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The Cohomology Rings of Some ̂ -Groups

By

Angelina CHIN*

Abstract

We determine the mod-p cohomology ring and some of the integral cohomology ring
structure of a p-group expressible as an extension with kernel cyclic of order p and quotient
Cpm 0 Cpn, where m, n > 1.

§ 1. Introduction

Let p denote an odd prime and let Pm n be the group with presentation of the
form

(A, B, C\Apm = Bpn = Cp= [A, C] - [5, C] - 1, [A, 5] = C>,

where m, n > 1. We may express Pm n as a central extension of the form

1 - C -> Pm ,n - L - 1 (e)

where C = <C> = Cp and L = (A, B} = Cpm X Cpn. In this paper we shall determine
the mod-p cohomology ring and some of the integral cohomology ring structure of
Pm n when m,n>l. For the case when m = n = 1, Pltl is the non-abelian group of
order p3 and exponentp, and the integral and mod-p cohomology rings of Pl { are
known (see [4], [5], [7]). We note that for £ = 3 and m, n > 1, Leary in [6] has
obtained the Poincare series of H*(Pm n, F3).

Let G = Pm> „ where m, n > 1. It is clear that we may assume, without loss of
generality, that m > n > 2. In section 2 of this paper we shall review some facts on
Massey products. Then in section 3, we shall use Massey products to define some
generators of degree two in the mod-p cohomology ring of G and to determine
some of the relations involving these generators. This explicit use of Massey
products to obtain the cohomology ring structure has been demonstrated by Leary
in [3] and [5]. We remark here that the mod-p cohomology ring structure of G

Communicated by Y. Ihara, March 9, 1995.
1991 Mathematics Subject Classification: 20JOG.
Department of Mathematics, The University of Queensland, St. Lucia, QLD 4072, Australia.



1032 ANGELINA CHIN

turns out to be less complicated than that for the case m = n = 1 (see Theorem
3.1).

It is more difficult to determine the integral cohomology ring of G. In section
4 of this paper we shall use the mod-p cohomology ring of G obtained in section 3
to determine the additive structure of the ring H*(G,Z) and some of its
multiplicative relations.

§ 2. Massey Products

In [3, 5] , Leary showed how Massey products can be used to define some
generators of low degrees in a mod-p cohomology ring and to obtain some of the
relations involving these generators. Leary went on to show in [6] that the image
of the differential d± in the Lyndon-Hochschild-Serre (LHS) spectral sequence
(with Wp coefficients) of certain central extensions involves a Massey product.
Since then, Clark ( [2] ) used matric Massey products, which are generalisations of
Massey products, to determine the mod-2 cohomology ring of the group £73(4).

In this section we shall review the definition and some properties of Massey
products. Most of what follows in this section can be found in [3] .

Let R be a commutative ring with identity on which G acts trivially (G here
is an arbitrary finite group). For u e H* (G, #), we write ( - 1)M for ( - l)deg". Let
P = CP*f fl) be the standard or bar resolution of F, over WPG and let C = (C*, 0)
be the cochain complex where C* = HomFG(P*, #)• Let M, [i>] and [it;] denote
elements in H*(G , R) represented by u, v and w, respectively. If [uv ] = 0 and
\_vw~] = 0 in H*(G , R\ then there are elements a, b in the cochain complex C with

5(a) = uv and 5(&) = vw .

The Massey product of \_u], \_v~\ and [it;] written <[w], [i>], [it;]) is then defined
as

Hu+v+w~l(G, R^/(uH^w~l(G, R}+wHu+v~\G, R}} .

It is straightforward to verify that the Massey product is trilinear.
The following properties are satisfied by Massey products, whenever all the

terms are defined, for any u, v, w, x, y £ H*(G, .ft):
( i ) {u, v, w)x+(~lTu{v, w, x} = 0 mod uH*x;
(ii) ( —l)"«w, v, w), x, y> + <w, {v, w, x}, y} + ( — l )M<w, v, {w, x, y» = 0

mod uH*JrHu+v~lwHx+y~~l-ryH*\

mod uH* + vH* + wH*\



COHOMOLOGY RINGS OF SOME p-GROUPS 1033

(iv) (w, v, «;>-!-( — l)uv vw wu(w, v, u) —

Let A: #'(G, F,) -> Hl+l(G, F,) be the mod-p Bockstein. The following
result is well-known to the experts already. A proof of it using the bar resolution
can be found in [3].

