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The Cohomology Rings of Some p-Groups
By

Angelina CHIN*

Abstract

We determine the mod-p cohomology ring and some of the integral cohomology ring
structure of a p-group expressible as an extension with kernel cyclic of order p and quotient
Cyn @ Cpn, wherem, n > 1.

§ 1. Introduction

Let p denote an odd prime and let B, , be the group with presentation of the
form

(A,B,C|A"=B"=(C"=1[4,C]=[B Cl=1[4,B] =0,
where m, n > 1. We may express B, , as a central extension of the form
l1-C—>PF,,>L—>1 (e

where C = (C) = C,and L = {4, B) = C;nXC,». In this paper we shall determine
the mod-p cohomology ring and some of the integral cohomology ring structure of
P, ,whenm, n > 1. For the case whenm = n = 1, P, , is the non-abelian group of
order p°® and exponent p, and the integral and mod-p cohomology rings of P, , are
known (see [4], [5], [7]). We note that for p = 3 and m, n > 1, Leary in [6] has
obtained the Poincaré series of H*(P, ,,F).

Let G = P, , where m, n > 1. It is clear that we may assume, without loss of
generality, that m > n > 2. In section 2 of this paper we shall review some facts on
Massey products. Then in section 3, we shall use Massey products to define some
generators of degree two in the mod-p cohomology ring of G and to determine
some of the relations involving these generators. This explicit use of Massey
products to obtain the cohomology ring structure has been demonstrated by Leary
in [8] and [5]. We remark here that the mod-p cohomology ring structure of G
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turns out to be less complicated than that for the case m = n = 1 (see Theorem
3.1).

It is more difficult to determine the integral cohomology ring of G. In section
4 of this paper we shall use the mod-p cohomology ring of G obtained in section 3
to determine the additive structure of the ring H*(G, Z) and some of its
multiplicative relations.

§ 2. Massey Products

In [8,5], Leary showed how Massey products can be used to define some
generators of low degrees in a mod-p cohomology ring and to obtain some of the
relations involving these generators. Leary went on to show in [6] that the image
of the differential d, in the Lyndon-Hochschild-Serre (LHS) spectral sequence
(with F, coefficients) of certain central extensions involves a Massey product.
Since then, Clark ([2]) used matric Massey products, which are generalisations of
Massey products, to determine the mod-2 cohomology ring of the group U;(4).

In this section we shall review the definition and some properties of Massey
products. Most of what follows in this section can be found in [3].

Let R be a commutative ring with identity on which G acts trivially (G here
is an arbitrary finite group). Foru € H*(G, R), we write (—1)*for (—1)%* Let
P = (P*, @) be the standard or bar resolution of F, over F,G and let C = (C*, &)
be the cochain complex where C* = Hom ,}G(P*, R). Let [u], [v] and [w] denote
elements in H*(G, R) represented by u, v and w, respectively. If [uv] = 0 and
[vwl =0in H*(G, R), then there are elements a, b in the cochain complex C with

6(a) =uv and 6(b) = vw.

The Massey product of [«#], [v] and [w] written {[%], [v], [w]) is then defined
as

ul, [v], Twl) = [(—1D"ub—aw]
€ H*""" (G, R)/(uH""" (G, R) +wH""" (G, R)).

It is straightforward to verify that the Massey product is trilinear.
The following properties are satisfied by Massey products, whenever all the
terms are defined, for any u, v, w, z, y € H*(G, R):
(i) <u, v, wyz+(—D*ulv, w, ) = 0 mod uH*z;
(i) (=D*UCu, v, w), z, w+<u, v, w, ), YW+ (—1D%u, v, {w, z, P> =0
mod uH*+H* """ 'wH Y+ yH %,
(i) (=1)"u, v, wy+(—1)"<v, w, uy+(—1)"$w, u, v) =0
mod uH*+vH* +wH*,
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(i) <u, v, wy+ (=D w, v, u> = 0 mod uH*+wH*.

Let A: H'(G,F,) - H (G, F,) be the modp Bockstein. The following
result is well-known to the experts already. A proof of it using the bar resolution
can be found in {3].

