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Abstract

In terms of classical Bessel function, we represent explicitly the radial part of Whittaker
functions on S£7(2,1) belonging to the large discrete series representations. Moreover we
compute archimedean local L-factors corresponding to a construction of L-function by
Gelbart and Piatetski-Shapiro.

§ 0. Introduction

The real semisimple group SU(2,1) has three types of discrete series: one is
holomorphic discrete series, another anti-holomorphic, and the other neither
holomorphic nor anti-holomorphic. The representations of the last type are large,
in the sense of Vogan [V], namely their GeFfand-Kirillov dimensions coincide with
the dimension of the maximal unipotent subgroup. A theorem of Kostant [K] then
assures, for such a representation, the existence (and the uniqueness) of the
Whittaker model in the C "-context. In this paper, we give an explicit formula for
(the Mellin transforms of) ^-finite vectors in such a Whittaker model, and
applying this formula we evaluate certain local zeta integrals.

Firstly, we express the minimal jRT-type Whittaker functions in terms of the
modified Bessel functions (Theorem 4.5). The computation is based on the method
of Yamashita [Y-I], [Y-II]. With this result in hand we calculate the Mellin
transforms of general K-finite Whittaker functions (Theorem 5.5). Here we use the
fact that the representation is j?f-multiplicity free.
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To a generic representation of the quasi-split unitary group in three variables
over a local field, Gelbart and Piatetski-Shapiro [G-Ps] attached certain zeta
integrals. Among other things, they computed explicitly such integrals for
unramified Whittaker functions in the case where the base field is p-adic. They
turn out to be Langlands' local L-factors in this case.

We shall compute the same local zeta integrals in the case where the base field
is real and the representation belongs to the large discrete series of U(2,1). We
then express the "greatest common divisor" as a product of three gamma functions
(Theorem 6.8). A local zeta integral depends on the choices of a ^-finite vector in
the Whittaker model of a given representation of £7(2,1), a quasi-character of
Cx, and a M-finite test function in the Schwartz-Bruhat functions on C2. Here M is
the toral part of the Levi component of the standard minimal parabolic subgroup
of SU(2,1). The zeta integral vanishes if the M-types of these three choices are not
compatible. Therefore it is necessary to consider all the 7f-types to find a test
function of good M-type.
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§ 1. Root Space Decomposition and Iwasawa Decomposition

In this section, we fix basic notation recalling the fundamental results on the
structure of SU(2,1) and the associated Lie algebra su(2,1) .

1.1. Basic notation
Let GL(3, C) and SL(3, C) be the complex general linear group and special

linear group of degree 3, respectively. We denote by diag(xl, x2, £3) a diagonal
matrix of degree 3 with (i, i)-entry xl for each i = 1, 2, 3. Put 72 1 = diag(l, 1, — 1).
Then we denote by G the group SU(2,1) defined by

Stf(2, 1)= {flreSL(3,C) '0/2ll0 = / 2 l J .

Here tg is the transpose of g, and g the complex conjugate of g.
We fix a maximal compact subgroup K of G once for all:

K =
ffll 012 \ , ^ , ^ f f f l l 012

C7C2), 033^^(1), detl ) • 033=1
921 022/ \021 022

The homogeneous space G/K is a Hermitian symmetric domain, isomorphic to a
complex hyperball of dimension 2.

1.2. #oo£ system and root space decomposition
The Lie algebra g of G is given by

SU(2,1)= UeM3(C) I 'X-/2 i l+/2 i

^Y Y\ A2 A3

The Lie algebra f of K is

'- f'"IV o x

Put

! e u(2)f Z3 ̂  u(D, fr^+Xg = 0 f.

"2 0

Then we have a Cartan decomposition
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g=?ep.

Since G/K is hermitian, we have a decomposition

such that p+ is identified with the holomorphic tangent space at the origin
1 • K e G/K.

We have

0

and

P_= 12 '

O/

We fix a compact Cartan subalgebra t in £ by

3

t= {diagCV^T/z, , -P\hi , V^T/Zs) I A, e B. £ A, = 0}.
1 = 1

The root system 2 — 2Xgc , tc) is given as follows. We define linear forms £i;- on
t cby

fc2 , /z3)) = ht-hj (i * j, 1 < if y < 3).

Then S = {/8f; i =£ ;, 1 < z, ; < 3} . We fix a positive root system Z+ =
{ j 3 i j \ i < j } .

Let g^ be the root space associated to/5 G Z. Then g^c:fc if /S e {^12 , /S21}, and
9^c^c if ̂  ^ {£12 . 02\}- The set of compact roots is given by Sc

 = {^12 , £2J» an(i
the set of non-compact roots by

•^-"w == 2-i ~ Zjc — 1PJ3 , P23 , Psi , P32J •

Put Zc,^ - Sc n IL and Sn,_ - Zn n S+.
Let ^y be a matrix of degree 3 with (/c, /) entries (5^,5^ (6kt are Kronecker

delta). Then Ei3 is a generator of the root space g^ . We define X^ by

,;) = (2,1)).
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1.3. Iwasawa decomposition
A maximal abelian subalgebra a of p is given by a= R ' H\ with

/ . o n
# i = 0 0 0 .

\1 0 O/

We define a linear form el on a by e^H^ = 1. The root space g2ei is Rj^ with

0

1 -I/

From now on we use the convention that unwritten components of a matrix are
zero. Put

-1

Then the root space g^ is REZt+@REZt_ . 5

n2ei isgei©g2ei= REl

Then n is a maximal nilpotent subalgebra of g. We define elements H'l2, H^, and Z
of tc by

l.^. = | 0

-II

andZ =

Here is the Iwasawa decomposition gc
 = tc®ftc®n c °^ ̂ e root vectors

associated to non-compact roots.
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Lemma (1.1).

Y = J - f 7 ' + ± f 7 + - L F -*ia 2 «i3+ 2 -HI+ 2
 £i-

v IT' _i_ EJ ^ z? .A 3 i ~ 7 r H-is'T' ~ 2 M I ~ 2 l '

Y = -Y - ~7? -i-zr^23 A 2 1 2 A 2 , ^ 2 £ 2 i _ ,

_ 1 «

2 2

§ 2. Irreducible /f-modules and their Tensor Products with pc

In this section, we firstly parametrize integral linear forms on tc and irreduci-
ble ^-modules. We then describe, for an arbitrary irreducible ^-module V, the
projectors from the Jf-module F®PC onto irreducible components in terms of
"standard basis". We later apply this explicit description to the study of differen-
tial equations satisfied by Whittaker functions.

