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Traces, Unitary Characters and
Crossed Products by Z
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Klaus THOMSEN*

Abstract

We determine the character group of the infinite unitary group of a unital exact
C*-algebra in terms of K-theory and traces and obtain a description of the infinite unitary
group modulo the closure of its commutator subgroup by the same means. The methods are
then used to decide when the state space SKQ(A X fl Z) of the KQ group of a crossed product by
Z is homeomorphic to SK0(A\t or TG4)a. We also consider the crossed product A X aG by a
discrete countable abelian group G and give necessary and sufficient conditions for the
equality T(A x aG) = T(A\ to hold.

Introduction

In connection with the investigation and classification of the unital
C*-algebras which are inductive limits of finite direct sums of homogeneous or
sub-homogeneous C*-algebras a large new class of simple C*-algebras have been
constructed in [T2], [ET], [V] and [T3]. The main feature of these C*-algebras,
when compared with most more familiar simple C*-algebras, is that they are not
topologically spanned by their projections, not even after they have been tensored
with a UHF algebra. This property is reflected by the natural affine map
rA: TG4) -> SKQ(A) from the tracial state space T(A) of A to the state space
S/f0G4) of KQ(A\ Indeed, when A is a simple, exact, separable, unital C*-algebra,
rA is injective if and only if the span of projections is dense in A®Q, where Q can
be any (infinite-dimensional) UHF algebra. This follows from [BKR]. The main
purpose of this paper is to investigate this phenomenon in more detail and to find
out how it can be changed by forming the crossed product corresponding to a Z
-action. It turns out that rA fails to be injective exactly when the connected
component of the unit in the infinite unitary group U°°(A) of A admits nontrivial
real characters. Thus we are lead to a study of the characters of £/0°°G4) and
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£7°°GO and the results are described in Section 1. It turns out that the character
groups can be completely described in terms of K- theory and traces, at least in the
case where A is an exact C* -algebra. In Section 2 we consider a crossed product
A X a 1 of A by an automorphism a and study the relations between the compact
convex sets TG4), SKQ(A\ T(A xa Z) and SK0(Axa£). The natural questions
become: When is SKQ(A x a Z) - SKQ(A)at? When is SKQ(A x a Z) ̂  TGOa? And

when is T(^4 X a Z) — TG4. )tt? Our results give answers to these questions. The
main tools we employ are those developed by de la Harpe and Skandalis in [dHS]
and Pimsner in [P] . In Section 3 we use the de la Harpe-Skandalis determinant to
prove that U™(A} modulo the closure of its commutator subgroup is

homeomorphically isomorphic to the quotient AffT(A)/p(KQ(A^ , where
p: KQ(A) -^AffT(A^) is the natural map. We also obtain non-stable versions of this
and can therefore de-stabilize the results from Sections 1 and 2 for many C*
-algebras. In Section 4 we derive necessary and sufficient conditions for the
conclusion TC4x aZ) — T(A\ to hold. The main tools we employ are those
developed by Connes in [Cl] and [C2] and by Bedos in [Be]. In fact, we obtain the
results for an action of a countable discrete abelian group, not only for Z . Finally,
in Section 5, we give a few applications of our results.

§ 1. Characters of the Infinite Unitary Group

Let A be a unital C* -algebra. Let ^"(-A) denote the real vector space of
bounded self adjoint trace functionals on A and let Homob(KQ(A\ E) denote the
real vector space of bounded homomorphisms K0(A) -> R, where 'bounded' is
defined relative to the order unit [1], cf. [G]. (Note that ^04) is generally only
a pre-ordered abelian group with order unit, but the definition of a bounded
homomorphism in [G] makes perfect sense also in this case, and the bounded
homomorphisms obtained this way are exactly the bounded homomorphisms of
the greatest partially ordered quotient of KQ(A^ , see [G], Proposition 1.1 on
page 2.) When we assume that A is exact the natural linear map

is surjective because every element of Homob(K0(iA), E) is a linear combination of
states, see [G], Corollary 7.21 and [BR]. In the following we will occasionally
consider rA as a restriction map and write <P\K^A) m Place of r^(<p). We first identify
the kernel of rA. As we shall see, the main ingredient for that is the de la Harpe-
Skandalis determinant as introduced in [dHS] .

Let U°°(A^) denote the infinite unitary matrices over A, i.e. C7°°(A) =
lim Un(A\ We shall consider £7°°GO as a topological group in the inductive limit
topology coming from the inclusions E7nGO C U°°(A). Then UQ°°(A) is the
connected component containing the unit in £/°°G4). LetHomc(UQ°°(A), E) denote
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the (continuous) real valued characters on £70°°G4.). We can then define a map

SA : Homc(U"(A\ R) -> ̂ "U)

as follows. Let <p be a real character on £/0°°G4.). Then we set

Let D£/°°G4) and D£70°°CA) denote the commutator subgroup of £7°°CA) and
£/o°°G4), respectively. (It is well known and easily seen thatZ)£7°°GO =D£/0°°G4).)
The formula

(1.1) g Wl(a+w - lim eV(e"^e"^)"

shows that eV = el(a^b} modulo DUQ°°(A) so that
s^(<^)(&). Thus sA(<p) is a continuous real valued homomorphism on the
selfadjoint elements of A and therefore in fact a continuous linear selfadjoint map
on A. For any unitary u in A we have that

u 0 \ /e 2 7 r f f l O \ / M * 0

0 w*/ \ 0 I/ \0 u

showing that sA(<p) is a trace. Thus SA defines a map from Homc(U™(A}, E) to
^T(A ) which is obviously linear.