Lemma 2.1. Let p > 2 be a prime and let x generate Hl(Gp, F^,). Then

{x, x, x) is a unique element of H2(GP , ¥p) and

[0 ifp > 3
{x, x, x) = \

lA(r) ifp = 3

We are now ready to determine the mod-p cohomology ring of G.

§ 3. The Ring Structure of H*(G, Fp)

Consider the LHS spectral sequence for extension (e) with coefficients in F^.
Since C is central in G, so L acts trivially on #*(C, Fp). It follows from the
universal coefficient theorem that the £2-term of the spectral sequence is given by

= A D r l f x2, wl^FjEi/! , y2,v~],

where deg xl = deg x2 = deg u = 1, deg y1 = deg y2 = deg v = 2, A(X) = A(:r2) =
0 and Aw = v. Since H^G, F^) = Hom(G, Fp) =1P®1P , it follows by degree reasons
that xlt x2 e EZ ' ° survive to Eoo and the differential rf2 must kill the extension class.
That is, d^(u) = Arr^ for some A ̂  0 (mod£). Therefore, d^x^u) = d2(x2u^ = 0.
Since d2(v) = 0, it follows that the E3-page °f the LHS spectral sequence is
generated by the elements xlt x2 ^E^'0, ylt yf E^'0, v G E%' 2 and x^u, x2u e E\' 1

subject to the relations

re? = xl = X&2 = 0, Ojw)2 = (x2M)2 = (^wX^w) = 0 ,

= 0.

Now since Bockstein commutes with transgressions, we have that

- 0.

For degree reasons, it follows that d, = 0 for £ > 3. Therefore the spectral sequence
collapses at £3 , that is, E^ = E3 .
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Now consider the bigraded Poincare series P3(£, £') of the £3-page of the
spectral sequence, that is,

We have

Then since the spectral sequence collapses at £3, it follows that the Poincare series
of#*(G,F,) is

PG(0 = PgO, 0 =

By abuse of notation, let xlt x2, ylf yz and v denote the generators in the ring
H*(G,WP) which correspond to the generators of the same name in E3 = E00.
Clearly, the relation x\ = x\ = x^x2 = 0 holds in the ring H*(G, Wp). Because of
these relations we may define unique elements inH2(G, Wp) by forming the Massey
product of any three elements o f H l ( G , Wp). Since m,n>\, it follows from Lemma
2.1 that (a?! , xl , x^ = (x2 , x2 , x2) = 0. Let Yl = (xl , xl , r2> and Yz = (x2 , x2 , x^.
By using the same argument as in [3, Lemma 2.13] we can show that

2/1 » 2/2 » YI> ^2 and v are independent elements of H2(G, Fp). Then since dimFp

H2(G, Wp) = 5, it follows that the elements ylty2, Y\, Y2 and v form a basis for
H\G,Wp).

Now from the identities satisfied by Massey products, we have

= xl(xl,x2,x2y mod xl(x2H
l(G,Wp)+xlH

l(G,¥p)) = 0

= (xl , xl , x2}x2 mod xfl^G, Wp)x2 = 0

Xi YI — Xi\Xi , Xi , X2/

= <(x1 , xl , x^Xz mod xfl^G, Wp)x2 = 0

= 0

and

x2Y2 = x2(x2, x2, x^>

= {x2 , x2 , x2)xl mod x2H
l(G, Wp)x1 = 0

= 0.
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From the Poincare series of H*(G, Wp) we have that dimF#4(G, Wp) = 12. By
inspection, H*(G, Wp) has basis

y\v, yzv, Y^, Y2v, v2}.

