Hl;)w@Xﬁla)

(=D
2

+ r(a) (n(E, ) —V—17(E, )} (¢®X,,)
+(7,®Ady, ) (Xp,) (6® X, ).
Similarly for the radial part R(V, ,) of V, , we have
(iD) R(V;)8 = 510, ~~1r(@)n(E) ~4) ($8X,,)
— (5,8 Ady ) (Hi) ($@Xp,)
+ 000 (B, )+ T, ) (88K,
+(7,®Ad, ) (X,, ) (6@ X, ).
Proof of Proposition (4.1).
The proof is easy. We indicate only some key points of computation.
When X €f, (RyF) (a) = —1,(X)¢(a). Hence for X Ef and Y €,
(RyF)(@)®Y = —(1,8Ad,) (X) (¢(@)®Y) +¢(a)®[X, Y].
By definition, R, F(a) = 0,¢(a), and simple computations show
Ry F(a) = r(a)’n(E)¢(a)
and
Ry F(a)®X,, = —(5,8Ady) (Hyp) (¢(a) @ X, ) +2(¢(a) ® X, ).

This shows the part (i) of Proposition. The part (ii) is discussed similarly. []

4.2. The minimal K-type Whittaker functions

In this subsection, we give an explicit formula of the elements ¢ of C, . (4)
which comes from W € Hom, ,(7;,%4,(N\G)) . By (3.2), it satisfies the differen-
tial equations P,(1) (R(V,;)¢) = 0. Putd = d, = A,—1, and write
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d
¢(a) = ) cia)v}
k=0
with coefficients c;(a) = ¢,(a) (0 < k < d), where v;’s are the standard of V; (cf.

Sect. 2.1). Then we have the following

Proposition (4.2).
(1) The equation P,(2)(R(V,,)¢) =0 is equivalent to a system of difference-
differential equations:

(C )y (80,—k+2,—2)c (@) +r(adn_-cs(a) =0 (0<k<d—1).

(ii) The equation P,(2)(R(V, ,)¢) =0 is equivalent to a system of difference-
differential equations:

(Cy ): (B,+k—2d—2,—1)cp (a)—r(a)n.-c(a) =0 (0< k<d—1).

Here we put

n- = n(E; ) ty—17(E, ).

Proof. Note first 7 |, ;= 0, because 7 is a charater. Hence 7(E,) = 0.
We put X, = w,, X5, = w,. Setv=21—B. Then,

d
RO RV D$) = % (0,0 ). a(@BM Wjow)

d

L Y cl@)t,(Hp) B (vp®w,)

2 =0

d
*%T(a)n_ Y (@) P(1) (v ®wy)
k=0

d

+ 2 (@) T, (X, ) P(2) (v ®wy)
k=0

1 % , 1 & H,+Z\ ,
= 2(61—4)0,,((1)11,,—? Zock(a)ry<—ﬁ—>vk

k=0 k= 2
1 d d
—?r(a)n_ Z cila)vy_,+ Z cx(a)t,(Xg v .
k=1 k=1
Input

o, (H)v. = (2k+1—d)v?
(D = (A +2,+3)vy = (d+22,+3) vy

7,(Xp ) 05— = kv
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in the above formula. Then

d—1

B RO D) = — % S (6, 4+ (k+2y+2) — 2k} (@)}
k=0

1 & y
—gr(a)n_ PEACHDA
k=1

which shows the part (i) of Proposition. The part (ii) is shown in a similar way.
Now via the identification

a=-exp(tH) € A =expla) —r=7(a) ="' ER,,,

we regard ¢ and ¢, as functionson R, ,. Thend, = éi—t— =r % is the Euler operator
inr.

Assumption (4.3). We assume that n.7_ # 0, namely
n(Ey, ) #0 or n(E, ) #0.

Then (C2%), and (C2), are equivalent to

(Ci)k: Ck+1<7’> = *77:1<%+M

)ck(r) O<k<d—-1),

and

4 k—2d—2—1

(Cz_)k3 Ck("') = 774_-1< dr

>ck+1(r) O<k<d-1).

If we determine c,(7), then by the recurrence formula (C2),, we can determine
a1 (1), =+, co(7).

Lemma (4.4). Represent c,_,, C4_y, **, C, downward recurrently by (CZ),.
Then if (C2),_, is satisfied by c, and c,_,, then all the (C2), (0 <k <d—1) are
satisfied by ¢, (0 <k < d).

Proof. The proof is easy. We omit it. O]

We want to determine {c,(7)}{_,.
Each ¢, (r) satisfies a differential equation:

[d | (=2d-3) d {(k-—Zd—Az—Z)(—kHZ—Z)
(D) [dr2 + r dr * 7’ +

77+77_Hck(r) =0.
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Noting —47n,n7_ > 0 for 5, and 7_ are purely imaginary numbers, we change the
variable 7 by £ = y—47n_,7_ r, and set

z

Ck(r) B {V_477+77—

Then v, satisfies the Whittaker differential equation.

} ) 0<k<d).

1 2
- —m
d? 1 x4 _
(E)k ——dl'z + | — Z + ? + e l)k(l‘) =0

with k£ =0 and m> = (k—d—2,)" = (k—1,)".