Let now a be a ^-automorphisms of A and consider the corresponding action
of Z on A. a induces an action of Z on ZT{A) , Homc(U^° (A\ R) and

T0(^l.), R) in the obvious way and we denote the invariant subspaces by
)a, Homc(UQ°°(A\ R)a and Homob(KQ(iA\ R) f l - l respectively. It is clear that s^

maps Homc(UQ°°(A), R)a into ^(^)a and r^ maps ^(^4)a into Homob(KQ(A\
R)a<. We then get the following

Lemma 1.1. Assume that A is exact. The sequence

is exact.

Proof. The injectivity of SA follows from the fact that U™(A} is generated by
the elements of the form em for some a = a* £ MooGO. The surjectivity of rA is
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proved as follows. Let u e Homab(KQ(A\ R)«. - By [BR] we know that a =

r^(r) for some r e^G4). Let m be an invariant mean on Z and define

'(fl) = fJz A

Then r' is an a -invariant trace on A such r^(r') = CL>. That im SA C /cer r^ follows
immediately from the fact that e27dp = 1 for all/) = p* = p2 ^ AfooGO. Conversely,
if re^"GO« vanishes on #0G4), then the corresponding de la Harpe-Skandalis
determinant, AT, defines a continuous homomorphism U™(A} -> R such that
5^(AT) = r, see [dHS]. It is clear from the definition of Ar that Ar is a -invariant
since r is. D

Let i/o^GO denote the characters of £/0°°G4), i.e. the continuous homo-
morphisms UQ°°(A) -»T. We shall now show the relation between
R) and £70°°G4). Define homomorphisms

eA :

and

as follows. For <p e Homc(U0°°(A\ R) define e^(p)(tO = e27n^(w), M
define ^ we identify K^A) = n^U^^A}} by Bott periodicity. For <p e {70°°GO
we then set ^(^) to be the element of Hom(KQ(A\ Z) =Hom(nl(U™(A}},
^(T)), induced by #>: t/o00^) -» T. To see that nA(<p} is bounded, define <p0 :
^4sfl ^T by ̂ 0(a) = <p(e2ma\ Then ^?0 is a continuous homomorphism and since
Asa is a topological vector space there is a continuous linear map o^ : A,a -> R
such that ^0(fl) - e^*0*™. Since e2^^"^3 =^(we27n'Gw*) -^(e27n'G) - e2***™ for all
a =a* EE ^4, we see that CL>9 is a trace. For p = p* = p2 ^ MooOO we have that
^mt^p} =(p(e2mtp^ tE, [a j^ K follows that ^(^) = ^(^) t So that ^(^) is

indeed bounded. Actually, we have shown that there is a homomorphism
KA '• U™(A} -> ^(A\ given by /c^(^) = a)9 , such that TT^ = rA O/CA.

Lemma 1.2. Assume that A is exact. The sequence

0 -> flomc(Wo"U).R) -^ ^

Proo/. Let <p e Homc(UQ°°(A\ R). If e^(p) - 0 it follows that ^?(w) eZ for all
w e C70°°(^l). Since UQ°°(A^ is connected this is only possible if <p = 0, proving that
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eA is inject!ve. Furthermore, the divisibility of Homc(UQ™(A\ R) implies
straightforwardly that im eA C kernA. Let then 0 e kerTTA. By a well known
lifting criterion there is then a continuous map 00: UQ°° (A) -> R such that
e2^0(o = 0(.) and 0Q(i) = o. Then 00(t«;)- 00(w) -00(t;) ^Z for all w, t; e
£/0°°G4) and hence the connectedness of £/0°°GO implies that 00 e Homc(U™(A\
R). Thus 0 = eA((po), proving exactness at U™(A}. Finally, the surjectivity of
nA hinges on the exactness of A : For every s ^ Homob(KQ(A\ Z) there is a trace
co G^GO with a) KQ(A) = s. The de la Harpe-Skandalis determinant Aw: C70°°(-A)
->T is then a character with ^(A^) = s. CD

Note that Lemma 1.2 shows that Homc(UQ°°(A\ R) is the largest divisible
subgroup of £70°°G4). Since a divisible subgroup is always a direct summand in an
abelian group, cf. e.g. [HR], Theorem (A.8), it follows from Lemma 1.2 that

(1.2) Z/cTU) - Hamc(U"(A\ R) 0 Homob(K,(A\ Z).

Note also that the short exact sequences of Lemma 1. 2 and Lemma 1. 1, in the case
a = idA, fit together via KA to form the following commuting diagram:

TCA ^omo6UoU)>z) , Q

n

0 » ffomc(£70
00CA),R) —^ ^04) —^ Homob(KQ(A\R ) > 0.

It follows that we have a short exact sequence

(1.3) 0 -> tCU) ->^U) -* Fomo6(JT0U), R)/#omo6Qf0U),Z) -> 0.

When_we want to relate Homc(U<T(A\ R) to Homc(U°°(A\ R) and f
to Z7°°(^4), the discrete group K^A} comes into play. Since K^A) =
^^)/^o°°U)_there are natural maps Horn(K,(A\ R) -> Homc(U°°(A\ R) and
^(yl) -> UQ°°(A) obtained by composing a character of K^A} with the quotient
map £7°°(^L) -> ^(^4) and there are natural maps Homc(U°°(A\ R) ->
Homc(U™(A}, R) and £7°°CA) -^ C70°°C^) obtained by restricting characters of
U°°(A) to £70°°CA). As a result we get the following

Lemma 1.3. The sequence

0 -> ^om(^U), R) -> Homc(U~(A), R) -> Homc(U~(A), R) -> 0
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is exact.

