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A Remark on Singular Perturbation Methods
via the Lyapunov-Schmidt Reduction

By

Masaharu TANIGUCHI*

Abstract

For some reaction-diffusion equations, Lyapunov-Schmidt reduction was shown to be
applicable to construct singularly perturbed equilibrium solutions. For this application, it is
indispensable to show that some inverse operator are uniformly bounded. In this paper, we
give an elementary proof of this fact.

§ 1. Introduction

For differential equations containing a small parameter in the spatial
derivatives, there often exist solutions with internal transition layers. Hale and
Sakamoto [1] applied Lyapunov-Schmidt reduction to construct singularly
perturbed equilibrium solutions to Equation (1) below. This method also gave the
stability condition for the solutions simultaneously.

In the following, we briefly sketch the method of [1], with special attention to
the part where our present contribution appears. We consider the following
equation

ut = e2uxi+f(u, x) -l< x< I, t>Q,
(1)

ux(-l, 0 =0 = ^(1, 0. * > 0 .

The function / satisfies the following assumptions.
I./: RXi-l, 1] -> R is of class C°° with/(0, x} = 0,/(1, r) = 0.
2. There exists a positive constant 0 such that

/tt(0, a;) < -3£2, /M(l, r) < -3£2 for -1 < x < 1.
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3. Let /(*) - /o'/U x)ds. Then /(O) - 0 with /'(O) * 0, and /0*/U 0)ds < 0
for we (0, 1).
To construct unknown equilibrium solution u of (1), we begin with a smooth

approximate equilibrium solution U(x, e) of (1) that exhibits a transition layer at
x = 0. We denote u — U(x, e) by w. Then w must satisfy

(2) 0=^ £ w+G(£)+F(w, £),

where

(3) ^u = e2uxx+fu(U(x, e), a:)«,

(4) G(e)Gc) - e2Uxx(x, £)+/(£/(*, e), x),

(5) F(u, £) = /(#(*, c)+w f x)-f(U(x,e\ x)-fu(U(x, e), x)«.

The approximate solution C7(arf e) is constructed to satisfy sup ie [_!,!] I G(e)(x)
— 0(e2). The operator ^fe turns out to have exactly one eigenvalue A j C e ) that
approaches zero as e -> 0, and there are some £0 > 0, #0 > 0 such that the remaining
eigenvalues are less than — ̂ 0 for 0 < e < £0 . Moreover the eigenspace ^(e) is
one-dimensional, and /^(e) = /c^ + oCe) as e -> 0 for some constant /Cj . Let y =
C[ — 1, 1] with the norm

\h\Q= sup I ft Or) for / ie Y,
x^ [-1, 1]

and letX = {u e C2[-l, 1] ; Mz(-l) = 0 = «,(!)} with the norm

w l 2 , e = l M io +£ I WT lo +g2 w » l o for M ex.

Let 0!(e) be an eigenfunction associated with A j C e ) normalized as (12). LetE be
the following projection onto the span of ^(e):

= I utx^fi^x, e)dx01(-, e)/ || 0 1(- f e)
j -\

Eu

and let y!,^ be the null spaces of E in Y, X, respectively. Using the de-
compositions

y - span^Ce)} 0 Ylt X = spanf^Ce)} 0 ^ ,

we split (2) into

(6) A1(£)o:01(£)+^G(£)+^F(a01(£) + w;, e) = 0 ,
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(7) ^Ew+(I-E^G(e}Jr(I-E}F(a(t)l(B'} + w, e) = 0 ,

where u = a^^x, e) + w with a £ R, w ^ Xl. Hale and Sakamoto [1] solved (7)
as w = w*(a, e) with

(8) 10*(a, e) 2 i £ =0(a 2 +£ 2 ) as I a +£^0,

by estimating the second and the third terms of (7) and using the contraction
mapping principle. We substitute w = w*(a, e) into (6), and obtain an equation
for a, which we denote by B(a, e) = 0. Using the fact 1 G(e) 0= 0(£2) and
A j C e ) =/c1e + o(e), we can solve 5(a, e) = 0 as a = a*(e). Here a*(e) = O(f) as
£ i 0. Now the desired equilibrium solution of (1) is obtained by

(9) u = U(x, e)+a*(e)01(j;, £)+t*;*(a*(£), e).

In order to obtain the crucial estimate (8), Hale and Sakamoto [1] used the fact
that (^f6)"1 : Y1 -> Yl is bounded uniformly in £ £ (0, £0]. If the topology of Yl is
that of L2( —1, 1), it suffices for the boundedness that there are no eigenvalues of
&E

 YI around 0, which is known for many years. However, now that Yl is a
subspace of C[—1,1], it is not obvious for the author to conclude the uniform
boundedness directly from the distribution of eigenvalues.

The main issue of this paper is to give a proof to the fact stated above.

Theorem 1. The operator {&*}~l : Yl -> Yl is bounded uniformly in sufficiently
small £ > 0.

§ 2. Preliminaries

We describe how to construct U(x, e) and collect properties of ^£ following
Hale and Sakamoto [1].