Because the image of C~ ~-Whittaker functionals should be of moderate
growth for »r > + oo (cf. Wallach [W]), v,(z) is a constant multiple of the unique
solution of (&) :

-1 o L k-ay

e 2° S t\ z v

I’Vo,k—zl(‘r) = 1 f t 2 + 1k 114<1+;) e tdt
0

F(?-*- k=2,

with the required growth condition (cf. Magnus-Oberhettinger-Soni [MOS], (Chap.
7). Note that the Whittaker function W, ,,(z) reduces to the modified K-Bessel
function if £ = 0:

W, o(z) = z_l/le/gK,,(%).
Recall that we have the inequalities
A >0, 1,<0, and d =4,—4,>0
for the parameters. By the above discussion, we may put for 0 < k< d

3
() = 77 2 W, 4, (2B

Here 7, is a some constant and b = —7_n_ > 0.
By the recurrence formula
e (r) = 77:1<i n k—2d—2,—1

ar " )c,m(r) 0<k<d-1),

we have
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_ 3 ps 3_,
n.Tenice(r) = (d + E)rd‘ 2 %.k?l—ll(z\/gr)+2\/grd+ 2 W’D,k-ﬂ—l,(z‘/gr)

1
+(k—2d—2,— 17" 2 Wy oy, (240 7)
3
=29br* 737&1—11[ W, k+1—11] (2o,

where we set

£, [f1(z) = %f; +

Note that the K-Bessel functions satisfy
d
(o + K (2) = K, (@)
z z
(cf. [MOS], Chap.3). We rewrite this relation as
1
gm[m)m] = - E I/I/E),mvl
to get
Theorem (4.5). Normalize the constants 1, by v, = 1. Then for 0 < k < d,
3
C;l(r) =c(r) =1 rd+?VVO_k_M(2«/gr)
with

b= —n.n- >0,
B 3 x/_b_>d_k_ <77_—>d_k .
T < N+ B JE ) U

§ 5. An Explicit Formula for K-finite Whittaker Functions

977

In this section, we firstly give some recurrence relations for weight vectors in
K-type subspaces of Wh,(x}), using the fact that Wh,(z}) is K-multiplicity free.
We then translate them into recurrence relations for the Mellin transforms, and

give an explicit solution of this translated relations.

5.1. Recurrence relations for K-finite vectors in Wh,(x})

The elements c;(*) (0 < k < d,) of the Whittaker model Wh,(z}), to which
we have given an explicit formula in the previous section, are the weight vectors
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in the minimal K-type subspace. We now investigate the weight vectors in all K-
type subspaces. Note that the algebraic sum of such vectors coincides with the
space Wh,(z})x of K-finite vectors.

Let ¢ denote, as before, a general element of A+Z, (8,3 +Z (B With

v=(u, i), d,=dimcV,—1 (= p;—u,).

Since z} is K-multiplicity free (cf. Prop. (3.1)), Wh,(z}) contains a unique K-
invariant subspace which is K-isomorphic to V. Call Wh,(z}),* this subspace.

We fix a basis of Wh,(xz}),* which agrees with {c;(¥) |0 < k < d,} if x = 2.
Let {(v{)* |0 <k <d,} be the basis of V;, which is dual to the standard basis
{vpl 0 <k < d,} of V, (cf. Sect. 2.1): < v}, (vf)* >= §;;. Choose a K-isomorphism
V.= Wh,(z}),~ and let {c;(*)|0 <k <d,} be the image of {(v;)*|0<k<d,}
under this isomorphism. Each ¢} (*¥) is a weight vector of weight y*—kB,, =
—u+(d,—k)By, and the basis {c;(*)|0 <k <d,} of Wh,(z}),+ is unique up to
multiplication by a common non-zero scalar. We denote by c;(7) the restriction of
¢ (*) to the subgroup A:

(r+7r7 /2 (r—r")/2>)

v = K = c* 1
Ck(r) Ck(a(r)) Ck(<(7‘“7'_1)/2 (T+7’_I)/2

In §§2.2 we have defined the projectors P~ (1) (j = 1, 2):

P1+ (,U). %@pc‘—) I{H'ﬁ]a’ 132+ (ﬂ) V;;®pc—> I{z—ﬁ

32

Pl— (,Ll). ‘{l®pc_) V;H'ﬁaz’ PZ_ (ﬂ) I{l®‘pc—> VI:‘B .

13

Proposition (5.1). Let 0, be the differential operator réi? on R, and put
¢“,(r) = cf.,(r) = 0. One then has, under convention (2.2),

(1) cfife(r) ~ (k+1)(8,+u,+2d,— k) ci(r)—(d,—K)n_rcg,,(r) (=1 <k<d)),
(@) i (r) ~ (d,—k+1)(0,—uy+k)ci(r) +kn.rci_,(r) (0 <k < d,+1).

Proof. Since Wh,(x;)y is stable under U(g.), the correspondence
v* =< B () (V] (0 ckOug)), v* >
k

defines a K-equivariant map from V., into Wh,(z}) hence into Wh,(7}) 5.+
We then have, by Schur’s lemma,

Prw V(Y ) =7 Y et

0<k<d,~1 0<k<d,+1
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with a constant y € C, and similarly

PV, (L ckou)) =6 ) oot
k

0<k<d,+1

with a constant 6 € C. Here we find, from (4.1) and (2.3), that these relations are
rewritten as follows (cf. the proof of (4.2)) :

(#) the right-hand side of (1) =ygciife(r) (—1<k<d,),

(%) the right-hand side of (2) =8,0¢c;.72(r) (0 <k <d,+1).

Here 7, and 6§, are non-zero constant independent of k. Our task is, hence, to show
that y6 # 0.

Suppose ¥ = 0. Then we use (x) firstly with k = —1, secondly with k = 0, and
so on, to get firstly ¢f (r) = 0, secondly ¢{(r) = 0, and so on. Hence a contradiction.
We can show 6 # 0 by a similar argument. O

5.2. The Mellin transforms of K-finite Whittaker functions

Let ¢ be an element of A+Z, 8,3+ Z. 8% and k an integer with 0 <k < d,.
From the explicit formula (4.5) and the recurrence relations (5.1) we see that
¢, (r) decreases exponentially when r— +oo, and that c;(r) remains bounded
when r — +0. We hence may consider its Mellin transform

M(s):= fow ck(rrldr  (Re(s) > 0).