Proof. The only non-trivial assertion is that #omc(£7°°(^O, E) ->
Homc(UQ°°(iA\ E) is surjective. Let <p e Homc(U™(A), E). Then <p factors through

Since Wo00 GO = DCTGO we have that ^GO/Z^GO c
Because E is divisible, <p, regarded as a homomorphism

>R, admits an extension to {7°°GO/£1700GO; i.e. <p: Z70°°GO
-> E admits an extension to a homomorphism £7°°(yO -> R , see e.g. [HR],
Theorem (A.7). Since <p is continuous, and £70°°GO is a neighbourhood of 1, the
extension is automatically continuous. D

Lemma 1.4. The sequence

0 -*

Proo/ The proof is the same as for Lemma 1.3 and hence omitted. D

We can now summarize with the following

Theorem 1.5. Assume that A is exact. There is then a natural exact sequence

0 - ^U) - CTGl) ^JT-(A) - tfom0&Of0G4), E)/#owo6af0U), Z) - 0

a factorization

E).

Proof. The exact sequence is obtained by combining (1.3) and Lemma 1.4. To
get the factorization observe first that it follows from (1.1) that every element of

£70°°G4) is of the form eia for some a = a* ^ Mn(A\ modulo DU°°(A^). Hence

is divisible as a subgroup of U^tA^/DU^tA) and therefore a
direct summand, see e.g. [HR] , Theorem A.8. It can easily be seen that one can

choose the projection (7°°(^)/JDf/00(^) -> £70°
c \A) I 'DU~ 'GO to be continuous.

Consequently the extension in Lemma 1.4 splits and hence £/°°GO —
. Combine this with (1.2). D

Note that the factorization obtained in Theorem 1.5 is not natural.
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§ 2. Crossed Products by Z

Now we consider the crossed product A x a Z and ask when the state space
SXoCA xa Z) of the A Xa Z is affinely homeomorphic to SKQ(A\f. The natural

inclusion i: A-* Axa% induces an af f ine map Si.: S^T0 (A X a Z) -* SJf0 (^ )a.. This

map is always surjective when A is exact. (Every state s of KQ(A) which is a *
-invariant comes from a trace state of A which is a -in variant by Lemma 1.1 and
this trace extends in a canonical way to a trace state of A Xa Z. The corresponding
element of SKQ(AxaX) is mapped to s by S£».) Therefore the question is only
under which conditions Si * is injective.

By the Pimsner-Voiculescu exact sequence, [PV], Si * will be injective when
HamtK^A^a,, R) = 0. But this condition is certainly not neccesary, reflecting the

fact that there can easily be elements in Hom^K^A^^ R) which do not extend to

a bounded homomorphism of KQ(A xa Z). To answer the question we first review
a result of Pimsner from [P].

For any trace r£ &~(A x a Z) there is a homomorphism A° : K1 (A )g a -»

such that

where u^ £7°°(^4) is an element with [_u] GE/j^ Cd. )a . and AT:

R /rQif0GO) is the de la Harpe-Skandalis determinant associated to r. Let
q : R->R/rGfiLoGO) be the quotient map. Then

Theorem 2.1. (Pimsner) The sequence

0 -> r(J

This is Theorem 3 in [P] for n = I, except that we do not assume that r is a
state. The proof is the same.

When r^^(A\ we denote the canonical extension of r to Axa 1 by f,
and call it the dual trace of r. We define a map h : Homc(U0™(A\ R)a ->

Homob(KQ(A Xa Z), R) by /&(0) = ^XaZ(s^(0)) and we let gA denote the restriction

), R).

Theorem 2.2. Assume that A is exact. The sequence

0
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is exact.

Proof. Exactness at Ham^K^A}, R)f l. and Homc(U°°(A'), R)tt follows from

Lemma 1.3.
Exactness at Homc(U~(A), R)a : Let <p e Homc(U°°(iA\ R)a . Then r =

(w*)) = <p(wa(w*)) = 0

for all we £7°°G4) such that [M] e^UX,. So by Theorem 2.1

(XoCA Xa Z)) =5,4 o^(^)(jT0(^l)). The last group is 0 by Lemma 1.1, so we see
that gAW e /cer h. Let then 0 e Homc(UQ°°(A\ R\ and assume that h<p = 0. This
means that s^(</>) (KQ(A X a Z) ) = {0}. By Lemma 1.1 there is then a 0e
Homc(UQ°°(iAXa Z), R) such that s^XaZ(0) = s^(0). <p extends to an element of

Homc(U°°(AXaE), R) by Lemma 1.3. (We use here, and in the following, that
^4 xfl Z is exact since ^4. is). The restriction of this element to U°°(A\ considered as
a subgroup of U°°(A xa Z), gives an element <p0 e Homc(U°°(A), R)a such that

Exactness at Homob(KQ(Axa Z),R): If s ^ x'm /&, it follows immediately from
Lemma 1.1 that s l/r0oo= 0- Conversely assume that s ^ Homob(K0(A Xa Z), R) and
that s l j fo W)= 0. Choose r ^^(^4 xa Z) such that r #0uxaz) = s. Note that Theorem
2.1 implies that two traces on A xa Z which agree on ^4 must restrict to the same
map on KQ(A xa Z). Therefore we may assume that r = d> for some w G ^(A\.
Since s induces the zero map on KQ(A) we conclude from Lemma 1.1 that
w = sA(<p) for some <p G Homc(U™(A), R)a. Then /z(<p) = s.