2.1. Parametrization of irreducible K-modules
We fix a Cartan subgroup T of K, which is also a compact Cartan subgroup of

G, by

T:=exp(t) =

We denote by f and LT, respectively, the group of unitary characters of T and the
lattice of T-integral forms. Then LT is a lattice in V~ 11*, t* = Hom^tt, R), and
there exists a canonical isomorphism

f = LT, x *-* the differential of x-

In this paper we identify LT with Z®2 by the following

Convention (2.1). The differential of a unitary character

is identified with (m, w) e Z02. (Cu stands for the group of complex numbers
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with absolute value one.) D

The roots /3i; £ Z = £(gc, tc)
 are T-integral, and are parametrized as follows:

compact roots: 012 = (1, — 1), P21 = —012 = ( — 1, 1)
non-compact roots: £13 = (2, 1), /331 = — /313 = ( — 2, —1),

£23 = (1 ,2X032 = -023 = (-1, -2).

The inner product on LT induced from the Killing form is given, up to
constant multiple, by

< (m, n),(w',w') >= 2mm+2nri—mri—nm.

Thus, the set L J of dominant T-integral forms (dominant with respect to the
system SCi+ = {012} of compact positive roots) is given by L^ = { (ra, n)
<EZ 0 2 m > n}.

The irreducible ^-modules are parametrized by the above set via highest
weight theory. For // = (/^ , #2) e Lj, we denote by (r^, Tp the irreducible
representation of K — £7(2) with highest weight # . The associated irreducible
representations of Kc — GL(2, C) and fc — g f(2, C) will be denoted by the same
symbol. The degree of (z^ , Jp is given by dimc Vfl = d^ + l, d^: = /JLI— //2- The
restriction of T^ to T splits into the following T- weights: // ( = the highest weight),

JJL —p12, '", fJL — dpPu (= the lowest weight). We denote by (r * , 7*) the contra-
gredient of (r^ , 1£). Then v £ Lj appears in (r * , Fp as a T- weight if and only if
—v appears in (r^, Tp. Hence

(T;, ^;) = (r^, 1^0, /£* := the highest weight of (r;, F;) - -

Each irreducible fc-module (r^ , 1^) has a basis {t;JJ I 0 < k < d^} on which the
elements Z, H'n , ̂  , X^n , X^^ of f c act as follows:

Hence y2 an(i ^o are a highest weight vector and a lowest weight vector, respec-
tively. This basis {v% 0 < /c < dj is unique up to multiplication by a common
non-zero scalar. We fix {v% 0 < k < d^} for each//, and call it the standard basis
o f V , .
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Throughout this paper we shall keep the following

Convention (2.2) . Suppose given a ^-module M, isomorphic to VM or V^ . Let
{fk 0 < k < dp} and {gk \ 0 < k < d^} be two families of elements of M. We then
use the notation ~ in the following way:

fk ~ ffk ̂  there exists a constant 7 e C x, independent of k,
such that fk = jgk for k = 0, ••• , d^ .

2.2. Tensor products with Pc

We regard the 4-dimensional vector space pc as a Kc- or f c-module via the
adjoint representation Ad or ad, respectively. Then P+ and p_ are invariant
subspaces, and

P+= cx
P_= CJ

Given an irreducible .fiT-module ^ we have 1^®PC= (V^®P + )®(^®P_) , and
Clebsch-Gordan's theorem implies the following decomposition of

Here we use the convention that 1^ = (0) if v ^ LT is not dominant. We hence
have

with

under the above convention.
The above decompositions of ^,®PC induce the following projectors:

and

P,0/):=

P20<):=
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In terms of the standard basis, they are expressed as follows:

Proposition (2.3). Under convention (2.2), one has

(1) P1
+(//)«0^i3) ~ (/c+lK:f13 and P1

+(//)«^^23) ~ C^-fc+lK^' for

0 < k < d^, and P^G-0 1 F®p is #10 zero-map,

0 < /c < d^, <2wd PI~(//) y ® p + is #i£ zero-map,

(2) P2
+G/)«<8>^13) ~ -^^32^dP2

+(^)(^^^23) ~ ^If32/or 0 < ft < d, (where

we put v%~~^z = 0 for k = — 1, dj, and P2
+ (//) | ̂ 0p zs ̂ e zero-map,

(20 P2"(//)«0^32) ~ <^13 and P2~(^)«®^31) ~ <lf13 for Q < k < d^ (where

we put v%~^13 = 0 /or /c = — 1, d^, and P2~(//) ^®p + is the zero-map.

Here one should note that

Proof. We prove only (1) and (2). The decomposition of 1£®P_ shows that
z) I Fy8)p is the zero-map for; = 1, 2. In the decomposition

is a lowest weight vector of the ^ ^-component. Hence we may put

P1
+(^)(^®Zfe) = rU. + lK^'3, P2

+(^)«®^23) = 0,

with 7 e= Cx. The action of the powers of Xffa on both sides yields

(a)
(b) P 2

+ C U ) ( w J | _ 1 ® X f l + w j ; ® X ) = 0,

for 0 < /c < du + 1, under the convention v^j = v^ ^ = 0. On the other hand, a
lowest weight vector of the I£ -^-component is a linear combination of v%®X0i3 and

t and it is annihilated by Xffzi. From these facts we find that —d^
is a lowest weight vector, and we get

with 5 £ Cx. The action of the powers of J^^ on both sides yields

(c) Pr(//)((A:-l-^)<_10^i3+/ct;^X^3) = 0,

(d)
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for 0 < k < dp + 1. The assertion (1) (resp. (2)) is then deduced from (a) and (c)
(resp. (b) and (d)). D

§ 3. Whittaker Model of Discrete Series and Schmid Operator

3.1. Parametrization of the discrete series representations and their K-types
Let us recall the Harish-Chandra parametrization of the discrete series

representations of SU(2, 1) .
The Weyl group of G is the symmetric group @ 3 of order 3. Let Z+ be the

initial positive root system defined in Sect. 1.2. Then other positive root systems
are given by s(! + ) (s ^@3) . Among them, those compatible with the given
compact root system Zc + are s/(Z + ), s /7(Z+), and s/77(Z_). Here S! = id, su =

-
32/ ' SIH~ \3 Il

Let J be a variable taking values in {/, //, ///} . We define a subset 57 of the set
LT = {A = (/i , Z2)

 e z®2 1 li ^ U of dominant weights by

Ef = {A= (/! , Z2) <A, fr > 0 for any root in S/Z + )}.