The Mellin transform of the modified Bessel function W, ,,(z) is well-known (cf.
[MOS],p91) :

fom Wy, n(2)z*'dz = ™' ZZS'IF(%(S-Fm+%))I‘(%(s—m+é—)).

Applying this to (4.5) we get, under convention (2.2),

(52) Ms) ~ n(ﬁ

: >~SI‘(%(S—k+2d1+12+2))I‘(%(s+k—12+2)).

Using integration by parts we translate the recurrence relations (5.2) for ¢;(7) into
recurrence relations for M/ (s):

(53)  MEPe(s) ~ (k+1)(s—p,—2d,+ KM (s)+(d,—K)n_ME, (s+1),
(5.4) M P2(s) ~ (d,—k+1) (s+u,—k)ME(s) —kn, Mi_(s+1).

The solution of (5.2), (56.3) and (5.4) is given as follows:
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Theorem (5.5). Let u = A+mB3+nBsy (m, n EZ, ). Forx EZandp E Z,
but

[z;p] =z(z—1)(x—p+1) (p >0) and [z;0] = 1.

Then M., (s) is expressed in the following two ways:

< /n
D M) ~ Tk<:/2£> Zo<p>[dl—k+n; n—pllk+m; p]
»=

><I‘(—;—(s—kﬂ'-lz-f-2))1"(—;—(s—k+12+2)—n+p)‘1

xr%(s—k—xﬁz)+p)r(%<s—k—zz+z>—m+p>—1

XT (o (s —k+2d, + A+ 2) + DT Ch(s+ 1y +2)).

2 erm(8) ~ 7k<i§—>_s i <;n>[drk+n i pllk+m; m—p]

»=0

XD (5 (s +h—2d; = A+ DT (- (s + k=24, — Ay + D) —m+p) !

XD (g (s ke Ayt 2) 4 T (- (s 2y + D) —n+p) "

xI‘(%(s—k—kZdA+12+2))I‘(%(s+k—12+2)+p).

From this we immediately have the following
Corollary (5.6). Let C[s] be the ring of polynomials in s over C.

(1) M}restee(s)/MI23(s) € Cls1(i > 0), and

MPm8(s) ~ 7k<@>_ I‘(%(s—k—12+2))I‘(—;—(s—k—12+2)—m)_‘

><I‘(é(s—k—i—2d1+Az+2))1‘(%(s+k—l2+2)).

(2)  M}MeTee(s)/METR(s) € Cls]1 (i > 0), and

M0 (s) ~ Tk<-JZI):>_SF(%(s+k+Az+2))1"(—;—(s+k+12+2)—n)_l

xl‘(—;-(s—k+2d1+12+2))I‘(%(s+k—12+2)).
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(3)  MjTmeeTmatn(s) /Mt () & CLs1(i > 0), and

MG (s) ~ Lm(@) I‘(%(s-km+Az+2))I‘(%(s+m+Az+2)—n)_‘

><I‘(%(s+m+2d1+12+2))F(%(s+m—Az+2)).

() My s e e (s) /My s e (s) € Cls1(i 2 0), and

dytm+n+i

mBras Vo \°
M;Aimﬂ-}—an nﬂaz(s) ~ 7’d14-n<—2-—>
XI‘(—; (s+n—d1—12+2))I‘(—; (s+n—d;—2A,+2)—m)™!

XD (g (s +ntdy+ 2+ DIT (G (s +ntd; =2+ 2)).
In the following we prove (5.5).

Proof of (56.5) (1) the case n = 0 and (5.5) (2) in the case m = (.
In the case n = 0, (5.5) (1) reduces to

M, (s) = M} TPe(s) = rk<i§—>_ I‘(%(s—k—12+2))I‘(%(s—k—22+2)—m)_l

XI‘(—;—(s—k—i-zdl+12+2))I‘(—;—(s+k—12+2)),

and in the case m = 0, (6.5) (2) reduces to

ME(s) = MY ™=(s) = 7,‘(@)_51‘(%(3-#—]6-1-Az+2))r‘(%(s+k+12+2)—n)_l

XD(h (s 42,4 2,4 DIN (L (s k= 2,+2)),
(cf. (5.6) (1), (2)). Suppose that the functions M} 73(s) and M} ™*(s) are given
by these formulas. Then they clearly satisfy (5.2). We also see

{(k+m)+1} {s— (A +m) —2(d; +m) + (k+m)} M (s)
+{(dy+m) — (k+m)y MM T3(s+1)
= (k+m+1)(s+k—2d,— 2,— 2m) M5 (s)

-1
+7- (Tk+1/7’/c)<—‘/—_25*> (d, —k)%(s+k—,12+ 2) M (s)
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= {(k+m~+1)(s+k—2d,—2,—2m) + (d,— k) (s +k—2A,+2)} M 7#5(s)

= (d;+m~+1)(s—k—2,—2m) M} ™3(s)

(note that 7_7,., = 7’,,«/5 ). Up to a non-zero constant independent of k, the last
expression is equal to M/ "71(s). We hence have shown the first recurrence
relation (5.3). Similarly, we have

{(dy+n)—k+1} {s+ (A,—2n) —k} M} ™52 (s) — kn M 2 (s+1)
= (d;+n—k+1)(s—k+2,—2n) M} ™2(s)

_kﬂ—(Tk—l/Tk)<—‘\/_2g_>_ 2(s—k+2d,+2,+2) M} P2 (s)

= {(d;+n—k+1)(s—k+A,—2n) +k(s—k+2d,+ A,+2)} M ™= (s)
= (d;+n+1)(s+k+2,—2n) M} ™(s)

(note that —7.7,_; = 7,,@ ). Up to a non-zero constant independent of k, the last

expression is equal to M} ™ PP2(s). We hence have (5.4).