Let fo(#X f+Cs) be cutoff functions of class C°°[ —1, 1] with

1 a: I < 1/4
ro xe [ - i f o ]

0 x > 1/2 r+Gr) = U-r0(^) x^ [o, i].
o< r 0 U) < i x^ [-1, i],

r, e) is given by

(10) u(x, e) = r0(2r) {^oC7?)^52!^7?)} +r+(^),

where 77 = r/£. Here 20, z1 are some smooth and bounded functions on R. In
particular ZQ satisfies dzzQ/d7j2jrf(zQ(7]\ 0) = 0 with20("°°) = 0» £0(°°) == 1 and
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(11) </c0exp (-

with some constant /c0 > 0. Then U(x, e) satisfies | G(e) „= 0(e2) as in Lemma
2.1 of [1].

Let AjCe) be the principal eigenvalue of &E, and let 0x(e) be the eigenfunction
associated with AjCe ) normalized as

(12) 0^0, e) = <feo/(fy(0).

Proposition 1 (Theorem 3.1 and Lemma 3.4 in [1]). There exists e0 > 0 such
that the following assertions are valid:
( i ) Aj(e) is simple for 0 < e < e0, awrf satisfies lim g^o^CeVe = /cb

(13) *!= -/'CO)/ I

( ii ) TTigre e:n"s£s a constant tiQ > 0 swc/i ^a^, a// o^er eigenvalues of &E are less than

Ciii) T^gre ejc^s a constant /cz > 0 swc/z ^/z^ I 0iGr, e) < /c2 exp ( — 2/3 a: I /e) /or

0 < e < £0-
(iv) Let $1(77, E) = <f>i(erj, e). TTzen 0(% g) converges to dzQ/drj in C2(JT) as

e -» 0, where K is any compact set in R.

Remark 1. The equilibrium solution (1) is stable if kl < 0, and is unstable if
A! > 0. See [1] for the proof.

There exists a constant /c3 > 0 such that | Eu |0< /c3 1 u 0 for w e 7,
0 < e < £0.

§ 3. Proof of Theorem 1

The following arguments are similar to those given by Ni and Takagi [2] ,
where the inverse operator of another elliptic operator is studied.

We prove by contradiction. Assume that there exist BI > £2 > •••
> BJ > "• > 0 with lim ,•_«, ey = 0 such that there exist 0;- £ Xj and /z;- e Yj satisfy-
ing

^(pj = hj in (-1, 1),
(14)

^(-0=0 = ^(1),dr dx

with
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1 0,1 0=1. \fy o< i/y,
for each; = 1, 2, •••. Let

^.(77) = hj(efl, £;) for 77 EE (-l/£y, !/£,-).
£;-) - .̂(£,77, £;-)

Then

(15)

in ( — I/EJ , l/£;-). Let K = \_ — n, n\ for arbitrarily fixed n €E JV. We consider (15)
in .ft" for sufficiently large;. Since I 0;- 0= 1, the sequence {0;-} remains bounded in
COO. We can also see that

is bounded in C CK") uniformly in;. The sequence {hj} is bounded in C(X"). Hence
from (15), {d2$j/drf} is also bounded in C(K). From the following interpolation
inequality

^77

9

<d "^
d

for every 5 > 0, the sequence {^IJli remains bounded in C2(#) . For any
(9 e (0,1), the imbedding C2(^T) C C1' 0(/T) is compact. By taking a subsequence,
we can assume that {0;-}J°= i converges in C1 ' e(/O. As ; -> °o, we have

, £y), £,-7?) ->/,(20(^), 0),

A 7 7 ) -» 0

uniformly in 77 £ K Thus d^j/drf^r]} converges uniformly in 77 e JT. It follows
that {0;-} converges in C2QO. Let 0^ = lim^^^- in C\K\ Then ll^oollcoo ^ 1-

We apply the argument stated above for each K = \_ — n, n\ with
n = 1, 2, ••• . Then it turns out that 0^ is a bounded function of class C°°(12) and
satisfies

-+fMn\ 0)0^(77) - 0 in R.

This equation has two linearly independent solutions, that is,
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2

The latter one goes to infinity as 77 -> °°. Since $«, is a bounded solution, there must
be a constant c such that

(16) &.(J7) = ^(9).

Here c ^ 0 follows from the next lemma, the proof of which is stated at the end of
§ Qo.

Lemma 1. Let an arbitrary x with \ 0;-Gr) \= Ibe denoted by Xj. Then XJ/EJ must
remain bounded as j -> °°.

Indeed, taking a subsequence, XJ/BJ converges to some 77^ e R. From

we have I fy^tri^ \ = 1. Hence c ^ 0.
Since 0;- e Xlf we have /^ 07-(j;)01(a:, e)cfx = 0, that is,

= 0.

Combining ^(77, ey) < /c2 exp(-2^ | 77 |) and || ^ ilc[-i/£,, i/E;]
= 1> we have

I^A))#i^eP </c 2exp(-2/3 |7? | ) .