Then

3 7= {A= a j . / z ) ! / ! >0, Z 2 > 0 } ,

S f f= {A- ( Z l f Z 2 ) / ! >0, Z 2 < 0 } ,

and

Em= {A= ( / l f Z2) Z ! < 0 , Z 2 < 0 } .

Then the set E/UH//UE/// parametrizes the discrete series representations of
SU(2, 1). We may call those representation parametrized by H/, holomorphic
discrete series, and those parametrized by Em, antiholomorphic discrete series.

Let pc be a half of the sum of compact positive roots; it is given by

pc = — filz in our case. Given a Harish-Chandra parameter A£=EJt letpw be the half
z

of the sum of non-compact roots in s/(E+). The Blattner parameter, namely the
highest weight of the minimal ^C-type, of the discrete series representation TTA is
then given by A = A—pc+pn.

The Gelfand-Kirillov dimension GK- dim(7TA) of TTA is given by

2 i fAeE5 7 US / 7 / ,

3 i f A < E 5 7 / ,
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(cf. Yamashita [Y-III]). The representations TTA with A e Eff are hence character-
ized as large discrete series representations ofG = SU(2, 1) (cf. Vogan [V]). Since
G is quasi-split, the results of [V] and Kostant [K] imply that every such represen-
tation has a Whittaker model in the C°° context.

Throughout the following we shall investigate the large discrete series
representations of G = SU(2, 1). For such a representation, the Harish-Chandra
parameter A coincides with the Blattner parameter A. Note that if TTA is the large
discrete series representation with Blattner parameter A, then the contragredient of
TTA is also a large discrete series representation, with Blattner parameter A* (cf. Sect
2.1):

Here is an observation that K-types of the (large) discrete series representa-
tions of SU(2, 1) are multiplicity free, which plays an important role for our later
computation of Whittaker functions in § 5. More precisely we have the following.

Proposition (3.1). Let (TTA , Hx~) be the large discrete series representation with
Blattner parameter A. Then

H I ~K~ ~ ffi T/ W*i ft*" — ffi TV*/2A I /Y — wm> „ > o Vx^m013+nj3sz , n. A| j\ — *&m< n > o vx+m$^+npM

as K-modules.

Proof. This is an immediate consequence from the Blattner formula (cf. [H-S] ,
Theorem (1.3)).

3.2. Whittaker functionals
We recall some fundamental results on Whittaker model in this section. Put

N = exp(n). Let 77 : Af -* C* be a non-trivial unitary character of N. We denote by
the space of C°°-f unctions #>(#) on G satisfying.

for any n e N, g e G. By the usual semi-norm system, we equip a structure of
Frechet space on C"(AT\G). The group G acts continuously on CJ°(MG) by the
right regular action.

Let (TT, #) be an irreducible unitary representation of G, and HK be the K-f inite
vector in H. Then we denote by Hom(g ^(TT, CJX^AG)) the intertwining space
from HK to C7?

C°(MG) as compatible (g, K) -modules. This is the space of algebraic
Whittaker vectors.

In our case G = SC/(2f 1). Then Gmax given by
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Gmax= { f l r€=G c |Ad( f lOg=g} ,

is equal to G itself. Hence, for A £ 5/U5//US///, the transform of TTA with respect to
an element gQ of Gmax is isomorphic to TTA . Therefore we have

dimcHom (gi^(7rA, C"(MG)) = 2, or - 0,

since the order of the (little) Weyl group W(g, a) is 2 (cf. Kostant [K]).
Let XjGV\G) be the subspace of C~QV\G), consisting of right K-fmite slowly

increasing functions. Then Wallach's variant [W, §8] of multiplicity one theorem
(cf. Shalika [Sh]) implies that

f l , i f A E E E 7 / ;
dimcHom( ^(TTA, J^(MG)) =

10, if A E E E j U H ^ .

If A = A e En , we denote by Wh^n^ the image of a non-zero element of the above
intertwining space.

3.3. Differential operator 3) ^ ^
Let (TTA , H^) be a large discrete series representation with Blattner parameter

A . Following Yamashita [Y-I] , [Y-II] , we identify the intertwining space
Hom(g ^(TT^, C~GV\G)) with a solution space of a partial differential operator.

Let (T^, T£) be the irreducible X"-module with highest weight #. Assume that
(r;, Fp occurs in T T * , namely // e A+Z> 0 A3+Z> 0 /3 3 2 (cf. (3.1)). Fix a #-
equivariant linear injection V* c /Z"A* .

Consider the restriction map

Then Homjr(F , C"OV\G)) = {C??
00(MG)0 F}^ is identified with

= {^: G-> FA, C°°-function |

V(w, ^ ft)

Let C~(G/lO denote the space of T^- valued C°°-f unctions ^ on G satisfying

<?(0ft) = ^(fc)~V(^) for g e G, /c e K

We define a ( J£ (8) Pc)- valued C°°-function V^<p on G by
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Here, RY<f>(g) = ~~9^9 ' exp(£7)) t = Q, and {X{ I < i < 4} is an orthonormal

basis of p with respect to the Killing form of g. Obviously the map V^ :
C™(G/K) -> C™®Ad(G/K) commutes with G-and gc-action from the left. Therefore
we have a naturally induced differential operator V^ : C™T(N\G/K) -»
C~Ttf(8Ad(JV\G//O . The tensor product r^® Ad = r^® AdVc decomposes as

where

and

with (5(/3) = 1 or =0 and 6(—&) = 1 or =0, according as fjL-\-0 and //—/3 are
dominant or not, respectively (cf. Sect. 2.2).

Let P20
/): ̂ ^cf* ^~ ^e the projector to the facter V~. Then we set

^,,(<P(9» = P2(^)(V,,^(flr)) (^ e C^QVXG/tf), flr £ G).

Theorem (3.2) ([Y-II, Theorem 2.4]).
Le£ (TTA , //"J /be ^e /arge discrete series representation of G with Blattner

parameter L If X is far from the walls, then the assignment

W^ HomCf l i J0Or; f C"OV\G)) ~ Fw e Ker(^,A)

xs a /z'wear isomorphism.

Remark. As we see later, the assumption "far from the walls" is not necessary
for G = S£7(2, 1), since dimc Ker(^ A) = 2 , and W •-> F^ is injective.

In subsequent sections, we explicitly compute ^iA and P1(/w)(V7?i/z<p(*)) to
describe the image of elements in Hom (8 i J f )(^, C^CMG)).