Lemma 2.1. Let p > 2 be a prime and let x generate H'(G,, F,). Then
(x, z, x> is a unique element of H*(G,,F,) and

0 ifp >3

{z, z, )= { .
Alz) ifp=3

We are now ready to determine the mod-p cohomology ring of G.

§ 3. The Ring Structure of H*(G, F,)

Consider the LHS spectral sequence for extension (e) with coefficients in F,.
Since C is central in G, so L acts trivially on H*(C, F,). It follows from the
universal coefficient theorem that the E,-term of the spectral sequence is given by

Es*=H*(L, H*(C,F,)

= H*(L,F,)®H*(C,F,)

= Alxy, x,, ul®F,ly,, y,, v],
where deg z;, = deg z, = degu = 1, degy, = degy, = deg v = 2, A(x,) =A(x,) =
0 and Au = v. Since H'(G, F,)= Hom(G, F,) =Z,®Z,, it follows by degree reasons
thatz,, x, € E, ® survive to E., and the differential d, must kill the extension class.
That is, d,(u) = Az,x, for some A # 0 (mod p). Therefore, d,(zu) = d,(zu) = 0.
Since d,(v) = 0, it follows that the E,-page of the LHS spectral sequence is

generated by the elements z,, 2, €E+'°, y,, ¥,€ E>°, v € Ey'? and zu, z,u € E;'!
subject to the relations

=1z, =22,= 0, (z)’ = ()’ = (zw)(zu) =0,

z,(zu) = —x,(xw), z,(xu) = 2,(zu) =0.
Now since Bockstein commutes with transgressions, we have that
d;(v) = d3(A(w) = Ald,(w)) = AQAz,z,) = 0.

For degree reasons, it follows that d, = 0 for i > 3. Therefore the spectral sequence
collapses at E;, that is, £, = E;.
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Now consider the bigraded Poincaré series P,(¢, t) of the E;-page of the
spectral sequence, that is,

Pt ) =) tt" dimgE;’.

i, j

We have
1+2¢+2tt7 -+t

B0 = oy

Then since the spectral sequence collapses at Ej, it follows that the Poincaré series
of H*(G,F,) is

1+2¢+2t2+13

P.(t) =Rt t) = (1—£2)°

By abuse of notation, let x,, z,, ¥,, ¥, and v denote the generators in the ring
H*(G, F,) which correspond to the generators of the same name in E; = E.,.
Clearly, the relation z? = z; = 2z, = 0 holds in the ring H*(G, F,). Because of
these relations we may define unique elements in H*(G, F,) by forming the Massey
product of any three elements of H'(G, F,). Sincem, n > 1, it follows from Lemma
2.1that<{z;, z,, z;) = {xy, x,, 2,y = 0. Let ¥, = {zy, z;, zp) and ¥, = {z,, x,, ).
By using the same argument as in [3, Lemma 2.13] we can show that
Y1, Y,, Y1, ¥; and v are independent elements of H (@, F,). Then since dimg,
H*(G,F,) =5, it follows that the elements y,, ¥,, Y;, ¥; and v form a basis for
HY(G, F,.

Now from the identities satisfied by Massey products, we have

Y, = zxy, T, T,)
= z,{(z,, T,, 1) mod z,(z,H' (G, F,)+z,H'(G,F,)) =0
=<z, 1,, T,)0T, mod z.H'(G,F,)z, = 0
= Yz, = 2,1},
Y, =z, T,, T
=<{z,, z,, 2,1, mod 2,H'(G,F,)z, = 0

=0

and

z,Y, = 2Xx;, T,, T)
{xy, x,, )z, mod 7, H'(G,F,)z, = 0
=0.
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From the Poincaré series of H*(G, F,) we have that dimg #*(G,F,) = 12. By
inspection, H*(G, F,) has basis

Wi, vy, vs, Y, ui%, w:.%, 4.5, yw, v, Yo, Y, %)

Consider the subspace of H*(G, F,) which restricts trivially to (A4, C) and <B, C).
This subspace contains ¥;*, ¥, ¥;¥; and has basis {y,,v,Y, ¥,Y;}. Therefore
there are expressions of the form

Yl2 = ayy,Tay, o +ay,Y, B
Y = byt by Y+ by,Y; (3.2)
VY, = cyy+ey ety (3.3

for somea;, b;, ¢; EZ(i = 1, 2, 3).