Exactness at Homob(KQ(A\ R) f l -: Let 0 e Homob(KQ(A\ R) a > . By Lemma 1.1

there is an a -invariant trace o;£^(^4)a such that w ^Ou)— 0. Then

= 0. n

Now we consider the question of when the natural map /c(co) = ^ X a z(^)

gives a homeomorphism T(A\ — SKQ(A Xa Z). This is answered by the following

Theorem 2.3. Assume that A is exact. The sequence

zs

Proof. Exactness at Ham^K^A), R) t t t follows from Lemma 1.3 as before.

Exactness at Homc(U°°(A\ R)a follows from Theorem 2.2 because s^ is injective.
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Exactness at 3\A )a : k o SA o ̂  = /i o ̂  = 0 by Theorem 2.2, so im sA®gAC. her k.
If <p e /c0r /c it follows that 0 £ /cgr r^ and hence that <p = s^(0) for some 0 e
Homc (UQ°° (A\ R)a by Lemma 1.1. Then ft(0) = 0 and hence </> & im gA by
Theorem 2.2. Consequently <p ^ ww s^ o ̂ . Exactness at Homob(KQ(A x B Z), 1)
follows from exactness of ^4 xa Z and Theorem 2.1. D

In the next section we show that when the natural map ^([
#0G4) is surjective and the natural map 7T0(£

= -K\GO an isomorphism, we may replace the infinite unitary groups,
and C/o^U), occuring in Theorems 2.2 and 2.3 by Z7nU) and f/0

nU),
respectively.

§ 3. The Infinite Unitary Group Modulo
the Closure of its Commutator Subgroup

Above we have used the de la Harpe-Skandalis determinant to relate traces on
A to characters of £70°° (^L ) . But the de la Harpe-Skandalis determinant provides

direct access to the structure of L/0
00(^)/DU0

0°(^1), not only to the characters of this
group. Let us review the construction of de la Harpe and Skandalis in a way which
allows for a non-stable version.

Let AffT(A) denote the space of continuous affine real valued functions on
TG4). Let w eNU {oo}. For every piecewise smooth path 77: [0, 1]
such that 77(0) = 1 we define An(7?) e A f f T ( A ) by

TU).

The crucial observations are now that
(1) An(?7) depends only on 7? up to homotopy (with fixed endpoints) and

(2) An(fltf2) =An

see [dHS], Lemme 3. It follows that An defines a homomorphism A°n \n^
->AffT(A\ For n = °°, where ^ ([7°°(^)) = #0GO by Bott periodicity, A^ is
the canonical map p : K$(A} -> A f f T ( A ) , the dual of which is n. For each w we
can now define a continuous homomorphism

A n :

by An(w) - ^(An(7?M)), w e U0
n(A\ where a : AffT(A) -AffT(A}/'^(^(

is the quotient map and r\u is any piecewise smooth path in £70
n(^4) from 1 to u.
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Lemma 3.1. her An = DUQ
n(A\

Proof. Let A0 denote the subset of Asa consisting of elements of the form
x—y, x, y £ Asa for which there is a sequence {cj C A such that x = St- cfct* and
y = Sf c^c,-. By [CPMo is a closed subspace of Asfl. Furthermore, we have the
following equality for any a £ Asa:

(3.1) s u p { \ a ) ( a ) :a)^T(A^} =inf{\\a-x\\: x^AQ}.

(This equality was only proved when a > 0 in [CP]. But, as observed by
Blackadar in [B], it holds generally. The argument for this is the following: The
inequality < is trivial, so it suffices to prove the reverse. By the Hahn-Banach
theorem there is an element <p e (Asa/Ao) * of norm 1 such that the right hand side
equals <^(^(a)) |, where n\ Asa -> Asa/AQ is the quotient map. By 2.7 of [CP]
<p o n is a norm 1 trace functional on Asa, showing that the right hand side is
< sup{\ co(a) : a) is a norm 1 trace functional on Asa}. But every trace functional
onAsa of norm 1 has the form tajl — (1 — t)a)2, where t B [0, 1] and colt a)2 ̂  T(A\
Therefore the last quantity equals the left hand side of (3.1).)

An is a continuous homomorphism so we get the inclusion DU^(A) dker An

for free. To prove the reversed inclusion we consider only the case n = °° since the
case n < °o is similar and simpler. Let u e her A^. Then u e U"(A) for some

and UQ(A^) ^DU™(A} is closed in £/0
nG4). If suffices to find w e U£(A) n

such that || w — u; IK Ine for any pre-chose e> 0. Since w ̂  ker Aoo we can
find m ^ N and a piecewise smooth path 77 : [0, 1] -> U"(A} such that 77(0) = 1,
77(1) = w and a piecewise smooth loop 7 in £7m(^l) such that
| |An(?7)-Am(r) l l<6. SetT?^^*. Then || Aw Oh) ||< e. Using (3.1) we can choose
a e ^lsfl such that II a IK 6 and A^C^)^) = w(a), w e TW). Define ?72; [0, 1] ->
£70

mU) by 772(0 = ^(Oe'23^. Then || 7;2(l)-w ||< 2;re and Am(7?2)= 0 . Note that
7/2(1) = ue~2ma ^ U^(A^). Thus we can conclude the proof by showing that
7?2(1) <E Z)£70

mG4) . By [dHS], Lemme 3, (the proof rather than the statement),
there are selfadjoint elements alt a2, -~, ak e Mm(A\a such that 772(1) =11*= l eZjnaj