Proof of (5.5) (general case) . We prove (5.5) (1) by induction in n ((2) is
proved by induction in m, in the same way). We have done the case n = 0 in the
above. Suppose that (5.5) (1) is true for #n. By recurrence formula (5.4) we then
have,

MMt Dbu () ~ (d,~k+n+1) (s—k+2A,—2n) M}t e ()

—(k+m)n M} s (s +1).

The assumption of induction, together with the relation (zx+1)[x;p] =
[z+1; p+1], implies

(dy—k+n+1)(s—k+2,—2n) M st (g)

= Tk<_‘/_2_b—>_s Z <n>[d1—k+n+1 snt1—pllk+m; pl(s—k+2,—2n)
p=0\p

><I‘(%(s—k+12+2))r‘(%(s—k+lz+2)—n+p)_1
xI‘(%(s—k—Az—i—Z) +p)r(%(s—k—zz+2) —m+p)!
XI‘(%(s—kﬂLZdﬁ-lz-&-Z)+p)1"(%(s+k—lz+2)).

Noting — 7.7, = r,;/g , we similarly have
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—(k+m)n. MM et ¥e(s+1)

- Tk<£>—s y <n>[d1—k+n+1; n—p)[k+m; p+11(s—k+2,+2)
»

2 ) =

><F(%(s~k+22+2))I‘(—;—(s—k+12+2)—n+p+1)_‘

xl"(%(s~k——lz+2) +p)1‘(%(s—k—12+2)—m+p+1)_1
xI‘(%(s—k+2dl+zz+2) +p+1)1"(%(s+k—12+2)).
We thus get
M]:._:—;nﬁm-t-(n-v‘-l)ﬁaz(s)
(*) ‘\/3 —s ntl
~ Tk( )

)Y AP skt 1 DI (k= 2,+2)
p=0

with
Ay = [d,—k+n+1; n 11—k A= 2m)T (5 (s—h+ 2 +2) —n)
XD (5 (s—k= Ryt DT (G (s— k= Ay +2) —m) T (- (s—k+2d, +1,+2)
= 2, ~k+n+1; n+ 10 (s—k+ 2+ 2)—n— DTG (s—k—1;+2)
XD (o (s—k= A+ 2) =m) T (5 (s = k+2dy+ Ay +2),
A, = ld;~k+n+1;n+1—-pllk+m; p]
n n
x{| J(s—k+2,—2n)+ (s—k+2,+2)}
» p—1
XD (o (s—k+ Ay 2) —n+p) "T(5-(s—k—1+2)+)

XI‘(-;—(s—k—ApLZ)—m+p)”1"(%(s—k+2dl+lz+2) +p) (1<p<n),
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Ape1 = [k+m; n+1]1(s—k+21,+2)

xI‘(—%—(s—k-!—Az—%—Z) +1)_1F(—;—(s—k—12+2) +n+1)

XI‘(%(s—k—/12+2) —mAn+ 1)_1I‘(—;—(s—k+2dl+12+2) +n+1)
= 2lk+m; nt 1T o (s—k+ A+ 2) T (s—k =1y 2) +n+D)
XD (G (s—h=2g+2) =m+n+1) T (s—k+2d, + A +2) v+ 1),

We hence find that the terms forp = 0 and p = n+1 in (¥) are twice of the desired
terms for p = 0 and p = n+1 for M3 "*Dha(s) respectively. As for the terms
for 1 < p < n we use the equality

n n n+1
< >(s—k+12—2n)+< >(s—k+/12+2) =< )(s—k+,1,,—2n+2p),
p p—1 P

and find that the term for p in (*) is twice of the desired term. This completes the
proof. |

5.3. The case of U(2,1)

We denote by G the real reductive group U(2,1) = U(J, ). It has the
semisimple part G = SU(2, 1) and the center ZG = C”. An irreducible representa-
tion of G is determined by its restriction to G and its “central character”.

Let =, be, as before, a large discrete series representation of G with the
Blattner parameter 2 = (,, 4,) (4, > 0, A, < 0). Its “central character” is given by

Cly—= et (cec® it =1).

Suppose given an irreducible representation # of G with #| G = 7,. We shall
investigate the contragradient 7* rather than # itself. The “central character” of
#* is given by

§'13_> {—(11+12)+3» ((E C(l))

with an integer v, and the datum (X, v) determines #* completely. We put
#* = &} ,- The representation space of 7} , remains to be H}, and the smooth
vectors of 7} , remains to be (H;)".

The (smooth) Whittaker functional for (%} ,, 7) is , by definition, a continu-

ous linear functional L on (H})” satisfying
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L(z; ,(m)v*) =qn)L(v*) (nEN,v* EHD™).

Since %} ,Iy=n}!y, this is nothing but the (smooth) Whittaker functional for
(z3,n) . On the other hand, the K-finite members W (resp. W) of the smooth
Whittaker model Wh, (7} ,) (resp. Wh,(z})) are in one-to-one correspondence with
K-finite members v* of (H})” via

W(g) = L (@v*)  (resp. W(g) = L(z;(g@)v*)).
We hence get

Proposition (5.7). The K-finite Whittaker functions W in Wh, (%3 ) and the
K-finite Whittaker functions W in Wh, (z}) are in one-to-one correspondence via

W) = 5™ w(e)  (ec? ge 6.
This correspondence gives an K-isomorphism between Wh,(%#; ) and Wh,(z})g.
§ 6. The Local Zeta Integrals and the Gamma Factor

Gelbart and Piatetski-Shapiro [G-Ps] attached certain zeta integrals to a
generic representation of the quasi-split unitary group in three variables, defined
over a local field. In this section we shall evaluate these integrals in the case where
the base field is real and the representation belongs to the large discrete series of
U(2,1). We shall see that the “greatest common divisor” of the integrals turns out
to be a product of three gamma functions.