Taking the product of (3.1) with z, and making use of the fact that z,y,y, and
zy,Y; are F,-linearly independent, it follows that a,, a, = 0 (mod p). Therefore,
Y’ = ag,Y;. By taking the product of the last equation with z, we have 0 =
asx,y,Y,. It follows that a; = 0 (mod p) and hence, ¥;®> = 0. By the same argument
we can show that ¥, = Y;¥, = 0.

Now consider the graded F,-subalgebra S = %, , S; of H*(G, F,) generated by
the elements x,, 1,, ¥,, ¥,, Y1, Y, and v as above. It is clear that S is free and
finitely generated over the polynomial subring F,[y,, y,, v] with generators
1, z, z,, ¥, ¥,and z,Y,. We then have

: 1+2¢+2t%+ 2
tdimg S, = ——— 55—
i;ﬁ B (1“t2)3

It follows that H*(G, F,) = S as F,-algebras. We have therefore proved

= B,(®).

Theorem 3.1. Let G= (A, B, C|A" =B"=C"=[A,Cl=[BCl=1,
LA, B] =C), where m, n > 1. Then the mod-p cohomology ring H*(G, F,) is gener-
ated as an F,-algebra by the elements
T, %, Y1, Y2, Y1, Y, 0
where

degzr, =degz,=1, degy, =degy,=deg Y, =deg ¥, =degv =2

subject to the relations
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xlz = x: =1z, =0, 2%, = ,Y], 2,Y, = 2,1, =0,
Y=Y’ =Y1Y,=0
We remark that Theorem 3.1 tells us that for a fixed prime p, there are

infinitely many non-isomorphic non-abelian p-groups with isomorphic mod-p
cohomology rings.

§ 4. The Ring Structure of H*(G, Z)

We begin with a general result on dimg,(H*(G,Z)®; F,) for i > 0. Assume
for the moment that G is an arbitrary finite group. Let Q(#) =X, . ¢ dimg,
(H'(G,Z)®; F,) and P(t) = %, ,¢'dimy H'(G,F,). Thatis, P(¢) is the Poincaré
series of H*(G, F,). The following relation between P(¢) and @(#) has been proven
in [1]. We give a proof here for the sake of completeness.

Lemma 4.1.

Q) —————H_tP(t)-i— e

Proof. Let H'(G, Z), denote the p-component of H ‘(G,Z). Consider the long
exact sequence in cohomology
@) @)
. X TTx X
.. — H'(G, 1), ~—> H'(G, 1), —> H'(G,F,)

(@)

— H"Y(G, L), — ...

) T
which is induced from the short exact sequence 0 —Z —— Z— F,—— 0. Note
that

Imz = H'(G,7),/Imp"” = H'(G,2Z)®, F,

and

Im6® = H'(G,F,)/Im z &,
We also note that Im 6% = Kerp“*” = ,H*"'(G,Z) and dim,H*"'(G, Z) = dimy,
H"'(G,1)®, F,, where ,H"'(G,Z) = {x € H"'(G,L): pxr = 0}. We therefore

have

dimg H'7'(G, 2) @, F,= dimg H'(G, F,) — dim H'(G,Z)®, F,.
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It follows from this that

P(1)~Q(8) = (Q(1)— dimy, (H(G, D)@ F,))

1
= r (Q1)—1.
B 1
Therefore, Q(¢) = —P(t)+ 147 U
For a commutative ring R, let R{a,, ..., a;} denote the free R-module with
generatorsa,, ..., a,. Now let G be the p-group as defined at the beginning of the

paper.