!^.) =0, Vw e T(MmU)) . By (1.1) 7?2(1) =e2ldx mod D^U ) where
;r = I!*=i0y. We assert that g2OT'x e DZ70

mU) . Since w(:r) = 0 for all we
T(MOTGO) it follows from (3.1) that there is a sequence {x{} C Mm(A)SG such
that x{ -> x and each 2:,- is of the form Sf = ! &;-6;-* — &/ 6;- for some

b2, "-, bN e Mm(^l). To see that e27Z^ e DU™(A} it therefore suffices to prove
that e«

6&*-&*« e DU"(A) for all 6 <E MWU). Let v e R, // >|l & || Then w;, =
tb+y is invertible inMm(A) for all £ e [0, 1] and ut = wt(wt*wt}~^ is a path of
unitaries in £7mG4) connecting 1 to u\ . Let c = b+fi and observe that
bb*-b*b =cc*-c*c and u^cu* = cc* . Consequently g27n"^6*-6*&) = e^^-c^ =

e27dcc*u*e-2iacc*Ul= 0 mod DU0
m(A^. D
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Theorem 3.2. Aw gives a homeomorphic group isomorphism

/or every w ̂  N U {°°}. /wparticular,

Proo/. Let a = a* e A and consider the path r(0 = e2mta . Then

An(r)(w) = &>(#), a; e TG4), so An is clearly surjective for all n £N. From
Lemma 3.1 we get immediately that Aw induces a continuous group isomorphism

U0\A)/DUf(A) -A//TGO/A°BUi(tfnGO)). It therefore suffices to prove that
the inverse is also continuous. To see this it suffices to observe that the inverse can
be described as follows. For a e Asa set O(a) = p(e27da) where £: tf0

nGO ->
is the quotient map. If the map TGO 3 w -> 6)(a) is in
we know that e2ma e DC/0

n(A) by Lemma 3.1 since A^(e27Iia) = 0
in this case. This shows that 0 is well-defined as a map O :

• £/o"G4)/Z)£/on G4). O is clearly the inverse of the map
induced by Aw and its continuity is readily established, also in the case n = °°.
n

Corollary 3.3.

0

Proo/. As already used in the proof of Theorem 1.5, U™(A)/DU°°(A) is a
divisible subgroup of U°°(A)/DU°°(A) and hence a direct summand. D

Note that the inverse O of An constructed in the proof of Theorem 3.2 takes

values in U^A) mod DU"(A}. Therefore we see that £70
n(A) is generated, as a

group, by C^GO and Dt/0
n(A). There must be more direct ways to see this.

The main virtue of Theorem 3.2 in connection with the results of the preced-
ing sections is that it in many cases allows us to replace C70°° in the statements with
UQ for some finite n GEN. This is because of the following corollary.

Corollary 3.4. Assume that the natural map ^({
is surjective. Then
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farjdl k>n, and hence Homc(U~ (A) , R) = Homc(UQ
n(A\ E) and

If in addition the natural map ;r0(£/BGO) -> ^(Z

- ZTGO.

Proof. The first assertion follows immediately from Theorem 3.2. The second
follows from the first by comparing the extension in Lemma 1.4 with its non-stable
analogue

o - TT^OTU)) - zru) -> *ru) - o. n

Note that the assumptions in Corollary 3.4 are known to hold with n = 1 for a
large class of C* -algebras, see e.g. [R], [Tl]. In fact, it seems to be an open
question if this is always the case when A is simple and infinite dimensional.

§ 4. Restricting Traces on A xa G to A

Let G be a discrete abelian group and a: G^»Aut(A} an action of G on A. In
this section we give a general criterion to decide when the map R : T(A X a G) ->
T(A\, obtained by restricting traces on A x a G to A, is a homeomorphism. In
relation to the subject of the other sections the main interest here lies in the case
where G =1, but the more general case is not more complicated.

It is well known that R is surjective in general and that it can easily fail to be
injective. We first prove that R always preserves the extreme boundaries.

Lemma 4.1. Let B be a unital C* -algebra and A C B a unital C* -subalgebra.
Assume that B is generated as a C* -algebra by A and a family % of unitary A-
normalizers. Let T(A^ denote the trace states of A that are invariant under the action
ofAdu for all u e ^: Then the map T(£) -> T(A )t- obtained by restricting traces to
A maps deT(B} into

Proof. Let w e <3eTC6) and assume that a) A= tp.^ (1 — t)n2 for some
ju l f fi2 ^ TG4)t- and some t e]0, 1[. We must show that j j . l = fi2 = a) A. Let (TTW,
^o» 0w) De tne GNS-representation of B corresponding to co. Then </)„ is a cyclic
trace vector for ;rw(5)" and hence also separating. By the Radon-Nikodym theorem
for traces on von Neumann algebras there are unique central elements
zlt z2 ^ ;rwG4)" such that

By uniqueness of z{ and invariance of ^, we see that 7rw(w)2z-;rw(w*) = zit i =
1, 2. Thus ^! and z2 are central in n^B}" which is a factor because a) is extremal
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in T(5). Consequently zl and z2 are scalars and fjL1= fi2 = a) \A. D

We shall also need the following lemma due to Erik Bedos. In the proof of
Proposition 11 of [Be] he established the following

Lemma 4.2. (Bedos) Let JV'be a von Neumann algebra and 0 : G -* Aut(JV*)
an action of the discrete abelian group G on Jf which admits an invariant normal trace
state. If v/rx^G is a factor, the action $ must be outer.

When a; is a state of A we denote the corresponding GNS-representation of
A by (TTW, JTW, 0W). When to is a-invariant there is an action aw: G ->
Aut(7raj(AT^ extending a, in the sense that 0^(7^(0)) = 7^(0^(0)), a ^ A. The
Connes spectrum of a *, will be denoted by r(aw), cf. [Cl].