Consider the subspace of H*(G, Wp) which restricts trivially to {A, C> and (B, C>.
This subspace contains Y^ , Y2

2 , Y^ and has basis {t/^, 2/1^2, 2/2^} • Therefore
there are expressions of the form

(3.1)

Y2
2 = bMfa+bMYt + bMY! (3.2)

Y,Y2 = CM^+C^YZ + C^Y, (3.3)

for some a{ , b{ , cf eZ(z = 1, 2, 3).
Taking the product of (3.1) with x1 and making use of the fact that x^y^z and

are F^-linearly independent, it follows that al , a2 = 0 (modp). Therefore,
= a^y2Yl. By taking the product of the last equation with x2 we have 0 =

^ It follows that a3 = 0 (mod£) and hence, Y2 = 0. By the same argument
we can show that Y2 = Yl Y2 = 0.

Now consider the graded F^-subalgebra S = I,->0 Sf ofH*(G, Wp) generated by
the elements xl , x2 , yl , y2 , Yl , Y2 and v as above. It is clear that S is free and
finitely generated over the polynomial subring Wp [_yl , y2, v~\ with generators
1, xlt x2 , Yl , Y2 and x^Y2. We then have

It follows that H*(G, Wp) = S as F^-algebras. We have therefore proved

Theorem 3.1. Let G = {A, B, C Apm = Bp" = Cp = LA, C] = IB, C] - 1,
[A, B~\ =C>, where m, n > 1. Tftew the mod-p cohomology ring H*(G, ¥p) is gener-
ated as an Wp-algebra by the elements

Xi , x2 , yl , y2 , Yl} Y2,v

where

deg xl = deg x2 = 1, deg yl = deg y2 = deg Yl = deg Y2 = deg v = 2

subject to the relations
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x\ = x\ = x,x2 = 0, XlY2 = x2Y,, x,Y, = x2Y2 = 0,

We remark that Theorem 3.1 tells us that for a fixed prime p, there are
infinitely many non-isomorphic non-abelian p-groups with isomorphic mod-p
cohomology rings.

§ 4. The Ring Structure of #* (G, Z)

We begin with a general result on dim¥p(H
l(G, Z) 0z Fp) for i > 0. Assume

for the moment that G is an arbitrary finite group. Let Q(0 = E z > 0 tldim¥f

C£T(G, Z) ® z Fj) and P(f) = Ef > 0 ̂  dim^/TCG, F^,). That is, P(0 is the Poincare
series ofH*(G, F^). The following relation between P(£) and 0(0 has been proven
in [1]. We give a proof here for the sake of completeness.

Lemma 4.1.

1 + t

Proof. Let H*(G, Z)p denote the ^-component of H*(G, Z). Consider the long
exact sequence in cohomology

which is induced from the short exact sequence 0 *Z > 1 > ¥p > 0. Note
that

Im n ® s ff'(Gf Z^/Imjp(0 s H\G,

and

We also note that Im 6W = Kerp(l+l) = pH
i+l(G, Z) and dimWppH

l+l(G, Z) = dimF,

pl£T+1(G,Z)(x>z F^f where pH
i+l(G,Z) = {x <E Hi+\GtTti\px = 0}. We therefore

have

¥p.



COHOMOLOGY RINGS OF SOME p-GROUPS 1037

It follows from this that

PCO -

Therefore, 0(0 - -KO + - - D

For a commutative ring R, let R{al, ..., ak] denote the free ^-module with
generators al, ..., ak. Now let G be thep-group as defined at the beginning of the
paper.

Lemma 4.2. Let Pk be the coefficient of tk in PG(t\ Then

and

Proof. Consider the graded Fp-algebra

S =¥p[.ylty2, v]{l,xltxz, Ylt Y^x^}

as defined in section 3. Let T2r be the dimension over Wp of the rth symmetric
power of the polynomial algebra ¥ p [ y l t y2, v~] and let T(0 = E r>0T2 r^