Lemma 4.2. Let P, be the coefficient of t* in P,(t). Then

2
P, = W (r>0)
and
+
P, = 3r'+r (r = 1).

Proof. Consider the graded F,-algebra
S =F,[y,, v, v]{l, 2, 3,, ¥}, ¥, 7, Y3}

as defined in section 3. Let 7,, be the dimension over F, of the rth symmetric
power of the polynomial algebra F,[y,, y,, v} and let T(¢) = %,,,T,,t”. Then

T = A=y and by computing we have

(r+1)(r+2)

T =14 = +(r+1) = >

, r=0.
By Theorem 3.1 we have that P, = 1 and P, = 2. We have shown in section 3 that
H*(G,F,) = S (as F,-algebras). Then since deg ¥; = deg Y, = 2, it follows that

2L
_Sr+br2 o

P 7‘27+27‘27 2 2 ’ =

Since deg z; = deg z, = 1 and deg z,Y¥, = 3, we also have that

3ri+r
2 ’

By =2T s+ Ty = r=2 O

Lemma 4.3. Let @, be the coefficient of t*in Q(t). Then
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Qp =12+2r (r>0)

and ri+r+2
Q=T (r>0).
Proof. Since 1_1” = 1—¢+t2—3+¢*—1°+ ..., it follows from Lemma 4.1 that
Qo=ly Q=0 @=PF=2,
Qi1 = (P2r+P2r—2+ +P2+1)—(P2r—1+P27-3+ +Pl)—1
i 3k +5k+2 Z 3k’ +k
k=1 2 k=1 2
=r+2% (r>1)
and

Q= (P 1+ Py 5+ - +P)— (P yt Pyt - +H+1D+1

_ Z 3k*+tk _ '\ 3k’+5k+2
k=1 2 K= 2

INe

i r+2

=——2——(1’22). O

Using the argument in [7, Proposition 4.3], we can generalise the same result
in [7] to the following:

Proposition 4.4. For any odd prime p and any positive integers v, s such that
r=>s=1,

H*(CyXCp,Z) = Pla, BI®A[7]
where deg a = deg B = 2 and deg n = 3 with relations
pa=pB=pn=0 7"=0.
We note that H*(G, Z) = Hom(G, Q/Z) =ZmDZL,. Now consider the LHS

spectral sequence for extension (e) with coefficients in Z. The E,-term of the LHS
spectral sequence for this extension is given by

E;'j = H'(L, H'(C,Z)), i,j > 0.

Since H**(C,Z) = 0, we have that d,, =0 for i > 1. Therefore E, = E,,, for
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i > 1. By Proposition 4.4 we have that H*(L,Z) = Pla, B1®A[7n] where dega =
deg8 =2 and degn =3 such that p"a = p"8 =p"n = 0. We then note that
Er°=H"(L,2) = Zna® LB, Ey' =0 and E;* = H*(C,Z) =Z,y. For degree
reasons, @ and 8 must survive to E... Since H%(G, Z) has order p™*", so y € E{*
cannot survive to E.. Since py = 0 and p"p = 0, it follows by degree reasons that
dy(7) = sp™ ' for some s # 0(modp). We thus have that n € Ey° = H*(L, Z)
survives to E,, with p” "' Inf, cn = 0. Note that E;' = Ey* = 0 and E;* = H'(L,F,)
= Z,u®ZL,v. Since the coefficient of > in Q(¢) is 3 (by Lemma 4.3), so ¢ and v
must survive to E.. By abuse of notation we therefore have that H*(G, Z) =
LZyp-nOL,pOL,v.

We next note that E;°= H'(L, Z) = Zma’® L0 Lsp% Ey' =Ey* =0,
EX? = H*L,F,) = LZ,ar®L,Br® L,y and Ey* = H*(C,Z) = Z,y*. Since dy(ay) =
sp™ 'an # 0 and d,(By) = sp™ By # 0, it follows that ay, By € EZ? do not survive to
E.. Since By’ = H*(L, L) = Zyan®L,Bn, we see that dy(x+aar+bBy) = 0 for some
a, b € Z. Then for degree reasons and by abusing notation if necessary, we have that
EX =17,

By inspection, we have the structure of E, as follows:

Lemma 4.5.