Theorem 4.3. Let (A, G, a} be a C*-dynamical system with G a countable
discrete abelian group and A unital and separable. Then the following four conditions
are equivalent'.

(1) R : T(A xa G) -> T(A\ is a homeomorphism.
(2) r(aj - G for all o> e <5e(TU)J.
(3) 7rwG4)"xajS is a factor for all co (= <5e(TG4)J.
(4) a co zs properly outer for all co ̂  de(T(A )a).

Proo/. Note that a^ must act centrally ergodically when a; G de(TGOa).
Therefore (2) and (3) are equivalent by a result of Connes and Takesaki, Corollary
3.4 in [CT] . We prove that (1) =» (3), (3) =» (4) and (4) => (1). Represent ^
covariantly in the standard way such that A Xa G is generated by A and a unitary
representation u of G implementing a. It is wellknown that R injective if and only
if

titaug) =0, a&A, g^ G\{0}

for all// £ TUx aG).
(1) => (3): Let we ae(TU)a). Take ^ e TU xa G) such that 0 |^= w. Then

fj, must be extremal in T(A Xa G) and hence n^A x aG) /x is a factor. It is standard
to prove that because < 0^, 7^(0^)0^ >= 0, a ^ ^4, g' ^ G\{0}, we have that
7uu(A X aG)" is isomorphic to Tr^AY'x^G which is therefore a factor.

(3) => (4): Letw e de(T(A\). Assume there is a non-zero elementh £ G such
that a* is not properly outer. There is then a non-zero projection e £ 7^04)" such
that a^(e) = e and such that a* le^uA is inner. By a lemma of Borchers, see [Bo],
Lemma 5.7, or [GKP], Lemma 8.9.1, it follows that a* is inner on c^e^n^A)"
where c(e) is the central support of e in nJ^A)". Then a^(c(e))7rwG4)'' reduces
at and the action of a* on a^)(c(e))7raj(^l)// is conjugate, via o£, to its action on
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cW^U)" for all g e G. Set

p= V
ge G

It follows easily that a* is inner onpjr^A )". But£ is a central aw-invariant non-zero
projection, and hence p must be 1 since w £ dg(TGOa). Consequently a* is inner
and hence 7rwGO"x a^G is not a factor by Lemma 4.2.

(4) => (1): It suffices to fix a unitary w e ^4, a non-zero element h ^ G, an
6> 0 and a trace state # G dg(TG4x a G)) and prove that |# (U>W A ) |<e. Let
o> = 0 U and define & e 4irtOrwGO") by & = 4<frrw(tt;)oa* and £ e^AirtC^GO")
by fi = AdTr^wUh). a) e de(T(A)a) by Lemma 4.1 and a* is therefore properly
outer by assumption, and hence so is J3i. But /3i is clearly conjugate to 0 so we
have that ft is properly outer on n^A}" . Let e> 0 and let .4 z £ /, be a maximal
family of orthogonal non-zero projections in n^A}" such that

\\ fa^wu^f^e Vie/ .

Then S,-/, = 1, because if not we can consider e = I- Sz-^ * 0. By [C2], 1.2.1,
there is then a non-zero projection / < e in n^A}" such that || /&(/) I <e contra-
dicting the maximality. With ̂  the cyclic trace vector for ̂  we can now calculate

because || Sz-X-^(^% )X- i i^e- D

Remark 4.4. Consider the case where ^4 is abelian; i.e. the case when A =
for some compact metrizable Hausdorff space X and a?(/)

 = f° <Pg, f £= C(JC), for
some group (pg, g ^ G, of homeomorphisms on X It follows from [To] ,
Proposition 3.3.9, that the map # :T(CODx a G) -" T(CQD)a is a homeo-
morphism if and only {x ^ X : <pg(x) = x] = 0 for all g £ G\ {0} . This can also be
deduced from Theorem 4.3 as follows: Assume first that R is a homeomorphism
and take h e G\{0}. If F = {x e X : ̂  (x) = x} was non-empty we could choose
an ergodic Borel probability measure for the action of <pg, g^ G, on F. This
measure would then define an ergodic measure JJL for the action of <pg , g e G, on all
of X such that a* would be the trivial automorphism of T^CCCX"))" when co
denotes the trace on CCX") obtained by integration with respect to ju . Hence
7raj(C(X)) / /xawG can not be a factor by Lemma 4.2. Since IJL is ergodic co e
d«T(CQO)a), so this is a contradiction by Theorem 4.3, (1) =» (3). The converse
implication holds more generally; we prove in Theorem 4.5 below that R is a
homeomorphism when each ag , g £ G\{0}, acts without fixed points in
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also when neither A nor G is abelian. However, this condition is no longer
necessary in the non-abelian case as one can see by considering the crossed
product BXa% where B is a UHF-algebra and a is a product type action which is

outer in the trace representation.

Theorem 4.5. Let (A, G, a} be a C* -dynamical system with G an arbitrary
discrete group and A unital and separable. Assume that a acts freely on deT(A\
i.e. that roa

9 =£ r for all T <E de(TG4)) and for all g e G\{1}. It follows that
R: TG4x a r G) -> T(A )a is a homeomorphism.