6.1. The Mellin transforms Fg (h; s)
Let A be the real reductive group U(1, 1) = U(J, ,) and H its semisimple part
SU(1, 1) = SU(, ,). There are several subgroups of H to be listed:

Z(H) := {1, o E R},

e? 0
K':={ .| @ ER},
0 e

(r+r™/2 (r—r"1/2
A= {< > | r € R},
(r—r™/2 G+rH/2

i 1
l+?b —?b
Z(N):= { ~ |IbER}
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Then Z(H) K’ is a maximal compact subgroup of H, which is also a compact Cartan
subgroup of the reductive group A.

The group H naturally acts on W:= C? from the left. Let (W) be the
Schwartz space on W. Fix the left action of H on (W) via

(h®) (w) := o(h™ " w) (heH oex(W), weE W).

Fix an isotropic vector £ in the Hermitian space (W, I, ,) by

()

We also fix a quasi-character w:C*— C*. It has two parameters w, = C and
w EZ:

6.1) w(t) =| tlg“(!iI)w! (te .

The Mellin transform Fg'(h; s) of ® € (W), which was introduced in [G-Ps], is
defined by

R s):= [ (W)@ t15a*t  (he B, sEC)
where d*t = dt/ | t | is the normalized Haar measure on C*.

For a 4-tuplep = (m,, n,, m,, n,) of non-negative integers, define an element
@, of (W) by

V4
®,(w) := 27 2% exp( — % | 2, 120 2 exp(— % 121D (w= < 1> c w).
E9)

Then the linear span of the subset {®,}, is dense in (W) (cf. [RS], Appendix to
V.3). We evaluate the above Mellin transform at ® = @,.
Using the Iwasawa decomposition H = Z(H)Z(N)AK’ we write h € H as

1++b ——b

‘ 2 2 <(r+r‘1)/2 (r—r_l)/2> e? 0
©) h =" _ < >

i i (r—r™/2 (+r™H/2/\0 £°
— 1—51)

We then have, for p = (m,, n,, m,, n,),
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(h®,) (8£) = exp((n,—m,+n,—my)ip+ (n,—m;—n,+m,)i6)
my+tmy / 7 \njtng 2
(T e (2.
r r r
Using the polar coordinates ¢ = pe’® and the change of variable % = z, we find

Fg(h;s) = exp((n,—m,+n,—my)io+ (n,—m,—ny+m,) i) r* s+

=+
xf greredTmEmptnin oy n(—22dz/T
0

X f;mexp((ml+m2—n1—n2+w1)if)d£

We thus have the following

Lemma (6.2). Leth € Hbeasin (x) and p = (m,, n,, m,, n,). Then
@)) Fq‘;;(h; s) = 0 unless w, = n;+n,—m;—m,.

(2) In the case w, = n,+n,—m,—m, one has

. . © 1 .
Fq‘;;(h; $) = cyexp(w o+ (n,—m,—n,+m,)i0)r* " VT (s +w,— ?wlﬂ—nﬁ—nz)

where c, is an absolute constant different from Q.

6.2. The local zeta integrals L*(s, W, ®) and their greatest common divisor
The group H = U(1, 1) is embedded in G = U(2, 1) by

a B
N a B -
H> —~|0 1 0]
vy O
vy 0 ¢

The groups Z(H), K', A and Z(N) are thus regarded as subgroups of G. We
parametrize the elements of the first three groups as follows:

e® (r+r71/2 (r—r71/2
z(p) = 1 ,a(r):= 1 ,
P (r—r71/2 (r+7r=4/2
eiﬂ
k') := 1
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The local zeta integral of Gelbart and Piatetski-Shapiro (in the Archimedean
case) is defined by

L°(s, W, ®) =f W)FE(h; s)dh (@ € (W),
Z(N\H

with a Whittaker function W on G which belongs to a generic representation (cf.
[G-Ps]). We evaluate this integral for our K-finite Whittaker functions W which
belong to the large discrete series representation 7#; , (cf. Sect. 5.3).

From now on we assume, without any loss of generality, that W € Wh,,(i;' )
is a weight vector contained in a K-type subspace. If we denote the weight of W by
—p, then p belongs to the set of weights of 7, (cf. Sect.3). Hence we may put

(6.3) the weight of W = —p,
0 =2A+eB+1Bsy = (A,+2e—f, Ay+e—2f) (e, fEZ,,).

Lemma (6.4). The above W satisfies

W (z(@)na(r)k'(8))
=exp((—A,+2v—ip+ (—2,—2e+)i0) W(a(r)) (n € Z(N)).

Proof. We have W(ng) =n(n)W(g) =W(g) for g€ G and n €Z(N) =
[N, N1, hence W(h) = W(z(p)a(r)k’'(8)). Write

i

e

z(@)a(nk'(6) = exp(-g—iso)a(r) e” ;
e—i(a+ﬁ)

We then have, by (5.7) and (6.3),

W(z(@)a(rk'(6))

— exp((— 14— 2+ 30) Sig)exp(— (1, + 2e—ia— (Ay+e—20)iB) W(a(r)

= exp((—21,+2v—Nip+ (—A,—2e+£)i0) W(a(r)) . O

We now calculate L°(s, W, ®) for the above W and for ® = @, with
p = (my, n, my, n,) . By (6.2) (1) we assume that n,+n,~m,;—m, = w;. Then

(6.2) (2) and (6.4), together with the Iwasawa decomposition H =
Z(N)Z(H)AK', imply that ¢, ' times L°(s, W, ®) equals
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2
j;exp((—7{1+2u—f+n1—m1+n2—m2)igo)d(0
2r
Xj; exp((—A,—2e+f+n,—m,—n,+m,)i6)do

X F(s+w0—~;—w, +n1+n2)f0 W (a(r))r¥st = Day/y .

Hence L°(s, W, ®) does not vanish only if

— AN F2v—ftn,—mtn,—m,= —A,—2e+ftn,—m,—n,+m, =0,
namely,
(6.5) n,—m, = A—v+te, n,—m, = —v—e+f.