E =Lpa’® (O, -, Zpa'B"") (r > 1)

Ey°=0;

EF*0 E69,-+j=r—1Zp"alﬁj77 (r=1);

E;*1=0 (s > 0);

EF® =Ly (s> 1);

EFE = o (La'Bur ' 0LaBuw) (r=0, s> 1);
Ey® = (@, Lafr)© (8., -, Lafxr™) (rs 2 1.

Proposition 4.6. Every generator of the group E; 7 where i+7 is odd, survives to
E..

Proof. By Lemma 4.5 we have that the number of independent generators of
EY wherei+j=2r+1 (r > 1),is

2r(r+1) _

2 ri42r.

r+2(1+ o +7) =7+

By Lemma 4.3 we have that @,,,, = ’+2r, » > 1. It follows from this that all the
generators of E; 7 where {+7 is odd, must survive to E... ]
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Proposition 4.7. The subring of H* (G, Z) generated by a and B is isomorphic to
Zla, B1/(p"a, pB).

Proof. Since d,; = 0 for i > 1, we see that the only possible way that an element
in EZ° (5 > 2) does not survive to E., is if one of the differentials

. p2-ut1 22 2%,0
Ay Egi —>Ey ., 122

is non-zero. But since all the generators of EZ *7" %2 survive to E., (by Proposition

4.6), it follows that no non-zero element of E;{'_Ol (i = 2) can be hit by any of the
differentials in the spectral sequence. We thus have that the subring generated by
a and B in H*(G, Z) is a polynomial subring with p™a = p"8 = 0. ([}

Next we consider the element y*> € Ey*. Since d,(v®) = 27(sp™ 'n) =0, so
72 € Ey* = EY* survives to E,. We have to determine if d;(7*) = 0. First consider
the case n = 2. Since pan, pBn € Imd,, we have that E}’=Z,an®Z,8n. By
Proposition 4.6 all the generators of 69,-+J-=5E§" must survive to E.. In particular,
an and B in E¥° survive to E... It follows that ds(7*) must be zero and hence, 7*
survives to E.. Now consider the case n > 3. Let

q:P,, P, /K& B> =p,

be the quotient map and consider the following induced diagram of central extensions:

1 — (KC) — PB,, — (4, B) — 1
lqe=ld iq lql

1 — (& — B, — {4, B/NKA B — 1L

Let ¢*: E;*(2,2)— E;* (m, n) be the induced map of spectral sequences. Since
ds(r®) = 01in E;*(2,2), it follows that

0= q*ds(rz) = ds(Qo‘TZ) = ds(')’z)

in E;* (m, n). We therefore have that y> € E;* survives to E,, for all n > 2. It
follows that ®,,,_, EL) =Zna*® L0 LB S L,xDZL,y* and hence, H(G, Z) has
order p™**"*2. Since the coefficient of #* in Q(¢) is 4 (by Lemma 4.3), we must have

H (G, L) =Ly’ ®Lpaf S Ly B DLy
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where we may take £ such that Resg &= y%. Since all the generators of
®,.;_; E;’ survive to E,, (by Proposition 4.6), we have that

HY(G, L) =Lyp-1an® Ly fn S Lyop ®L,av S L, fu® L, By
®Le,OLe,,

where €,, €, correspond to uy, vy € Ey * respectively.

Next, by Lemma 4.5 we have that E;°=1Z»a’® Z »a8® L ,naf*® L ,»4°,
E} =Ey=E;°=0, Ey"=L,ay®L,aBr® L,y L,ax®L,Bx, Ev* =L,ar"'®
Z,8r*®L,xy and Ey° =Z,7°. Note that d,(a’) = sp” 'a’n # 0, dy(aBr) =sp" 'afn
#0 and d;(B%) = sp™ '8 # 0. Therefore, a’, aBy and 8% in E+* do not survive to
E. and E{° =Zp-1a*n®Lyp-10fnS Ly, Since all the generators of @,.,_, E;’
must survive to E., (by Proposition 4.6), it is clear that the elements yy € E** and
r® € E}® must survive to E,, if n = 2. By using the same argument as for the element
7’ € E}* we can show that the elements yy € E+* and 7* € E}® also survive to E., if
n > 3. Therefore H%(G, Z) has order p™"*" 5. Then since the coefficient of ¢® in
Q(t) is 7 (by Lemma 4.3), there must exist a generator ¢ € H®(G, Z) such that

HY G, L) =Lpna*®L "’ BOL B ®L B DL raEDL BEDL, L.
7’ 4 v y v y4 )

Clearly, we may take { € H°(G,Z) such that Resg ¢ £ = 7°. By inspection we have
the structure of E, as follows:

Lemma 4.8.