2 r . Then

and by computing we have

By Theorem 3.1 we have that P0 = 1 and Pj = 2. We have shown in section 3 that
H*(G, Wp) = S (as I> algebras). Then since deg Yl = deg 72 = 2, it follows that

p — T -4-9T — v > 1
*2r ~ J-2r^^12r-2 ~ ^ ' ~

Since deg xl = deg x2 = 1 and deg ̂ ^ = 3, we also have that

p = 2T + T — T > 2. [I

Lemma 4.3. Le^ Qk be the coefficient of tk in Q(t). Then
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Q2r+l = r2+2r (r > 0)

and

Proof. Since -r— = l-t+t2-t3+t*-ts'+ ..., it follows from Lemma 4.1 that

Qo =1, Q, = 0, Q2 = P, = 2,

_ yi 3/cV/C
~^, 2

and

y 3A2+A: _ y1 3/c2+5/c+2
/ . o / i n

r2+r+2 . ^ rtN

Using the argument in [7, Proposition 4.3] , we can generalise the same result
in [7] to the following:

Proposition 4.4. For any odd prime p and any positive integers r, s such that

where deg a = deg 0 = 2 and deg T? = 3 with relations

pra = ps@ = psri = 0, 7?2 = 0.

We note that H2(G, Z) = Hom(G, Q/Z) =1pm@1pn. Now consider the LHS
spectral sequence for extension (e) with coefficients in Z. The £2-term of the LHS
spectral sequence for this extension is given by

E[J = H\L, H\C, Z)), i, j > 0.

Since #odd(C,Z) = 0, we have that dzi = 0 for i > I. Therefore E2i = E2i+1 for
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i > 1. By Proposition 4.4 we have that H*(L, Z) = P[a, ft] ® A[T?] where deg a =
deg 0 = 2 and deg 77 = 3 such that £ma = pn/3 = pnr) = 0. We then note that
£2

2'° =H\L, Z) = 1pma@1pn$, E1
2'

1 = 0 and £2°'2 = #2(C,Z) = Zpr. For degree
reasons, a and $ must survive to Ex. Since H2(G, Z) has order pm+n, so 7 EE £2'2

cannot survive to .£«,. Since p? = Q and £"77 = 0, it follows by degree reasons that
^3(7) = spn'lr] for some s ^ O(modp). We thus have that 77 <E £2

3-° = #3(L, Z)
survives to £.. with pn~l InfLi G77 = 0. Note that E2'! - E2°'3 = 0 and E1

2'
2 = ff !(L, Fp)

= IptiQIpV. Since the coefficient of ^3 in Q(0 is 3 (by Lemma 4.3), so ft and y
must survive to E^. By abuse of notation we therefore have that H3(G, Z) =

We next note that £2
4'° = H\L, Z) = Z^»a20 Z^aff® Zpn/32, El'1 =E1

2'* = 0,
£2

2'2 = H\L, Vp) = Zpar®lZP/3r®'ZPx and E2°'4 - #4(C,Z) = Z^r2- Since
spn~lar) =£ 0 and <23(£r) = spn~lpr] ^ 0, it follows that ar, ^87 e £2

2'2 do not survive to
£00. Since £2

5'° = H5(L,"l) = 1pna7j®1pn^7j, we see that d3(% + 00:7+^7) = Oforsome
a, b ^1. Then for degree reasons and by abusing notation if necessary, we have that
El2 = Zrf.

By inspection, we have the structure of E2 as follows:

Lemma 4.5.

> D;

1);

^•2s+1- 0 (s > 0);

EQ
2

2s=zp7
s(s>iy,

Elr+l'2s = 0i+y = r(ZX^rs~1©Z^1^'-1) (r > 0, s > 1);
1) (r, s > i).

Proposition 4.6. Every generator of the group E2
 j, where i +j is odd, survives to

Proof. By Lemma 4.5 we have that the number of independent generators of
£2

>;", where i+j = 2r+l (r > 1), is

By Lemma 4.3 we have that Q2r+l = r2+2r, r > 1. It follows from this that all the
generators of E2

 J, where i+j is odd, must survive to £«,. D
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Proposition 4.7. The subring of H* (G, Z) generated by a and 0 is isomorphic to

Proof. Since d2i = 0 for z > 1, we see that the only possible way that an element
2;,
2in E2
2;'0 0' ^ 2) does not survive to E^ is if one of the differentials