Suppose that (6.5) is the case. Then, firstly, the above condition

n,tn,—m,—m, = w, is equivalent to f = —1,+2v+w,. Secondly, the “greatest
common divisor” of {I‘(s+a)0—%w1+nl+n2)}p is written as I'(s+wy+c(e)) with
(6.6) c(e):= —%wd— %{(Al—wre)—i- [ A, —v+e| +(—v—e+f)+ | —v—e+fl}

= %{I etA—v|+let+td—v—w,l}.
Summing up, we have established

Proposition (6.7). Let W be as in (6.3). Then L°(s, W, ®,) does not vanish for
some p only if the following condition is satisfied:

(€9) f=—1+2vt+w,.
If this is the case, the “greatest common divisor” of {L*(s, W, ®)}, is written as
I‘(s-l—wo—t—c(e))j;w W (a(r)r’srDay/y
where c(e) is defined by (6.6) .
Let L°(s, #; ,) be the “greatest common divisor” of the family {L“(s, W, ®,)},
where W runs through K-finite vectors in the Whittaker model Wh,(#} ,) and @

runs through the Schwartz space ¥(W). Combining the above proposition with
(5.6) we can show the following
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Theorem (6.8). Let w be the quasi-character of C* fixed via (6.1) with two
parameters w, € C and w, € Z. Then L*(s, %} ,) is given as follows:
(1) If A,—2v < w, < A,—2y, then L°(s, #; ) coincides with

<g) T'(s+w,— -;-wﬁ/ll—u)

XT(s 4wy~ %w1—12+u)1‘(s+w0+ —;— Qwvl +1vD).

(@) If w, < 2,— 2y, then L°(s, #; ) coincides with

<i2—b—> I'(s+wy— % w;+2;,—v)

XT(s+w,— %wl—v)I‘(s+wo+%(| w,— A+ + | =2,+v D).

(3) If w; = A,—2v, then L*(s, 73 ) coincides with

(—g) F'(s+wy+ % w;tv)

XT (s+w,+ -21—w1—12+u)1‘(s+w0+ % Goy—2A+v|+ | =2,+v ).

6.3. Proof of Theorem (6.8)
In this subsection, we prove the main theorem (6.8). By (6.7) our task is
reduced to determine the “greatest common divisor” of

T'(sie, n) := I‘(s-4~(u(,+c(e))f0 W(a(r)r¥ste gy /r
foralle € Zandu € A+Zs,B13+Z> o Bsy, where W is a non-zero T-weight vector of
weight — (1 +eB,3+ fBs,), contained in a K-type subspace Wh,(#; ,),* of Wh,(7; )
(Wh,(z; ,),* is K-isomorphic to V). Here we may put f= —4,+2v+w,, =
/1+e/3,3+f,332+i312 ('l > 0) We then have
I'(s;e u) = T(stwytc(e) My _(2(s+w,—1));

d,—i=d;tetf+i=—+2v+w,teti

With an integer e fixed, let I'(s; e) be the “greatest common divisor” of the family
{C(s; e, )},
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Lemma (6.9). The above T'(s; e) is given as follows.
(1) Suppose f < 0ande > —d,or f> —d,and e < 0. Then

T(s+wotc(@)M;5EP(2(s+wp—1)) e > f;
Pise) = {I‘(s+w0+c(e))M;;§f"’)ﬁ3z(2(s+w0—1))---2 <f.
(2) Suppose f < —d, and e < —d,. Then

I'(s; e) = I(s+wo+c(e)) M~ 4P @ Dba(g(s 4+ we—1)).
(8) Suppose f > 0and e = 0. Then

I'(s; e) = T(s+wy+c(e)) M #57P2(2(s +w,—1)).

Proof. (1) follows from (5.6) (1) and (5.6) (2), (2) follows from (5.6) (3),
and (8) follows from (5.6) (4). O

We now determine the “greatest common divisor” of {I'(s;e)},, which
coincides with the function L“(s, #3 ,) in question. Note that the conditions
A—2v < w, < 2,2y, 0, £ 2,—2v and w, > A,—2v in (6.8) are equivalent with
—d, < <0, f< —d; and f > 0, respectively.

Proof of (6.8) (1). Suppose that 1,—2v < w; < A,—2y, namely, —d, < f < 0.
In this case the desired expression for L”(s, #; ,) is nothing but I'(s; ). In fact,
one immediately checkes this by using (6.9) (1), the expression

(P =%(iwp~u| +1vD)

(cf. (6.6)), and (5.2). Our task is, hence, to show that I'(s; e) /T'(s; f) is a polyno-
mial in s for every e € Z. By (6.9) (1) and (5.6) (1), (2) we have

T'(s; e)/T(s; f) = T'(s+wy+c(e))T(s+wy+c(H)
P(s+@y— 5 AT+ o= 5 (HA)—e+f) e > f
X .
I'(stw,+ %(f+zl))1‘(s+w0+ %(f+zl)+e—f)‘1~-e <f
Hence I'(s; ¢)/T(s; f) is obviously a polynomial in s if c(e) > ¢(f). We therefore

suppose that c(e) < ¢(f). The definition (6.6) of c(e) then implies in the case
e>f
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fF< Min{—2,+v, =, +v+w,},

e = —f~Mtv+ Gy = — L),

¢(@ 2 c(N—(e=f) = = 5 +A) —e+f,
and in the casee < f
f> Max{—2,+v, =, +v+w,},

o) = fHi—v= o, = G,

2
1
cle) 2 c(H)—(f—e) = ?(f+11)+e—f-
These facts, together with above expression for I'(s; e)/I'(s; f), show that

I'(s; e)/T'(s; f) is a polynomial in s even if c(e) < ¢(f). This completes the proof.
O