Proof. We adopt the notation from the proof of Theorem 4.3. To show that

}, a <E A,

it suffices to pick a unitary w ^ A, an e > 0 , a g ^= I in G and show that
I fjL(wUg) <e for all trace states fi on the C* -algebra B generated by A and ug. In
fact, we may assume that JJL e deT(5). Let TL tf be the GNS-representaion of B
corresponding to JJL and set fi = Adn^wUg) e Auttn^A}"}. Assume 0 is not
properly outer. To get a contradiction we consider oo = n A . Let fii =
Adn^w} oa*. Since /3 is conjugate to /3i we have that 0i, and hence also a*, is
not properly outer. Thus there is a non-zero a^ -invariant projection e e itJ^A}"
such that a* is inner on en^AYe. Since the central support c(e) of e is a* -
invariant, we must have that c(e) = 1 since CD e 5e(T(^4)aff) by Lemma 4.1. The
lemma of Borchers, [Bo], Lemma 5.7, or [GKP], Lemma 8.9.1, shows that cf^ is
inner. Thus 0 is also inner and therefore n^A}" must be a factor since 7^(5)" is.
Since n^A}" — nJ^A}" it follows that the nJ^AY is also a factor, i.e.
co e <9eT(^l). Since w o aff = co this conclusion contradicts our assumption. Hence
0 is properly outer and the inequality \ fi^wUg) |<e follows as in the proof of
Theorem 4.3, (4) => (1). D

§5. Applications

It is clear that the results of Sections 2 and 4 answer the questions raised in
the introduction, at least in principle. Let us give two general conclusions that are
easily obtained from them.

Proposition 5.1. Let A be a unital exact C* -algebra and a an automorphism of
A. Assume that rA : T(A) -> SKQ(A^) is a homeomorphism. Then



1026 KLAUS THOMSEN

Proof. We have that HornC(U™(A\ R)= 0 by Lemma 1.1. Consequently the
map h in Theorem 2.2 and the map SA o gA in Theorem 2.3 are both zero. D

This proposition applies when A is exact and is the closed linear span of its
projections. But also to any exact C*-algebras with a unique trace state.

Proposition 5.2. Let a be an approximately inner automorphism of the exact
unital C*-algebra A. Then

Proof, a acts trivially on K,(A\ £/0°U)/Z)f700U) and
since it is approximately inner and hence any character of K^A), U°°(A) or
t/0°°G4) is automatically a -invariant. Therefore it follows from Lemma 1.3 that
the map h of Theorem 2.2 is zero. D

Thus it often occurs that S#0G4xaZ) = SKQ(A\9, so it is natural to ask

what such a conclusion means for the position of KQ(A) in KQ(A xa Z) under the
map z* induced by the inclusion i : A -> A xa Z.

Proposition 5.3. Assume that SK0(Axa1') ^ 0. The map u \
KQ(Axa Z) induces an a/fine homeomorphism SKQ(A xa Z) — SKQ(A\t if and only if

the following condition holds:
When y—x > [1] in KQ(A xa Z) there is an a & KQ(A) and integers n, m e N such
that

nx < mi*(a) < ny.

Proof. Let <p : KQ(A xa Z) -> AffSKQ(A xa Z) be the state space representation
of K0(A Xa Z). z* gives a homeomorphism SK0(A xa Z) — SK0(A)a. if and only if

<p of* (KQ(A^ has dense span in AffSK0(A xa Z). Assume first that this is the case
and let x, y e #0U xa Z) such that y-x > [1]. Then

is an open non-empty subset of AffSKQ(A x aZ) and since Q^ou(X"0(^4)) is dense
in S#0G4x aZ), there is an element a ^ K0(A) and m, k e N such that
ApGcXs) < m^ou(a)( s) < /c^(y)(s) for alls e S^0U x aZ). By [G], Theorem
7.8, this implies that there is a & G N such that

bkx < bmi*(a} < bky.
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In the opposite direction, if the condition of the statement is satisfied, consider an
element x e KQ(A xa Z). For any k ^ N, the elements kx and kx+ [1] are in a
position where the condition applies and hence there are elements a e KQ(A) and
n, m ^N such that

nkx < mf*(a) < n(kx+ [1]).

By applying q> and dividing through by nk we see that there is a rational multiple

of <p oI*(a) whose norm distance to p(:r) is < — Since the span of <p(KQ(A xa Z))
K

is dense in AffSKQ(A Xa Z), it follows that the same is true for the span of

In the exceptional case where SKQ(A xa Z) is empty the same must be true for
SKQ(A\t, at least when A is exact, and every element of KQ(Axa Z) is both

positive and negative, so there is no problem to consider. It should be noted that
in case K0(AxaE) is a simple pre-ordered abelian group (i.e. every non-zero
positive element is an order unit), a property which is automatic when A Xa Z is
simple, then the condition of Propositon 5.3 is equivalent to the following:

For every x, y G KQ(A Xa Z), x ^ y, such that x < y, there are elements a G KQ(A)
and n, m eN such that

nx < mi*(a) < ny.

We conclude with an application of Theorem 4.3 and Theorem 4.5. In [Be] E.
Bedos studied the question of when a crossed product is simple and has a unique
trace state. With the aid of Theorem 4.3 above it is easy to give the following
answer to this question in the case of a crossed product by an abelian group:

Theorem 5.4. Let A be a unital separable C*-algebra and a: G-> Aut(A) an
action of the countable discrete abelian group G on A. Then AxaGis simple and has
exactly one trace state if and only if A is a-simple, T(A\ contains exactly one element
(D and for this a) we have that the following equivalent conditions hold:

(1) T(O = G.
(2) 7C0(A )"x «„£ is a factor.
(3) au is properly outer.