-2J-2Z + 1, 2z-2 £,27,0

is non-zero. But since all the generators of £2
2j '~2l~rl l2l~2 survive to Ex (by Proposition

4.6), it follows that no non-zero element of E^'-i (z > 2) can be hit by any of the
differentials in the spectral sequence. We thus have that the subring generated by
a and 0 in H*(G, 1) is a polynomial subring with pma = pnft = 0. D

Next we consider the element r2 e ££l4. Since d3(r2) = 2r(spn~17?) = 0 , so
72 e Eg'4 = £g'4 survives to £4. We have to determine if <25(r2) = 0. First consider
the case n = 2. Since pan, p/3r] e Im d3 , we have that £4

5'° = 1parj® Ipfbi. By
Proposition 4.6 all the generators of ®i+j = 5Ez } must survive to £«,. In particular,
arj and /S?7 in EZ° survive to E^. It follows that ^5(r2) must be zero and hence, r2

survives to E^. Now consider the case n > 3. Let

be the quotient map and consider the following induced diagram of central extensions:

i — <o — pm,n — a,5> — i
q

y

p2,2

Let q* : E*-* (2,2)-+ E*-* (m, n) be the induced map of spectral sequences. Since
d5(r2) = 0 in £;-*(2, 2), it follows that

in Ef-* (m, ri}. We therefore have that /2 £E E2'4 survives to E^ for all n > 2. It

follows that ©i+J = 4£i/ =%pma2®Zpnal3®'lpn/32®llpx®llpr
2 and hence, /f4(G, Z) has

order pm+2n+2
f Since the coefficient of t* in Q(0 is 4 (by Lemma 4.3), we must have

TT-4/'/^ rj7\ .—, rn
H (G, lt)=lit)m(
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where we may take f such that ResGCg=72. Since all the generators of
0,^ = 5 #2 ; survive to E^ (by Proposition 4.6), we have that

where el , £2 correspond to //r, i>r ^ E1
2'

4, respectively.
Next, by Lemma 4.5 we have that £2

6l° = Z^a30 Zpna2@® %pna@2® Zpn@\
El'1 = £3'3 = £2'5 = 0, £2

4'2 = Zpa
2r® Zpa/3r® %p&

27® %pax® %PPx, E^ = %par2®
Zp/3r2®Zpxr and EQ

2'
6 =Zpr*. Note that d3(aV) = spn'la2rj * 0, ^3(a/Sr) =spn~la^7j

=£ 0 and d3G92r) = spn~~l@27] =£ 0. Therefore, a2r. «^r and £2r in ^ 2 do not survive to
£00 and £4

7l° =Zpn-ia
Z7]®1pn~ia^7j®1pn-ift2rj. Since all the generators of 0f+; = 7£^;'

must survive to Ex (by Proposition 4.6), it is clear that the elements %7 ̂  E\'* and
73 £ ^2' 6 must survive to £"00 if n = 2. By using the same argument as for the element
72 e £2

a 4, we can show that the elements %7 e E2
2
 4 and r3 e £2°' 6 also survive to ̂ ^ if

n > 3. Therefore #6(G,Z) has order j?m+3n+6. Then since the coefficient of t6 in
0(0 is 7 (by Lemma 4.3), there must exist a generator r ^ #6(G, Z) such that

/f6(G, Z) =Zpm

Clearly, we may take T^ H6(G, Z) such that ResGiC f = r3. By inspection we have
the structure of E4 as follows:

Lemma 4.8.

= r_1zx^+1) O> i);

o, s > i);

n s > D;
(r, 5 > i);
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We have shown that all the generators of the £4-page of the spectral sequence survive
to £"00. Therefore the LHS spectral collapses at E4 .

Next we obtain some of the multiplicative relations in the ring H*(G, Z). Since
pft = pv — pel = pe2 = 0, it follows that //, v, el and £2

 are all m the image of the
Bockstein map d: H*(G, F,) ^H*+l(G, Z). From the structure of the mod-p
cohomology ring of G obtained in the previous section, we have that A(YJ) = —xp
and A( 72) - x2v. By taking ft = d( 72), v = d(Y1\el = d( Y2v) and e2 = d( Y^), we
then have that

fjte1 = d(Y2)d(Y2v} = d(x2vY2v) = 0,

Ylv^) = d(-xlvYlv^) = 0.