Proof of (6.8) (2). Suppose that w, < A,—2y, namely, f < —d,. In this case
the desired expression for L“(s, #; ,) is nothing but I'(s; —d,); pne immediately
checks this by using (6.9)(1) (or (2)), the expression ¢(—d;) 27(I w,—A,Fv]| +

| —2,+v|) and (5.6)(1) (or (3)). We shall show that I'(s; e)/T(s; —d,) is a
polynomial in s for every e € Z.
In the case e > —d; we use (6.9) (1) and (5.6) (1) to get
I'(s; e)/T(s; —d;) = T(s+wyt+c())T(s+wy+c(—d))™

XTI (s+w,+ %(f—ll)—l—d))I‘(s-Fwoﬂ- —%—(f—ll)—e)_l,
and in the case e < —d, we use (6.9) (2) and (5.6) (3) to get

I'(s; e)/T(s; —d;) = T(s+wyt+c(e)T(s+wo+c(—d))™!

XT(s+wo— %(f—f—ll)—i-lz)l‘(s-rwo— %(f—l—ll)ﬂ-lﬁdl-l—e)_‘.

In both cases we immediately have I'(s; e)/T'(s; —d,;) € Cls] if c(e) = c(—d,).
Suppose, then, c(e) < c(—d,). By (6.6) we see that ife > —d,
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—d, < Min{—2,+v, =2, +v+w,},
1

C(—dl) = d,\—ll—{-u—}- ?(1)1 = %(f_xl)"'d,\ ,

c(e) = c(—d) —(e+d) = %(f—zl)w,

and that ife < —d,
—d; > Max{—A,+vy, —A,+v+tw},

c(—d) = —d,+2,—v— %w, S %(f+21)+12,

c(e) > c(—d) +(e+dy) = — %(f—i—ll)‘*'lz-*-dﬁe.

We hence have I'(s; ) /T'(s; —d;) € C[s] in both cases. This completes the proof.
O

Proof of (6.8) (3). Suppose that w, > A,—2y, namely, f > 0.. In this case the
desired expression for L“(s, #; ,) is nothing but I'(s; 0); one immediately checks

this by using (6.9) (1) (or (8)), the expression c(0) =%(\w,—ll+ul +

| —2,+v1]), and (5.6) (2) (or (4)). We shall show that I'(s;e)/T(s;0) is a
polynomial in s for every e € Z.

In the case e > 0 we use (6.9) (3) and (5.6) (4) to get
I'(s; e)/T(s;0) = (s+wtc(e)T(s+w,+c(0))™
XD (s+wy+ £~ (s+wy+ =(f~2) =),
and in the case e < 0 we use (6.9) (1) and (5.6) (2) to get
I'(s;e)/T(s;0) = T'(s+w,+c(e))T(s+wy+c(0)™!

XT(s+w,— —;—(f—ll))I‘(s—i—wo— %(f—ll)+€)~)-

In both cases we immediately have I'(s;e)/I'(s;0) € C(s] if c(e) = c(0).
Suppose, then, c(e) < ¢(0). By (6.6) we see thatife > 0
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0 < Min{—2A;,+v, —A,+v+w},

c(0) = — A, +v+ -%—a)l - %(f—m ,

c(e) 2 c(0)—e= —;—(f—ll)—e,

and thatife <0
0 > Max{—2A,+v, —A,+v+w,},

S =~ (=),

c(0) = 2,—v— 5

ce) 2c(0)+e=— %(f—ll)—ke.

We hence have I'(s; ¢)/I'(s; 0) € C[s] in both cases. This completes the proof of
Theorem (6.8). O

§ 7. Comments for the Case of Principal Series Representations

The method of computation for local zeta integral applies not only for the
discrete series but also for the principal series. In fact the case of the principal
series is even simpler than the case of the discrete series. We remark some basic
facts for the case of the principal series in this section.

7.1. Definition of the principal series
Let us recall the definition of the principal series representations. The
centralizer M of q in K is given by

£
M= e ™ | 6 € R}.

ei9

For each integer n € Z, we denote by x, the character of M defined by
diag(e® e % o) € M — ¢™ & C*,
Let v € qi= Homg(a, C) be a complex-valued linear form on q, and o the
half-sum of the positive roots in ®(g,q). Let§,, - A — C* be a continuous character

of A given by

aE Al D e Cx,
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Then we can define a character g, ,., of a parabolic subgroup P = MAN by
X veo(@) = x,(m)E, . (@) forp=man EP (mE M, a € A, n € N).
The representation space of Indg(x,l, ,+p) is given by
L(K) = {f€ L*(K) | f(mk) = 2,(m)f(k)m € M, k € K}.

Any function f is extended to a function f on G via a decomposition g = pk
€ G = PK:

(@) = 2,1, (D) F(K).

Since M =PNK and f& Lz,l(K ), this is well-defined. The action = of G on
H= {f| fe LA(K)} is defined by the right regular action

(@) f(x) = f(zg).
Then z = Ind§(x,, ,.,) is a Hilbert representation.

7.2. K-types
We want to describe the K-types of the principal series. It is enough to know
the action of K on L%(K). The multiplicity of z of K in Ind§(x, ,.,) is given by

ml= ) [l lx:wl

wEKNM

where [7: w] and [yx,: w] are the multiplicities of w in 7|z, and x,, | xnu respec-
tively (cf. Knapp [K], or Vogan [V, (4.5.*)]). In our case, KNM = M. Hence

tr: 7l = [Tl Xl

Let 7 = 7, be an element of K with highest weight z = (u,, #,). Then the weights
of T are given by

M, ﬂ_lgw, ﬂ_zlslz, I ,U_dulsm = (ﬂz , ,ul)»

where d, = u,—u, The restriction of each weight space with weight £ —kB,, to M
is an M-module of dimension 1 with respect to a character

Xiuy =k} ~2{uptky = X {(uy—2up)—3k) -

Therefore
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(z:7) =$k€Z|0<k<p,—p,, (t,—2,)—-3k=n} <L

In particular when g, = y,, [#: 7,] =1 if and only if (¢,, #,) = (—n, —n). Now
it is easy to check the following.