E{ ZLpd © (O, -, Zpa'B™) (r 2> 1);

E'=0;

E = Bivs =il (r 2 1);

E;®'=0 (s > 0);

EVTE =@, (LaBur T OL,aByy") (r2 0,5 2 1);
EIr?' =, ,_, LaBy (r>1);

Ej® = (EBW=7Zpal.3]7’zs)®(®i+1=r—lzpaiﬁjxr%-1) (rs =1
EXSt = (@, L,a87" )0 (8., Ld8™) (rs> 1);
E}*=0;

E}® =Zy" (s > 1);

E2'4s+2 EZP,),ZS—H (S 2 1)
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We have shown that all the generators of the E,-page of the spectral sequence survive
to E.. Therefore the LHS spectral collapses at E, .

Next we obtain some of the multiplicative relations in the ring H*(G, Z). Since
pu = pv = pe, = pe, = 0, it follows that u, v, €; and €, are all in the image of the
Bockstein map &: H*(G, F,) = H**'(G, Z). From the structure of the mod-p
cohomology ring of G obtained in the previous section, we have that A(Y]) = —zw
and A(Y,) = zw. By takingu = 6(Y,),v = 6(Y)), &, = 6(Yw) and g, = 6(Y), we
then have that

ue, = 6(%)o(Yw) = 6(zpYw) =0,
ue, = 6(Y,)0(Yw) = 6(zpYw) = 6(zpYw) = —6(Y)6(Yw) = —re,
ve, = 6(Y)6(Yw) = 6(—zpYw) = 0.

Now let S’ =¥, , S; be the graded F,-module defined by
S'=zla, B, E 1L,V 7 el, &5, '}/ (R)®,F,
where dega’ =degfB =2, degy’ =degy =degn =3, deg & =4, dege, =5

(i =1, 2), deg ¢’ = 6 and where R, is some term in degree 7. We have from this and
Lemma 4.1 that

. , 14383+ 2804+15—¢7
igot dlmeSi = (l_tg)g(l_t4)

Therefore H*(G,Z)®, F,= S’ (as vector spaces over F,).
We collect the above results in the following theorem:

= Q).

Theorem 4.9. Let G=(A,B C|A" =B"=C"=[A,Cl=[BC]=1,
[A, B} =C) wherem > n > 2. Then the cohomology ring H*(G, L) is generated by the
elements

a,Buv,n & e, &, ¢

where dega =degB =2, degu =degy =degn =3, deg £ =4, deg'ei =5 (1=
1, 2) and deg ¢ = 6 such that

pPra=pB=0, pu=pr=p"""n=0,
PE=0, pe;=0(i=12), p¥=0.

The multiplicative relations that are known are
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=1vV=9"=0,e=00G=12),
0,

ue, = ve, =0, ue, = —ve,.

Moreover, the elements a, B and £ generate a subring of H*(G, L) such that
H(GD=Lla, B El{L, u, v, 7, €, 8, /(R
where R, is some term in degree 7.

Remark. The integral cohomology of the group P, , was also studied in [9]. In
his paper, N. Yagita considered the LHS spectral sequence for the extension

1-(B,CY)—>P, ,—~(A)—>1

and showed that the spectral sequence collapses at E, (see Theorem 2.4 in [9]).

The author also notes that some of the integral cohomology ring structure of
P, , for p > 5 has been obtained in [8] by extending the circle technique of Leary
(I8]). In the mod-pcase, the cohomology ring of P, , obtained in [8, Theorem 6] for
the prime p > 5 is contained in Theorem 3.1 of this paper.
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