§ 4. Explicit Formula for the Minimal Jf-type Whittaker Functions

4.1. Radial part of V^ and their projections
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Let A = exp(a). In view of the Iwasawa decomposition G = NAK, the space
C~Tix(N\G/K) is identified with the space C°°(A, J£) of C°° -functions on A with
values in VM.

We denote by r^ r and r^ r- the identifications

and

Then we define the radial part R(,SHn i / £) of ^,>a by

o r~l : C°°U, VJ) - C°°U,

We want to have an explicit description of
There is a positive constant c depending on the normalization of the Killing

form such that the set

forms an orthonormal basis of p with respect to the Killing form. Then

V F= 2c2°(V+ +V~ )FV7?,//1 ^u V. v?7,/z ' vrj,fjLS-L

with

and

W'f* X013 f-3i ~023 ^ac

For F in C~Tfi(N\G/K\ we denote by <f> its restriction to A. We denote by 8$ the
restriction of the operator Hl

(Hf) I A = drf*.

We identify a= R#i with R mapping H! to 1. Then A = exp(a) is identified with
R>0 = exp(R) = {r G R ', r > 0}. The image of a £ ^4 in R>0 via this identifica-
tion is denoted by r(a).
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Proposition (4.1).
Let <f> be an element of C°°(A, V^. Then the radial part #(V^) of V^ is given

by

(0

Similarly for the radial part R(V~^ of V~^ we have

(ii) #0^)0 = y{ai

Proof of Proposition (4.1).
The proof is easy. We indicate only some key points of computation.

- -r/X)0(a). Hence for X GEf and F^PC ,

f 7].

By definition, RHiF(a) = dl<f>(a\ and simple computations show

and

This shows the part (i) of Proposition. The part (ii) is discussed similarly.

4.2. The minimal K-type Whittaker functions
In this subsection, we give an explicit formula of the elements 0 of C

which comes from W e Hom(g ^;(TT^ , j^(MG)) . By (3.2), it satisfies the differen
tial equations P2(A)(^(V77

:;A)0) = 0. Put d = dx = Ax — A2 and write
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d'

with coefficients cjj(a) = cA(a) (0 < k < d), where v£'s are the standard of P5 (cf.
Sect. 2.1). Then we have the following

Proposition (4.2).
(i) The equation P2(A)(JR(V77%)0) =0 is equivalent to a system of difference-
differential equations'.

(C2
+)A: (0!-A;+A2-2)cA(fl)+r(fl)77_-c fc+1(fl) - 0 (0 < k < d~l\

(ii) The equation P2(D(R(V~x)<f>) =0 is equivalent to a system of difference-
differential equations'.

(C2~) f t: (^ + A;-2d-A2-l)c f c+1(fl)-r(fl)77^-c f c(fl) =0 (0 < k < d-1).

we put

Proo/. Note first 77 | ̂ tll]= 0, because 77 is a charater. Hence rj(E^) = 0.
We put Xp2S = WQ , Xpi3 — wl . Set v = X — /332 . Then,

.,

«*

Input
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in the above formula. Then

1
- — r(a)77_

which shows the part (i) of Proposition. The part (ii) is shown in a similar way.
Now via the identification

a = exp(£#i) ^ A = exp(a) •-* r = r(a) = el G R > 0 ,

we regard 0 and ek as functions on R > 0 . Then d1 = — = r -3— is the Euler operator
CLu ar

in r.

Assumption (4.3). We assume that 77+77 _ 3= 0, namely

77(^2,+) ^ 0 or 77(£2,-) ^ 0.

Then (C+)^ and (C2.)^ are equivalent to

and

If we determine crf(r), then by the recurrence formula (Ci)A > we can determine
cd_i(r), — , c0(r).

Lemma (4.4). Represent cd_v , c d _ 2 > ""» co downward recurrently by (C2.)^.
T/zew f/ (C+)d_! xs satisfied by cd and cd-lt then all the (C2

+\ (0 < /c < d — 1) are
satisfied by ck (0 < /c < d).

Proo/. The proof is easy. We omit it. D

We want to determine {c^(r)}^ = 0.
Each cfc(r) satisfies a differential equation:

. fd2 (-2d-3) d f(fc-2d-A8-2)(-ft+A2-2) llc W-0
' [dr* r dr \ r2 +77+77_|Jct(.rJ - 0.
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Noting —477+7?_ > 0 for 77+ and ?7_ are purely imaginary numbers, we change the
variable r by x = </— 477+77 _ r, and set

Cfc(r) = j , ) wt(aO (0 < fc < d).

Then vk satisfies the Whittaker differential equation.

with ic = 0 and m2 = (k-d-^2 - (/c-A^2.
Because the image of C~°°-Whittaker functionals should be of moderate

growth for r-> +00 (cf. Wallach [W]), vk(x) is a constant multiple of the unique
solution of GO :

with the required growth condition (cf. Magnus-Oberhettinger-Soni [MOS] , (Chap.
7). Note that the Whittaker function WK ,m(:r) reduces to the modified Jf-Bessel
function if K = 0:

Recall that we have the inequalities

A! > 0, A2 < 0, and d = Aj- A2 > 0

for the parameters. By the above discussion, we may put for 0 < k < d

Here jk is a some constant and b = —TJ^T]_ > 0.
By the recurrence formula

+1(r) (0 < A < d-

we have
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where we set

_ J_

- + - 2-f for m 6= Z.

Note that the J^-Bessel functions satisfy

(£ + f )*.« = -*,-,«

(cf. [MOS],Chap.3). We rewrite this relation as

^JWo.J = -y WU-!

to get

Theorem (4.5) . Normalize the constants jk by jd = 1. T/iew for Q < k < d,

with

b = -77+7?_ > 0,

~ \d~k / \
\ ( W-- =

§ 5. An Explicit Formula for K-f inite Whittaker Functions

In this section, we firstly give some recurrence relations for weight vectors in
jK"-type subspaces of Wh^n^), using the fact that Wh^n^) is ^"-multiplicity free.
We then translate them into recurrence relations for the Mellin transforms, and
give an explicit solution of this translated relations.

5.1. Recurrence relations for K-finite vectors in Wh^nf)
The elements c£(*) (0 < k < dA) of the Whittaker model Wh^n]), to which

we have given an explicit formula in the previous section, are the weight vectors
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in the minimal K-type subspace. We now investigate the weight vectors in all K-
type subspaces. Note that the algebraic sum of such vectors coincides with the
space Wh^n^K of ̂ -finite vectors.