Proof. Assume first that A X aG is simple with a unique trace state. It is then
obvious that A must be a -simple and T(A )a contain exactly one element, a).
Furthermore, the three conditions on a 0 are satisfied by Theorem 4.3. In the
reverse direction observe that the unique element in T(A\ must be faithful by
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a-simplicity of A. Thus the Cannes spectrum of a must also be full on the C*-
algebra level, see [GKP], 8.8.9. Then it follows from a result of Olesen and
Pedersen that A xa G is simple, see [OP] or [GKP], 8.11.12. And A X a G has only
one trace state by Theorem 4.3. D

One of the themes in [Be] is the construction of examples of simple C* -
algebras with a unique trace state. It is clear that the results obtained in this paper
provide new methods for such constructions. With the next example we propose
a construction which uses the classification of simple inductive limits of interval
algebras, [T2] and [E].

Example 5.5. Let X be compact metric space and <p a uniquely ergodic
homeomorphism of X without periodic points. By [T2] there is a simple unital
C*-algebra A which is the inductive limit of algebras of the form C[0, 1] <8> Mn such
that de(TCA)) = X and KQ(A) is any pre-chosen dense subgroup of Q. By [E]
there is an automorphism a of A which induces the given homeomorphism <p on
de(TGO) = X. By combining Theorem 4.5, Theorem 4.3 and Theorem 5.4 we see
that the crossed product A xa 1 is a simple C*-algebra with a unique trace state.

Note that we get a simple C*-algebra even in cases where the crossed product
CGD xa 1 is not simple. (Consider, for example, a Denjoy homeomorphism of the
circle.) Presently it seems a safe bet that the C*-algebras we obtain by this method
are inductive limits of algebras of the form C(T) ® Mn.

References

[Be] Bedos, E., Simple C*-crossed products with a unique trace, Preprint, Oslo (1993).
[B] Blackadar, B., Traces on simple AF C*-algebras,/. Func. Anal., 38 (1980), 156-168.

[BKR] Blackadar, B., Kumjian, A. and Refrdam, M., Approximately Central Matrix Units
And The Structure Of Noncommutative Tori,K-theory, 6 (1992), 267-284.

[BR] Blackadar, B. and Refrdam, M., Extending States on Preordered Semigroups and the
Existence of Quasitraces on C*-algebras,/. Algebra, 152 (1992) 240-247.

[Bo] Borchers, H.- ]., Characterization of inner *-automorphisms of W* -algebras, Publ.
RIMS Kyoto Univ., 10 (1974), 11-49.

[CT] Connes, A. and Takesaki, M., The flow of weights on factors of type IE, Tohuko Math.
/., 29 (1977), 289-306.

[Cl] Connes, A., Une classification des facteurs de type *SL,Ann. EC. Norm. Sup., 6 (1973)
133-252.

[C2] , Outer conjugacy classes of automorphisms of factors, Ann. EC. Norm. Sup., 8
(1975) 383-419.

[CP] Cuntz, J. and Pedersen, G. K., Equivalence and Traces on C*-algebras,/. Func. Anal.,
33 (1979), 135-164.

[E] Elliott, G.A., A classification of certain simple C*-algebras, H. Araki et al (editors),
Quantum and Non-Commutative analysis, Kluwer Academic Publishers (1993),
373-385.

[ET] Elliott, G. A. and Thomsen, K., The state space of the Xo-group of a simple separable
C'-algebra, Geom. Funct. Anal., 5 (1994), 522-538.

[G] Goodearl, K.R., Partially Ordered Abelian Groups with Interpolation, Math, surveys



TRACES AND UNITARY CHARACTERS 1029

Monographs, 20 (1986), Amer. Math. Soc., Providence.
[H] Haagerup, U., Quasitraces on exact C*-algebras are traces, Manuscript (1991).

[dHS] de la Harpe, P. and Skandalis, G., Determinant associe a une trace sur une algebre de
Banach, Ann. Inst. Fourier, Grenoble, 34-1 (1984), 169-202.

[HR] Hewitt, E. and Ross, K.A., Abstract harmonic analysis I, Springer Verlag, Berlin,
Heidelberg, New York, 1970.

[OP] Olesen, D. and Pedersen, G.K., Applications of the Connes spectrum to C*-dynamical
systems,/. Func. Anal., 30 (1978), 179-197.

[GKP] Pedersen, G.K., C*-algebras and their Automorphism Groups, Academic Press, London/
New York/San Fransisco, 1979.

[P] Pimsner, M., Ranges of traces on KQ of reduced crossed products by free groups, in
Operator Algebras and their Connections with Topology and Ergodic Theory, LNM, 1132
(1985).

[PV] Pimsner, M. and Voiculescu, D., Exact sequences for K-groups and Ext-groups of
certain cross-products of C*-algebras,/. Operator, Theory, 4 (1980), 93-118.

[R] Rieffel, M.A., The homotopy groups of the unitary groups of non-commutative tori,
/ Operator Theory, 17 (1987), 237-254.

[Tl] Thomsen, K., Non-stable ̂ -theory for Operator Algebras, K-theory, 4 (1991), 245-267.
[T2] , Inductive limits of interval algebras: The tracial state space, Amer. J. Math.,

116 (1994), 605-620.
[T3] , From trace states to states on the K0 group of a simple C*-algebra, Bull.

London Math. Soc., 28 (1996), 66-72.
[To] Tomiyama, J., Invitation to C*-algebras and topological dynamics, World Scientific

Advanced Series in Dynamical Systems, 3, World Scientific, Singapore/New Jersey
/Hong Kong, 1987.

[V] Villadsen, J., The range of the Elliott invariant,/. Reine Anegew. Math., 462 (1995),
31-55.