Lemma (7.2). The multiplicity of t, in Ind§(x, ,.,) is | if and only if
& = m,Biy+m,Bs+ (—n, —n) with some non-negative integers m,, m,.
Otherwise it is 0.

7.3. Infinitesimal character

We calculate the eigenvalues of the Casimir operator on the principal series
representations in this subsection. In general, given a basis {X;}; ;<5 of g, let
{g"’}, <i.;<s be the inverse of an invertible matrix {tr(X;X)};<; ;<s. Then an
element

8
L= ) ¢'XX
i,j=1

of the universal envelopping algebra U(g) is a constant multiple of the Casimir
operator, because a bilinear form defined by (X, Y) EgXg— tr(XY) is a non-zero
constant multiple of the Killing form. Then element L does not depend on the
choice of basis {X;}.

The Cartan involution on g is given by

0(X)=—-'X forX&Eg.

Put n_ = 6(n1). Then it is the nilpotent algebra opposite to 1. Let 1 be the Lie
algebra of M or the centralizer of 11 in £. Then we have a decomposition:

g=n_-Sadmen.
The expression of the operator L with respect to a basis
{6(ED, 6(E, ), 6(E, ), H, M, =y—1diag(1, =2,1), E,, E, ., E, }

is given by
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1 1
L=H!— M

- %{EIO(EI) +O(E)E,+E,y . 0(E, ) +0(E, DE, . +E, 0(E, )+6(E, )E,_}

1 1
Hi— =M= 10B)E,+0(E, )E, . +6(E, )E, } +2H,.

1
2
The C”-vectors H, of the representation space H of the principal series
representation 7z is contained in C”(G), the space of C”-functions on G. Since L
is in the center of U(g), it is both left and right invariant tensor field. Therefore on

C”(G) the right regular action of L coincides with the left regular one. The left
regular action of H,, M, , E,, E, . on f € H,, are given by

Hf=—(+0)f, Mif=y—1nf E,f=E,.f=0.

Therefore
= 1 2 1 2 | rd 1 2 1 2 r
Lf= {7(—1/—,0) + 5" —2(v+p)}f = (514 + 5" —-2)f.

Here we identify q¢ with C by mapping e; Ea¢ to 1 € C. This is the infinitesimal
chracter of the principal series representation.

7.4. Whittaker functions of the principal series
Let z* be the contragradient representation to # = z, ,. Then

=, ,=Indi(1,®F , ,®x_,).

The K-types of z* is given by

* | —
T |K_ ®m1, my > 0T(n. n)+mBi3+myBay *

The eigenvalue of the Casimir operator is the same as z:

Qf = (%Vz"f' %nz—-Z)f; f is a smooth vector of 7*.

Fix an intertwining operator ¢ € Hom, x,(z* C,”(N\G)) . Then for each K-
type (z*, V*) which occurs with multiplicity one in z*, the restriction ¢ gives an
element F = F, of C, .,(N\G/K) via correspondence

t| V* € Homg(V*, C;"(N\G)) = C, .(N\G/K).
(v* > (g—=>< v* F(g) >)) < F.
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Since the eigenvalue of the Casimir operator Q for z* is %yz—{— %nz—z, the
function
gE G—=>< v* F(g) > on G
satisfies a differential equation

Q< v*, F(g) >= (VY/2+n%/6—2) < v* F(g) >.

Let (z*, V*) = (74 »» Vin.m), 1€, 1-dimensional representation of K with
highest weight (n, 7). Fix a generator v, in V*, and write F(g) = ¢,(g)v, with
¢o(g) € C*(G). Then the radial part of c,(g) satisfies

> 3 d 1 2
- = <4+ —— — =
[d7’2 y dr +n.m_+ 2 (4—v)]1cy(a) = 0.

Now assume that the functions in the image of the intertwining operator ¢ is

slowly increasing at infinity on the split component A. Then up to scalar multiple

Co(a) = 7’3/21}[7(),,,(2‘/57') (b= =N > 0).

This result coincides with the construction of Goodman-Wallach (cf. [G-W],
Lemma 7.3, (I1)).

The computation in §5 for the discrete series goes through also for the
principal series by setting

d,=k=0 and A, =21,=v.
§ 8. Comments on L-function and its Special Values

As far as the authors know, the only complete result and proof for the
functional equation of L-function associated with the “standard representation” of
the dual group GL (3, C) are those of Murase and Sugano [M-S], who discuss these
for holomorphic modular forms.

The method indicated by Gelbart and Piatetski-Shapiro [G-Ps] does not seem
to be worked out completely up to now. Because we have done the local computa-
tion at the real place, the other local problem is to work at p-adic ramified places,
among others, at the place dividing the discriminant of the given Hermitian forms
defining U(2, 1).

The results of [M-S] give not only the functional equation but also a descrip-
tion of certain special values of L-functions in terms of Petersson inner metric.
Consider the special case when the weight of holomorphic modular forms is 3. The
interesting thing is that, contrary to the case of Hilbert modular surfaces (cf.
[02]), the special values are not the periods of 2-forms on algebraic surfaces, but
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a product of such periods because of the Riemann-Hodge period relation for Picard
modular surfaces.
This is a fact. But we wonder why it is, and what is the meaning of this!

Recently Kenji Taniguchi obtained explicit formulae for the discrete series
Whittaker functions with minimal K-types for certain groups of rank 1 (cf. [T]).
It seems interesting to have functional equation of L-functions on Sp (1, 1) by the
method of Andrianov.
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