Let// denote, as before, a general element of A + Z>0 /81 3+Z>0 /832 with

V = 0*i. #2X dp

Since n\ is ./f -multiplicity free (cf. Prop. (3.1)), WTz^TTp contains a unique K-
invariant subspace which is ̂ -isomorphic to V*. Call Wh^n])^ this subspace.

We fix a basis of Wh^x^* which agrees with {c£(*) I 0 < k < dx] if p = A.
Let {(vjjj)* 0 < k < d^} be the basis of F*, which is dual to the standard basis
«| 0 < /c < dp} of ^ (cf. Sect. 2.1): < < , (vj1)* > = % Choose a ^-isomorphism
7;= Wh^xfo* and let {cJJ(*) I 0 < k < dj be the image of {«)* | 0 < k < dj
under this isomorphism. Each cj^(*) is a weight vector of weight //*— k/3l2 =
— #-h(d0— /c)£12, and the basis (c^(*) I 0 < k < d^} of Wh^n])^* is unique up to
multiplication by a common non-zero scalar. We denote by c£(r) the restriction of
c£(*) to the subgroup ^4:

In §§2.2 we have defined the projectors P* (//)(; = 1, 2):

Proposition (5.1). Let dl be the differential operator r~jr~ on R>0 and put
^^r) = c^u+1(r) = 0 . One then has, under convention (2.2),

(1) c^f13(r) ~ (/c+l)(51+//2+2^-/c)^(r)-(^-A:)77_<+1(r) (-1 < k

(2) c^32(r) ~ (^-/c+l)(ai-^2+A:)^(r)+/C77+<_1(r) (0 < /c <

Proof. Since WT^Trp^ is stable under £/(gc), the correspondence

defines a ^T-equivariant map from F*+/SIS into Wh^n*j)K hence into W^CTrp^+^g)..
We then have, by Schur's lemma,
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with a constant r e C, and similarly

with a constant 5 £ C. Here we find, from (4.1) and (2.3), that these relations are
rewritten as follows (cf. the proof of (4.2)) :

(*) the right-hand side of (1) =r0r<^+?13(r) (-1 < k < d^),

(**) the right-hand side of (2) =50<5c£+f13(r) (0 < k < d^

Here 70 and dQ are non-zero constant independent of k. Our task is, hence, to show
that rS =£ 0.

Suppose r = 0. Then we use (*) firstly with k = — 1, secondly with k = 0, and
so on, to get firstly c% (r) = 0, secondly cf (r) = 0, and so on. Hence a contradiction.
We can show 6 =£ 0 by a similar argument. D

5.2. The Mellin transforms of K- finite Whittaker functions
Let// be an element of /H~Z>o£i3+Z>0/332 and k an integer with 0 < k < d^.

From the explicit formula (4.5) and the recurrence relations (5.1) we see that
c£(r) decreases exponentially when r-» +°°, and that c£(r) remains bounded
when r-> +0. We hence may consider its Mellin transform

):= r c£Wrs-ldr OMs) > 0).
Jo

The Mellin transform of the modified Bessel function WQtTn(x^) is well-known (cf.
[MOS],p.91) :

WQ m
/O L

Applying this to (4.5) we get, under convention (2.2),

(5.2) M;*(s) ~7/c(Xr) r(y(s-/c+2^ + A2+2))r(

Using integration by parts we translate the recurrence relations (5.2) for c£(r) into
recurrence relations forM^(s):

(5.3) M

(5.4)

The solution of (5.2), (5.3) and (5.4) is given as follows:
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Theorem (5.5). Let ft = A+ra/313+w/332 (m, n e Z>0). For x e Zandp e Z>0 ,

(p > 0) and lx; 0] = 1.

Then M^+W2(s) is expressed in the following two ways:

(i) M£+m(s) ~ rl

fm
(2)

From this we immediately have the following

Corollary (5.6). Let C[s] be tfie n'wg of polynomials in s over C.

(1) M^f^(s)/M^m^(s) G C[s] (t > 0), and

(2) M^/^'HsVMr^Cs) e C [s] (i > 0), and
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(3) M,A+^13-t-^32+^2(s)/M0
;i+m^+w^(s) e C[s] (i > 0), and

1

(4) M :̂?4^ EE C [s] (i > 0),

[ _1

In the following we prove (5.5).

Proof of (5.5) (1) #ie case n = 0 and (5.5) (2) m ?/ie case m = 0.
In the case n = 0, (5.5) (1) reduces to

and in the case m = 0, (5.5) (2) reduces to

(cf. (5.6) (1), (2)). Suppose that the functions Af^+J^Cs) andM^+^32(s) are given
by these formulas. Then they clearly satisfy (5.2). We also see
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(note that rj^k+l = 7kjb}. Up to a non-zero constant independent of k, the last
expression is equal toM^l^+^^Cs). We hence have shown the first recurrence
relation (5.3). Similarly, we have

^

(note that —7]+rk-i
 = 7 * & ) . Up to a non-zero constant independent of k, the last

expression is equal to M^^^Ks). We hence have (5.4).

Proof of (5.5) (general case) . We prove (5.5) (1) by induction in n ((2) is
proved by induction in m, in the same way). We have done the case n = 0 in the
above. Suppose that (5.5) (1) is true for n. By recurrence formula (5.4) we then
have,

The assumption of induction, together with the relation (x+1) O; p~\
[rr+1 ;£ + !], implies

( |7~ \-s n fn
- "

2

Noting —rj+rk-i = TkJb, we similarly have
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We thus get

(*) / Jh \~s Vn1 i
2_i A>F(—Cs —

with

1 1 _! i

-n-l)~1r(—(s-/c-A2+2))

fn\ / n
x{ (s-/c+A2-2w)+ (s-A;+A2+2)}

W

n),
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An+l = [/c-fm; w + 1] (s-/c+A2+2)

xrc-ks-fc-;

- 2[/c+m; w

We hence find that the terms forp = 0 andp — n + l in (*) are twice of the desired
terms forp = 0 andp = n + l for M^^13"("+1)^32(s), respectively. As for the terms
for 1 < p < n we use the equality

n
(s-/c+A2+2) =

P-IJ P

and find that the term for£ in (*) is twice of the desired term. This completes the
proof. D

5.3. The case of U(2, 1)
We denote by G the real reductive group (7(2, 1) = J7(/2,i). It has the

semisimple part G = SU(2, 1) and the center ZG — C(1). An irreducible representa-
tion of G is determined by its restriction to G and its "central character".

Let 7tx be, as before, a large discrete series representation of G with the
Blattner parameter A = (Aj , A2) (Aj > 0, A2 < 0). Its "central character" is given by

r-is-^r"1^2 (rec(1),r3 = D.