Now let S' = Zz > o S- be the graded F^-module defined by

S' =1la, 0'. f '] {1, n't v', 7]', e(,e2, n

where deg a = deg 0' = 2, deg IJL = deg v = deg T] — 3, deg ?' = 4, deg e{ = 5
(z = 1, 2), deg rx = 6 and where R7 is some term in degree 7. We have from this and

Lemma 4.1 that

Therefore ff*(G, Z) (8>z Fp = S' (as vector spaces over F,).
We collect the above results in the following theorem:

Theorem 4.9. Let G = (A, B, C \ Apm = Bp" = Cp = \_A, C] - [B, C] - 1,
[A, 5] =C> where m > n > 2 . Then the cohomology ring H*(G, Z) is generated by the
elements

deg a = deg £ = 2, deg p. = deg ^ = deg rj = 3, deg f = 4, deg ef = 5 (f
1, 2) and deg £" = 6 such that

pma = pn/3 = Q, pfi = pv = pn~lri = 0,

p2? = 0, pe{ = 0 (x = 1, 2), p2£ = 0.

multiplicative relations that are known are
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/z2 = v2 = 7]2 = 0, el = 0 (i = 1, 2),

fjLEl = V62 = 0, fJLE2 = — P8l .

Moreover, the elements a, 0 and ^ generate a subring of H*(G, Z) such that

H*(G,%)=Z[a, 0, f] {1, v, v, 77, £l , £2, r}/0?7)

z#/zgrg jR7 zs some term in degree 1.

Remark. The integral cohomology of the group Pm n was also studied in [9] . In
his paper, N. Yagita considered the LHS spectral sequence for the extension

and showed that the spectral sequence collapses at E2 (see Theorem 2.4 in [9] ) .
The author also notes that some of the integral cohomology ring structure of

P2 2 for p > 5 has been obtained in [8] by extending the circle technique of Leary
([3]). In the mod-pease, the cohomology ring of Pm „ obtained in [8, Theorem 6] for
the primep > 5 is contained in Theorem 3.1 of this paper.

Acknowledgements

I would like to thank Dr. I. J. Leary for his helpful comments and for pointing
out an error in an early version of this paper. The proof given in this paper that
72 EL E% 4 survives to Ex even if n > 3 is due to a suggestion of Professor N. Yagita.
I am indebted to Professor N. Yagita for this and for showing me his corrections to
Theorem 2.4 in [9] . Finally, I would also like to thank the referee for some helpful
suggestions.

Eeferences

[1] Cardenas, H. and Lluis, E., On the integral cohomology of a Sylow subgroup of the symmetric
group, Comm. Algebra, 18 (1990), 105-134.

[2] Clark, J., Mod 2 cohomology algebra of the group £/3(4), Comm. Algebra, 22 (1994).
1419-1434.

[3] Leary, I. J., The cohomology of certain finite groups, Ph. D. Thesis, Cambridge University, 1990.
[4] - , The integral cohomology rings of some p-groups, Math. Proc. Camb. Phil. Soc., 110

(1991), 25-32.
[5] - , The mod-p cohomology rings of some p-groups, Math. Proc. Camb. Phil. Soc., 112

(1992), 63-75.
[6] - , A differential in the Lyndon-Hochschild-Serre spectral sequence, /. Pure and Applied

Algebra, 88 (1993), 155-168.
[7] Lewis, G., The integral cohomology rings of groups of order/?3, Trans. Amer Math. Soc., 132

(1968), 501-529.



1044 ANGELINA CHIN

[8] Riesen, J. A., The cohomology ring of a finite p-group, Ph.D. Thesis, Northwestern University,
1993.

[9] Yagita, N., On the dimension of spheres whose product admits a free action by a non-abelian
group, Quart. J. Math. Oxford, 2 (1985), 117-127.