From Lebesgue's dominated convergence theorem,

f 000(77)^(77)^ - o,
I/ —OO

which contradicts (16) when c =£ 0. This completes the proof of Theorem 1. D

Proof of Lemma I. We prove by contradiction. Assume the contrary. Then by
taking a subsequence, we have

lim £.•/£.• = °° or lim x,-/£7 = — °°.
;^oo J ^ ;-*oo J J

Without loss of generality, we assume lim j^QOxj/^j = °o. Let
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for (-l-jry)/ey < 77 < (l-xj/e, .

U<JI, e;0 = &r.( eyTj + Xy, £y).

These functions can be defined at least for — 1 < 77 < 0 for sufficiently large ;.
From (14),

= hj in (-1, 0).

Using 0y(zy) 1= 1 and d<f>j/dx(xj') = 0, we have

-^-(0)=0, 1^(0)1=1.

By taking a subsequence, we can assume {z/JJLi converges to some x^ ^ [ — 1, '!].
From lim J^^XJ/EJ = °o, we have e37]-\-Xj > 0. Hence

Using limy^ooX/ey = °° again, we obtain

z^ri+Xj/Bj) +ejzl(r]-l-xj/ej) -> 1,

uniformly in 77 £ [ — 1, 0]. Therefore

converges to 1 uniformly in — 1 < 77 < 0. By quite the same argument as in the
proof of Theorem 1, we can assume 0; converges to some $«, in C2[ — 1, 0] . The
function (p^ satisfies

-^T=-+/B(l, *„)&. = 0 in (-1,0),
CL7]

^(0)=0, #.(0)1=1,

^(77) |< 1 in [-1,0].

By the assumptions for/, /M(l, rO < 0. This contradicts the maximum principle
(see for example, [3]). The proof of Lemma 1 is completed. D
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§ 4. Uniform Boundedness of Another Inverse Operator

In Sakamoto [4] , the following system of equations

(17) l in 0< T < 1, f >0,
vt

 = —vxx+g(u, v}

with the Neumann boundary condition

MT(0, 0=0 = ux(l, 0
t > 0

^(o, 0=0 = vx(i, o
is studied. For the assumption of / and g, see § 1 of [4] . Singularly perturbed
equilibrium solutions of (17) are constructed in [4] for every (e, a) e
(0, £0] X (0, a0] via the Lyapunov-Schmidt reduction. Here e0, CTO are some positive
constants. Let

(18) L£'° = £2-2+fu(U(x, B, a), V(x, e, a)),

where U(x, e, a), V(x, e, a) are approximate equilibrium solutions of (17) as in
§2 of [4]. We denote a complete orthonormal system in L2(0, 1) of eigenfunc-
tions and eigenvalues by (0n(e, cr), Aw(e, cr)} , where /^(e, cr) > A2(e, a) >
/13(£, a) > • • • . The principal eigenvalue A^e, cr) approaches zero as e ->0, and
there exists a constant /c/j > 0 such that all other ones are less than —fjt1. Let
E denote the orthogonal projection onto span {^(e, cr)}, that is, Eu =
(tt^jCe, cr))L2(0 >1)01(e, a).

The following assertion is a part of Corollary 3.2 of [4] .

Theorem 2. The linear operator

is bounded uniformly in (e, a) ^ (0, e0] x (0, a0]. Here I is the identical operator.

The argument as in the proof of Theorem 1 is valid to prove Theorem 2.

Proof of Theorem 2. We prove by contradiction. Assume there exist
el > "• > BJ > "- > 0 with lim^ccCy = 0 and (o]}°°=l C (0, CTO] such that the
following holds. There exist 0;- and hj satisfying

, £;, a,), FU ey, ay))0;. = h, in (0, 1),
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with | 0;- \Q= 1, | ft; |0< I/;, and fQ
l h^x^^Bj, o^)dx = 0. Since Le'° is self-adjoint,

we have

If we replace Lemma 1 by the following lemma and Proposition 1 by Lemma 3.1 of
[4] respectively, the similar argument for Theorem 1 is applicable. We omit the
detail. C

Let x*(ctj} is as in § 2 of Sakamoto [4]. Corresponding Lemma 1, we have the
following:

Lemma 2. Let an arbitrary x with 0;-(:r) = 1 be denoted by Xj. Then
(Xj— j;*((77-))/£; remains bounded as j -> °°.

Proof 'of 'Lemma 2. We only sketch the proof. Assume the contrary. Without
loss of generality, we can assume lim^^tixj— x*(a7))/e;- = °° . Taking a
subsequence, we can also assume {:r;};°°=i converges to some x^ G [0, 1], and that
{Oj}°°=l converges to o^ e [0, a0]. Let 0/77) = 0;(e;?7+x;), which can be defined at
least on [—1, 0] for sufficiently large;. By the same argument as in the proof of
Lemma 1, we can take a subsequence such that {0;-} converges to some 0^ in
C2[-l, 0]. The function 0^ satisfies

- 0 in (-1, 0),

I

I 0,0(77) |<1 in [-1, 0].

For the definitions for h + ( • ) and V, see [4] . In view of the assumptions on / in
§ 1 of [4] , we have

ACA + CVXrCoo, O), ^Uoo, (Too))) < 0 ,

which combined with (19) contradicts the maximum principle. The proof of
Lemma 2 is completed. D
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