Suppose given an irreducible representation ft of G with £| G = 7^. We shall
investigate the contragradient n* rather than n itself. The "central character" of
ft* is given by

with an integer v , and the datum (A, v) determines ^* completely. We put
n* = 1t\ v. The representation space of ft\ v remains to be H\, and the smooth
vectors of ft{ v remains to be (H£)°°.

The (smooth) Whittaker functional for (ftl v , 77) is , by definition, a continu-
ous linear functional L on (H£)°° satisfying
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l „(»)!;*) = T/OOUi;*) (n GE N, v* e(77p°°).

Since 7 r ] J i V #=7^1^, "this is nothing but the (smooth) Whittaker functional for
(TT 1 , 77) . On the other hand, the Tif -finite members W" (resp. W) of the smooth
Whittaker model Wh^ft^ v) (resp. WTz^Trp) are in one-to-one correspondence with
K- finite members f * of (7/p°° via

We hence get

Proposition (5.7). The K-finite Whittaker functions W in Whn(it\ „) and
K- finite Whittaker functions W in Wh^n^) are in one-to-one correspondence Via

T/zzs correspondence gives an K-isomorphism between Wh^nl ^K and Wh^n])^

§ 6. The Local Zeta Integrals and the Gamma Factor

Gelbart and Piatetski-Shapiro [G-Ps] attached certain zeta integrals to a
generic representation of the quasi-split unitary group in three variables, defined
over a local field. In this section we shall evaluate these integrals in the case where
the base field is real and the representation belongs to the large discrete series of
£7(2, 1). We shall see that the "greatest common divisor" of the integrals turns out
to be a product of three gamma functions.

6.1. The Mellin transforms F® (h; s)
LetFbe the real reductive group £7(1, 1) = £7(7^) and H its semisimple part

S£7(l, 1) = SUUi,i). There are several subgroups of H to be listed:

(r-r"1)
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Then Z(fT)K' is a maximal compact subgroup of H, which is also a compact Cartan
subgroup of the reductive group H.

The group H naturally acts on W:= C2 from the left. Let &(W} be the
Schwartz space on W. Fix the left action of H on 5^( W} via

-w;) (/z e 5, <D e5^( W), ti; GE W).

Fix an isotropic vector ^ in the Hermitian space (W, Ilt j) by

We also fix a quasi-character a): Cx -* Cx. It has two parameters w0 e C and
co,eZ:

(6.1)

The Mellin transform F£(/z; s) of O e &(W), which was introduced in [G-Ps], is
defined by

F£(h',s):= f ( A < D ) ( t f ) o > ( O k l c r f x ^ (h ^ H, s ^ C)Jcx;cx

where dxt = dt/ \ t |c is the normalized Haar measure on Cx.

For a 4-tuplep = (mj , Wj, m2, w2) of non-negative integers, define an element
by

.*-ir>ex (--I* iV^ex (--k I2) (u, = Me HO
\22/

Then the linear span of the subset {(D^}^ is dense in Sf{ W) (cf. [RS], Appendix to
V.3). We evaluate the above Mellin transform at O = O^,.

Using the Iwasawa decomposition H = Z(H}Z(N}AKf we write h ^ H as

/•4* -i^
(*) A = e*

\ * i *,
\ Y ^Y6/

We then have, for p = (ml, nl, m2, w2),
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Using the polar coordinates t = pel* and the change of variable — = x, we find

F£p(h\ s) =

x f °° X
Jo

p

x I
«/o

We thus have the following

Lemma (6.2). Lg£ h ^ If be as in (*) and p = (ml , nl , m2 , n2). Then

(1) F£ (/z; s) = 0 unless a)l = nl+n2—ml—m2 .

(2) 7w #ze case Wj = nl + n2—ml—m2 one has

£p(h', s) = c0

c0 is an absolute constant different from 0.

6.2. 77z£ ZoazZ zeta integrals Lw(s, PF, O) and their greatest common divisor
The group H = £7(1, 1) is embedded in G = £7(2, 1) by

The groups ZCfiT), ^', ^4 and Z(JV) are thus regarded as subgroups of G. We
parametrize the elements of the first three groups as follows:

(r-r"1)/2\
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The local zeta integral of Gelbart and Piatetski-Shapiro (in the Archimedean
case) is defined by

= f
Jz

(O <

with a Whittaker function PF on G which belongs to a generic representation (cf.
[G-Ps]). We evaluate this integral for our ./f-finite Whittaker functions W which
belong to the large discrete series representation ft\t v (cf. Sect. 5.3).

From now on we assume, without any loss of generality, that W El Wh^ftl J)
is a weight vector contained in a K-type subspace. If we denote the weight of W by
—p, then p belongs to the set of weights of nx (cf. Sect. 3). Hence we may put

(6.3) the weight of W = -p,
p = A+3813+/£32 = (A1 + 2e-/, A2+e-2/) (e,/e Z>0) .

Lemma (6.4). The above W satisfies

(n

Proo/. We have 17(nflr) =^(»)W r(flr) - T7(^) for ^ e G and
AT], hence WW = ^U(^)a(r)/c/(^)). Write

le

eil

1
a = —

We then have, by (5.7) and (6.3),

We now calculate Lw(s, W", O) for the above W and for O = <DP with
p = (ml5 nlt mz, w2) . By (6.2) (1) we assume that nl + n2—ml — m2 = 6^. Then
(6.2) (2) and (6.4), together with the Iwasawa decomposition H =
Z(N)Z(H)AK', imply that Co"1 times L?(s, W, O) equals
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Pin
exv(( — hl-\-2v—f+nl — ml + n2—JQ

r2n
x I exp(( — A} — 2e-+-f+nl — m1 — H2JQ

Hence Lw(s, W, O) does not vanish only if

— Xl + 2i>—f+nl—ml + n2—m2 = — Xl — 2e+f+nl — ml — n2+m2 = 0,

namely,

(6.5) nl — ml = h^v + e, n2—m2 — —v—e+f.

Suppose that (6.5) is the case. Then, firstly, the above condition
nl + n2—fnl — m2 — (*)l is equivalent to /= — A1 + 2^ + w1. Secondly, the "greatest

common divisor" of {r(s + o>0 — —(jL>l
Jrnl-\-n^)}p is written as r(s + ct>0+c(e)) with

Li

(6.6) c(ey= -ya)1+y{U1-v+e)+ \^-v+e\ +(-v-e+/)+ -i/-e+/|}

= y{| e + A!-^ I + i e + Ai-^-W! |}.

Summing up, we have established

Proposition (6.7). Let W be as in (6.3). Then Lw(s, W, Op) does not vanish for
some p only if the following condition is satisfied:

(f) /= -A1

If this is the case, the "greatest common divisor" of {Lw(s, W, O)}p is written as

zs defined by (6.6) .

Let Lw(s, TTA* y) be the "greatest common divisor" of the family {Lw(s, W, Op)},
where W runs through ^-finite vectors in the Whittaker model Wh^1t\ v) and O
runs through the Schwartz space 5^( W). Combining the above proposition with
(5.6) we can show the following
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Theorem (6.8). Let co be the quasi-character of Cx fixed via (6.1) with two
parameters a)0 £ C and o)1 e Z. T/iew L"(s, n\ „) is given as follows:
(1) 7 /A 2 —2y < CL)J < A!~2n then Lw(s, ̂  v) coincides with

I)).

(2) // wj < A2-2n f/wn Lw(s, n^ ,) coincides with

-L \ T-» X , i ( \ 2 _l_ I _|_ I 34- I ^^

(3) Ifa)l > ^-Zv, then L"(s, ft^ „) coincides with

6.3. Proof of Theorem (6.8)
In this subsection, we prove the main theorem (6.8). By (6.7) our task is

reduced to determine the "greatest common divisor" of

for all e e Zand// e A-hZ>0 /51 3+Z>0/S3 2 , where TF is a non-zero T- weight vector of
weight — (A + e$i3+J5332X contained in a JT-type subspace W^(^§ ^) /u* of Wh^nl J

is If-isomorphic to V*). Here we may pu t /= —
(i > 0). We then have

With an integer e fixed, let F(s; e) be the "greatest common divisor" of the family
{r(s; e, 0)},.
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Lemma (6.9). The above F(s; e) is given as follows.
(1) Suppose f < 0 and e > -dx orf> -dx and e < 0. Then

_
r S' ̂  ~

(2) Suppose f < -dx and e < -dx. Then

F(s; e) - r(s +

(3) Suppose f > 0 awd 0 > 0.

F(s; e) -

Proo/. (1) follows from (5.6) (1) and (5.6) (2), (2) follows from (5.6) (3),
and (3) follows from (5.6) (4). D

We now determine the "greatest common divisor" of {F(s; e)}e , which
coincides with the function Lw(s, n\tv) in question. Note that the conditions
/12— 2y < ojj < Aj — 2v, &>! < /12— 2i> and col > ^l — 2p in (6.8) are equivalent with
-dx < f < 0, / < -dx and / > 0, respectively.

Proof of (6.8) (1). Suppose that A2-2v < c^ < ^^2^, namely, -dx </< 0.
In this case the desired expression for Lw(s, n\ y) is nothing but F(s; /). In fact,
one immediately checkes this by using (6.9) (1), the expression

(cf. (6.6)), and (5.2). Our task is, hence, to show that F(s; e)/F(s; /) is a polyno-
mial in s for every e e Z. By (6.9) (1) and (5.6) (1), (2) we have

F(s;

X ,
1 -1-^-(/+/I1)+e—/) --e < fL

Hence F(s; e)/F(s; /) is obviously a polynomial in s if c(e) > c(/). We therefore
suppose that c(e) < c(/). The definition (6.6) of c(e) then implies in the case

e>f
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f< Mini-At + v, -^

and in the case 0 < /

These facts, together with above expression for F(s; 0)/F(s;/) , show that
F(s; g)/F(s; /) is a polynomial in s even if c(g) < c(/). This completes the proof.

D

Proof of (6.8) (2). Suppose that o^ < A 2 —2^, namely, /< — dA. In this case
the desired expression for Lw(s, 7fAi „) is nothing but F(s; — rfA); one immediately
checks this by using (6.9)(1) (or (2)), the expression c (—d A ) =—(! a){ — A2 + ^ I +

I -A2+v |) and (5.6)(1) (or (3)). We shall show that F(s; e)/F(s; -dj is a
polynomial in s for every e e Z.

In the case e > -dA we use (6.9) (1) and (5.6) (1) to get

and in the case e < -dx we use (6.9) (2) and (5.6) (3) to get

In both cases we immediately have F(s; e)/F(s; —d A ) e C[s] if c(e) > c ( — c
Suppose, then, c(e) < c( —d A ) . By (6.6) we see that if e > —d^
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< Mini — ̂ i + v, —A!

and that if e < — dx

— dx > Max{ —

- - ^ H - A i - v - f i ) ^ - ( / + A 1 ) + A 2

We hence have r(s; e)/F(s; — dA) e C[s] in both cases. This completes the proof.
n

Proof of (6.8) (3). Suppose that a)l > A!~ 2z^, namely,/ > 0.. In this case the
desired expression for Lw(s, TTA v) is nothing but F(s; 0); one immediately checks

this by using (6.9) (1) (or (3)), the expression c(0) = — (| a)l — A! + V 1 4-

-^ + 1 ^ 1 ) , and (5.6) (2) (or (4)). We shall show that F(s; e)/r(s; 0) is a
polynomial in s for every e e Z.

In the case e > 0 we use (6.9) (3) and (5.6) (4) to get

r(s; *)/r(s; o) -

and in the case e < 0 we use (6.9) (1) and (5.6) (2) to get

s; 0) -

In both cases we immediately have F(s; e)/F(5; 0) £ C[s] if c(e) > c(0) .
Suppose, then, c(g) < c(0). By (6.6) we see that if e > 0
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0 < Mini-^ + v, -A^y + cuJ,

c(0) = -*, + !/+ ycu, = y(/-Ai) ,

and that if 0 < 0

0 >

c(0) = A!-*- yWl = -y(/-Ai) ,

-e - - y

We hence have F(s; 0)/F(s; 0) ^ C[s] in both cases. This completes the proof of
Theorem (6.8). D

§ 7. Comments for the Case of Principal Series Representations

The method of computation for local zeta integral applies not only for the
discrete series but also for the principal series. In fact the case of the principal
series is even simpler than the case of the discrete series. We remark some basic
facts for the case of the principal series in this section.

7.1. Definition of the principal series
Let us recall the definition of the principal series representations. The

centralizer M of a in K is given by

M={ e-21'9 \\6&E}.

For each integer n e Z, we denote by %n the character of M defined by

diagC**, e~m, e16*) ^M~eine e C*.

Let is e QC= HornR(a, C) be a complex-valued linear form on a, and p the
half-sum of the positive roots in <D(g, a). Let gv+p: A -» C* be a continuous character
of A given by
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Then we can define a character xn, »-rP °f a parabolic subgroup P = MAN by

Zn.jH-pCfl) = %n(m)R+p(a) for£ = man e P (m e M, a e A, n e TV).

The representation space of Indp(%Wi v+p) is given by

M, /c e #}.

Any function / is extended to a function / on G via a decomposition g = pk
EE G = PK:

/(<7) = *„.„+,(/>)/(*).

Since M = P n # and /<E L2
n(#), this is well-defined. The action TT of G on

# = {/ ! / e L2
n(7f)} is defined by the right regular action

Then TT = Indp(^n v+p) is a Hilbert representation.

7.2. K-types
We want to describe the ^-types of the principal series. It is enough to know

the action of K on L2
n(K}. The multiplicity of r of K in Indp(%n> ^+p) is given by

[TT, r] = Z_ -T: w ] ' t % w : co],
we / rnM

where [r : co] and [%n : w] are the multiplicities of a; in r |^-nM and %m \KnM respec-
tively (cf. Knapp [K], or Vogan [V, (4.5.*)]). In our case, KHM = M. Hence

[TT: r] = [r|M:^].

Let r = Ty be an element of K with highest weighty = (jLtl, //2)- Then the weights
of r are given by

where d^ = / / j — //2- The restriction of each weight space with weight jy.—kfil2 to Af
is an M-module of dimension 1 with respect to a character

%{/w1-/c}-2^2+/c} = X{(^- 2^) -3A:} •

Therefore
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ITU: rj - #{/c e Z | 0 < k < ̂ -//2, (^1-2//2)-3/c = n] < I.

In particular when/Zj = JJLZ , [TT: rj =1 if and only if (JJLI , #2) — (~w , — n). Now
it is easy to check the following.

Lemma (7.2). 77&£ multiplicity of r^ in Indp(#n f i ,+p) £s 1 if and only if

/j. — m1/813-(-m2^32+(~"W, — n) u;£#& some non-negative integers ml, m2.

Otherwise it is 0.

7.3. Infinitesimal character
We calculate the eigenvalues of the Casimir operator on the principal series

representations in this subsection. In general, given a basis {-X"Ji<z-<8 of g, let
{fflJ}i<ij<8 be the inverse of an invertible matrix {tr(XiXj)}l<iJ<8. Then an
element

of the universal envelopping algebra £/(g) is a constant multiple of the Casimir
operator, because a bilinear form defined by (X, F) GgXg-> tr(XY^) is a non-zero
constant multiple of the Killing form. Then element L does not depend on the
choice of basis {X{} .

The Cartan involution on g is given by

0QD = -1X for X eg.

Put tl- — #(n). Then it is the nilpotent algebra opposite to n. Let nr be the Lie
algebra of M or the centralizer of n in t - Then we have a decomposition:

The expression of the operator L with respect to a basis

{9(El\ 0(£2i+), 0(£2>_), H, , M, = /^TdiagCl, -2, 1), E1 ,

is given by
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T — ^ ff2 -1-M2

~ ~2 ~ 6

= ~H2- ~M2- ±-

The C°°- vectors H^ of the representation space H of the principal series
representation n is contained in C°°(G), the space of C°°-f unctions on G. Since L
is in the center of £/(g), it is both left and right invariant tensor field. Therefore on
C°°(G) the right regular action of L coincides with the left regular one. The left
regular action of Hl , Ml , El , E2t± onf^H^ are given by

M1/=V=T»/, Ej=E2i±f=Q.

Therefore

Lf= 4-(-v-p)2+-U2-2(^+p)}/ = (|^+|«2-2)/.
Z b Z b

Here we identify QC with C by mapping ̂ e a c t o i e C . This is the infinitesimal
chracter of the principal series representation.

7.4. Whittaker functions of the principal series
Let TT* be the contragradient representation to it = nn tV. Then

The K- types of TT* is given by

The eigenvalue of the Casimir operator is the same as n :

Q/ = (— v2+ — n2— 2)/ ; / is a smooth vector of n*.

Fix an intertwining operator i £ Hom(g , ^(TT*, C~(JV\G)) . Then for each #-
type (r*, F*) which occurs with multiplicity one in TT*, the restriction c gives an
element F = FL of C™T(N\G/K) via correspondence

* i F* e Hom*(F*, C"OV\G)) = C~T(N\G/K).
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Since the eigenvalue of the Casimir operator Q for n* is — y2+ — n2— 2, the
z b

function
onG

satisfies a differential equation

v*, F(00 >=

Let (r*, 7*) = (r(n n)> F(n > n ) ) , i.e. 1 -dimensional representation of K with
highest weight (n, n). Fix a generator VQ in F*, and write F(#) = c0(0)t;0 with
c0(00 e C°°(G). Then the radial part of c0(sO satisfies

Now assume that the functions in the image of the intertwining operator i is
slowly increasing at infinity on the split component A. Then up to scalar multiple

c0(fl) = r3/X,,(2V&~r) (& - -7?+7?_ > 0).

This result coincides with the construction of Goodman-Wallach (cf. [G-W],
Lemma 7.3, (II)).

The computation in §5 for the discrete series goes through also for the
principal series by setting

dx = k = 0 and Aj = A2 = v.

§ 8. Comments on L-function and its Special Values

As far as the authors know, the only complete result and proof for the
functional equation of L-function associated with the "standard representation" of
the dual group GL (3, C) are those of Murase and Sugano [M-S], who discuss these
for holomorphic modular forms.

The method indicated by Gelbart and Piatetski-Shapiro [G-Ps] does not seem
to be worked out completely up to now. Because we have done the local computa-
tion at the real place, the other local problem is to work at p-adic ramified places,
among others, at the place dividing the discriminant of the given Hermitian forms
defining £7(2, 1).

The results of [M-S] give not only the functional equation but also a descrip-
tion of certain special values of L-functions in terms of Petersson inner metric.
Consider the special case when the weight of holomorphic modular forms is 3. The
interesting thing is that, contrary to the case of Hilbert modular surfaces (cf.
[O2]), the special values are not the periods of 2-forms on algebraic surfaces, but
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a product of such periods because of the Riemann-Hodge period relation for Picard

modular surfaces.

This is a fact. But we wonder why it is, and what is the meaning of this !

Recently Kenji Taniguchi obtained explicit formulae for the discrete series

Whittaker functions with minimal K-types for certain groups of rank 1 (cf. [T]).

It seems interesting to have functional equation of L-functions on Sp (1,1) by the

method of Andrianov.
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